线性代数考试复习资料 (1)
线性代数期末考试复习资料

●向量组的线性相关性的几个性质定理
1、单个非零向量是线性无关的。 2、两个向量线性相关的充分必要条件是对应分量成比例。 3、增加向量,不改变向量组线性相关;减少向量,不改变 向量组线性无关。即部分相关,则整体相关;整体无关, 则部分无关。 4、增加分量,不改变向量组线性无关;减少分量,不改变向 量组线性相关。即低维无关,则高维无关;高维相关,则 低维相关。
a11
特殊 行列式 的计算
a11 a nn a11 a1n a n1
a nn
a11 a 22 a nn
a n1
a1n a n1
a n1
a 1n
a11
a 1n
a nn a n1
n( n1) ( 1) 2 a
1n a 2,n1 a n1
1
2
3
4
5
6
●线性方程组的向量表达式
线性方程组
a11 x1 a12 x2 a1n xn b1 a x a x a x b 21 1 22 2 2n n 2 am1 x1 am 2 x2 amn xn bm
(1)
a1 j a2 j ( j 1, 2, 若记 j a mj
设存在不全为零
k11 k22 k11 k22 krr 0 r 1 0 m 0
推论: 线性无关向量组的部分向量组,仍是线性 无关的。
反证法: 设线性无关向量组 1 , 2 ,
k1 , k2 , , kr 使 krr 0
,m,部分向量组
提到行列式符号的外面。
推论2:如果行列式D有一行(列)的元素全为零,则D=0 推论3:如果行列式D有两行(列)的元素成比例,则D=0 推论4:
线性代数综合复习资料

《线性代数》综合练习资料第一章 n 阶行列式一、判断题1.如果n (n>1)阶行列式的值等于零,则行列式中必有两行成比例。
( × ) 2.如果n (n>1)阶行列式的值等于零,则行列式中必有一行全为零。
( × ) 3.交换一个行列式的两行(或两列),则行列式值改变符号 ( √ ). 4. 已知n 阶矩阵A 各列元素之和为0,则A =0 ( √ ) 5.ij ijA a D ,33⨯=为ij a 的代数余子式,则0231322122111=++A a A a A a . ( √ )6、齐次线性方程组有非零解,则系数行列式的值一定为零。
( √ )7、1122121233443434a b a b a a b b a b a b a a b b ++=+++ ( × )二.填空题:1.多项式=)(x P 333322221111x c b a x c b a xcb a (其中a,b,c 是互不相同的数)的根是 ,,x a x b x c === .2.. 三阶行列式 D =333222111435214352143521a a k a a a k a a a k a +++++++++ = 0 。
3、(),____1________.nn ij ij D a a D a a ===-=-若则4.设A 为m 阶方阵,B 为n 阶方阵,且|A |=3,|B|=2,C=00A B⎛⎫⎪⎝⎭,则|C |=______()16nm-⋅_____. 5、设四阶行列式3214214314324321,ij A 是其()j i ,元的代数余子式,则_______3331=+A A ,_______3432=+A A .根据定义求即可 6 .已知4阶行列式D 的第一行元素分别是-1,1,0,2;第四行元素对应的余子式依次为5,x ,7,4,则x = 3-7、已知n 阶行列式100110111 =D ,则D 的所有元素的代数余子式之和等于 n .三.选择题1、设)(则B a a a a a a a a a a a a D a a a a a a a a a D =---===333231312322212113121111333231232221131211324324324,1 (A)0 ; (B)―12 ; (C )12 ; (D )12.已知四阶行列式D 中第三列元素依次为-1,2,0,1,它们的余子式依次分别为5,3,-7,4, 则D= ( A )(A ) -15 (B ) -5 (C ) 5 (D ) 1 3、已知四阶行列式A 的值为2,将A 的第三行元素乘以―1加到第四行的对应元素上去,则现行列式的值( A )(A ) 2 ; (B ) 0 ; (C ) ―1 ; (D ) ―24、n 阶行列式D 不为零的充分必要条件是( D )(A )D 中至少有n n -2个元素不为零 (B )D 中所以元素都不为零(C )D 的任意两列元素之间不成比例 (D )以D 为系数行列式的非齐次线性方程组有唯一解5.如果行列式02002000110011=kk k ,则( A )。
线性代数复习题答案

A . ⇒ A =| A | A ⇒ ( A ) = | A| 1 1 1 1 ∗ −1 ⇒| ( A ) |= | A|= = 2 = . 3 2 | A| | A| 4 16
∗ −1
∗ −1
2. 已知4阶方阵A的特征值为−1, 1, 2, 3 , 则|2A| = −96 解:
| 2 A |= 2 4 | A |= 2 4 ( − 1) ⋅1 ⋅ 2 ⋅ 3 = −96.
0 1 0 1 0 0 0 1 −1 −1 0 0 1 = 0 0 −1 . −1 ∴ A = 1 0 1 0 −1 0 2 0 0 2 −1 0 1 0 0 −1 0 1 1 0 −1 0
ξ 3 = ( 0 ,1,1) , 则A = __________ .
