试验设计与数据处理作业 333333.
试验设计与数据处理

试验设计与数据处理在科学研究和实验过程中,试验设计和数据处理是非常重要的环节。
一个合理的试验设计能够保证实验结果的准确性和可靠性,而恰当的数据处理则可以帮助我们从海量数据中获取有意义的信息。
本文将就试验设计和数据处理进行探讨。
一、试验设计试验设计是指在科学研究中为了解决某一问题而设计的实验方案。
良好的试验设计能够最大程度减少误差和提高实验效果。
以下是常见的几种试验设计方法:1. 随机化随机化是一种常用的试验设计方法,通过将参与实验的个体或样本随机分配到不同的处理组中,以减少可能的偏差。
例如,在药物试验中,将参与实验的患者随机分组,一组服用药物,另一组服用安慰剂,以评估药物的疗效。
2. 防止混杂混杂是指在试验中干扰因素的存在,可能影响了试验结果的可靠性。
为了减少混杂因素的影响,可以采取随机分组、对照组设计、平衡设计等方法。
例如,在农学实验中,为了研究新的农药对作物的影响,可以将不同农田随机分配到实验组和对照组,并保持其他因素(如土壤条件、种植方式等)的一致性。
3. 重复设计重复设计是通过对同一实验进行多次重复以获取更加可靠的结果。
重复设计可以帮助我们了解实验结果的稳定性和一致性。
在生物学研究中,例如对某种新药物的治疗效果进行评估,在不同的实验条件下进行多次重复实验,可以验证实验结果的可靠性。
二、数据处理数据处理是指对实验中所获得的数据进行整理、分析和解释的过程。
合理的数据处理方法可以从繁杂的数据中提取出有用的信息,为科学研究提供支持。
1. 数据整理数据整理是数据处理的第一步,也是最基本的一步。
在数据整理过程中,需要对数据进行收集、分类和整理。
通常,可以使用电子表格软件(如Excel)进行数据的录入和存储,并添加必要的数据标签,以便后续的数据分析。
2. 描述统计分析描述统计分析是对数据进行总结和描述的一种方法。
通过描述统计分析,可以计算数据的均值、方差、标准差等指标,以帮助我们了解数据的分布情况和集中趋势。
实验设计与数据处理分析大作业(正交试验)

枣果皮中酚类物质提取工艺优化及抗氧化活性分析1.实验数据背景叙述。
一:实验关于枣果皮中酚类物质提取工艺优化及抗氧化活性分析。
酚类物质是植物体内重要的次生代谢产物,主要通过莽草酸和丙二酸途径合成,广泛分布于植物界。
许多的酚类物质具有营养保健功效。
现代流行病学研究证明,经常食用富含酚类物质的果蔬能够预防由活性氧导致的相关疾病如癌症、糖尿病、肥胖症等的发生。
二:实验问题:为提高枣果皮中的酚类物质的提取效率,该文以马牙枣为试验材料,对枣果皮中酚类物质提取条件进行了优化。
同时分析枣果皮提取物中酚类物质的抗氧化活性。
三:实验目的:要通过实验得到枣果皮中酚类物质提取的最优条件。
并对提取物中酚类物质清除DPPH,2,2'-连氮基双(3-乙基苯并噻唑啉)-6-磺酸(ABTS)自由基及铁还原能力进行探讨,同时与合成抗氧化剂2,6-二叔丁基对甲酚(BHT)的抗氧化能力进行比较。
2. 实验数据处理方法选择及论述。
一:单因素试验(获得数据,将数据输入excel中,使用excel绘制图表,以便直观感受影响因素对实验的影响趋势。
)以冻干枣果皮为材料,分别以甲醇浓度、提取温度、提取料液比和提取时间作为因素,分析不同的提取条件对枣果皮中酚类物质提取效果的影响,检测指标为提取物中总酚含量。
二:正交试验(设计正交试验以便获得到枣果皮中酚类物质提取的最优条件,用excel进行结果直观分析,见表2。
)以冻干枣果皮为材料,以提取溶剂浓度(A)、提取温度(B)、料液比(C)、和浸提时间(D)作4 因素3水平的L9(34)正交设计(见表1),检测指标为提取物中总酚含量。
表1 枣果皮中酚类物质提取因素水平表三:统计分析所有提取试验均重复3 次,每次提取液的测定均重复3 次。
结果表示为平均值±标准偏差。
应用excel软件对所有数据进行方差分析。
3. 实验数据的处理的过程叙述。
一:在单因素试验中,将每次试验结果输入excel中,选中表格,点击“插入”柱形图。
实验设计与数据处理课后答案

