极限的概念

合集下载

极限与连续的定义与性质

极限与连续的定义与性质

极限与连续的定义与性质极限与连续是微积分中非常重要的概念,它们在数学中具有广泛的应用。

本文将介绍极限及其定义和性质,以及连续函数的定义和性质。

一、极限的定义与性质1. 极限的定义在数学中,极限是数列或函数逐渐接近某个确定值的过程。

对于数列,极限可以通过数学符号来表示,即lim(an)=a,表示数列an当n趋近于无穷时,逐渐趋向于a。

而对于函数,极限可以用lim(f(x))=L来表示,表示当x趋近于某个值时,函数f(x)的值趋近于L。

2. 极限的性质(1)唯一性:若极限存在,那么它是唯一的。

(2)局部有界性:存在极限的数列一定是有界的,即存在一个范围包含该数列的所有项。

(3)保序性:如果数列an逐渐趋近于a,而bn逐渐趋近于b,且an小于等于bn(对于所有的n),则有a小于等于b。

二、连续函数的定义与性质1. 连续函数的定义在数学中,连续函数是指在定义域的每个点上都有定义,并且在该点上的极限等于该点的函数。

形式化地,对于函数f(x),如果对于任意x0∈定义域D,lim(x→x0)(f(x))=f(x0),则称函数f(x)在x0上连续。

2. 连续函数的性质(1)极限与连续的关系:若函数f(x)在x=a处连续,那么lim(x→a)(f(x))=f(a)。

(2)连续函数的四则运算:如果函数f(x)和g(x)在x=a处连续,那么它们的和、差、积和商(当g(a)≠0时)也在x=a处连续。

(3)复合函数的连续性:若函数f(x)在x=a处连续,函数g(x)在x=b处连续,并且b=f(a),那么复合函数g(f(x))在x=a处连续。

三、总结极限是数学中的重要概念,它在数列和函数中都有丰富的应用。

极限的定义和性质使我们能够更加准确地描述数列和函数的收敛性和趋势。

同时,连续函数是一类特殊的函数,其在定义域内不存在断点,平滑地连接着各个点。

连续函数的性质使我们能够进行更加灵活和精确的运算和推导。

通过对极限和连续的定义和性质的学习,我们可以更好地理解数学中的变化和趋势,应用于实际问题的建模和求解中。

极限的概念及其应用

极限的概念及其应用

极限的概念及其应用极限是数学中一个重要的概念,广泛应用于科学和工程等领域。

在大多数情况下,极限是一个趋近于某个值的过程,它们描述的是数学对象的某个方面在趋向某个特定的状态时的行为。

一、极限的定义在数学中,极限的定义又称为“Ε-δ语言”。

以函数为例,函数$f(x)$当$x$趋近于$a$时,如果存在一个与任意正数$\varepsilon$相对应的正数$\delta$,使得当$0<|x-a|<\delta$时有$|f(x)-L|<\varepsilon$,则称函数$f(x)$在$x$趋近于$a$时以$L$为极限,记作$\lim\limits_{x\to a}f(x)=L$。

其中,$|f(x)-L|$称为$f(x)$与$L$的差,$\varepsilon$可理解为$f(x)$与$L$的误差,$\delta$是控制误差的因素。

二、极限的性质极限的性质包括唯一性、局部有界性、保号性、四则运算法则和复合函数法则等。

例如,如果$\lim\limits_{x\to a}f(x)=L_1$,$\lim\limits_{x\to a}f(x)=L_2$,则$L_1=L_2$;如果$\lim\limits_{x\to a}f(x)=L$,则存在一个$a$的邻域,使得$f(x)$在这个邻域内有界;如果$\lim\limits_{x\to a}f(x)=L$,则当$x\toa$时,$f(x)$与$L$的符号相同;如果$\lim\limits_{x\to a}f(x)=L$,$\lim\limits_{x\to a}g(x)=M$,则$\lim\limits_{x\to a}(f(x)\pmg(x))=L\pm M$,$\lim\limits_{x\to a}(f(x)\cdot g(x))=L\cdot M$,$\lim\limits_{x\to a}\dfrac{f(x)}{g(x)}=\dfrac{L}{M}$,$\lim\limits_{x\to a}f(g(x))=f(\lim\limits_{x\to a}g(x))=f(M)$。

