粉末冶金实验报告

粉末冶金实验报告
粉末冶金实验报告

实验11 铁基粉末冶金

1. 实验目的

(1) 了解粉末冶金零件制备过程。

(2) 了解烧结温度对烧结过程和制品性能的影响。

(3) 了解烧结时间对烧结过程和制品性能的影响。

(4) 了解石墨添加量对烧结过程和制品性能的影响。

2. 概述

粉末冶金是制取金属粉末或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结,制取金属材料、复合材料以及各种类型制品的工业

技术。目前,粉末冶金技术已被广泛应用于交通、机械、电子、航空航天、兵器、

生物、新能源、信息和核工业等领域,成为新材料科学中最具发展活力的分支之

一。粉末冶金技术具备显著节能、省材、性能优异、产品精度高且稳定性好等一

系列优点,非常适合于大批量生产。另外,部分用传统铸造方法和机械加工方法

无法制备的材料和复杂零件也可用粉末冶金技术制造,因而备受工业界的重视。

广义的粉末冶金制品业涵括了铁石刀具、硬质合金、磁性材料以及粉末冶金

制品等。狭义的粉末冶金制品业仅指粉末冶金制品,包括粉末冶金零件(占绝大部分)、含油轴承和金属射出成型制品等。本报告使用的行业定界为狭义范围。

粉末冶金具有独特的化学组成和机械、物理性能,而这些性能是用传统的熔

铸方法无法获得的。运用粉末冶金技术可以直接制成多孔、半致密或全致密材料

和制品,如含油轴承、齿轮、凸轮、导杆、刀具等,是一种少无切削工艺。

(1) 粉末冶金技术可以最大限度地减少合金成分偏聚,消除粗大、不均匀的铸造组织。在制备高性能稀土永磁材料、稀土储氢材料、稀土发光材料、稀土催化剂、

高温超导材料、新型金属材料(如Al-Li合金、耐热Al合金、超合金、粉末耐蚀不锈钢、粉末高速钢、金属间化合物高温结构材料等)具有重要的作用。

(2) 可以制备非晶、微晶、准晶、纳米晶和超饱和固溶体等一系列高性能非平衡材

料,这些材料具有优异的电学、磁学、光学和力学性能。

(3) 可以容易地实现多种类型的复合,充分发挥各组元材料各自的特性,是一种低

成本生产高性能金属基和陶瓷复合材料的工艺技术。

(4) 可以生产普通熔炼法无法生产的具有特殊结构和性能的材料和制品,如新型多

孔生物材料,多孔分离膜材料、高性能结构陶瓷磨具和功能陶瓷材料等。

(5) 可以实现近净形成形和自动化批量生产,从而,可以有效地降低生产的资源和

能源消耗。

(6) 可以充分利用矿石、尾矿、炼钢污泥、轧钢铁鳞、回收废旧金属作原料,是一

种可有效进行材料再生和综合利用的新技术。

我们常见的机加工刀具,五金磨具,很多就是粉末冶金技术制造的。

3. 实验设备与材料

主要仪器设备:液压机(45吨)、ZT-30-20Y真空热压烧结炉、球磨机、模具、电子天平、游标卡尺、金相显微镜、洛氏硬度计

主要原料:电解铁粉、石墨粉、硬脂酸锌、机油、氩气等

4. 实验内容

(1) 采用冷压烧结法制备铁—石墨试样。

(2) 采用热压烧结法制备铁—石墨试样。

(3) 研究烧结温度对制品性能的影响。

(4) 研究烧结时间对制品性能的影响。

(5) 研究石墨含量对制品性能的影响。

5. 实验步骤与注意事项

(1) 每组压制3个试样,测量尺寸、重量后按实验计划确定的参数进行烧结。

(2) 烧结结束后,再次测量试样尺寸、重量,比较烧结前后密度的变化,观察金相

组织和检测试样硬度。

6. 粉末冶金实验操作流程

(1) 配料

先将铁粉进行筛分,再根据实验方案称取相应重量的还原铁粉,为改善石墨

粉与铁粉混合均匀,加入少许机油,混匀后再加入相应配比的石墨粉、少许润滑

剂(硬脂酸锌,1.0%),然后在球磨机上进行混料(球磨转速为300转/分,球磨2

小时)(实验所用原材料事先备好)。

(2) 压制试样(由实验指导教师演示,学生操作)

油压机表显25Mpa下压制试样,测量并计算毛坯密度

(3) 烧结

按制定好的烧结工艺烧结,随炉冷却到室温,整个烧结过程氩气保护。

RT-300℃1小时保温1h

300℃-700℃1小时保温1h

700℃-1170℃或1250℃1小时保温2h 含碳量(0.2%和0.8%)是在1250℃进行烧结的,保温2小时。

含碳量2.0%是在1170℃进行烧结的,保温 1.5小时。

(4) 性能检测

测量并计算烧结后试样密度,观察烧结后金相形貌变化及检测烧结后试样硬

度。

7. 实验数据

实验原始数据见表一、表二。

(表一)冷压烧结试样

石墨含量(%)

试样直径(mm) 试样重量(g)试样高度(mm)试样密度() 烧结前烧结后烧结前烧结后烧结前烧结后烧结前烧结后

0.2 24.48 24.34 19.96 19.69 6.06 6.01 7.00 7.04 0.8 24.48 24.34 20.0 19.66 6.18 6.10 6.88 6.93 2.0 24.48 24.36 19.99 19.67 6.34 6.28 6.70 6.72

排水法测密度公式:ρ固=w1 / (w1- w2)

w1:物体在空气中的质量(克)

w2:物体在蒸馏水中的质量(克)

(表二)测量密度(排水法)及硬度

石墨含量(%)冷压烧结试样热压烧结试样

压坯密度() 烧结后密度() 硬度(HB) 密度(p)硬度(HB)

0.2 6.89 7.04 60.97.50 117

0.8 6.88 6.97 80.47.57 200

2.0 6.69 6.80 114 7.64 185

实验金相组织图如下:

粉末冶金实验冷压烧结试样金相组织照片

试样号图号含碳量

(%)烧结温度

(℃)

保温时间

(min)

单位压制压

力(Mpa)

密度

(g/cm3)

HB/HRB

C0.2 1-1~1-2 0.2 1250 120 737 7.04 60.9/27.8 C0.8 1-3~1-4 0.8 1250 120 737 6.97 80.4/55.4 C2.0 1-5~1-6 2.0 1170 90 737 6.80 114/75.8

图1-1 未浸蚀200X 图1-2 2%~3%硝酸酒精溶液浸蚀500x 图1-3 未浸蚀200X 图1-4 2%~3%硝酸酒精溶液浸蚀500

图1-5 未浸蚀200X 图1-6 2%~3%硝酸酒精溶液浸蚀500x 粉末冶金实验热压烧结试样金相组织照片

试样号图号含碳量

(%)烧结温度

(℃)

保温时间

(min)

单位压制压

力(Mpa)

密度

(g/cm3)

HB/HRB

H0 2-1~2-2 0 1100 30 31 7.70 90/37.4 H0.2 2-3~2-4 0.2 1200 10 31 7.50 117/65.4 H0.8 2-5~2-6 0.8 1150 20 40 7.57 200/96.5 H2.0 2-7~2-8 2.0 1150 20 40 7.64 185/95.6

