五年级奥数数阵问题

合集下载

小学五年级奥数 第10周 数 阵

小学五年级奥数  第10周  数    阵

第10周数阵专题简析:填“幻方”是同学们比较熟悉的一种数学游戏,由幻方演变出来的数阵问题,也是一类比较常见的填数问题。

这里,和同学们讨论一些数阵的填法。

解答数阵问题通常用两种方法:一是待定数法,二是试验法。

待定数法就是先用字母(或符号)表示满足条件的数,通过分析、计算来确定这些字母(或符号)应具备的条件,为解答数阵问题提供方向。

试验法就是根据题中所给条件选准突破口,确定填数的可能范围。

把分析推理和试验法结合起来,再由填数的可能情况,确定应填的数。

例题1 把5、6、7、8、9五个数分别填入下图的五个方格里,如图a使横行三个数的和与竖行三个数的和都是21。

先把五格方格中的数用字母A、B、C、D、E来表示,根据题意可知:A+B+C+D+E=35,A+E+B+C+E+D=21×2=42。

把两式相比较可知,E=42-35=7,即中间填7。

然后再根据5+9=6+8便可把五个数填进方格,如图b。

练习一1,把1——10各数填入“六一”的10个空格里,使在同一直线上的各数的和都是12。

2,把1——9各数填入“七一”的9个空格里,使在同一直线上的各数的和都是13。

3,将1——7七个自然数分别填入图中的圆圈里,使每条线上三个数的和相等。

例题2 将1——10这十个数填入下图小圆中,使每个大圆上六个数的和是30。

分析设中间两个圆中的数为a、b,则两个大圆的总和是1+2+3+……+10+a+b=30×2,即55+a+b=60,a+b=5。

在1——10这十个数中1+4=5,2+3=5。

当a和b是1和4时,每个大圆上另外四个数分别是(2,6,8,9)和(3,5,7,10);当a和b是2和3时,每个大圆上另外四个数分别为(1,5,9,10)和(4,6,7,8)。

练习二1,把1——8八个数分别填入下图的○内,使每个大圆上五个○内数的和相等。

2,把1——10这十个数分别填入下图的○内,使每个四边形顶点的○内四个数的和都相等,且和最大。

小学奥数举一反三五年级数阵问题共21页文档

小学奥数举一反三五年级数阵问题共21页文档
当a=1时,28+2a=30 30÷3=10,其他两数的和是10-1= 9,只要把余下的2、3、4、5、6、7,按和为9分成三组填 入两端即可。同理可求得a=4、a=7两端应填入的数。
❖ 例3 将1~11十一个数字,填入下图各○中, 使每条线段上的数字和相等。
❖ 解:图中共有五条线段,全部数字的总和必须是5的倍数, 每条线上的数字和才能相等。
6+3+2+1
5+4+2+1
上述两组中,经验证,只有6+3+2+1可以作公用顶点的数 字。
谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子

1~11十一个数字和为66,66÷5=13余1,必须再增加4,可 使各线上数字和为14。共五条线,中心数重复使用4次,填1 恰符合条件。
此题的基本解法是:中心数重复使用次数与中心数的积,加上 原余数1,所得的和必须是5的倍数。据此,中心数填6、11 均可得解。
❖ 2.封闭型(复合型)数阵
例1把2、3、4、5、6、7六个数字,分别 填入○中,使三角形各边上的数字和都是 12。
题中要求横、竖每条线上数字和都是10,两条线合起来便是 20了。20-15=5,怎样才能增加5呢?因为中心的一个数是 个重复使用数。只有5连加两次才能使五个数字的和增加5, 关键找到了,中心数必须填5。确定中心数后,按余下的1、2、 3、4,分别填在横、竖线的两端,使每条线上数的和是10便 可。
❖ 例2将1~7七个数字,分别填入图中的各个○ 内,使每条线上的三个数和相等。

小学五年级奥数第10讲 数阵(含答案分析)

小学五年级奥数第10讲 数阵(含答案分析)