数学极限知识点总结

数学极限知识点总结

数学极限知识点总结一、极限的概念极限是一个重要的数学概念,它描述了一个函数在自变量趋近某个特定值时的行为。

具体地说,当自变量x在某一点a附近不断靠近,同时函数f(x)的取值也逐渐接近某个特定的数L时,我们就说函数f(x)在自变量x趋近于a时的极限为L,记作lim(x→a)f(x)=L。

这个定义可以用符号表示为:对于任意给定的正数ε,存在一个正数δ,使得当0<|x-a|<δ时,就有|f(x)-L|<ε。

在这个定义中,ε和δ分别表示"误差"和"变化范围",而当自变量x距离a足够近时,函数f(x)的取值与极限L的差异也会变得足够小。

换句话说,极限描述了函数在某点附近的稳定性和趋势。

在实际问题中,极限的概念常常用于描述随着自变量的变化,函数取值的趋势。

比如,在物理学中,我们可以用极限来描述速度、加速度、流体的流动等随着时间或空间的变化而变化的量。

而在工程中,极限也可以描述材料的强度、电路的稳定性等。

因此,极限是数学中一个十分重要、普遍且有广泛应用的概念。

二、极限的性质1.极限的唯一性如果一个函数在某点附近有极限,那么这个极限是唯一的。

换句话说,对于一个自变量x趋近于a的函数f(x),其极限只能有一个确定的值。

这个性质使得我们可以不用担心在计算函数的极限时会出现多个可能的结果,从而保证了极限的一致性和确定性。

2.极限的局部保号性如果函数f(x)在某点a的邻域内除a点外有定义,并且lim(x→a)f(x)=L,则当L>0时,存在a的某个邻域,使得邻域内的函数值都大于0;当L<0时,存在a的某个邻域,使得邻域内的函数值都小于0。

这个性质表明了在极限存在的情况下,函数在足够靠近极限点的地方都具有一致的正负性。

3.极限的局部有界性如果函数f(x)在某点a的邻域内除a点外有定义,并且lim(x→a)f(x)=L,则存在一个正数M,使得a的某个邻域内函数的取值都在区间(-M,M)之间。

极限的概念解释

极限的概念解释

极限的概念解释极限是数学中的一个重要概念,用于描述函数在逼近某个值时的行为。

在数学分析中,极限可以通过严格的定义和符号来描述,也可以通过直观的图像和例子来理解。

本文将详细解释极限的概念,从简单的定义开始,逐步深入,以便读者全面理解和掌握。

在数学中,极限是指当一个变量趋近于某个确定值时,函数的值逐步接近这个确定值的过程。

通常,我们将自变量无限接近某个值时对应的函数值称为极限。

函数的极限可以是无穷大、有限或不存在,取决于函数在逼近过程中的性质。

数学家用严格的定义来描述极限的概念。

设函数f(x)定义在某个区间内,x趋近于某个数a时,如果对于任意给定的大于零的数ε,总存在另一个大于零的数δ,当0 < x - a < δ时,则有f(x) - L < ε成立。

其中L为一个常数,称为极限。

这个定义表明,当自变量x无限接近a时,函数值f(x)无限接近L。

为了更直观地理解极限,我们可以借助图像和例子。

考虑函数f(x) = 1/x,其中x不等于0。

当x越来越接近0时,1/x 的值趋近正无穷或负无穷。

我们可以画出这个函数的图像,可以看到当x接近0时,函数的值变得越来越大(正无穷)或越来越小(负无穷)。

这就是函数f(x) = 1/x 在x趋近于0时的极限。

极限还可以是有限值。

考虑函数f(x) = x^2 - 1,当x趋近于2时,函数的极限是3。

我们可以绘制出这个函数的图像,可以看到函数值在x=2附近逐步接近于3。

这就是函数f(x) = x^2 - 1在x趋近于2时的极限。

另一种情况是函数的极限不存在。

考虑函数f(x) = sin(1/x),其中x不等于0。

当x趋近于0时,函数值在不断振荡,没有明确的趋势。

无论我们如何接近0,函数值都不会趋近于一个确定的值。

因此,这个函数在x趋近于0时极限不存在。

为了更精确地计算和处理极限,数学家还引入了一些重要的极限性质和运算法则。

这些性质和法则提供了一些简化计算的方法。

极限概念知识点总结

极限概念知识点总结

极限概念知识点总结一、极限的基本概念1.1 极限的引入极限的概念最早是在微积分的发展过程中被引入的。

当人们试图解决一些问题时,发现需要对一些数列、函数、变量等的趋势进行描述和分析。

例如,当我们用一个数列的前几项来逼近某个数时,我们希望能够明确当数列的项数趋于无穷时,该数列是否真的能够逼近这个数;再如,当我们试图分析一个函数在某一点的性质时,我们也会遇到极限的概念。