图2-1 未浸蚀200X 图2-2 2%~3%硝酸酒精溶液浸蚀500x 图2-3 未浸蚀200X 图2-4 2%~3%硝酸酒精溶液浸蚀500x 图2-5 未浸蚀200X 图2-6 2%~3%硝酸酒精溶液浸蚀500x

图2-7 未浸蚀200X 图2-8 2%~3%硝酸酒精溶液浸蚀500x

8. 实验数据分析

(1) 由表一可以看到冷压烧结试样在烧结前后的数据对比。粉末经过烧结后,体积

减小,质量也有较小程度的减小,但相应的密度增大。体积减小主要是因为烧结

能够使得粉末之间的接触点熔化结合,从而减小粉末间的间隙,质量减小主要是

因为烧结可以使得粉末里的水分蒸发;但总体来看,体积减小的程度相对大于质

量减小量,故密度有小幅的增大。

(2) 由表二可以看到冷压烧结后试样密度均有所增大,且随粉末的石墨含量越高,

硬度越大。冷压试样烧结后的密度增大的原因同“(1)”中所述,硬度越大主要是因为石墨含量的增多导致渗碳体的增多,所以硬度大。热压烧结试样硬度并非随

碳含量增大而增大,而是存在一个峰值,但总体而言,在同样碳含量的情况下,

热压烧结试样的硬度大于冷压烧结试样。这时由于在热压烧结过程中,渗碳体颗

粒分布更为均匀。

(3) 根据不同碳含量的冷压、热压烧结试样的金相组织图可以看到,碳含量增高会

使组织中相应的硬质颗粒增多,且热压过程中硬质颗粒的分布更为均匀,由此也

可以解释碳含量高相应的硬度高,同时,热压烧结由于更利于硬质颗粒的均匀分布,因此其硬度也大于同样碳含量的冷压烧结试样。

9. 思考题

不同碳含量的铁、石墨合金粉末烧结后金相形貌与Fe-Fe3C相图中对应碳含量的金相组织有何差别?试分析原因?可采取什么措施减小或消除这种差别?

粉末烧结后的金相形貌相对于Fe-Fe3C相图来说:(1)晶界显得不明显;(2)晶粒均匀性相对较差,在碳含量高时表现的尤为明显;(3)石墨形态更多的为块状,而非Fe-Fe3C中的层片状。这三点不同的原因,我认为是由于粉末烧结的工艺过

程使碳颗粒是以固相扩散的方式向基体渗透,扩散程度比传统的成形方法要差。

除此之外,受到粉末大小和均匀性的影响,一些块状的石墨颗粒无法真正扩散到

基体当中,在晶界间存在着较大的石墨块。可以通过在粉末冶金过程中提高单位

压制压力、增长保温时间减小这种差异;还可以通过在得到烧结的材料后,进行

热处理来进一步提升材料的组织性能。

粉末冶金常识

粉末冶金常识 1、粉末冶金常识之什么是粉末冶金? 粉末冶金是一门制造金属粉末,并以金属粉末(有时也添加少量非金属粉末)为原料,经过混合、成形 和烧结,制造材料或制品的技术。它包括两部分内容,即:(1)制造金属粉末(也包括合金粉末,以下统称“金属粉末“)。 (2)用金属粉末(有时也添加少量非金属粉末)作原料,经过混合、成形和烧结,制造材料(称为“粉末冶金材料“)或制品(称为“粉末冶金制品“)。 2、粉末冶金常识之粉末冶金最突岀的优点是什么? 粉末冶金最突岀的优点有两个: (1)能够制造目前使用其他工艺无法制造或难于制造的材料和制品,如多孔、发汗、减震、隔音等材料和 制品,钨、钼、钛等难熔金属材料和制品,金属-塑料、双金属等复合材料及制品。 (2)能够直接制造岀合乎或者接近成品尺寸要求的制品,从而减少或取消机械加工,其材料利用率可以高 达95%X上,它还能在一些制品中以铁代铜,做到了“省材、节能“。 粉末冶金件 3、粉末冶金常识之什么是"铁基"?什么是铁基粉末冶金? 铁基是指材料的组成是以铁为基体。铁基粉末冶金是指用烧结(也包括粉末锻造)方法,制造以铁为主要成分的粉末冶金材料和制品(铁基机械零件、减磨材料、摩擦材料,以及其他铁基粉末冶金材料)的工艺总称。 4、粉末冶金常识之用于粉末冶金的粉末制造方法主要有哪几类? 粉末制造方法主要有物理化学法和机械粉碎法两大类。前者包括还原法、电解法和羰基法等;后者包括研磨法和雾化法。 5、粉末冶金常识之用还原法制造金属粉末是怎么回事? 该法是用还原剂把金属氧化物中的氧夺取出来,从而得到金属粉末的一种方法。 6、粉末冶金常识之什么叫还原剂? 还原剂是指能够夺取氧化物中氧的物质。制取金属粉末所用的还原剂,是指能够除掉金属氧化物中氧的物质。就金属氧化物而言,凡是与其中氧的亲合力大于这种金属与氧的亲合力的物质,都称其为这种金属氧化物的还原剂。 7、粉末冶金常识之粉末还原退火的目的是什么? 粉末还原退火的目的主要有以下三个方面:(1)去除金属粉末颗粒表面的氧化膜;(2)除掉颗粒表面吸附的气体和水分等异物;(3 )消除颗粒的加工硬化。 粉末冶金工艺流程图 8、粉末冶金常识之用于粉末冶金的粉末性能测定一般有哪几项? 用于粉末冶金的粉末性能测定一般有三项:化学成分、物理性能和工艺性能。9、用于粉末冶金的粉末物 理性能主要包括那几项? 用于粉末冶金的粉末物理性能主要包括以下三项:( 1)粉末的颗粒形状;( 2)粉末的粒度和粒度组成;(3)粉末的比表面。

金属材料及热处理实验报告

金属材料及热处理实验报告 学院:高等工程师学院 专业班级:冶金E111 姓名:杨泽荣 学号: 41102010 2014年6月7日

45号钢300℃回火后的组织观察及洛氏硬度测定 目录 一、实验目的 (1) 二、实验原理 (1) 1.加热温度的选择 (1) 2.保温时间的确定 (2) 3.冷却方法 (3) 三、实验材料与设备 (4) 1.实验材料 (4) 2.实验设备 (4) 四、实验步骤 (4) 1.试样的热处理 (4) 1.1淬火 (4) 1.2回火 (5) 2.试样硬度测定 (5) 3.显微组织观察与拍照记录 (5) 3.1样品的制备 (5) 3.2显微组织的观察与记录 (6) 五、实验结果与分析 (6) 1.样品硬度与显微组织分析 (6) 2.淬火温度、淬火介质对钢组织和性能的影响 (6) 2.1淬火温度的影响 (6) 2.2淬火介质的影响 (7) 3回火温度对钢组织与性能的影响 (7) 3.1回火温度对45钢组织的影响 (7) 3.2回火温度对45 钢硬度和强度的影响 (7) 4合金元素对钢的淬透性、回火稳定性的影响 (8) 4.1合金元素对钢的淬透性的影响 (8) 4.2合金元素对钢的回火稳定性的影响 (9) 5碳含量对钢的淬硬性的影响 (9) 六、结论 (9) 参考文献 (9)