《试验设计与数据处理》专业:机械工程班级:机械11级专硕学号:S110805035 姓名:赵龙第三章:统计推断3-13 解:取假设H0:u1-u2≤0和假设H1:u1-u2>0用sas分析结果如下:Sample StatisticsGroup N Mean Std. Dev. Std. Error----------------------------------------------------x 8 0.231875 0.0146 0.0051y 10 0.2097 0.0097 0.0031Hypothesis TestNull hypothesis: Mean 1 - Mean 2 = 0Alternative: Mean 1 - Mean 2 ^= 0If Variances Are t statistic Df Pr > t----------------------------------------------------Equal 3.878 16 0.0013Not Equal 3.704 11.67 0.0032由此可见p值远小于0.05,可认为拒绝原假设,即认为2个作家所写的小品文中由3个字母组成的词的比例均值差异显著。
3-14 解:用sas分析如下:Hypothesis TestNull hypothesis: Variance 1 / Variance 2 = 1Alternative: Variance 1 / Variance 2 ^= 1- Degrees of Freedom -F Numer. Denom. Pr > F----------------------------------------------2.27 7 9 0.2501由p值为0.2501>0.05(显著性水平),所以接受原假设,两方差无显著差异第四章:方差分析和协方差分析4-1 解:Sas分析结果如下:Dependent Variable: ySum ofSource DF Squares Mean Square F Value Pr > FModel 4 1480.823000 370.205750 40.88 <.0001Error 15 135.822500 9.054833Corrected Total 19 1616.645500R-Square Coeff Var Root MSE y Mean0.915985 13.12023 3.009125 22.93500Source DF Anova SS Mean Square F Value Pr > Fc 4 1480.823000 370.205750 40.88 <.0001由结果可知,p值小于0.001,故可认为在水平a=0.05下,这些百分比的均值有显著差异。
试验设计与数据处理作业

试验设计与数据处理作业(二)无机122班罗远方通过正交试验对对木犀草素的β-环糊精包合工艺进行优化,需要考察的因数及水平如下:试验指标有两个:包合率和包含物收率,这两个指标都是越大越好。
用正交表L9(34)安排试验,将3个因素依次放在1,2,3列上,不考虑因素间的交互作用,9次试验结果依次如下:包合率/%:12.01,15.86,16.95,8.60,13.71,7.22,6.54,7.78,5.43包合物收率/%:61.80,84.31,80.15,67.23,77.26,76.53,58.61,78.12,77.60这两个指标的重要性不相同,如果化成数量,包合率和包含物收率重要性之比为3:2,试通过综合评分法确定有方案。
解:依题意,这是一个3因素3水平的试验,由于不考虑交互作用,所以可选用正交表L9(34)来安排试验。
表头设计、试验方案及实验结果如下表所示:试验方案及其试验结果如上表,采用综合评分法来确定优方案,试验结果具体计算过程:有两个指标:包合率和包合物收率,将其分别转换成它们的隶属度,用隶属度来表示分数。
指标隶属度=(指标值-指标最小值)/(指标最大值-指标最小值)因两个指标的重要性不一样,如果化成数量,包合率和包含物收率重要性之比为3:2,故有:综合分数=包合率隶属度×0.6+包合物收率隶属度×0.4依次求得9次试验的综合分数后,再分别计算它们所对应的K1,K2,K3,从而确定优方案:通过正交试验对对木犀草素的β-环糊精包合工艺进行优化,试验指标包合率和包合物收率要越大越好。
A因素列:K1>K2>K3B因素列:K2>K3>K1C因素列:K3>K2>K1所以有综合评分法确定优方案为A1B2C3. ..。
《实验设计与大数据处理》大作业