因此,为了能够更加准确地描述数学对象在某个方面的性质,人们引入了极限的概念。

1.2 极限的定义数列的极限是极限的最基本形式之一。

对于一个数列{an},当n趋于无穷时,如果an可以无限地地接近某个确定的数a,则称a为数列{an}的极限,记作lim(n→∞)an=a。

这个定义也可以推广到函数的极限、变量的极限等其他情形,如对于函数f(x),当x趋于某一点c时,如果f(x)可以无限地地接近某个确定的数L,则称L为函数f(x)当x→c时的极限,记作lim(x→c)f(x)=L。

这就是极限的基本定义形式。

1.3 极限的性质极限具有一系列重要的性质,在实际应用中,这些性质被广泛地用于求解各种问题。

以下是一些极限的基本性质:1)唯一性:如果数列an有极限a,则这个极限是唯一的。

也就是说,一个数列只能有一个极限。

类似地,函数f(x)当x→c时的极限也是唯一的。

2)保号性:如果数列an的极限a>0(或a<0),则对于充分大的n,an>0(或an<0)。

3)夹逼准则:如果数列{an}、{bn}和{cn}满足an≤bn≤cn,且lim(n→∞)an=lim(n→∞)cn=a,那么必有lim(n→∞)bn=a。

这个性质在确定一些数列的极限时常常会被用到。

4)四则运算法则:如果lim(n→∞)an=a,lim(n→∞)bn=b,那么有lim(n→∞)(an±bn)=a±b,lim(n→∞)(an×bn)=a×b,lim(n→∞)(an÷bn)=a÷b(b≠0)。