第10讲数阵一、知识要点填“幻方”是同学们比较熟悉的一种数学游戏,由幻方演变出来的数阵问题,也是一类比较常见的填数问题。

这里,和同学们讨论一些数阵的填法。

解答数阵问题通常用两种方法:一是待定数法,二是试验法。

待定数法就是先用字母(或符号)表示满足条件的数,通过分析、计算来确定这些字母(或符号)应具备的条件,为解答数阵问题提供方向。

试验法就是根据题中所给条件选准突破口,确定填数的可能范围。

把分析推理和试验法结合起来,再由填数的可能情况,确定应填的数。

二、精讲精练【例题1】把5、6、7、8、9五个数分别填入下图的五个方格里,如图a 使横行三个数的和与竖行三个数的和都是21。

练习1:1.把1——10各数填入“六一”的10个空格里,使在同一直线上的各数的和都是12。

2.把1—9各数填入“七一”的9个空格里,使在同一直线上的各数的和都是13。

3.将1——7七个自然数分别填入图中的圆圈里,使每条线上三个数的和相等。

【例题2】将1——10这十个数填入下图小圆中,使每个大圆上六个数的和是30。

练习2:1.把1——8八个数分别填入下图的○内,使每个大圆上五个○内数的和相等。

2.把1——10这十个数分别填入下图的○内,使每个四边形顶点的○内四个数的和都相等,且和最大。

3.将1——8八个数填入下图方格里,使上面四格、下面四格、左四格、右四格、中间四格以及对角线四格内四个数的和都是18。

第1题第二题第三题【例题3】将1——6这六个数分别填入下图的圆中,使每条直线上三个圆内数的和相等、且最大。

练习3:1.将1——6六个数分别填入下图的○内,使每边上的三个○内数的和相等。

2.将1——9九个数分别填入下图○内,使每边上四个○内数的和都是17。

3.将1——8八个数分别填入下图的○内,使每条安上三个数的和相等。

第1题第二题第三题【例题4】将1——7分别填入下图的7个○内,使每条线段上三个○内数的和相等。

练习4:1.将1——9填入下图的○中,使横、竖行五个数相加的和都等于25。

五年级奥数:数阵图(一)

五年级奥数:数阵图(一)

数阵图(一)一、考点、热点回顾1、在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。

它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。

2、那么,到底什么是数阵呢?我们先观察下面两个图:左上图中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。