0 1 0 解:取 P = (ξ 1 ,ξ 2 ,ξ 3 ) = 1 0 1 , −1 0 1 1 0 0 1 0 0 −1 则P AP = 0 −1 0 . ⇒ A = P 0 −1 0 P −1 . 0 0 −1 0 0 −1
补:
增广矩阵为
1 1 λ −2 1 λ 1 −2 λ 1 1 λ − 3
λ −2 1 1 λ −2 1 1 1 λ 1 −2 → 0 λ −1 1− λ 0 λ 1 1 λ − 3 0 0 −(λ −1)(λ + 2) 3(λ −1)
λ1 = 1, λ 2 = λ3 = −1,
ξ1 = ( 0 ,1, −1) ,ξ 2 = (1, 0 , 0 ) ,
T T
ξ 3 = ( 0 ,1,1) ,
T
线性代数期末复习知识点资料整理总结

行列式1.行列式的性质性质1行列式与它的转置行列式相等TD D =.性质2互换行列式的两行(列),行列式变号.推论1如果行列式有两行(列)的对应元素完全相同,则此行列式的值为零.性质3行列式的某一行(列)中所有的元素都乘以同一数k ,等于用数k 乘此行列式.如111213111213212223212223313233313233a a a a a a ka ka ka k a a a a a a a a a =推论2如果行列式中有两行(列)元素成比例,则此行列式的值为零.性质4若行列式的某一行(列)的元素都是两数之和,则这个行列式等于两个行列式之和.如111213111213111213212122222323212223212223313233313233313233a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ''''''+++=+性质5把行列式的某一行(列)的各元素乘以同一数然后加到另一行(列)对应的元素上去,行列式的值不变.如111213111213212223212223313233311132123313a a a a a a a a a a a a a a a a ka a ka a ka =+++例1已知,那么()A.-24B.-12C.-6D.12答案B解析2.余子式与代数余子式在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的n-1阶行列式叫做元素ij a 的余子式,记作ij M ,i jij ij A (1)M +=-叫做元素ij a 的代数余子式.3.行列式按行(列)展开法则定理1行列式的值等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即1122i i i i in in D a A a A a A =+++ 或 1122j j j j nj njD a A a A a A =+++ ()1,2,,;1,2i n j n ==定理2行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即12120,j j i i jn i n a A a A a A +++= 或,11220.j j j j nj nj a A a A a A i j +++=≠ ()1,2,,;1,2i n j n == 例.设3阶矩阵()ij A a =的行列式12A =,ij A 为ij a 的代数余子式.那么313132323333a A a A a A ++=___12____;213122322333a A a A a A ++=___0___.4.行列式的计算(1)二阶行列式1112112212212122a a a a a a a a =-(3)对角行列式1212n nλλλλλλ=,n(m 1)21212nn(1)λλλλλλ-=- (4)三角行列式1111121n 2122222n1122nnn1n2nnnna a a a a a a a a a a a a a a ==(5)消元法:利用行列式的性质,将行列式化成三角行列式,从而求出行列式的值.(6)降阶法:利用行列式的性质,化某行(列)(一般选择有0元素的行或列)只有一个非零元素,再按该行(列)展开,通过降低行列式的阶数求出行列式的值.(7)加边法:行列式每行(列)所有元素的和相等,将各行(列)元素加到第一列(行),再提出公因式,进而求出行列式的值.例:思路:将有0的第三行化为只有一个非0元素33=1,按该行展开,D=3333,不用忘记B 。
会计自考《线性代数》复习资料.docx

1.1.1二阶行列式与三阶行列式 >用加减消元法解二元一次方程组:心:。
】2兀2二?(].])得方程组的唯一解为:%讦上込巴込 X 尸上垃口込(°21.兀 1 + a 22x 2 —厂2 a ll a 22~a l2a21 a ll a 22~a 12a21>为了便于记忆方程组(1.1)的解,引入记号D 2= a J =ad-bc,称之为二阶行列式c d这样,二元一次方程组(1.1)的解可以用二阶行列式表示为> 在讨论三元一次方程组时,引入三阶行列式这一工具,三阶行列式定义为a ll a 12 a13 D3二 a 2i a 22 a23 二ana22a33+ai2a23a3i+ai3a2ia32・ai3a22a3i ・ai2a2ia33・aiia23a32a 31 a 32 a33特殊的行列式(称为三角行列式)引进如卞三个二阶行列式:记Aii=(-l >1 q Mii (i=l, 2, 3),即Au=Mu, A2F-M21. A 3I =M 3I 称Mi 】为元素%在D3中的余子式,称Ai 】为元素a 订在03屮的代数余子式,由公式(1.2)可以知道三阶行列式的计算公式可以简写成D3 二 口1』1厂421"121+^3』31二^11 Aii + ct21 人21 + 口3』31把它称为D3按其第一列的展开式,简写为D 3=Zf-i1.1.2 n 阶行列式 定义1.1.1Dn=anA 11+ a 21A 21+...+ a nl A nl 此式称为D“按第一列的展开式,由余子式和代数余子式的关系可得 D n =aiiMu 321“21+...