粉末冶金原理
粉末冶金原理概述

粉末冶金原理概述简介粉末冶金是一种通过将金属粉末压制成型,然后通过烧结或热处理使其结合成型而获得金属制品的工艺。
粉末冶金具有许多优点,包括高材料利用率、能够制造高复杂度的零件、制造成本低等。
本文将对粉末冶金的原理进行概述。
原理概述粉末冶金是通过粉末的压制和烧结过程来制造金属制品。
其基本流程包括粉末制备、粉末的成型和烧结过程。
粉末制备粉末制备是粉末冶金的第一步。
金属粉末可以通过多种方法来制备,包括机械研磨、凝固法、气相法等。
选择合适的粉末制备方法可以控制粉末的粒度、形状和组成,以适应所需的材料特性和制品要求。
粉末成型粉末成型是将金属粉末转化为所需形状的过程。
常见的成型方法包括压制、注塑、挤压等。
其中,压制是最常用的成型方法之一。
通过将金属粉末放入模具中,然后施加高压使其成型。
成型过程中,通过给予粉末适当的压力和温度,使粉末颗粒之间发生塑性变形和结合。
烧结过程烧结是粉末冶金的关键步骤之一。
在烧结过程中,经过成型后的粉末通过加热使其进行结合。
在加热的同时,粉末颗粒之间发生扩散,并形成跨粒界结合。
烧结温度和时间的选择对最终材料的性能和结构有重要影响。
后续热处理在烧结后,通常还需要对金属制品进行后续的热处理。
热处理可以有选择地改变材料的性能和结构,如提高强度、改善耐腐蚀性等。
常见的热处理方法包括固溶处理、时效处理、淬火等。
粉末冶金的优点粉末冶金具有以下优点:1.高材料利用率:由于粉末冶金可以直接利用金属粉末进行成型,因此避免了传统加工中的材料浪费,相比传统冶金方法,粉末冶金材料利用率更高。
2.制造高复杂度零件:粉末冶金可以制造复杂度高的零件,如多孔件、中空件等。
这是传统加工方法无法实现的。
3.制造成本低:粉末冶金不需要进行复杂的加工步骤,相比传统加工方法,制造成本更低。
4.可以利用废料:粉末冶金可以利用废料或回收材料进行制造,提高了资源的利用率。
应用领域粉末冶金广泛应用于各个领域,包括汽车制造、航空航天、船舶制造、化工、电子等。
粉末冶金原理-中文

粉末冶金原理粉末冶金是一种特殊的金属加工方法,它利用金属和非金属粉末的物理特性和化学特性,通过粉末成型、烧结和后处理等工艺制备出各类金属材料和相关制品。
在这种加工方法中,粉末被视为材料的原子和晶粒的集合体。
本文将介绍粉末冶金的基本原理以及其在工业上的应用。
粉末冶金的基本原理1.原料选择:粉末冶金的首要任务是选择适当的原料。
原料可以是金属、合金或陶瓷等材料的粉末。
原料的选择应该考虑材料的化学成分、晶体结构、粒子形状和尺寸分布等因素。
2.粉末的制备:粉末的制备是粉末冶金的关键步骤之一。
常见的粉末制备方法包括研磨、机械合金化、溶液沉淀和气相反应等。
不同的制备方法可以获得不同尺寸和形状的粉末。
3.粉末的成型:成型是将粉末转变为所需形状的工艺。
常用的成型方法包括压制、挤出、注射成型和3D打印等。
通过成型,粉末可以被固化成具有一定强度和形状的零件。
4.烧结:烧结是粉末冶金过程中的关键步骤之一。
经过成型的粉末件放入高温环境中,粉末颗粒与颗粒之间发生扩散和结合,形成致密的材料。
烧结温度和时间会影响材料的致密性和力学性能。
5.后处理:烧结后的材料可能需要进行后处理。
常用的后处理方法包括热处理、表面处理和加工等。
通过后处理,可以改善材料的性能和功能。
粉末冶金的应用领域粉末冶金广泛应用于各个领域,包括汽车、航空航天、电子、能源、医疗和军工等。
1.汽车行业:粉末冶金技术在汽车行业中得到广泛应用。
例如,通过粉末冶金可以制备高强度和轻质的发动机零件和齿轮等关键部件,提高汽车的燃油效率和排放性能。
2.航空航天:航空航天行业对材料的要求非常高。
粉末冶金可以制备出具有优异的高温强度和耐腐蚀性能的钛合金和镍基合金等材料,用于制造航空发动机和航天器件。
3.电子:在电子行业中,粉末冶金可以制备具有高导电性和磁导率的材料,例如铜粉末用于制造电子线路板和电磁元件。
4.能源:粉末冶金在能源领域的应用主要集中在制备高温抗氧化和热电材料。
例如,通过粉末冶金可以制备铁素体不锈钢和铬基合金等材料,用于制造高温炉和热交换器等设备。
粉末冶金的原理