一、实验目的 1.掌握碳钢的常用热处理(淬火及回火)工艺及其应用。 2.研究加热条件、保温时间、冷却条件与钢性能的关系。 3.分析淬火及回火温度对钢性能的影响。 4.观察钢经热处理后的组织,熟悉碳钢经不同热处理后的显微组织及形态特征。 5.了解金相照相的摄影方法,培养学生独立分析问题和解决问题的能力。 二、实验原理 钢的热处理就是利用钢在固态范围内的加热、保温和冷却,以改变其内部组织,从而获得所需要的物理、化学、机械和工艺性能的一种操作。一般热处理的基本操作有退火、正火、淬火、回火等。 进行热处理时,加热温度、保温时间和冷却方式是最重要的三个基本工艺因素。正确选择这三者的规范,是热处理成功的基本保证。 1.加热温度的选择 1)退火加热温度一般亚共析钢加热至Ac3+(20—30)℃(完全退火);共析钢和过共析钢加热至Ac1 +(20—30)℃(球化退火),目的是得到球状渗碳体,降低硬度,改善高碳钢的切削性能。 2)正火加热温度一般亚共析钢加热至Ac3 +(30—50)℃;过共析钢加热至Accm +(30—50)℃,即加热到奥氏体单相区。退火和正火的加热温度范围选择见图2.1。 3)淬火加热温度一般亚共析钢加热至Ac3+(30—50)℃;共析钢和过共析钢加热至Ac1+(30—50)℃,见图2.2。 钢的成分,原始组织及加热速度等皆影响到临界点的位置。在各种热处理手册或材料手册中,都可以查到各种钢的热处理温度。热处理时不能任意提高加热温度,因为加热温度过高时,晶粒容易长大,氧化、脱碳和变形等都会变得比较严重。各种常用钢的工艺规范见表2.1。 4)回火温度的选择钢淬火后都要回火,回火温度决定于最终所要求的组织和性能(常常是根据硬度的要求)。按加热温度高低回火可分为三类:

粉末冶金原理

1.粉末冶金:制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料, 经过成形和烧结制造金属材料、复合材料以及各种类型制品的工艺过程。 2.二次颗粒:单颗粒以某种方式聚集就构成二次颗粒 3.松装密度:粉末在规定条件下自然充填容器时,单位体积内自由松装粉末体的质量 g/cm3。 4.孔隙率:孔隙体积与粉末体的表观体积之比的百分数称为孔隙度(θ)。 5.中位径:将各种粒级粉末个数或百分数逐一相加累积并做图,可以得到累积分布曲线, 分布曲线对应50%处称为中位径 弹性后效:在压制过程中,粉末由于受力而发生弹性变形和塑性变形,压坯内存在着很大的内应力,当外力停止作用后,压坯便出现膨胀现象 6.合批:将成分相同而粒度不同的粉末进行混合,称为合批 7.烧结机构:研究烧结过程中各种可能的物质迁移方式及速率。 8.热压:热压又称为加压烧结,是把粉末装在模腔内,在加压的同时使粉末加热到正常 烧结温度或更低一些的温度,经过较短时间烧结成致密而均匀的制品。 9.活化烧结:是指采用化学或物理的措施,使烧结温度降低、烧结过程加快,或使烧结 体的密度和其它性能得到提高的方法。 10.单颗粒:粉末中能分开并独立存在的最小实体称为单颗粒。 11.振实密度:粉末装于振动容器,规定条件下,经振动敲打后测得的粉末密度。 12.粒度:以mm或μm的表示的颗粒的大小称颗粒直径,简称粒径或粒度。 13.混合:将两种或两种以上不同成分的粉末混合均匀。分为机械法和化学法。 14.搭桥:粉末在松装堆集时,由于表面不规则,彼此之间有摩擦,颗粒相互搭架而形成 拱桥孔洞的现象。 15.快速冷凝技术的特点:(1)急冷可大幅度地减小合金成分的偏析;(2)急冷可增加合 金的固溶能力;(3)急冷可消除相偏聚和形成非平衡相;(4)某些有害相可能由于急冷而受到抑制甚至消除;(5)由于晶粒细化达微晶程度,在适当应变速度下可能出现超塑性等。 16.粉末颗粒的聚集形式:聚合体、团粒、絮凝体;区别:通过聚集方式得到的二次颗 粒被称为聚合体或聚集颗粒;团粒是由单颗粒或二次颗粒靠范德华力粘接而成的,其结合强度不大,用研磨。擦碎等方法在液体介质中容易分散成更小的团粒或二次颗粒或单颗粒;絮凝体则是在粉磨悬浊液中,由单颗粒或二次颗粒结合成的更松软的聚集颗粒。 17.减少因摩擦出现的压力损失的措施:1)添加润滑剂、2)提高模具光洁度和硬度、3) 改进成形方式,如采用双面压制等。 18.粉末冶金技术的优点:1. 能生产用普通熔炼方法无法生产的具有特殊性能的材料:① 能控制制品的孔隙度(多孔材料、多孔含油轴承等);②能利用金属和金属、金属和非金属的组合效果,生产各种特殊性能的材料(钨-铜假合金型的电触头材料、金属和非金属组成的摩擦材料等);③能生产各种复合材料。 2.粉末冶金方法生产的某些材料,与普通熔炼法相比,性能优越:①高合金粉末冶金材料的性能比熔铸法生产的好(粉末高速钢可避免成分的偏析);②生产难熔金属材料或制品,一般要依靠粉末冶金法(钨、钼、铌等难熔金属)。缺点:1、粉末成本高;2、制品的大小和形状受到一定限制;3、烧结零件的韧性较差。 19.粉末料预处理的方式及作用:1、退火:还原氧化物,消除杂质,提高纯度;消除加工 硬化,稳定粉末的晶体结构;钝化金属,防止自燃。2、混合:使不同成分的粉末混合均匀,便于压制成形和后续处理。3、筛分:筛分的目的在于把颗粒大小不匀的原始粉

粉末冶金常识

粉末冶金常识 1.粉末冶金常识之什么是粉末冶金? 粉末冶金是一门制造金属粉末,并以金属粉末(有时也添加少量非金属粉末)为原料,经过混合、成形和烧结,制造材料或制品的技术。它包括两部分内容,即:(1)制造金属粉末(也包括合金粉末,以下统称"金属粉末")。 (2)用金属粉末(有时也添加少量非金属粉末)作原料,经过混合、成形和烧结,制造材料(称为"粉末冶金材料")或制品(称为"粉末冶金制品")。 2、粉末冶金常识之粉末冶金最突出的优点是什么? 粉末冶金最突出的优点有两个: (1)能够制造目前使用其他工艺无法制造或难于制造的材料和制品,如多孔、发汗、减震、隔音等材料和制品,钨、钼、钛等难熔金属材料和制品,金属-塑料、双金属等复合材料及制品。 (2)能够直接制造出合乎或者接近成品尺寸要求的制品,从而减少或取消机械加工,其材料利用率可以高达95%以上,它还能在一些制品中以铁代铜,做到了"省材、节能"。 粉末冶金件 3、粉末冶金常识之什么是"铁基"?什么是铁基粉末冶金? 铁基是指材料的组成是以铁为基体。铁基粉末冶金是指用烧结(也包括粉末锻造)方法,制造以铁为主要成分的粉末冶金材料和制品(铁基机械零件、减磨材料、摩擦材料,以及其他铁基粉末冶金材料)的工艺总称。 4、粉末冶金常识之用于粉末冶金的粉末制造方法主要有哪几类?