+ (~1) n a n jM n i> 上三角行列式和下三角行列式第一章行列式 1・1行列式的定义a * *a 0 0* * a0 0aOb*= * b 0 =abc* b 0 二Ob*0 0 c* * cc 0 0c * *=adbec dc d c abc二阶行列式和三阶行列式的关系:baca 0 a 00 db a 0 dX]= bi a 12 力2 a22«11 «12a 21 a22X 2= «11 b*a 21b 2 «11 «12a21 a 22M21=a12 a 13 a 32 a33a12 a13 a 22 a23a22 a 23\_ 1^12 a13a32 ^331 “2】1^32 ^33^31(1.2)a32 a33D n = (2)• • • • • •* * …a n1・2行列式按行(列)展开定理1・2・1 (行列式展开定理)1> D 按笫 i 行的展开式=3iiAji+aj2Aj2+...+3inAin =(-l )'+1 3iiMji+(-l )'+2 ai2Mj2+...+(-l )'+n aj n Mj n (i=l,2z ...,n ) 2、D 按第 j 列的展开式=aijAij+a2jA2j+...+a n jA n j=(-l )1+j aijMij+(-l )2+j a2jM2j+…+(■!•)"町 a n jM n j (j=l,2/.../n )1・3行列式的性质与计算1.3.1行列式的性质性质1行列式和它的转置行列式相等,即性质2用数k 乘行列式D 中某一行(列)的所有元素所得到的行列式等于kD,行列式可以按行和按列提出公因数 注意必须按行或按列逐次提出公因数> 任意一个奇数阶反对称行列式必为0,反对称行列式指的是,其屮主对角线上的元素全为0,而以主对角线为轴,两边处于对称位置上的元素异号,即若D=|aij |n 是反对称行列式,则它满足条件a —ajj, i, j",2, n 性质3互换行列式的任意两行(列),行列式的值改变符号 推论 如果行列式中有两行(列)相同,则此行列式的值等于0性质4如果行列式中某两行(列)的对应元素成比例,则此行列式的值等于0 性质5行列式可以按行(列)拆开(应当逐行、逐列拆开)=性质6把行列式D 的某一行(列)的所有元素都乘以一个数以后加到另一行(列)的对应元素上去,所得的行列 式仍为D定理1・3・1 n 阶行列式D=|aij |n 的任意一行(列)各元素与另一行(列)对应元素的代数余子式的乘积之和等于0 13.2行列式的计算1.4克拉默法则定理1.4.1> 含有n 个方程的n 元线性方程组的一般形式为«11^1 + 口12 尢 2 + …+ ot ln x n = 6 «21^1 + 口22%2 + …+ Q2nX n = b 2+ 冷2 尢 2 + …+ ^nn X n = b n(1.3)1、上三角行列式2、下三角行列式它的系数构成的n阶行列式all a 12 …aln ^21 a22 —a 2nD=•..• • • •••伉Ml ^n2定理142 (克拉默法则)如果n 个方程的n 元线性方程组(1.3)的系数行列式D 二心讥工0,则方程组(1.3)必 有唯一解,Xj=牛,j=l,2, ・・・,n,其中Dj 是将系数行列式D 中第j 列元素aij, a 2j , a“j 对应地换为方程组的常数项bi ,b2,・・・,bn 得到的行列式。
(完整版)线性代数复习——选择题.doc

《线性代数》复习一:选择题a11 a12 a13 2a11 2a12 2a131.如果a21 a22 a23 = M,则2a21 2a22 2a23 = ()a31 a32 a33 2a31 2a32 2a33A. 8MB. 2MC. MD.6M2. 若 A,B 都是方阵,且 |A|=2, |B|=-1,则 |A -1B|= ()A. -2B.2C. 1/2D. –1/23. 已知可逆方阵 A 1 3 7则 A ()1 2A. 2 7B.2 7C.3 7D.3 7 1 3 1 3 1 2 1 24. 如果 n 阶方阵 A 的行列式 |A| 0 则下列正确的是()A.AOB. r(A)> 0C. r(A)< nD. r( A) 05. 设 A B 均为 n 阶矩阵 A O 且 AB O 则下列结论必成立的是()A. BA OB. B OC. (A B)( A B) A2 B2D. (A B)2 A2 BA B26. 下列各向量组线性相关的是()A. 1 (1 0 0) 2 (0 1 0) 3 (0 0 1)B. 1 (1 2 3) 2 (4 5 6) 3 (2 1 0)C. 1 (1 2 3) 2 (2 4 5)D. 1 (1 2 2) 2 (2 1 2) 3 (2 2 1)7. 设 AX b 是一非齐次线性方程组 1 2 是其任意 2 个解则下列结论错误的是()A. 1 2是 AX O 的一个解 B. 1 12是 AX b 的一个解+ 2 1 2C. 1 2是AX O 的一个解D.2 1 2是AX b 的一个解8. 设 A为 3阶方阵 A的特征值为 1 2 3 则 3A 的特征值为()A. 1/6 1/3 1/2B. 3 6 9C.12 3D. 1 1/2 1/39. 设 A 是 n 阶方阵且 |A| 2 A*是 A 的伴随矩阵则 |A*| ()A. 1B. 2nC. 1D. 2n 12 2 n 11 y 210. 若 x z 3 正定则 x y z 的关系为()0 0 1A. x+y zB. xy zC. z xyD. z x+y参考答案 :1.A 2.D 3. B 4. C 5. D 6. B 7. A 8. B 9. D 10. C1. 设30 ,则取值为()2 1A. λ=0 或λ=-1/3B. λ=3C. λ≠0 且λ≠ -3D. λ≠02. 若 A 是 3 阶方阵,且 |A|=2, A* 是 A 的伴随矩阵,则 |A A* |=()A. -8B.2C.8D. 1/23. 在下列矩阵中可逆的是()0 0 01 1 0 1 1 0 1 0 0 A. 0 1 0B.2 2 0 C. 0 1 1D. 1 1 10 0 10 0 1 1 2 11 0 14. 