高考数学中的极限及相关概念

高考数学中的极限及相关概念

高考数学中的极限及相关概念在高考数学中,极限是一项非常重要的概念。

极限的定义是指当自变量无限接近某一固定值时,函数的取值趋近于某一固定值,这个固定值即为极限。

为了更好地理解极限及其相关概念,本文将从以下几个方面进行分析。

一、函数的极限函数的极限是指当自变量趋近于某一特定值时,函数的取值趋近于某一特定值。

例如,当x趋近于1时,y趋近于2。

在高考数学中,函数的极限是非常重要的,因为它可以帮助我们确定函数的性质,从而更好地处理一些复杂的问题。

二、左极限和右极限左极限和右极限是指在函数存在极限的情况下,自变量趋近于这个极限时,函数的取值分别从左侧和右侧趋近于极限。

例如,当x趋近于2时,y趋近于3,此时左极限为3,右极限也为3。

在实际问题中,左极限和右极限的概念经常被用来描述物理或经济现象中的变化规律。

三、连续性连续性是指当自变量在某一固定点上发生微小变化时,函数的取值也随之发生微小变化。

具体来说,如果函数在某一固定点上的极限存在,并且等于函数在这一点上的取值,那么这个函数就是连续的。

连续性是数学中非常重要的一个概念,它可以帮助我们更好地研究函数的变化规律。

四、无穷大与无穷小无穷大与无穷小是指当自变量趋近于某一固定值时,函数的取值趋近于无穷大或无穷小。

在实际问题中,我们经常需要讨论物理或经济现象中的最大值或最小值,因此无穷大与无穷小的概念也是非常重要的。

结语本文从四个方面论述了高考数学中的极限及其相关概念。

在实际应用中,极限与微积分、微分方程等数学学科密切相关,掌握极限及其相关概念是现代数学研究的基础。

希望读者在阅读本文后能够更好地理解极限及其相关概念,从而更好地应对高考数学考试。

极限的定义和相关定理

极限的定义和相关定理

极限的定义和相关定理极限是微积分中的重要概念,它描述了函数在趋近某一点时的行为。

通过研究极限,我们可以深入理解函数的变化规律和性质。

本文将从极限的定义开始,逐步介绍相关定理和应用。

一、极限的定义在介绍极限之前,我们先定义一下数列的收敛性。

给定一个数列{an},如果存在实数 a,使得对于任意正数ε,都存在正整数 N,当n>N 时,不等式 |an-a|<ε 成立,那么数列 {an} 收敛于 a。

现在,我们来定义函数f(x) 在x=a 处的极限。

如果对于任意正数ε,存在正数δ,使得当 0<|x-a|<δ 时,都有 |f(x)-L|<ε 成立,那么函数 f(x)在 x=a 处的极限为 L,记作:lim(x->a) f(x) = L其中,x 表示自变量,a 表示趋近的点,L 表示极限的值。

二、极限的性质在我们研究极限的过程中,有许多有用的定理可以帮助我们求解极限。

以下是一些常用的极限性质:1. 极限的唯一性:如果函数 f(x) 在 x=a 处有极限,那么它的极限值是唯一确定的。

2. 四则运算法则:设函数 f(x) 和 g(x) 在 x=a 处有极限,那么它们的和、差、积、商的极限也存在,且有以下运算法则:lim(x->a) [f(x) ± g(x)] = lim(x->a) f(x) ± lim(x->a) g(x)lim(x->a) [f(x) · g(x)] = lim(x->a) f(x) · lim(x->a) g(x)lim(x->a) [f(x) / g(x)] = [lim(x->a) f(x)] / [lim(x->a) g(x)] (若 lim(x->a) g(x)≠0)3. 夹逼定理:如果函数 f(x)、g(x) 和 h(x) 在 x=a 处满足f(x)≤g(x)≤h(x),且 lim(x->a) f(x) = lim(x->a) h(x) = L,则 lim(x->a) g(x) 也存在,并且 lim(x->a) g(x) = L。

极限的定义与基本性质

极限的定义与基本性质

极限的定义与基本性质极限在数学中是一个十分重要的概念,被广泛应用于微积分、数学分析等领域。

极限主要是描述函数在某一点上的特定性质,这个特定的性质可以用一些简单的公式来表示。

定义对于实数序列或函数序列来说,如果它的极限值存在,我们就称这个序列或函数序列是有极限的。

在函数中,极限的定义表述如下:对于一个函数f(x),如果x从c点的左侧或者右侧越来越接近于c值时,f(x)也相应地越来越接近于一个数L,那么我们称L 为f(x)当x趋向于c时的极限,记作:lim x->c f(x) = L.其中 L 可以是实数、负无穷大或正无穷大。

基本性质极限有以下几个基本的性质:(1) 有限性原理:如果极限的值存在,那么它一定是唯一的。

这是因为如果有两个极限值,那么函数在这两个极限值处的取值是不同的。

(2) 局部有界性原理:如果函数f(x)在某一点c的极限存在,那么必定存在一个邻域,使得除了c点外这个邻域内的所有函数值都是有界的。

(3) 存在性原理:如果函数f(x)在某一点c的左侧和右侧的极限都存在,并且这两个极限值相等,那么f(x)在这个点的极限也存在。

(4) 夹逼定理:如果存在两个函数g(x)和h(x),它们在某个点c的左侧和右侧都满足:g(x)≤f(x)≤h(x),并且g(x) 和 h(x)的极限都等于L,那么f(x)的极限也将是L。

(5) 算术性原理:如果存在函数f(x)和g(x),它们在某一点c的极限都存在,并且L和M是它们的极限值,那么:① f(x) ± g(x) 的极限存在且等于 L ± M。

② f(x)×g(x) 的极限存在且等于 L × M。

③ k×f(x) 的极限存在且等于 k×L,其中 k 是任意的实数。

④如果 M 不等于0,而且 f(x) 与 g(x) 的极限也都存在且等于L 和 M ,则 f(x)/g(x) 的极限L/M 也存在。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2) lim(1 − x 2 ) x →1