粉末制造方法主要有物理化学法和机械粉碎法两大类。前者包括还原法、电解法和羰基法等;后者包括研磨法和雾化法。 5、粉末冶金常识之用还原法制造金属粉末是怎么回事? 该法是用还原剂把金属氧化物中的氧夺取出来,从而得到金属粉末的一种方法。 6、粉末冶金常识之什么叫还原剂? 还原剂是指能够夺取氧化物中氧的物质。制取金属粉末所用的还原剂,是指能够除掉金属氧化物中氧的物质。就金属氧化物而言,凡是与其中氧的亲合力大于这种金属与氧的亲合力的物质,都称其为这种金属氧化物的还原剂。 7、粉末冶金常识之粉末还原退火的目的是什么? 粉末还原退火的目的主要有以下三个方面:(1)去除金属粉末颗粒表面的氧化膜;(2)除掉颗粒表面吸附的气体和水分等异物;(3)消除颗粒的加工硬化。

完整版实验报告40钢试样退火正火淬火热处理

西安交通大学实验报告 课程_实验名称____________________ 机械工程材料_系别______________________实验日期年月日 专业班号____________ 组别_________交报告日期年月日 姓名_______学号______________报告退发(订正、重做) 同组者____________________________________教师审批签字 实验名称 一、实验目的 (1)了解碳钢热处理操作。 (2)学会使用洛氏温度计测量材料的硬度性能值。 (3)利用数码显微镜获取金相组织图像,掌握热处理后的钢的金相组织分析。 钢的组织和性能影响。T12探讨淬火温度、淬火冷却温度、回火温度二、实验内容 (1)40钢试样退火、正火、淬火、热处理。 (2)用洛氏硬度计测定试样热处理实验前后的硬度。 (3)观察样品,获取其纤维组织图像 对照金相图谱,分析讨论本次实验可能获得的典型组织:片状珠光体、片状马氏体、板条状马氏体、回火马氏体、回火托氏体、回火索氏体等的金相特征。三、实验概述 )热处理工艺参数的确定1(.

Fe-FeC状态图和C-曲线是制定碳钢热处理工艺的重要依据。热3处理工艺参数主要包括加热温度、保温时间和冷却速度。 (2)基本组织的金相特征 碳钢经热退火后可得到(近)平衡组织,淬火之后则得到各种不平衡组织。普通热处理除退火、淬火之外还有正火和回火。这样在研究钢热处理后的组织时,还要熟悉索氏体、托氏体、回火马氏体、回火托氏体、回火索式体等基本组织的金相特征。 (3)金相组织的数码图像 金相组织照片可提供材料内在质量的大量信息及数据,金相分析是材料科研、研发及生产中的重要分析手段。 XJP-6A金相显微镜数字采集系统是在XJP-6光学显微镜基础上,添加光学适配镜,通过图像采集和信息化处理,提供计算机数码图像的系统,可获得真实、精细的影像,以及高品质的金相显微组织照片 四、实验材料及设备 (1)砂纸、玻璃板、抛光机等金相制样设备。 (2)40钢 (3)马福电炉 (4)洛氏硬度计 (5)淬火水槽、油槽 (6)铁丝、钳子 金相显微镜、数码金相显微镜)7(.

最新中南大学粉末冶金原理课本重点

课程名称:粉末冶金学Powder Metallurgy Science 第一早导论 1 粉末冶金技术的发展史History of powder metallurgy 粉末冶金是采用金属粉末(或非金属粉末混合物)为原料,经成形和烧结操作制造金属材料、复合材料及其零部件的加工方法。 粉末冶金既是一项新型材料加工技术,又是一项古老的技术。 .早在五千年前就出现了粉末冶金技术雏形,古埃及人用此法制造铁器件; .1700年前,印度人采用类似方法制造了重达6.5T的“ DELI柱”(含硅Fe合金,耐蚀性好)。 .19世纪初,由于化学实验用铂(如坩埚)的需要,俄罗斯人、英国人采用粉末压制、烧结和热锻的方法制造致密铂,成为现代粉末冶金技术的基础。 .20世纪初,现代粉末冶金的发展起因于爱迪生的长寿命白炽灯丝的需要。钨灯丝的生产标志着粉末冶金技术的迅速发展。 .1923年硬质合金的出现导致机加工的革命。 .20世纪30年代铜基含油轴承的制造成功,并在汽车、纺织、航空、食品等工业部门的广泛应用。随后,铁基粉末冶金零部件的生产,发挥了粉末冶金以低的制造成本生产高性能零部件的技术优点。 .20世纪40年代,二战期间,促使人们开发研制高级的新材料(高温材料),如金属陶瓷、弥散强化合金作为飞机发动机的关键零部件。 .战后,迫使人们开发研制更高性能的新材料,如粉末高速钢、粉末超合金、高强度铁基粉末冶金零部件(热锻)。大大扩大了粉末冶金零部件及其材料的应用领域。 .粉末冶金在新材料的研制开发过程中发挥其独特的技术优势。 2粉末冶金工艺粉末冶金技术的大致工艺过程如下: 成形(模压、CIP、粉浆浇注、轧制、挤压、温压、注射成形等) 烧结(加压烧结、热压、HIP等) 粉末冶金材料或粉末冶金零部件—后续处理 Fig.1-1 Typical Process ing flowchart for Powder Metallurgy Tech nique 3粉末冶金技术的特点 .低的生产成本: 能耗小,生产率高, 材料利用率高,设备投资少。

粉末冶金的优缺点及其技术

粉末冶金的优缺点及其技术 粉末冶金工艺的优点: 1、绝大多数难熔金属及其化合物、假合金、多孔材料只能用粉末冶金方法来制造。 2、由于粉末冶金方法能压制成最终尺寸的压坯,而不需要或很少需要随后的机械加工,故能大大节约金属,降低产品成本。用粉末冶金方法制造产品时,金属的损耗只有1-5%,而用一般熔铸方法生产时,金属的损耗可能会达到80%。 3、由于粉末冶金工艺在材料生产过程中并不熔化材料,也就不怕混入由坩埚和脱氧剂等带来的杂质,而烧结一般在真空和还原气氛中进行,不怕氧化,也不会给材料任何污染,故有可能制取高纯度的材料。 4、粉末冶金法能保证材料成分配比的正确性和均匀性。 5、粉末冶金适宜于生产同一形状而数量多的产品,特别是齿轮等加工费用高的产品,用粉末冶金法制造能大大降低生产成本。 粉末冶金工艺的基本工序是: 1、原料粉末的制备。现有的制粉方法大体可分为两类:机械法和物理化学法。而机械法可分为:机械粉碎及雾化法;物理化学法又分为:电化腐蚀法、还原法、化合法、还原-化合法、气相沉积法、液相沉积法以及电解法。其中应用最为广泛的是还原法、雾化法和电解法。 2、粉末成型为所需形状的坯块。成型的目的是制得一定形状和尺寸的压坯,并使其具有一定的密度和强度。成型的方法基本上分为加压成型和无压成型。加压成型中应用最多的是模压成型。 3、坯块的烧结。烧结是粉末冶金工艺中的关键性工序。成型后的压坯通过烧结使其得到所要求的最终物理机械性能。烧结又分为单元系烧结和多元系烧结。对于单元系和多元系的固相烧结,烧结温度比所用的金属及合金的熔点低;对于多元系的液相烧结,烧结温度一般比其中难熔成分的熔点低,而高于易熔成分的熔点。除普通烧结外,还有松装烧结、熔浸法、热压法等特殊的烧结工艺。 4、产品的后序处理。烧结后的处理,可以根据产品要求的不同,采取多种方式。如精整、浸油、机加工、热处理及电镀。此外,近年来一些新工艺如轧制、锻造也应用于粉末冶金材料烧结后的加工,取得较理想的效果。