《实验设计与数据处理》大作业与答案班级::学号:1、用Excel作出下表数据带数据点的折线散点图:〔1〕分别作出加药量和余浊、总氮T-N、总磷T-P、COD的变化关系图〔共四图,要求它们的格式大小一致,并以两图并列的形式排版到Word中,注意调整图形的大小〕;〔2〕在一图中作出加药量和浊度去除率、总氮T-N去除率、总磷T-P去除率、COD去除率的变化关系折线散点图。
2、对离心泵性能进展测试的实验中,得到流量Qv、压头H和效率η的数据如表所示,绘制离心泵特性曲线。
将扬程曲线和效率曲线均拟合成多项式。
〔要求作双Y 轴图〕流量Qv、压头H和效率η的关系数据序号 1 2 3 4 5 6Q v(m3/h) H/m0.015.000.414.840.814.561.214.331.613.962.013.65η0.0 0.085 0.156 0.224 0.277 0.333序号7 8 9 10 11 12Q v(m3/h) H/mη2.413.280.3852.812.810.4163.212.450.4463.611.980.4684.011.300.4694.410.530.4313、用荧光法测定阿司匹林中的水酸〔SA〕,测得的工作曲线和样品溶液的数据如下表:(1)列出一元线性回归方程,求出相关系数,并给出回归方程的精度;(2)求出未知液〔样品〕的水酸〔SA〕浓度。
4、对某矿中的13个相邻矿点的某种伴生金属含量进展测定,得到如下一组数据:试找出某伴生金属c与含量距离x之间的关系(要求有分析过程、计算表格以与回归图形)。
提示:⑴作实验点的散点图,分析c~x之间可能的函数关系,如对数函数y=a+blgx、双曲函数(1/y)=a+(b/x)或幂函数y=dx b等;⑵对各函数关系分别建立数学模型逐步讨论,即分别将非线性关系转化成线性模型进展回归分析,分析相关系数:如果R≦0.553,如此建立的回归方程无意义,否如此选取标准差SD最小〔或R最大〕的一种模型作为某伴生金属c与含量距离x之间经验公式。
实验设计与数据处理第六章例题及课后习题答案

误差e
28.125
误差eΔ
84.375
F0.05(3,3) 9.277
F0.05(1,3) 10.128
MS
F
显著性
3 769.7917 27.37037 *
1 378.125 13.44444 *
1 28.125
1 28.125
1 28.125
3 28.125
F0.01(3,3) 29.457
F0.01(1,3) 34.116
试验号
A
1
2
3
4
5
6
7
8
K1
K2
k1
k2
极差R
因素主→次
B
A×B C
A×C B×C
1
1
1
1
1
1
1
1
1
2
2
2
1
2
2
1
1
2
1
2
2
2
2
1
2
1
2
1
2
1
2
1
2
2
1
2
2
2
1
1
2
2
2
2
1
2
1
1
4.53
4.17 3.66 3.93 3.5 3.66
3.15
3.51 4.02 3.75 4.18 4.02
1.1325
A
B
1
1
2
1
3
2
4
2
5
3
6
3
7
4
8
4
115
120
180
试验设计与数据处理作业333333

UNIVERSITY OF SOUTH CHINA试验设计与数据处理题目正交实验方差分析法确定优方案学院名称 _________ 化学化工学院___________________ 指导教师 _________ 范明舫 ________________________ 班级 ____________ 化工081班 ____________________ 学号20084540104 ______________________________2011 年04月20日学生姓名 _________ 陈柏娥____________________《实验设计与数据处理》课程的收获与体会《实验设计与数据处理》课程具有公式多、计算多、图表多等特点,涉及较多概率论基础知识,课程本身的繁杂性决定了理解和掌握起来难度较大。
一开始的时候,我还有点担心这一门课会学不好,因为我的概率论和数理统计的知识基础薄弱,可能会对里面的内容产生难以理解的心理,有点感觉他是郁闷枯燥乏味的课程。
不过,在老师的指导下我否认了之前的观点。