设 n 阶矩阵 A 满足 A 2 2A+3E O 则 A 1 ( )A. EB. 1C. 2A 3ED. A(2E A)31 a a a5. 设 Aa 1 a aa a 1 a ,若 r(A) 1, 则 a ( )aaa 1A.1B.3C.2D.46.x 1 x 2 x 3 0,若齐次线性方程组x 1 x 2x 3 0, 有非零解则常数( )x 1 x 2 x 3 0A.1B.4C.2D.1 7. 设 A B 均为 n 阶矩阵则下列结论正确的是( )A. BA ABB.(A B)2 A 2BA ABB 2C. (A B)(A B) A 2B 2D. (A B)2A 22 AB B 28. 已知 1(10 0) 2(200)3 (0 0 3) 则下列向量中可以由123 线性表示的是()A. (1 2 3)B.(12 0)C. (0 2 3)D. (3 0 5)9. n 阶方阵 A 可对角化的充分条件是()A. A 有 n 个不同的特征值B.A 的不同特征值的个数小于 nC. A 有 n 个不同的特征向量D. A 有 n 个线性相关的特征向量10. 设二次型的标准形为fy 12y 223 y 32 ,则二次型的正惯性指标为()A.2B.-1C.1D.3参考答案 : 1.A 2. C 3. D 4. B 5. A 6. A 7. B 8. D 9. A 10. A1. 设A 是4 阶方阵,且 |A|=2,则 |-2A |=( )A. 16B. -4C. -32D. 32 2. 3 4 6行列式 k 5 7 中元素 k 的余子式和代数余子式值分别为()1 2 8A. 20, -20B.20,20C. -20,20D. -20,-203. 已知可逆方阵 A2 7则 A1)1 3 (A.2 7B.2 7C.3 7 D.371 31 31 2 124. 如果 n 阶方阵 A 的行列式 |A | 0则下列正确的是()A.AOB. r (A )> 0C. r(A)< nD. r(A ) 05. 设 A B 均为 n 阶矩阵 则下列结论中正确的是()A. (A B)(A B) A2 B 2B. (AB )k A k B kC. |kAB | k|A | |B |D. |(AB )k| |A |k |B|k6. 设矩阵 A n n的秩 r(A ) n 则非齐次线性方程组 AX b()A. 无解B. 可能有解C. 有唯一解D. 有无穷多个解7. 设 A 为 n 阶方阵 A 的秩 r(A) r n 那么在 A 的 n 个列向量中()A.必有 r 个列向量线性无关B.任意 r 个列向量线性无关C. 任意 r 个列向量都构成最大线性无关组D. 任何一个列向量都可以由其它r 个列向量线性表出8.已知矩阵 A4 4的四个特征值为 4, 2, 3, 1,则 A =()A.2B.3C.4D.249. n 阶方阵 A 可对角化的充分必要条件是()A. A 有 n 个不同的特征值B. A 为实对称矩阵C. A 有 n 个不同的特征向量D. A 有 n 个线性无关的特征向量10. n 阶对称矩阵 A 为正定矩阵的充要条件是()A. A 的秩为 nB. |A| 0C. A 的特征值都不等于零D. A 的特征值都大于零参考答案 : 1.D 2. A 3. D 4.C 5.D 6.C 7.A 8.D 9.D 10.D3 4 61. 行列式 2 5 7 中元素y的余子式和代数余子式值分别为()y x 8A. 2,-2B. –2, 2C. 2,2D. -2, -22. 设 A B 均为 n(n 2)阶方阵则下列成立是()A. |A+B| |A |+|B|B. AB BAC. |AB | |BA |D. (A+B) 1 B 1+A 13. 设 n 阶矩阵 A 满足 A2 2A E 则(A-2E ) 1 ()A. AB. 2 AC. A+2ED. A-2E4. 矩阵A 1 1 1 12 2 2 2 的秩为()3 3 3 3A.1B.3C.2D.45. 设 n 元齐次线性方程组AX O 的系数矩阵 A 的秩为 r 则方程组 AX 0 的基础解系中向量个数为()A. rB. n- rC. nD. 不确定6. 若线性方程组x1 x2 2x3 1无解则等于()x1 x2 x3 2A.2B.1C.0D. 17. n 阶实方阵 A 的 n 个行向量构成一组标准正交向量组,则 A 是()A. 对称矩阵B. 正交矩阵C. 反对称矩阵D.| A |= n8. n 阶矩阵 A 是可逆矩阵的充要条件是()A. A 的秩小于 nB. A 的特征值至少有一个等于零C. A 的特征值都等于零D. A 的特征值都不等于零9. 设 1 2 是非齐次线性方程组Ax=b 的任意 2 个解则下列结论错误的是()A.1+ 2 是 Ax =0 的一个解 B. 1 η1η2 1 2 2是 Ax =b 的一个解C.12 是 Ax =0 的一个解D. 2 1 2 是Ax=b的一个解10.设二次型的标准形为f y12y223y32,则二次型的秩为()A.2B.-1C.1D.3参考答案 : 1. D 2.C 3.A 4.A 5.B 6.A 7.B 8.D 9.A10.D1.a b 0设 D b a 0 0 ,则 a, b 取值为()1 0 1A. a=0, b≠ 0B. a=b=0C. a≠ 0, b=0D. a≠0, b≠ 02. 若 A 、B 为 n 阶方阵且AB=O 则下列正确的是()A. BA OB. |B | 0 或|A| 0C.B O或A OD. (A B)2 A2 B23. 设A是3 阶方阵,且 | A | 2,则|A 1|等于()A. 2B. 1C.2D.1 2 24. 设矩阵 A B C满足AB AC 则 B C 成立的一个充分条件是()A. A 为方阵B. A 为非零矩阵C. A 为可逆方阵D. A 为对角阵5. 如果 n 阶方阵 A O 且行列式 |A| 0 则下列正确的是()A. 0<r( A) < nB. 0 r(A) nC. r(A )= nD. r(A) 07 x1 8x2 9x3 06. 若方程组x2 2 x3 0 存在非零解则常数 b ()2 x2 bx3 0A.2B.4C.-2D.-47. 