精密机械中的行星齿轮组的选型

KISSsoft 03/2017 –教程12 精密机械中的行星齿轮组的选型 KISSsoft AG Rosengartenstrasse 4 8608 Bubikon Switzerland Tel: +41 55 254 20 50 Fax: +41 55 254 20 51 info@KISSsoft.AG www.KISSsoft.AG

目录 1目标 (3) 2打开 KISSsoft (3) 2.1打开软件 (3) 2.2打开“Planetary gear行星轮”计算模块 (3) 2.3基础设置 (4) 2.4设置约束 (4) 2.4.1定义材料 (5) 2.4.2定义计算方法和工况 (5) 2.4.3定义其余系数 (6) 2.5粗选型 (6) 2.6精细选型 (9) 2.7优化齿形 (14) 2.8现有教程 (18)

1 目标 选型出一个行星齿轮组,要求输入扭矩 450 Nmm (0.45 Nm),转速 10000 rpm。额定传动比 4.25。要求的工作寿命 20,000 小时,应用系数K A =1.25。 整体尺寸(齿圈的外直径)为35 mm,包括齿根圆和外直径之间3 mm的材料。齿轮使用粉末冶金制造。模数必须大于0.5 mm (由于制造要求)。因为齿轮并非使用滚齿加工,所以必须利用这个优点对齿形进行优化。本案例中使用的计算方法是由AGMA: 2101-D04定义的。 2 打开 KISSsoft 2.1 打开软件 在软件安装并激活之后,用户便可以启动KISSsoft。通常,用户可以通过点击“Start→Program Files→KISSsoft 03-2017→KISSsoft 03-2017”打开如下的用户界面: 图1.KISSsoft主界面 2.2 打开“Planetary gear行星轮”计算模块 在“Modules tree模块树”窗口中,双击“Planetary gear”标签来启动行星齿轮计算模块,如图2:

45钢及T10钢热处理实验

45钢及T10钢热处理实验

45钢和T10钢热处理实验 一、实验仪器与试样 1.试样:Ф20×18mm 2. 箱式电阻炉,布氏硬度计,洛氏硬度计,砂纸、水(20~30℃) 二、实验内容与步骤 (一)45钢(退火或正火,淬火,回火) 1. 对热处理前的45钢试样进行硬度测试。 采用布氏硬度计对原始试样进行硬度测试,共测三次取平均值。注意试样表面应光滑平坦,不应有氧化皮及油污等。本实验可用砂纸打磨后用丙酮清洗干净后进行测量。 2. 对45钢进行完全退火并测硬度 (1)加热温度 45钢的完全退火是加热到Ac3以上30~50℃,即780+30~780+50,在810~830℃之间取一个温度值。 (2)加热速度: 形状简单的碳素钢可以随炉升温,不控制加热速度。 (3)保温时间 一般碳素钢在温度800℃左右的箱式电阻炉中加热,以每毫米直径或每毫米厚度保温 1.0~1.5min为宜。本实验按1分钟/每毫米直径确定保温时间按为20min。 (4)冷却速度 一般情况下碳钢的冷却速度为100~150℃/h。本实验试样随炉冷却到500℃左右可出炉空冷。 完全退火后的试样先用砂纸将表面的氧化皮和脱碳层打磨掉,然后采用布氏硬度计进行硬度测试,共测三次取平均值。

3. 对45钢进行正火并测硬度 与上述完全退火工艺相同,不同的是最后冷却的时候,保温一段时间后将试样直接从炉中取出空冷。 正火后的试样先用砂纸将表面的氧化皮和脱碳层打磨掉,然后采用布氏硬度计进行硬度测试,共测三次取平均值。 注:钢的退火和正火每个小组自由选择其中一个工艺做即可 4.对45钢进行淬火并测硬度。 加热温度,加热速度,保温时间和完全退火工艺相同,所不同的是冷却的时候,保温一段时间后直接将试样从炉中取出,然后迅速将试样淬入水中,注意淬入水后要不停的运动,破坏试样表面蒸气膜的形成。同时水温控制在40℃以下,还必须不断补充新水,冷却水要保持清洁,否则也会降低冷却能力。 淬火后的试样先用砂纸将表面的氧化皮和脱碳层打磨掉,然后采用洛氏硬度计进行硬度测试,共测五次取平均值。 5.对45钢进行回火并测硬度。 将淬火后的试样重新加热到表5中的某一个温度范围内,保温30min,然后从炉中取出试样空冷。 回火后的试样先用砂纸将表面的氧化皮和脱碳层打磨掉,然后采用洛氏硬度计进行硬度测试,共测五次取平均值。

粉末冶金零件的优化设计

详细说明 改进前的设计 改进后的设计 1.应使压模中的粉末受到大致相等的压缩,并能顺利地从压模中取出模压成型的制品。在零件压制方向如有凸起或凹槽时,则粉末在压制时各部分的密实度不易一致,因此凸起或凹槽的深度以不大于零件总高度的1/5为宜,并有一定的拔模锥度 2.当由上向下压制的结构零件较长时,其中间部分和两端的粉末密实度差别比较大。所以在实际生产中,常现在其长度为直径的2.5~3.5倍,壁愈薄其长度与直径之比的倍数愈低 3.当零件的壁厚急剧变化或零件的壁厚悬殊时,零件各部的密度也相差很大,这样烧结时会引起尺寸变化和变形,应尽量避免 4.设计带有凸缘或台阶的零件,其内角应设计成圆角,以利于压制时凹模中粉末的流动和便于脱模,并可避免产生裂纹 5.尽量避免深窄的凹槽、尖角或薄边的轮廓,避免细齿滚花和细齿形因为这些结构装粉成型都很困难 6.避免尖边、锐角和切向过渡 7.零件只能设计成与压制方向平行的花纹,菱形的花纹不能成型,应避免 8.与压制方向垂直的孔(图a )、径向凹槽(图b )、内螺纹及外螺纹(图c )、倒锥(图d )、拐角处的退刀槽(图f )等结构难以压制成型,当需要时可在烧结后进行切削加工 9.底部凹陷的法兰(图a )、外圆中部的凸缘(图b )不能压制成型。上部凹陷的法兰(图c )为坯件,当埋头孔的面积小于压制面积的1倍左右,深度(H )小于零件全高的1/4左右时,要作5°的拔梢(图d )才可以成型