右上图就更有意思了,1~9九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。

上面两个图就是数阵图。

准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。

要排出这样巧妙的数阵图,可不是一件容易的事情。

我们还是先从几个简单的例子开始。

二、典型例题例1、把1~5这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。

同学们可能会觉得这道题太容易了,七拼八凑就写出了右上图的答案,可是却搞不清其中的道理。

下面我们就一起来分析其中的道理,只有弄懂其中的道理,才可能解出复杂巧妙的数阵问题。

分析与解:中间方格中的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”。

也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次,即重叠了一次,其余各数均被加了一次。

因为横行的三个数之和与竖列的三个数之和都等于9,所以(1+2+3+4+5)+重叠数=9+9,重叠数=(9+9)-(1+2+3+4+5)=3。

重叠数求出来了,其余各数就好填了(见右上图)。

例2 、把1~5这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。

分析与解:与例1不同之处是已知“重叠数”为5,而不知道两条直线上的三个数之和都等于什么数。

所以,必须先求出这个“和”。

根据例1的分析知,两条直线上的三个数相加,只有重叠数被加了两遍,其余各数均被加了一遍,所以两条直线上的三个数之和都等于[(1+2+3+4+5)+5]÷2=10。

五年级奥数“数阵问题” 第六讲

五年级奥数“数阵问题” 第六讲

上一页
练习5:将九个不同的自然数填入下面方格中,使每行、每列、每条对
习 题
角线上三个数的积都相等。
上一页
首页 结束
下一页

个顶点上的数的和相等。问这六个质数的积是多少?
解:
设每个小三角形三个顶点处○内数的和为X。因为中间的小三 角形顶点处的数在求和时都用了三次,所以,四个小三角形 顶点处数的总和是4X=20+2X,解方程得X=10。由此可知, 每个小三角形顶点处的三个质数的和是10,这三个质数只能 是2、3、5。因此这6个质数的积是2×2×3×3×5×5=900。 如图(b)。
当a和b是1和4时,每个大圆上另外四个数分别是(2,6,8,9) 和(3,5,7,10);当a和b是2和3时,每个大圆上另外四个 数分别为(1,5,9,10)和(4,6,7,8)。
上一页
首页 结束
下一页
第4讲 数阵问题
练 习
练习2:把1——8八个数分别填入下图的○内,使每个大圆上五个○内 数的和相等。
上一页
首页 结束
下一页
第4讲 数阵问题
练 习
练习1:把1——10各数填入“六一”的10个空格里,使在同一直线上 的各数的和都是12。

上一页
首页 结束
下一页
第4讲 数阵问题
例 例2:将1——10这十个数填入下图小圆中,使每个大圆上六个数的
题 精
和是30。

解: 设中间两个圆中的数为a、b,则两个大圆的总和是1+2+3 +……+10+a+b=30×2,即55+a+b=60,a+b=5。在1— —10这十个数中1+4=5,2+3=5。
试验法就是根据题中所给条件选准突破口,确定填 数的可能范围。把分析推理和试验法结合起来,再 由填数的可能情况,确定应填的数。