=1
=0
(3) lim sin x
x→0
π
2
π
(4) lim sin x π
x→ 2
=0
=1
(5) lim cos x
x→0
(6) lim cos x
x →π
=1
=-1
目录
总结: 是定义域为D的初等函数, 总结:若函数f(x)是定义域为D的初等函数,且有限点
y= π 2
y = arctan x
y=−
π , 由图形可知 : lim arctan x = x → +∞ 2 发现问题 没有? 没有 π . 同理可知 : lim arctan x = − x → −∞ 2
那 x →∞ ?
π 2
当x→+∞时,函 → 数趋于π 数趋于π/2; 当x→-∞时, → 函数趋于函数趋于-π/2;
目录
2、当x→∞时,函数 极限存在的充要条件 、 →∞时 函数f(x)极限存在的充要条件 →∞ 函数
定理 1.1 : lim f ( x ) = A 的充分必要条件是
x→∞ x → +∞
lim f ( x ) = lim f ( x ) = A.
x → −∞
1 的极限存在吗? 思考题: 思考题:lim (1 + ) 的极限存在吗? x →∞ x
1、 (1) (2)
x → −∞
lim e
x
0
x → +∞
lim e
x
不存在
lim e x 不存在 x →∞
lim(1) x 0 x → +∞ e
lim(1) x 不存在 lim(1) x 不存在 x → −∞ e x →∞ e
目录
2、 lim cos x lim cos x lim cos x
x → −∞ x → +∞ x →∞
定义 1 在区间( 有定义, 设函数 f ( x )在区间( − ∞ , b )有定义,当 x取负值且绝对值无限
义 定 2 义 定 3
a +∞ ( ,+∞) ) ( ∞,+∞ − +∞
正 \
增大时, 增大时,函数 f ( x )无限趋近于 某个确定的常数 A,则常数 A 称 为函数 f ( x ) 当 x → −∞ 时的极限 .
y = x2 + 1
y
lim+ f ( x), lim− f ( x). x →0 x→0 解 分x > 0和x < 0两种情况分别讨论

1
o
x
(1)x从 侧 限 近 0, 从 左 无 趋 x
− 记作x → x0 ;
观察可知: 观察可知:
x→x0
lim f (x) = lim(1− x) = 1 − −
目录
割圆术: 割圆术: “割之弥细,所 割之弥细, 割之弥细 失弥少, 失弥少,割之又 割,以至于不可 割,则与圆周合 体而无所失矣” 体而无所失矣” ——刘徽 刘徽
目录
割圆术: 割圆术: “割之弥细,所 割之弥细, 割之弥细 失弥少, 失弥少,割之又 割,以至于不可 割,则与圆周合 体而无所失矣” 体而无所失矣” ——刘徽 刘徽
目录
一、极限概念的引入
1、 求圆的周长问题
我国古代数学家刘徽用割圆术, 我国古代数学家刘徽用割圆术, 初步解决了这个问题。 初步解决了这个问题。
割圆求周长
思路: 思路:利用圆的内接正多边形近似替代圆的周长 随着正多边形边数的增多,近似程度会越好。 随着正多边形边数的增多,近似程度会越好。 问题:若正多边形边数n无限增大, 问题:若正多边形边数n无限增大, 两者之间的关系如何? 两者之间的关系如何?
目录
割圆术: 割圆术: “割之弥细,所 割之弥细, 割之弥细 失弥少, 失弥少,割之又 割,以至于不可 割,则与圆周合 体而无所失矣” 体而无所失矣” ——刘徽 刘徽
目录
割圆术: 割圆术: “割之弥细,所 割之弥细, 割之弥细 失弥少, 失弥少,割之又 割,以至于不可 割,则与圆周合 体而无所失矣” 体而无所失矣” ——刘徽 刘徽
极限不存在(发散) 极限不存在(发散)
(非确定常数) 非确定常数)
目录
三 x →∞时 f (x)的 限 . , 极
由于数列实际上可以看成是定义域为正整数 域的函数, 所以, 域的函数 所以 可望将数列的极限理论推广到 函数中, 并用极限理论研究函数的变化情形. 函数中 并用极限理论研究函数的变化情形
目录
2. 数列极限的定义
无限增大时, 定义 1.6 如果 n无限增大时,数列 {an} 的通项 an 的值无 限接近一个确定的常数 A,则称 A是数列 {an} 当 n趋向 于无穷大时的极限, 于无穷大时的极限,或者称数列 xn收敛于 A,记为 ,
liman = A,或: an → A(n →∞)
x0 ∈ D
,则极限
x→x0
lim f ( x) = f ( x0 )
如:
x → x0 x → x0
lim C = C lim x =
x0
目录
3、单侧极限(左极限和右极限) 单侧极限(左极限和右极限) 例 设 f ( x ) = 12− x , x < 0 x + 1, x ≥ 0
y = 1− x
目录
通过上面演示观察得: 通过上面演示观察得 若正多边形边数n无限增大, 若正多边形边数 无限增大,则 无限增大 限接近于圆的周长。 正多边形周长无 限接近于圆的周长。
目录
二、数列极限 1、数列极限定义的引入