10.从模具强度和压制件强度方面的因素考虑,并从孔与外侧间的壁厚要便于装粉考虑,制品窄条部分的最小尺寸应有一定的限度 11.为了使凸模具有必要的刚度,使粉末容易充满型腔和便于从压模内取出制品,零件结构应避免尖锐的棱角,并适当增加横截面的面积 12.避免过小的公差 13.对于长度大于20mm 的法兰制作,法兰直径不应超过轴套直径的1.5倍,在可能条件下,应尽量减下法兰的直径,以避免烧结后的变形。法兰根部的圆角半径可参考右图的表,轴套壁厚(δ)与法兰边宽(b )都必须大于1.5mm 设计阶梯形制件时,阶差不应小于直径的1/16,其尺寸不应小于0.9mm 轴套直径/mm <12 >12~25 >25~50 >50~65 >65 圆角半径/mm 0.8 1.2 1.6 2.4 >2.5 14.粉末冶金制件的端部最好不要有过锐棱角,并避免工具倒圆。倒角时尽可能留出0.2mm 左右的小平面,以延长凸模的寿命 在设计粉末冶金齿轮时,齿根圆直径应大于轮毂直径3mm 以上,以减小成型中的困难 15.在很多情况下,粉末冶金零件适于代替机械加工比较困难或加工劳动量大、材料利用率低的一些零件。在某些情况下,还可以代替一些本来需要加工后装配在一起的部件 需要装配的零件 不需装配的粉末冶金零件 16.当把铸件或锻件改为粉末冶金零件时,将粉末冶金零件上的凸部移到与其相配合的零件上,以简化模具结构和减少制造上的困难 用模锻或铸造,然后用机械加工法制造 用粉末冶金法制造

碳钢的热处理实验报告-(恢复)

碳钢的热处理实验报告-(恢复)

金属热处理实验报告 张金垚 41030165 材控102班

热处理实验报告(T8钢300℃回火) 一、实验目的 1、了解碳钢的基本热处理(退火、正火、淬火及回火)工艺方法。 2、研究含碳量、加热温度、冷却速度、回火温度对钢热处理后性能的影响。 3、掌握洛氏硬度机的使用方法。观察热处理后钢的组织特征。 二、实验原理 1、钢的淬火 所谓淬火就是将钢加热到Ac3(亚共析钢)或Ac1(过共析钢)以上30~50℃,保温后放入各种不同的冷却介质中( V冷应大于V临),以获得马氏体组织。碳钢经淬火后的组织由马氏体及一定数量的残余奥氏体所组成。 为了正确地进行钢的淬火,必须考虑下列三个重要因素:淬火加热的温度、保温时间和冷却速度。

(1)淬火温度的选择 选定正确的加热温度是保 证淬火质量的重要环节。淬火 时的具体加热温度主要取决于 钢的含碳量,可根据相 图确定(如图4所示)。对亚 共析钢,其加热温度为+ 30~50℃,若加热温度不足(低 于),则淬火组织中将出现铁 素体而造成强度及硬度的降 低。对过共析钢,加热温度为 +30~50℃,淬火后可得到细 小的马氏体与粒状渗碳体。后 者的存在可提高钢的硬度和耐 磨性。 (2)保温时间的确定 淬火加热时间是将试样加热到淬火温度所需的时间及在淬火温度停留保温所需时间的总和。加热时间与钢的成分、工件的形状尺寸、所需的加热介质及加热方法等因素有关,一般可按照经验公式来估算,碳钢在电炉中加热时间的计算如表1所示。

表1 碳钢在箱式电炉中加热时间的确定 加 热 温度(℃) 工件形状 圆柱形方形板形 保温时间 分钟/每毫 米直径 分钟/每毫 米厚度 分钟/每毫 米厚度 700 1.5 2.2 3 800 1.0 1.5 2 900 0.8 1.2 1.6 1000 0.4 0.6 0.8 (3)冷却速度的影响 冷却是淬火的关键工序, 它直接影响到钢淬火后的组 织和性能。冷却时应使冷却速 度大于临界冷却速度,以保证 获得马氏体组织;在这个前提 下又应尽量缓慢冷却,以减少 钢中的内应力,防止变形和开 裂。为此,可根据C曲线图(如

45钢及T10钢热处理实验

45钢和T10钢热处理实验 一、实验仪器与试样 1.试样:Ф20×18mm 2. 箱式电阻炉,布氏硬度计,洛氏硬度计,砂纸、水(20~30℃) 二、实验容与步骤 (一)45钢 (退火或正火,淬火,回火) 1. 对热处理前的45钢试样进行硬度测试。 采用布氏硬度计对原始试样进行硬度测试,共测三次取平均值。注意试样表面应光滑平坦,不应有氧化皮及油污等。本实验可用砂纸打磨后用丙酮清洗干净后进行测量。 2. 对45钢进行完全退火并测硬度 (1)加热温度 45钢的完全退火是加热到Ac3以上30~50℃,即780+30~780+50,在810~830℃之间取一个温度值。 (2)加热速度: 形状简单的碳素钢可以随炉升温,不控制加热速度。 (3)保温时间 一般碳素钢在温度800℃左右的箱式电阻炉中加热,以每毫米直径或每毫米厚度保温1.0~1.5min为宜。本实验按1分钟/每毫米直径确定保温时间按为20min。 (4)冷却速度 一般情况下碳钢的冷却速度为100~150℃/h。本实验试样随炉冷却到500℃左右可出炉空冷。 完全退火后的试样先用砂纸将表面的氧化皮和脱碳层打磨掉,然后采用布氏硬度计进行硬度测试,共测三次取平均值。

3. 对45钢进行正火并测硬度 与上述完全退火工艺相同,不同的是最后冷却的时候,保温一段时间后将试样直接从炉中取出空冷。 正火后的试样先用砂纸将表面的氧化皮和脱碳层打磨掉,然后采用布氏硬度计进行硬度测试,共测三次取平均值。 注:钢的退火和正火每个小组自由选择其中一个工艺做即可 4.对45钢进行淬火并测硬度。 加热温度,加热速度,保温时间和完全退火工艺相同,所不同的是冷却的时候,保温一段时间后直接将试样从炉中取出,然后迅速将试样淬入水中,注意淬入水后要不停的运动,破坏试样表面蒸气膜的形成。同时水温控制在40℃以下,还必须不断补充新水,冷却水要保持清洁,否则也会降低冷却能力。 淬火后的试样先用砂纸将表面的氧化皮和脱碳层打磨掉,然后采用洛氏硬度计进行硬度测试,共测五次取平均值。 5.对45钢进行回火并测硬度。 将淬火后的试样重新加热到表5中的某一个温度围,保温30min,然后从炉中取出试样空冷。 回火后的试样先用砂纸将表面的氧化皮和脱碳层打磨掉,然后采用洛氏硬度计进行硬度测试,共测五次取平均值。