小学五年级奥数数阵题doc

小学五年级奥数数阵题doc

第十六讲数阵问题上一讲我们学习了三阶幻方数阵图的辐射数阵图,这一讲我们学习封闭型数阵图和复合型数阵图。

例1.将1~6这六个数分别填入图中的○内,使每条边上三个○内的数字之和相等。

例2.将5~14这十个自然数填入右图中的○内,使每个大圆上六个数的和是55。

例3.将1~10这十个自然数分别填入图中的十个○内,使各条线段上四个○内数的和相等,每个三角形三个顶点上○内数的和也相等。

例4.把0~9这十个整数分别填入右图圆圈中,使每个正方形顶点上四个数字之和相等。

练习与思考1.将5~10这六个自然数分别填入图中的○内,使图中每条边上三个数的和都是21。

2.将1—10这十个自然数填入图中的○内,使五边形每条边上的三个数之和相等,并使和尽可能地小。

3.将1—9这九个自然数分别填入图中九个小三角形中,使每4个小三角形组成的三角形内的4个数的和等于20。

4.将1—9这九个自然数分别填入图中九个小三角形中,要求靠近三角形每条边上五个数的和相等,并尽可能地大。

这五个数之和最大是多少?5.将1—8这八个自然数分别填入图中的○内,使每个大圆上五个○内所填数的和等于21。

6.将3—10这八个自然数填在图中立方体八个顶点上的○中,使立方体每个面四个顶点上○中数的和相等。

7.将1—9这九个自然数填入图中的○内,使对角结上五个○内数的和相等,每个正方形四个顶点上数的和也相等。

8.如图,三个正方形组成八个三角形。

现在把每个正方形的四个顶点上都分别填上2,3,4,5这四个数。

这连续的八个自然数各是多少|9.如图,三个圆相互交割成七部分,请在空白部分中分别五上2,3,5,7,使每个圆圈内四个数之和都等于15。

10.上右图是五圆连环图,相互交割成九个部分。

将1—9这九个自然数分别填入九个部分内,使每个圆圈里数的和都相等。

11.下左图中有三个正三角形,其中有三条通过四点的线段。

请你把1—9这九个自然数分别填在九个黑点的旁边,使每个正三角形顶点上三个数的和相等,每条线段上四个数的和也相等。

趣味数阵小学五年级奥数

趣味数阵小学五年级奥数
当a=六时,k=四二÷三=一四,
例二,请你将一~七这七个数分别填在○ 内,使每条线段上的三个数的和相等,
答案:
解答: 设中心数为a,中心数在求和过程 中使用了三次,
每条边上的三数之和为k, 三k=[一+二+三+四+五+六+七]
+二a =二八+二a
k=[二八+二a]÷三 经实验:当a=一时,k=三0÷三=一0;
例七,把一~八这九个数分别填在三 角形三条边的八个○内,使每条边上四 个○内的数的和相等,[求出两个基本解]
答案:
解答:设顶点上的数分别为a,b,c,每条边上四个数的和 为k,
三k=[一+二+三+四+五+六+七+八+八]+[a +b+c]
=四五+a+b+c k=[四五+a+b+c]÷三 当a=一,b=二,c=三时,k=五一÷三=一七[最小值] 当a=七,b=八,c=八时,k=六八÷三=二三[最大值] 因此,k的值是一七、一八、一八、二0、二一、二二 、二三, [一]当k=一八时,a+b+c=一二,a=二,b=三,c=七, [二]当k=二一时,a+b+c=一八,a=三,b=七,c=八,
答案:
解答:设顶点上的数分别为a,b,c,d,每条边上三个 数的和为k,
四k=[一+二+三+四+五+六+七+八]+[a +b+c+d]
=三六+a+b+c+d k=[三六+a+b+c+d]÷四 当a=一,b=二,c=三,d=四时,k=四六÷四=一 一.五,k为整数,最小值为一二, 当a=五,b=六,c=七,d=八时,k=六二÷四=一 五.五,k最大值为一五, 因此,k的值是一二、一三、一四、一五,
三k=[一+二+三+四+五+六]+[a+b+ c]
=二一+a+b+c k=[二一+a+b+c]÷三 当a=一,b=二,c=三时,k=二七÷三=八[最小 值] 当a=四,b=五,c=六时,k=三六÷三=一二[最 大值]

五年级奥数数阵问题

五年级奥数数阵问题

课时3 数阵问题(一)一.数阵填“幻方”就是同学们比较熟悉得一种数学游戏,由幻方演变出来得数阵问题,也就是一类比较常见得填数问题。

这里,主要讨论一些数阵得填法。

解答数阵问题通常用两种方法:一就是待定数法,二就是试验法。

待定数法就就是先用字母(或符号)表示满足条件得数,通过分析、计算来确定这些字母(或符号)应具备得条件,为解答数阵问题提供方向。

试验法就就是根据题中所给条件选准突破口,确定填数得可能范围。

把分析推理与试验法结合起来,再由填数得可能情况,确定应填得数。

二.例题精析例1 把5、6、7、8、9五个数分别填入下图得五个方格里,如图a使横行三个数得与与竖行三个数得与都就是21。

先把五格方格中得数用字母A、B、C、D、E来表示,根据题意可知:A+B+C+D+E=35,A +E+B+C+E+D=21×2=42。

把两式相比较可知,E=42-35=7,即中间填7。

然后再根据5+9=6+8便可把五个数填进方格,如图b。

小试牛刀把1——10各数填入“六一”得10个空格里,使在同一直线上得各数得与都就是12。

2、把1——9各数填入“七一”得9个空格里,使在同一直线上得各数得与都就是13。

3、将1——7七个自然数分别填入图中得圆圈里,使每条线上三个数得与相等。

例2 将1——10这十个数填入下图小圆中,使每个大圆上六个数得与就是30。

分析设中间两个圆中得数为a、b,则两个大圆得总与就是1+2+3+……+10+a+b=30×2、即55+a+b=60,a+b=5。

在1——10这十个数中1+4=5,2+3=5。

当a与b就是1与4时,每个大圆上另外四个数分别就是(2、6,8,9)与(3、5,7,10);当a与b就是2与3时,每个大圆上另外四个数分别为(1、5,9,10)与(4,6,7,8)。

小试牛刀1、把1——8八个数分别填入下图得○内,使每个大圆上五个○内数得与相等。

2、把1——10这十个数分别填入下图得○内,使每个四边形顶点得○内四个数得与都相等,且与最大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学生课程讲义
课程名称五年级奥数上课时间任课老师李老师
第___讲,本讲课题:数阵问题
内容概要
填“幻方”是同学们比较熟悉的一种数学游戏,由幻方演变出来的数阵问题,也是一类比较常见的填数问题。