1 1 1 1 1 1, , , , L , , L; an = 2 3 4 n n
1 1 1 a1 = 1, a2 = , a3 = L an = ,L , . 2 3 n 0
1 Q lim (1 + ) = 1 x → −∞ x 1 lim (1 + ) = 1 x → +∞ x
y
.
1 f (x) = 1+ x
x
1
.
o
1 ∴ lim (1 + ) = 1 . x→∞ x
目录
趋于无穷时极限是否存在. 例:观察下列函数在x趋于无穷时极限是否存在 观察下列函数在 趋于无穷时极限是否存在
1 .函数的极限与 f ( x ) 在点 x 0 是否有定义无关 2 .极限讨论的是函数值 f ( x )随自变量的变化趋势 .
目录
1.引例 : 观察函数 f1 ( x ) = x + 1, x2 − 1 f2 ( x) = x −1 当 x → 1 时的变化趋势.
ቤተ መጻሕፍቲ ባይዱ
y
y = f (x)
.
f ( x)
(4) lim f (x) = A⇐⇒ lim f (x) = lim f (x) = A
x→∞ x→+∞ x→−∞
目录
. , 四 x → x0 时 f (x)的 限 极
x → x0 时函数的 极限, 是描述当 x 无限 接近 x0 时, 函数 f (x)的变化趋 势.
目录
2、 x→x0 时函数的极限 →
( 3) 1, 2, 3, L n, L
目录
解:(1). 1 , 1 , 1 , 1 L , 1n ,L; 2 4 8 16 2
1 an = n 2
1 1 1 1 a1 = , a2 = , a3 = ,L an = ,L , . 2 4 8 n 0
L
1 8
1 4
1 2
1
n →∞,
1 → n 2
0
数列对应着数轴上一个点列. 解:数列对应着数轴上一个点列.可看作一动点在数轴上依次取
L
1 1 4 3
1 2
1
对于“无限接近”这种变化趋势,我们给出下面的数学定义: 对于“无限接近”这种变化趋势,我们给出下面的数学定义:
1 通过上面演示观察得: 通过上面演示观察得: 当 n 无限增大时 , an = 无限接近于 0. n
目录
割圆术: 割圆术: “割之弥细,所 割之弥细, 割之弥细 失弥少, 失弥少,割之又 割,以至于不可 割,则与圆周合 体而无所失矣” 体而无所失矣” ——刘徽 刘徽
目录
割圆术: 割圆术: “割之弥细,所 割之弥细, 割之弥细 失弥少, 失弥少,割之又 割,以至于不可 割,则与圆周合 体而无所失矣” 体而无所失矣” ——刘徽 刘徽
目录
§1.2 极 限 学习要求 1.理解极限的概念; 1.理解极限的概念;熟练掌握基本初等函数在 理解极限的概念 自变量的某个过程中的极限。 自变量的某个过程中的极限。 2.掌握函数在一点极限存在的充要条件, 2.掌握函数在一点极限存在的充要条件,会求 掌握函数在一点极限存在的充要条件 分段函数在分段点的极限。 分段函数在分段点的极限。
x →+∞ x →∞ x , 记作 lim f ( x) = A或 →−∞ f ( x) → A
x→−∞
x , 记作 lim f ( x) = A或 →+∞ f ( x) → A
x→+∞
x 记作 lim f ( x) = A或 →∞, f (x) → A
x→∞
目录

根据图形写出反正切函 数当 x → +∞ 、 x → −∞ 时的极限 .
目录
讨 在 论 x → x0 这 极 过 时 我 不 类 限 程 , 们
必 虑 f (x) 在x = x0有 定 ,只 虑 x 无 考 无 义 考 限
, 接近 x0 时 函数 f ( x) 的变化趋 即 。 势 可
目录
例:观察并求出下列极限
(1) lim(1 − x )
相关文档
最新文档