这门课的安排很合理,从简单到复杂,由浅入深的思维发展规律,现将单因素试验、双因素试验、正交试验、均匀实验设计等常用实验设计方法及常规数据处理方法、再讲误差理论、方差分析、回归分析等数据处理的理论知识、最后讲得出的方差分析、回归分析等结论和处理方法直接应用到实验设计方法。
老师也让我们先熟悉实验设计方法,并掌握常规数据处理方法,使我较早的感受到应用试验设计方法指导实践的“收获” ,从而激发并维持学习兴趣。
通过学习,我初步认识了这一门课。
这门课是研究如何合理而有效地获得数据资料的方法。
讨论如何合理安排实验、取得数据、然后进行综合的科学分析,从而达到尽快获得最优方案的目的,即实验的最优设计。
实验设计方法是数据统计学的应用方法之一。
一般的数据统计方法主要是对已获得的数据资料尽可能精确的判断。
如果试验安排得好且分析得当,就能以较少的试验次数、较短的试验时间、较低的费用,得到较满意的实验结果;反之,如果试验安排的不得当,分析不得当,则试验次数增加,试验时间延长,浪费人力、物力、财力,难以达到预期的结果,甚至导致实验失败。
实验设计与数据处理的方法

实验设计与数据处理的方法实验设计是科学研究中至关重要的一环,它的合理性和科学性直接影响到实验结果的准确性和可靠性。
数据处理则是对实验所得数据进行分析和解读的过程。
本文将介绍实验设计与数据处理的一些常用方法。
一、实验设计的方法1.1 随机分组设计随机分组设计是实验设计中最常见的一种方法。
在随机分组设计中,研究对象会被随机分配到不同的实验组和对照组中,以减少实验误差的影响。
这样可以保证实验组和对照组在初始条件上的基本一致性,从而能够更准确地评估实验处理对结果的影响。
1.2 单因素设计单因素设计是指在实验过程中,只考虑一个因素的影响。
通过改变这个因素的不同水平,观察其他条件保持不变时该因素对实验结果的影响。
单因素设计常用于初步筛选影响结果的主要因素,为进一步研究提供依据。
1.3 多因素设计多因素设计是指在实验过程中,考虑多个因素并研究它们的相互作用。
多因素设计通过系统地改变每一个因素的不同水平,观察它们对实验结果的综合影响,可以更全面地评估各个因素的重要程度和相互之间的关系。
二、数据处理的方法2.1 描述统计分析描述统计分析是对实验数据进行整体描述和总结的方法。
它包括测量中心趋势的指标,如均值、中位数和众数,以及测量变异程度的指标,如标准差和方差。
描述统计分析可以帮助我们更好地理解数据的分布状况和变异程度,为后续的数据处理提供基础。
2.2 参数检验参数检验是用来检验两个或多个样本之间差异是否显著的方法。
在参数检验中,我们需要根据实验类型和数据类型选择合适的检验方法,如t检验、方差分析等。
参数检验可以帮助我们确定实验结果的可靠性,评估不同处理的差异是否具有统计学意义。
2.3 回归分析回归分析是用来研究自变量与因变量之间关系的方法。
在回归分析中,我们可以通过建立数学模型来预测和解释因变量的变化。
回归分析可以帮助我们确定实验因素对实验结果的影响程度,以及它们之间的函数关系。
2.4 方差分析方差分析是一种用于比较两个或多个处理组之间平均值差异的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试验设计与数据处理题目正交实验方差分析法确定优方案学院名称化学化工学院指导教师范明舫班级化工081班学号20084540104学生姓名陈柏娥2011年04月20日《实验设计与数据处理》课程的收获与体会《实验设计与数据处理》课程具有公式多、计算多、图表多等特点,涉及较多概率论基础知识,课程本身的繁杂性决定了理解和掌握起来难度较大。
一开始的时候,我还有点担心这一门课会学不好,因为我的概率论和数理统计的知识基础薄弱,可能会对里面的内容产生难以理解的心理,有点感觉他是郁闷枯燥乏味的课程。
不过,在老师的指导下我否认了之前的观点。
这门课的安排很合理,从简单到复杂,由浅入深的思维发展规律,现将单因素试验、双因素试验、正交试验、均匀实验设计等常用实验设计方法及常规数据处理方法、再讲误差理论、方差分析、回归分析等数据处理的理论知识、最后讲得出的方差分析、回归分析等结论和处理方法直接应用到实验设计方法。
老师也让我们先熟悉实验设计方法,并掌握常规数据处理方法,使我较早的感受到应用试验设计方法指导实践的“收获”,从而激发并维持学习兴趣。
通过学习,我初步认识了这一门课。
这门课是研究如何合理而有效地获得数据资料的方法。