粉末冶金新技术在烧结齿轮中的应用

粉末冶金新技术在烧结齿轮中的应用 烧结齿轮的性能与粉末冶金工艺密切相关,不同工艺和技术路线生产的齿轮,性能差异很大,而粉末冶金技术的发展促进了烧结齿轮性能的提高和尺寸的稳定。文章作者根据其多年从事粉末冶金齿轮生产与科研的实践经验分析和评述了近年来发展起来的温压成形、高速成形、烧结硬化、高温烧结、熔渗和齿轮表面致密化等技术及其在齿轮制造中的应用,采用温压成形、高速成形、烧结硬化、高温烧结或溶渗等新技术配合表面数字化,可望同时实现高密度、低成本和高精度的齿轮生产。 作为传动系统重要零件的齿轮,一般都是通过机械加工法制成的。但是随着汽车工业的发展,对齿轮等零件的要求越来越高,在成本、交货日期和噪音等方面机加工齿轮难以满足要求;而粉末冶金则是项能制造形状复杂零件的技术,可以节料、节能、省工、优质,适合大批量生产,能满足汽车工业对零部件的要求。因此,粉末冶金工业与汽车工业密切相关。在美国,铁基粉末冶金零件的市场有70%以上属于汽车市场;而在国内,远未达到这个比例,据中国机协粉末冶金专业委员会2004年3月的统计,国内粉末冶金行业的汽车市场仅占19%。 对于汽车和其他工业而言,粉末冶金是生产高强度和形状复杂齿轮的有效工艺。目前,通过使用高性能的粉末成形、烧结和特殊的后加工,粉末冶金工艺已经可以生产出密度超过7.5 g/cm3的齿轮。这些技术的使用,已经成功地替代了机加工或其他方法加工的零件。粉末冶金工艺的成功,使机械工程师设计高性能和较低成本的零件成为可能。目前在汽车上使用的齿轮零件有同步器齿毂、离合器齿毂等,随着汽车工业的发展,必将对粉末冶金工业提出更高的要求。本文将从粉末冶金材料工艺和齿轮表面致密化等方面探讨粉末冶金工业的最新进展及其在齿轮生产中的应用,为机械工程师在设计齿轮时提供参考。 齿轮作为重要的传动零件,在汽车上起着关键的作用。齿轮的密度、硬度等与材料的性能及制备工艺息息相关。先进的压形技术提高了粉末压坯的密度,改进了粉末冶金制品的性能;同时,零件的尺寸精度可以获得提高,形状也可以更加复杂。温压技术的致密化主要通过在温压温度下铁粉颗粒的加工硬化速率降低和程度减轻,以及铁粉颗粒塑性变形阻力减小来实现的。此外,在成形过程中的颗粒重新排列,也可以使密度提高D]。目前已经制备出抗拉强度达1 500 MPa的烧结铁基零件。Ford汽车公司已将质量达1.2 kg的温压流体变速涡轮毂用在发动机上。温压工艺的关键在于以较低的成本制造出高性能的铁基粉末冶金零件,为汽车的零部件在性能与成本之间找到一个较佳的结合点。温压的优势在于:压坯密度和烧结密度高,压坯强度高,脱模压力低,弹性后效小。 瑞典开发了高速压制的工艺。这种工艺的开发使高密度和超过5 kg的大型粉末冶金零件的开发成为可能,它使粉末能在20 ms以内被压缩,而且在300 ms内多次压制还可以进一步提高密度。高速压制作为大批量的生产方法可以突破目前粉末冶金的局限性。传统压制成形要求高的成形压力,而成形压力又受到压机吨位的限制,高速压制则不受此限制。基于预合金化和扩散合金化的粉末密度可以达到7.4~7.7g/cm3,这种新型的制造技术最近引入到了粉末冶金行业。高速压制的致密化主要通过由液压控制的冲锤产生的强烈冲击波来实现,冲锤的质量和压制时的速度决定了冲击功的大小和致密化程度。由于采用液压控制,安全性能较高。通过合适的工艺控制,可以避免非轴向的反弹引起压坯的微观缺陷。 烧结硬化是将粉末冶金的烧结与提高材料性能的淬火热处理工序合二为一,以降低成本。烧结硬化工艺可以省去烧结后热处理工序,同时可以获得高强度和高硬度的性能,从而降低生产成本。此外,淬火时会产生高的残余内应力并且使零件发生变形,给控制零件尺寸公差带来困难。烧结硬化工艺,由于烧结后的冷却速度远低于淬火的冷却速度,因而可以使变形减少到最小。因此烧结硬化工艺适用于难以处理的大型以及形状复杂的零件。烧结硬化钢一般用来制造中高密度零件。一般情况下,烧结硬化铁粉的主要合金元素有钼、锰、铬、

钢的热处理实验报告

预习报告 一、实验目的 1.根据所学热处理的知识,了解钢的基本热处理工艺制定过程; 2.学习不同热处理工艺对钢的性能的影响; 3.了解洛氏硬度计的主要原理、结构,学会操作方法。 二、实验原理 钢的热处理就是对钢在固态范围内的进行加热、保温和冷却,以及改变其内部组织,从而获得所需要的性能的一种加工工艺。热处理的基本工艺有退火、正火、淬火、回火等。 进行热处理时,加热温度、保温时间和冷却方式是最重要的三个基本工艺因素。正确选择这三者,是热处理成功的基本保证。 三、实验过程 1、设计可使材料达到实验性能要求的热处理工艺 2、对所给退火态试样进行硬度测定 3、按所给定工艺进行热处理 4、测定处理后试样的硬度以及检验所订工艺。对测试结果进行分析,必要时修改实验方案,重新实验 四、实验仪器 1、最高加热温度达1000℃的各种实验用箱式电阻炉 2、可供冷却的介质水和油 3、测试硬度的设备有洛氏硬度计 4、捆绑式样的细铁丝,夹持试样的铁钳

1.根据所学热处理的知识,了解钢的基本热处理工艺制定过程; 2.学习不同热处理工艺对钢的性能的影响; 3.了解洛氏硬度计的主要原理、结构,学会操作方法。 二、实验原理 1、加热温度的选择 (1) 退火加热温度 一般亚共析钢加热至A +(20~30)℃(完全退火)。共析钢和过共析钢加热至 c3 +(20~30)℃(球化退火),目的是得到球状渗碳体,降低硬度,改善高碳钢的切A c1 削性能。 (2) 正火加热温度 + (30~50)℃;过共一般亚共析钢加热至Ac3十(30~50)℃;共析钢加热至A c1 析钢加热至A ccm+ (30~50)℃,即加热到奥氏体单相区。 (3) 淬火加热温度 一般亚共析钢加热至Ac3十(30~50)℃;共析钢和过共析钢加热至A 十 c1 (30~50)℃; (4) 回火温度的选择 钢淬火后都要回火,回火温度决定于最终所要求的组织和性能按加热温度高低回火可分为三类:低温回火中温回火高温回火。 2、保温时间的确定 为了使工件内外各部分温度约达到指定温度、并完成组织转变,使碳化物溶解和奥氏体成分均匀化,必须在淬火加热温度下保温一定的时间。通常将工件升温和保温所需时间算在一起,统称为加热时间。 实际工作中多根据经验大致估算加热时间。一般规定,在空气介质中,升到规定温度后的保温时间,对碳钢来说,按工件厚度每毫米需一分钟到一分半钟估算;合金钢按每毫分二钟估算。在盐浴炉中,保温时间则可缩短为空气介质中保温时间的1/2~1/3。 3、冷却方法 热处理时的冷却方式要适当,才能获得所要求的组织和性能。 退火一般采用随炉冷却。 正火采用空气冷却,大件可采用吹风冷却。 淬火冷却方法非常重要,一方面冷却速度要大于临界冷却速度,以保证全部得到马氏体组织;另一方面冷却应尽量缓慢,以减少内应力,避免变形和开裂。为了解决上述矛盾,可以用不同的冷却介质和方法,使淬火工件在奥氏体最不稳定的温度范围内(650℃~550℃)快冷,超过临界冷却速度,而在M (300℃~100℃) s 点以下温度时冷却较慢。