设 A 为 n 阶方阵且 |A| 0 则()A.A 中必有两行 (列 )的元素对应成比例B.A 中任意一行 (列 )向量是其余各行 (列) 向量的线性组合C.A 中必有一行 (列 )向量是其余各行 (列 )向量的线性组合D.A 中至少有一行 (列 ) 的元素全为零8. 设A为 3阶方阵 A 的特征值为 1 2 3 则 3A 的特征值为()A. 1/6 1/3 1/2B. 369C.123D. 1 1/2 1/39. 如果 3阶矩阵 A 的特征值为 -1,1,2 ,则下列命题正确的是()A. A 不能对角化B. A 0C. A 的特征向量线性相关D. A 可对角化10. 设二次型的标准形为 f y12 y22 3 y32,则二次型的正惯性指标为()A.2B.-1C.1D.3参考答案:1.B 2.B 3. B 4. C 5.A 6.D 7.C 8.B 9.D10.Ca11 a12a13 4a a a a11 11 12 131. 如果 a21 a22a23 =M,则 4a21 a21 a22 a23 =()a31 a32a33 4a31a31a32a33A. -4MB. 0C. -2 MD. M2. 设 A ij 是 n 阶行列式 D |a ij |中元素 a ij的代数余子式则下列各式中正确的是()nB. n nD.nA. a ij A ij 0 a ij A ij 0 C. a ij A ij D a i1A i 2 Di 1 j 1 j 1 i 11 0 02 0 03. 已知A 0 1 0 ,B 2 2 1 ,则 |AB |=()3 0 1 3 3 3A.18B.12C.6D.364. 方阵 A 可逆的充要条件是()A.AOB. |A| 0C. A* OD. |A| 15. 若 A 、B 为 n 阶方阵 A 为可逆矩阵且 AB O 则()A. B O 但 r( B) nB. B O 但 r(A) n, r (B ) nC. B OD. B O 但 r(A) n, r(B) n6. 设 1 2 是非齐次线性方程组AX b 的两个解则下列向量中仍为方程组解的是()A. 1 2B. 1 2C. 1D.+2(β1 2β2)7. n 维向量组 1 2 s线性无关为一 n 维向量则()A. 12 s 线性相关B. 一定能被12C. 一定不能被12 s 线性表出D. 当 s n 时一定能被8. 设 A 为三阶矩阵 A 的特征值为 2 1 2 则A 2E 的特征值为(3β2β1 25s线性表出12s 线性表出)A. 212B.-4-10C.124D.41-49.若向量α=( 1, -2,1)与β=( 2, 3, t)正交,则 t=()A.-2B.0C.2D.41 y 210. 若x z 3 正定则 x y z 的关系为()0 0 1A. x+y zB. xy zC. z xyD. z x+y参考答案:1.A 2.C 3.C 4.B 5.C 6.D 7.D 8.B 9.D 10.C3 4 6中元素 x 的余子式和代数余子式值分别为(1. 行列式 2 5 7 )y x 8A. –9, -9B. –9,9C. 9, -9D. 9,91 1 1 12.2 3 4 53 3 3 3 =( )4 3 4 4A.2B.4C.0D.1 3. 设A 为4 阶矩阵 |A | 3 则其伴随矩阵A *的行列式 |A *| ()A.3B.81C.27D.9 4. 设 A B 均为 n 阶可逆矩阵则下列各式中不正确的是()A. (A+B)T A T +B TB.(A +B) 1 A 1+B 1C.(AB)1B 1A 1D. (AB )T B T A T 5. 设 n 阶矩阵 A 满足 A 2 +A +EO 则(A+E ) 1( )A. AB. -(A+E )C. –AD. -(A 2+A )6. 设 n 阶方阵 A B 则下列不正确的是( )A. r(AB )r(A)B. r(AB )r(B)C. r( AB ) min{ r(A ), r(B )}D. r(AB )>r (A )7. 已知方程组 AX b 对应的齐次方程组为 AX O , 则下列命题正确的是()A. 若AX O 只有零解 则 AX b 有无穷多个解B. 若AX O 有非零解 则 AX b 一定有无穷多个解C. 若AX b 有无穷解 则 AX O 一定有非零解D. 若AXb 有无穷解 则 AXO 一定只有零解8.10 1已知矩阵 A 02 0 的一个特征值是 0 则 x ( )1 0 xA.1B.2C.0D.31 09.与A02 1 相似的对角阵是()0 1 21111A.Λ1B.Λ2C. Λ1 D. Λ 1 333 410. 设 A 为 3 阶方阵 A 的特征值为 1 0 3则A 是()A. 正定B.半正定C.负定D. 半负定参考答案 : 1. C 2. C3. C4. B5. C6. D7. C8.A 9.A 10.B1. 设 A B 都是 n 阶方阵A. 若|A| 0 则A Ok 是一个数 B. |kA|则下列(|k| |A |)是正确的。
大学线性代数必过复习资料.doc

复习重点:第一部分 行列式1. 排列的逆序数(P .5例4;P .26第2、4题)2. 行列式按行(列)展开法则(P .21例13;P .28第9题) 3. 行列式的性质及行列式的计算(P.27第8题)第二部分 矩阵 1. 矩阵的运算性质2. 矩阵求逆及矩阵方程的求解(P .56第17、18题;P .78第5题) 3. 伴随阵的性质(P .41例9;P .56第23、24题;P.109第25题)、正交阵的性质(P .116) 4. 矩阵的秩的性质(P .69至71;P .100例13、14、15)第三部分 线性方程组1. 线性方程组的解的判定(P .71定理3;P.77定理4、5、6、7),带参数的方程组的解的判定(P.75例13;P .80第16、17、18题)2. 齐次线性方程组的解的结构(基础解系与通解的关系) 3. 非齐次线性方程组的解的结构(通解)第四部分 向量组(矩阵、方程组、向量组三者之间可以相互转换) 1.向量组的线性表示 2.向量组的线性相关性 3.向量组的秩第五部分 方阵的特征值及特征向量 1.施密特正交化过程2.