讨论如何合理安排实验、取得数据、然后进行综合的科学分析,从而达到尽快获得最优方案的目的,即实验的最优设计。
实验设计方法是数据统计学的应用方法之一。
一般的数据统计方法主要是对已获得的数据资料尽可能精确的判断。
如果试验安排得好且分析得当,就能以较少的试验次数、较短的试验时间、较低的费用,得到较满意的实验结果;反之,如果试验安排的不得当,分析不得当,则试验次数增加,试验时间延长,浪费人力、物力、财力,难以达到预期的结果,甚至导致实验失败。
通过这门课程的学习,是我对误差理论、方差分析、正交试验设计与应用、回归分析都有了一个很好的理解,并且将它们做了笔记。
比如方差分析的理解:方差分析市实验设计中的重要分析方法,应用非常广泛,它是将不同因素,不同水平组合下的实验数据作为不同总体的样本数据,进行统计分析,找出对实验结果影响大的因素及其影响程度。
对于单因素试验的数据进行统计分析,找出对试验指标影响大的因素及其影响程度。
对于单因素试验的方差分析,主要步骤如下:1,建立线性统计模型,提出需要检验的假设。
2,总离差平方和的分析与计算。
3,统计分析,列出方差分析表。
对于双因素试验的方差分析,分为两种,一种无交互作用的方差分析,另一种有交互作用的方差分析,对于这两种类型分别有各自的设计方法,但是总体步骤都和单因素试验的方差分析一样。
我们又通过正交试验设计合理安排实验,他是尽快有效的获得最优方案的一种设计方法。
了解了他是避免做全面试验,再多因素多水平实验中选择最有代表性的搭配。
否则花费时间过长,人力,物力,财力消耗太多。
尤其是一些长周期、高费用或破坏性试验,更不要做全面性试验。
我觉得学习了这门课我得到了很大的收获,特别是在分析方面。
我学习到的科学方法相对于以前高中学到的观点有了很大的进步,扩展了我认识的视野。
而且从这一门课程中,最大的乐趣就是他很多都能应用到实践中。
在实验的课程中能和同学们一起发现问题和解决问题,更加深了我对这门课的认识。
1.为了通过正交试验寻找从某矿物中提取稀土元素的最优工艺条件,使稀土元素提取率最高,选取的因素水平如下(见表1-1)L8(27)的1,2,4列上,试验结果(提取量/ml)依次为:L1.01,1.13,1.13,1.06,1.03,0.80,0.76,0.56。
试用方差分析法(α=0.05)分析试验结果,确定较优工艺条件解:列出正交表L8(27)和试验结果,见表1-2。
动填充柄,就可计算出后六列的K1值;K2=SUMIF(B$3:B$10,2,$I$3:$I$10),选中该公式,然后水平拖动填充柄,就可计算出后六列的K2值。
②求k:首先选中单元各区域B11:H12,在该区域的左上角第一个单元格即B11中或在编辑栏中输入:=B17:H18/4,然后在同时按“Shift+Ctrl+Enter”,即可在B13:H14中显示k值。
③求极差R:在B15中选中该单元格输入:=MAX(B11:B12)-MIN(B11:B12),按下Enter键,然后选中该单元格,向右拖动填充柄就可计算出后六列的极差R。
(也可用下式计算R的值:R=MAX(B13:B14)-MIN(B13:B14))(2)T=SUM(I3:I10)=7.68;Q=SUM((y i)2)==7.7816(i=1,2,3,4,5,6,7,8);P=T2/n=7.682/8=7.3728;计算力差平方和:总离差平方和:SS T=Q-P=7.7816-7.3728=0.4088;因素与交互作用的离差平方和:SS A=SS1=(1/8)R A2=(1/n)(K1-K2)2=(1/8)(4.53-3.15)2=0.23805;SS B=SS2=(1/8)R B2=(1/n)(K1-K2)2=(1/8)(4.17-3.51)2=0.05445;SS(A×B)=SS3=(1/8)R(A×B)2=(1/n)(K1-K2)2=(1/8)(3.66-4.02)2=0.0162;SS C=SS4=(1/8)R C2=(1/n)(K1-K2)2=(1/8) (3.93-3.75)2=0.00405;SS(A×C)=SS5=(1/8)R(A×C)2=(1/n)(K1-K2)2=(1/8)(3.5-4.18)2=0.0578;SS(B×C)=SS6=(1/8)R(B×C)2=(1/n)(K1-K2)2=(1/8)(3.66-4.02)2=0.0162;误差的离差平方和:SS