粉末冶金原理考试试卷

中南大学考试试卷 2005 – 2006 学年 2 学期时间 120 分钟 一、名词解释:( 20 分,每小题 2 分) 临界转速比表面积一次颗粒离解压电化当量气相迁移颗粒密度比形状因子 二、分析讨论:( 25 分) 1 粉末冶金技术有何重要优缺点,并举例说明。( 10 分) 2 分析粉末粒度、粉末形貌与松装密度之间的关系。( 10 分) 3 、分析为什么要采用蓝钨作为还原制备钨粉的原料?( 5 分) 三、分析计算:( 30 分,每小题 10 分) 1 机械研磨制备铁粉时,将初始粒度为 200 微米的粉末研磨至 100 微米需要 5 个小时,问进一步将粉末粒度减少至 50 微米,需要多少小时?提示 W=g ( D f a - D i a ), a=-2 2 在低压气体雾化制材时,直径 1mm 的颗粒,需要行走 10 米和花去 4 秒钟进行固化,那么在同样条件下,100 μ m 粒度颗粒需要多长时间固化:计算时需要作何种假设。 3 、相同外径球型镍粉末沉降分析,沉降桶高度 100mm ,设一种为直径 100 微米实心颗粒,一种为有内径为 60 的空心粉末,求他们的在水中的沉降时间。 d 理 = 8.9g /cm 3 ,介质黏度η =1x10 -2 Pa · S 四、问答:( 25 分) 1 气体雾化制粉过程可分解为几个区域,每个区域的特点是什么?( 10 分) 2 熔体粘度,扩散速率,形核速率,以及固相长大速率都与过冷度相关,它们各自对雾化粉末显微结构的作用如何?( 15 分) 2006 粉末冶金原理课程( I )考试题标准答案 一、名词解释:( 20 分,每小题 2 分) 临界转速:机械研磨时,使球磨筒内小球沿筒壁运动能够正好经过顶点位置而不发生抛落 时,筒体的转动速度 比表面积:单位质量或单位体积粉末具有的表面积 一次颗粒:由多个一次颗粒在没有冶金键合而结合成粉末颗粒称为二次颗粒; 离解压:每种金属氧化物都有离解的趋势,而且随温度提高,氧离解的趋势越大, 离解后的氧形成氧分压越大,离解压即是此氧分压。 电化当量:这是表述电解过程输入电量与粉末产出的定量关系,表达为每

热处理实验报告

《热处理实验》报告 实验名称金属材料热处理实验 学院高等工程师学院 专业班级材E152 姓名魏学源 学号41518120 2018年6月1日

目录 一、实验目的 (3) 二、实验工艺及原理 (3) 1.金属热处理 (3) 2.热处理方法及目的 (3) 3.热处理后的组织 (4) 4.硬度测量原理 (6) 三、实验仪器与设备 (6) 四、实验步骤及具体操作: (6) 1.试样热处理 (6) 2.硬度测量 (7) 3.显微组织观察 (7) 五、实验结果与分析 (8) 实验一:45号钢860°C保温30min水淬,400°C回火40分钟空冷显微组织分析 (8) 实验二:不同试样不同热处理后组织和性能 (9) 1.热处理工艺对试样影响 (10) 1.1淬火温度对试样影响 (10) 1.2冷却速度对试样的影响 (11) 1.3回火工艺对试样影响 (12) 2.合金元素对试样影响 (15) 2.1合金元素对热处理方法的影响 (15) 2.2合金元素对淬硬性的影响 (17) 六、结论 (17) 七、参考文献 (18)

一、实验目的 (1)熟悉基本热处理(淬火、回火)的工艺方法; (2)了解基本的金相分析方法(磨样、抛光、观察金相显微镜); (3)练习使用洛氏硬度计; (4)熟悉和了解不同组织所对应的微观形貌; (5)分析热处理钢种(含碳量,合金成分)以及热处理工艺(热处理加热温度,冷却速度)的对比对材料组织、性能的影响。 二、实验工艺及原理 1.金属热处理 金属热处理就是在固相状态下,通过温度的变化,即加热—>保温—>冷却的方式,使原有的组织发生固态相变,从而改变原有的相组成以及组织结构等,从而使我们获得所要求性能的一种工艺操作,从而可以充分发挥金属材料的潜力。常用的热处理手段有:退火,正火,淬火,回火,以及表面处理和形变处理。2.热处理方法及目的 2.1淬火 淬火是将钢加热到临界温度Ac3(亚共析钢)或Ac1(过共析钢)以上温度,保温一段时间,使之全部或部分奥氏体化,然后以大于临界冷却速度的冷速快冷到Ms以下(或Ms附近等温)进行马氏体(或贝氏体)转变的热处理工艺。 淬火的目的是使过冷奥氏体进行马氏体或贝氏体转变,得到马氏体或贝氏体

粉末冶金齿轮设计简介

粉末冶金齿轮设计简介 作者:REVER 为帮助客户理解粉末冶金齿轮的特点,加深双方之间理解,便于双方沟通,特作如下介绍: 齿轮种类很多,目前广泛使用的是渐开线齿轮,所以以渐开线齿轮为例作简单介绍。 一.粉末冶金齿轮材料: 1.粉末冶金齿轮的材料适合于粉末冶金材料标准,粉末冶金材料有多种材料标准,多数国家和部分大公司都有自己的标准,由于日本和美国在粉末冶金的研究方 面走在世界前列,所以目前广泛采用的材料标准是JIS(日本),MPIF(美国)两种 标准。 2.齿轮通常对强度都有一定的要求,故其选用材料的性能要好,目前齿轮使用较广泛的材料是Fe-Cu-C-Ni的材料,(其符合JIS SMF5030,SMF5040标准;符 合MPIF FN-0205,FN-0205-80HT标准);也有厂家选择Cu,Fe-Cu-C材料。 ★在图纸材料一栏中要注明材料等级:如 JIS SMF5030。 注:在材料标准中包含了推荐的相应密度和硬度范围。 二.粉末冶金齿轮密度确定: 由于齿轮用于传动,对齿轮的强度要求较高,故要求产品的密度也较高(通常是齿轮密度越高则齿抗越高,强度越好): 1.常温压制成形齿轮密度通常控制在6.60g/cm3 min OR 6.80 g/cm3 min。 2.温压压制成形齿轮密度通常控制在7.00g/cm3 min。 ★在图纸密度一栏中注明密度等级:如 6.6g/cm3 min。 三.粉末冶金齿轮硬度确定: 齿轮硬度与产品的材料、密度等级及后处理密切相关。以材料Fe-Cu-C-Ni 为例,其相应的硬度建议为: 1.密度6.6g/cm3 min 时: 1).烧结态硬度控制在 HRB 40min; (FN-0205-20 烧结态硬度典型值为 HRB 44) 2).水蒸汽处理硬度控制在 HRB 50min; 3).渗碳处理硬度控制在HRC 20min; (FN-0205-80HT 渗碳处理硬度典型值为 HRC 23) 2.密度6.8g/cm3 min 时: 1).烧结态硬度控制在 HRB55min; (FN-0205-25 烧结态硬度典型值为 59HRB) 2).水蒸汽处理硬度控制在 HRB70min; 3).渗碳处理硬度控制在HRC25min; (FN-0205-105HT 渗碳处理硬度典型值为 HRC 29) 3.密度7.0g/cm3 min 时: 1).烧结态硬度控制在 HRB 65min; (FN-0205-30 烧结态硬度典型值为 HRB 69) 2).渗碳处理硬度控制在HRC 30min; (FN-0205-130HT 渗碳处理硬度典型值为 HRC 33)

相关文档
最新文档