特征值、特征向量的性质及计算(P.120例8、9、10;P.135第7至13题)3.矩阵的相似对角化,尤其是对称阵的相似对角化(P .135第15、16、19、23题)要注意的知识点:线性代数1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-g⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值 5. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭O,则: Ⅰ、12s A A A A =L ;Ⅱ、111121s A A A A ----⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭O; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭ ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nE OF OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ :; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X :,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ; ③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x :,则A 可逆,且1x A b -=;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭Oλλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k-=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; 5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =;③、若A B :,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A -=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话) ②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩L L L L L L L L L L L L L L ; ②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭L L M M O M M M L(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x aa a x β⎛⎫⎪ ⎪= ⎪⎪⎝⎭LM (全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭M ); ④、1122n n a x a x a x β+++=L (线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m αααL 构成n m ⨯矩阵12(,,,)m A =L ααα;m 个n 维行向量所组成的向量组B :12,,,T T Tm βββL 构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭M ;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14) 4. ()()T r A A r A =;(101P 例15) 5.n 维向量线性相关的几何意义:①、α线性相关 ⇔0α=;②、,αβ线性相关⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s αααL 线性相关,则121,,,,s s αααα+L 必线性相关;若12,,,s αααL 线性无关,则121,,,s ααα-L 必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤;向量组A 能由向量组B 线性表示,则()()r A r B ≤; 向量组A 能由向量组B 线性表示AX B ⇔=有解;()(,)r A r A B ⇔= 向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P L ,使12l A P P P =L ;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解 ②、矩阵列等价:~c A B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9. 对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10. 若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明;①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯L 可由向量组12:,,,n s s A a a a ⨯L 线性表示为:1212(,,,)(,,,)r s b b b a a a K =L L (B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=Q ;充分性:反证法) 注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;。
《线性代数》期末复习大纲及参考答案(最新)