e=SS7=(1/8)R72=(1/n)(K1-K2)2=(1/8)(3.63-4.05)2=0.02205或:SS e=SS T-(SS A+SS B+SS(A×B)+SS C+SS(A×C)+SS(B×)=0.4088-(0.23805+0.05445+0.0162)=0.02205C)(3)计算自由度:总自由度:df T=n-1=8-1=7;各因素自由:df A=df B=df C=r-1=2-1=1; df(A×B)=df A×df B=1×1=1=df3=r-1=2-1=1;或df(A×B)=df A×df C=df5=1×1=1;df(B×C)=df B×df C=df6=1×1=1;同理:df(A×C)误差自由度:df e=df7=r-1=2-1=1;或df e=df T-(df A+df B+df(A×B)+df C+df(A×C)+df(B×C))=7(1+1+1+1+1+1)=1 (4)计算均方:由于各因素、交互作用和误差的自由度都为1,所以它们的均方应该等于它们各自的离差平方和,即:MS A=SS A=0.23805;MS B=SS B=0.05445;MS(A×B)=SS(A×B)=0.0162;MS C=SS C=0.00405;MS (A ×C)=SS (A ×C)=0.0578;MS (B ×C)=SS (B ×C)=0.0162;MS e =SS e =0.02205;可知:MS (A ×B)<MSe 、MS C <MS e 、MS (B ×C)<Mse,这说明因素C 和交互因素A×B 、交互因素B ×C 对试验结果的影响较小,为次要因素。
所以,可将它们归入误差,这样误差的离差平方和、自由度、和和均方都会随之变化,即新误差平方和:SSe △=SS e +SS (A ×B)+SS C +SS (B ×C)=0.02205+0.0162+0.00405+0.0162=0.0585; 误差自由度:dfe △=df e +df (A ×B)+df C +df (B ×C )=1+1+1+1=4;新误差均方:MS e △=SS e △/df e △=0.0585/4=0.014625 (5)计算F 值: F A =MS A /MS e △=0.23805/0.014625=16.2764;F B =MS B /MS e △=0.05445/0.014625=3.7230; F (A ×C )=MS (A ×C)/MS e △=0.0578/0.014625=3.9531; 由于:A ×B 、C 、B ×C 已并入误差,所以就不需要计算它们的F 值。
(6)F 值检验:查得临界值F 0.05(1,4)=7.71,F 0.01(1,4)=21.20,所以对于给定显著水平α=0.05,因素A 对试验结果有显著影响,而B,A ×C 对试验结果影响不显著(对于主要因素,一定要按有利于指标的要求选取最好的水平;而对于不重要的因素,由于其水平改变对试验结果的影响较小,则可以根据有利于降低消耗、提高效率等目的来考虑别的水平。
)最后将结果列于表1-3 例1方差分析表从表中F 是一致的。
(7)优方案的确定:因为因素A 对试验结果有显著影响,因素B 、C 和交互作用A ×C ,A ×B 对试验结果无显著影响,所以从有利利于降低消耗,提高效益等目的来考虑别的水平,所以,因素B 取B 1(用水量20ml)、因素C 取C 1(反应时间1h )。
因素A 取K 值对应的最大水平,即A 1酸用量25ml 。
所以最优方案为:A 1B 1C 1。
2、为了提高陶粒混凝土的抗压强度,考察了A,B,C,D,E,F 六个因素,每个因素有六个水平,因素水平表如下(见表2-1):根据经验还要考察交互作用A×B,A×C,B×C。
如果将A,B,C,D,E,F依次安排在正交表L27(313)的1,2,5,9,12,13列上,试验结果(抗压强度/kg.cm-2)依次为100,98,97,95,96,99,94,99,101,85,82,98,85,90,85,91,89,80,73,90,77,84,80,76,89,78,85,试用方差分析法(α=0.05)分析试验结果,确定较有水平组合。
解:(1)实验设计:本实验要考虑六个因素和三种交互作用,且每种交互作用占两列,这样因素和交互作用在正交表中总共占有12列,所以应该选择正交表L27(313)。