这里,和同学们讨论一些数阵的填法。

解答数阵问题通常用两种方法:一是待定数法,二是试验法。

待定数法就是先用字母(或符号)表示满足条件的数,通过分析、计算来确定这些字母(或符号)应具备的条件,为解答数阵问题提供方向。

试验法就是根据题中所给条件选准突破口,确定填数的可能范围。

把分析推理和试验法结合起来,再由填数的可能情况,确定应填的数。

例1:
把5、6、7、8、9五个数分别填入下图的五个方格里,如图a使横行三个数的和与竖行三个数的和都是21。

先把五格方格中的数用字母A、B、C、D、E来表示,根据题意可知:A+B+C+D+E=35,A+E+B+C+E+D=21×2=42。

把两式相比较可知,E=42-35=7,即中间填7。

然后再根据5+9=6+8便可把五个数填进方格,如图b。

练习:
1、把1——10各数填入“六一”的10个空格里,使在同一直线上的各数的和都是12。

2、把1——9各数填入“七一”的9个空格里,使在同一直线上的各数的和都是13。

3、将1——7七个自然数分别填入图中的圆圈里,使每条线上三个数的和相等。

例2:
将1——10这十个数填入下图小圆中,使每个大圆上六个数的和是30。

分析设中间两个圆中的数为a、b,则两个大圆的总和是1+2+3+……+10+a+b=30×2、即55+a+b=60,a+b=5。

在1——10这十个数中1+4=5,2+3=5。

当a和b是1和4时,每个大圆上另外四个数分别是(2、6,8,9)和(3、5,7,10);当a和b是2和3时,每个大圆上另外四个数分别为(1、5,9,10)和(4,6,7,8)。

练习:
1、把1——8八个数分别填入下图的○内,使每个大圆上五个○内数的和相等。

2、把1——10这十个数分别填入下图的○内,使每个四边形顶点的○内四个数的和都相等,且和最大。

3、将1——8八个数填入下图方格里,使上面四格、下面四格、左四格、右四格、中间四格以及对角线四格内四个数的和都是18。

例3:
将1——6这六个数分别填入下图的圆中,使每条直线上三个圆内数的和相等、且最大。

分析设中间三个圆内的数是a、b、c。

因为计算三条线上的和时,a、b、c都被计算了两次,根据题意可知:1+2+3+4+5+6+(a+b+c)除以3没有余数。

1+2+3+4+5+6=21、21÷3=7没有余数,那么a+b+c的和除以3也应该没有余数。

在1——6六个数中,只有4+5+6的和最大,且除以3没有余数,因此a、b、c分别为4、5、6。

(1+2+3+4+5+6+4+5+6)÷3=12、所以有下面的填法:
练习:
1、将1——6六个数分别填入下图的○内,使每边上的三个○内数的和相等。

2、将1——9九个数分别填入下图○内,使每边上四个○内数的和都是17。

3、将1——8八个数分别填入下图的○内,使每条安上三个数的和相等。

例4:
将1——7分别填入下图的7个○内,使每条线段上三个○内数的和相等。

分析首先要确定中心圆内的数,设中心○内的数是a,那么,三条线段上的总和是1+2+3+4+5+6+7+2a=28+2a,由于三条线段上的和相等,所以(28+2a)除以3应该没有余数。

由于28÷3=9……1、那么2a除以3应该余2、因此,a可以为1、4或7。

当a=1时,(28+2×1)÷3-1=9,即每条线段上其他两数的和是9,因此,有这样的填法。

练习:
1、将1——9填入下图的○中,使横、竖行五个数相加的和都等于25。

2、将1——11这十一个数分别填进下图的○里,使每条线上3个○内的数的和相等。

3、将1——8这八个数分别填入下图○内,使外圆四个数的和,内圆四个数的和以及横行、竖行上四个数的和都等于18。

相关文档
最新文档