07-08(1) 线性代数总期末考试复习大纲及复习题: 期末考试题型:判断(约占30%)与选择(约占70%) 期末考试形式:开卷 期末复习各章重点第一章 知道行列式的定义并会用定义计算简单的行列式;熟悉并会用行列式的性 质计算行列式,掌握行列式的依行依列展开定理。
第二章掌握向量线性相关与线性无关的定义并会用定义判断向量组相关与无关;会求向量组的极大无关组以及用极大无关组表示其余的向量;熟悉线性方程组解的一般理论,掌握矩阵的初等变换并会用初等变换求解线性方程组;会用初等变换求矩阵的秩.第三章熟悉矩阵的运算性质,特别是矩阵乘法的特殊性(不满足交换律),知道分块矩阵;掌握逆矩阵的定义、伴随矩阵的概念以及关系式E A A A AA ==**,会用伴随矩阵和初等变换求矩阵的逆矩阵;了解初等矩阵及其性质,会解简单的矩阵方程。
第四章 知道向量空间的定义,掌握基变换公式和向量坐标变换公式。
第五章 掌握矩阵的特征值与特征向量的概念以及矩阵能够对角化的条件,会判断一个矩阵能否对角化;掌握相似矩阵的概念及其性质。
第六章 掌握二次型的概念,掌握二次型与矩阵的对应关系,掌握合同矩阵的概念,会判断简单矩阵的合同,掌握二次型正定负定的条件并会判定二次型是否正定。
复习题1.若三阶行列式1231122331232226a a a b a b a b a c c c ---=,则 123123123a a ab b bc c c = 3 (对) 2.若方程组123123123000tx x x x tx x x x tx ++=⎧⎪++=⎨⎪++=⎩有非零解,则t=1或-2 。
(对)3.已知齐次线性方程组32023020x y x y x y z λ+=⎧⎪-=⎨⎪-+=⎩仅有零解,则λ≠ 0(对)4.已知三阶行列式D=123312231,则元素12a =2的代数余子式12A = -1 ;(错)5.若n 阶矩阵A 、B 、C 满足ABC=E (其中E 为n 阶可逆阵),则BCA=E 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
王辉----------------工程数学考试资料 1/ 7 《线性代数》复习提纲 第一部分:基本要求(计算方面) 四阶行列式的计算; N阶特殊行列式的计算(如有行和、列和相等); 矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算); 求矩阵的秩、逆(两种方法);解矩阵方程; 含参数的线性方程组解的情况的讨论; 齐次、非齐次线性方程组的求解(包括唯一、无穷多解); 讨论一个向量能否用和向量组线性表示; 讨论或证明向量组的相关性; 求向量组的极大无关组,并将多余向量用极大无关组线性表示; 将无关组正交化、单位化; 求方阵的特征值和特征向量; 讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵; 通过正交相似变换(正交矩阵)将对称矩阵对角化; 写出二次型的矩阵,并将二次型标准化,写出变换矩阵; 判定二次型或对称矩阵的正定性。 第二部分:基本知识 一、行列式 1.行列式的定义 用n^2个元素aij组成的记号称为n阶行列式。 (1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算 一阶|α|=α行列式,二、三阶行列式有对角线法则; N阶(n>=3)行列式的计算:降阶法 定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。 方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。 特殊情况 上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积; (2)行列式值为0的几种情况: Ⅰ 行列式某行(列)元素全为0; Ⅱ 行列式某行(列)的对应元素相同; Ⅲ 行列式某行(列)的元素对应成比例; Ⅳ 奇数阶的反对称行列式。 二.矩阵 1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等); 2.矩阵的运算 (1)加减、数乘、乘法运算的条件、结果; (2)关于乘法的几个结论: ①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵); ②矩阵乘法一般不满足消去律、零因式不存在; ③若A、B为同阶方阵,则|AB|=|A|*|B|; ④|kA|=k^n|A| 3.矩阵的秩 (1)定义 非零子式的最大阶数称为矩阵的秩; (2)秩的求法 一般不用定义求,而用下面结论: 矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。 求秩:利用初等变换将矩阵化为阶梯阵得秩。 4.逆矩阵 (1)定义:A、B为n阶方阵,若AB=BA=I,称A可逆,B是A的逆矩阵(满足半边也成立); (2)性质: (AB)^-1=(B^-1)*(A^-1),(A')^-1=(A^-1)';(A B的逆矩阵,你懂的)(注意顺序)
(3)可逆的条件: ① |A|≠0; ②r(A)=n; ③A->I; (4)逆的求解 伴随矩阵法 A^-1=(1/|A|)A*;(A* A的伴随矩阵~) ②初等变换法(A:I)->(施行初等变换)(I:A^-1) 5.用逆矩阵求解矩阵方程: AX=B,则X=(A^-1)B; XB=A,则X=B(A^-1); AXB=C,则X=(A^-1)C(B^-1) 三、线性方程组 1.线性方程组解的判定
定理: (1) r(A,b)≠r(A) 无解; (2) r(A,b)=r(A)=n 有唯一解; (3)r(A,b)=r(A)特别地:对齐次线性方程组AX=0 (1) r(A)=n 只有零解; (2) r(A) 再特别,若为方阵, (1)|A|≠0 只有零解 (2)|A|=0 有非零解 2.齐次线性方程组 (1)解的情况: 王辉----------------工程数学考试资料 2/ 7 r(A)=n,(或系数行列式D≠0)只有零解; r(A)(2)解的结构: X=c1α1+c2α2+…+Cn-rαn-r。 (3)求解的方法和步骤: ①将增广矩阵通过行初等变换化为最简阶梯阵; ②写出对应同解方程组; ③移项,利用自由未知数表示所有未知数; ④表示出基础解系; ⑤写出通解。 3.非齐次线性方程组 (1)解的情况: 利用判定定理。 (2)解的结构: X=u+c1α1+c2α2+…+Cn-rαn-r。 (3)无穷多组解的求解方法和步骤: 与齐次线性方程组相同。 (4)唯一解的解法: 有克莱姆法则、逆矩阵法、消元法(初等变换法)。 四、向量组 1.N维向量的定义 注:向量实际上就是特殊的矩阵(行矩阵和列矩阵)。 2.向量的运算: (1)加减、数乘运算(与矩阵运算相同); (2)向量内积 α'β=a1b1+a2b2+…+anbn; (3)向量长度 |α|=√α'α=√(a1^2+a2^2+…+an^2) (√ 根号) (4)向量单位化 (1/|α|)α; (5)向量组的正交化(施密特方法) 设α1,α 2,…,αn线性无关,则 β1=α1, β2=α2-(α2’β1/β1’β)*β1, β3=α3-(α3’β1/β1’β1)*β1-(α3’β2/β2’β2)*β2,………。 3.线性组合 (1)定义 若β=k1α1+k2α 2+…+knαn,则称β是向量组α1,α 2,…,αn的一个线性组合,或称β可以用向量组α1,α 2,…,αn的一个线性表示。 (2)判别方法 将向量组合成矩阵,记 A=(α1,α 2,…,αn),B=(α1,α2,…,αn,β) 若 r (A)=r (B),则β可以用向量组α1,α 2,…,αn的一个线性表示; 若 r (A)≠r (B),则β不可以用向量组α1,α 2,…,αn的一个线性表示。 (3)求线性表示表达式的方法: 将矩阵B施行行初等变换化为最简阶梯阵,则最后一列元素就是表示的系数。 4.向量组的线性相关性
(1)线性相关与线性无关的定义 设 k1α1+k2α2+…+knαn=0, 若k1,k2,…,kn不全为0,称线性相关; 若k1,k2,…,kn全为0,称线性无关。 (2)判别方法: ① r(α1,α 2,…,αn) r(α1,α 2,…,αn)=n,线性无关。
②若有n个n维向量,可用行列式判别: n阶行列式aij=0,线性相关(≠0无关) (行列式太不好打了) 5.极大无关组与向量组的秩
(1)定义 极大无关组所含向量个数称为向量组的秩 (2)求法 设A=(α1,α 2,…,αn),将A化为阶梯阵,则A的秩即为向量组的秩,而每行的第一个非零元所在列的向量就构成了极大无关组。 五、矩阵的特征值和特征向量 1.定义 对方阵A,若存在非零向量X和数λ使AX=λX,则称λ是矩阵A的特征值,向量X称为矩阵A的对应于特征值λ的特征向量。 2.特征值和特征向量的求解:
求出特征方程|λI-A|=0的根即为特征值,将特征值λ代入对应齐次线性方程组(λI-A)X=0中求出方程组的所有非零解即为特征向量。 3.重要结论:
(1)A可逆的充要条件是A的特征值不等于0; (2)A与A的转置矩阵A'有相同的特征值; (3)不同特征值对应的特征向量线性无关。 六、矩阵的相似 1.定义 对同阶方阵A、B,若存在可逆矩阵P,使P^-1AP=B,则称A与B相似。 2.求A与对角矩阵∧相似的方法与步骤(求P和∧): 求出所有特征值; 求出所有特征向量; 若所得线性无关特征向量个数与矩阵阶数相同,则A可对角化(否则不能对角化),将这n个线性无关特征向量组成矩阵即为相似变换的矩阵P,依次将对应特征值构成对角阵即为∧。 3.求通过正交变换Q与实对称矩阵A相似的对角阵:
方法与步骤和一般矩阵相同,只是第三歩要将所得特征向量正交化且单位化。 七、二次型 王辉----------------工程数学考试资料 3/ 7 n
1.定义 n元二次多项式f(x1,x2,…,xn)=∑ aijxixj称
为二次型,若aij=0(i≠j),则称为二交型的标准型。 i,j=1 2.二次型标准化: 配方法和正交变换法。正交变换法步骤与上面对角化完全相同,这是由于对正交矩阵Q,Q^-1=Q',即正交变换既是相似变换又是合同变换。 3.二次型或对称矩阵的正定性:
(1)定义(略); (2)正定的充要条件: ①A为正定的充要条件是A的所有特征值都大于0; ②A为正定的充要条件是A的所有顺序主子式都大于0;
1、行列式
1. n行列式共有2n个元素,展开后有!n项,可分解为2n行列式;
2. 代数余子式的性质: ①、ijA和ija的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数
余子式为A; 3. 代数余子式和余子式的关系:
(1)(1)ijijijijijijMAAM 4. 设n行列式D: 将D上、下翻转或左右翻转,所得行列式为1D,则(1)21(1)nnDD;
将D顺时针或逆时针旋转90,所得行列式为2D,
则(1)22(1)nnDD;
将D主对角线翻转后(转置),所得行列式为3D,则3DD; 将D主副角线翻转后,所得行列式为4D,则4DD; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积;
②、副对角行列式:副对角元素的乘积(1)2(1)nn; ③、上、下三角行列式(◥◣):主对角元素的乘积;
④、◤和◢:副对角元素的乘积(1)2(1)nn;
⑤、拉普拉斯展开式:AOACABCBOB、(1)mnCAOAABBOBC ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;
6. 对于n阶行列式A,恒有:
1(1)nnknkkkEAS,其中kS为k阶主子式;
7. 证明0A的方法: ①、AA; ②、反证法; ③、构造齐次方程组0Ax,证明其有非零解; ④、利用秩,证明()rAn; ⑤、证明0是其特征值; 2、矩阵 1. A是n阶可逆矩阵: 0A(是非奇异矩阵);
()rAn(是满秩矩阵)
A
的行(列)向量组线性无关;
齐次方程组0Ax有非零解;
nbR
,Axb总有唯一解;
A
与E等价;
A
可表示成若干个初等矩阵的乘积;
A
的特征值全不为0;
T
AA
是正定矩阵;