粉末冶金的原理粉末冶金是一种利用金属及其合金的可塑性和高活性的特点,通过粉末的制备、成型和烧结等工艺,制造出具有特定形状和性能的金属制品的方法。
粉末冶金的基本原理是将金属原料熔化后急速凝固形成细小的颗粒,再经过后续的粉末处理工艺,最终使颗粒状金属粉末具有特定的物理、化学和结构性能。
具体的工艺流程包括原料的选择和处理、粉末的制备、成型和烧结。
原料的选择和处理是粉末冶金的关键步骤之一。
适当选择合适的金属粉末原料是保证成品性能的关键。
通常,金属原料的选择要考虑其物理性质、化学性质及可塑性等因素。
为提高冶金反应的活性和金属粉末的可塑性,常常需要对原料进行预处理,如氧化还原处理、合金化处理等。
粉末的制备是将金属原料加工成颗粒状金属粉末的过程。
目前常用的粉末制备方法主要有气雾化法、溶剂法、机械研磨法等。
其中,气雾化法是一种常见的制备方法,它通过高压气流将金属熔化后迅速喷雾成粉末。
这样可以得到细小均匀的金属颗粒。
成型是将金属粉末按照所需形状装入一定模具中,并施加一定压力,使金属粉末紧密结合成形状固定的坯体。
常用的成型方法包括压制成型、注塑成型、挤压成型等。
通过成型,可以得到具有所需形状的零部件或半成品。
最后,经过成型的金属粉末坯体还需要进行烧结,即在一定温度下对金属粉末进行加热处理,使其颗粒之间发生结晶和扩散,相互融合并形成坚固的金属材料。
烧结可以通过自发热烧结、辅助烧结等方法来实现。
烧结过程中,金属粉末之间的氧化物和杂质也会在高温下被还原和挥发。
通过以上的处理工艺,粉末冶金可以制备出具有复杂形状、高强度、良好磨损性能和耐磨性能的金属制品。
由于粉末冶金具有成本低、能耗少、无需后加工等优势,因此在汽车、航空航天、工具等领域得到广泛应用。
粉末冶金知识大全

粉末冶金知识大全简介粉末冶金是一种重要的制备材料的方法,它通过将金属或非金属加工成粉末,再通过压制和烧结等工艺将粉末粒子紧密结合形成所需的材料。
本文将介绍粉末冶金的基本原理、工艺流程和应用领域。
1. 粉末制备粉末冶金的第一步是制备粉末。
常见的粉末制备方法包括:•原子熔化法:通过将金属或合金加热到高温,使其熔化后迅速冷却,冷却过程中形成的微细颗粒即为粉末。
•机械研磨法:将金属块或合金块放入球磨机中与球磨介质一起磨碎,经过一定时间后得到所需的粉末。
•物理气相法:通过高温蒸发和凝聚,使金属或合金从气相转变为粉末。
常见的物理气相制备方法有气体凝聚法、物理溅射法等。
2. 粉末冶金工艺粉末冶金包括压制、烧结和后处理等多个工艺步骤。
2.1 压制压制是将制备好的粉末以一定的压力塑造成所需形状的过程。
常见的压制方法有:•静态压制:即将粉末放置在模具中,施加垂直于模具方向的压力,使粉末颗粒之间发生塑性变形,形成一定形状的绿体。
•动态压制:即通过提供一个快速冲击力,使粉末颗粒互相碰撞并发生变形,形成一定形状的绿体。
2.2 烧结烧结是将压制好的绿体在一定温度下进行加热,使粉末颗粒之间发生扩散和结合,形成致密的材料。
常见的烧结方法有:•常压烧结:将绿体放在电炉或气炉中进行加热,使粉末颗粒熔结或固相扩散结合。
•热等静压烧结:在加热的同时施加一定的压力,用于加强绿体的结合。
2.3 后处理烧结完成后,还需要进行一些后处理步骤以提高材料的性能。
常见的后处理方法有:•热处理:通过控制温度和时间,在一定的条件下改变材料的组织结构,提高其硬度、强度等性能。
•表面处理:在材料表面形成覆盖层、涂层或改变表面形貌,以提高耐磨、耐腐蚀等性能。
3. 应用领域粉末冶金在许多领域都有着广泛的应用。
3.1 金属制品粉末冶金可以制备各种金属制品,如汽车零部件、工具等。
由于独特的结构和物理性能,粉末冶金制品具有优异的耐磨、抗拉伸和耐腐蚀等特点。
3.2 陶瓷制品通过粉末冶金技术可以制备出高纯度、高强度的陶瓷制品,如陶瓷刀具、陶瓷齿轮等。
粉末冶金原理重点

装球量:球磨筒内磨球的数量。
球料比:磨球与磨料的质量比电流效率:一定电量电解出的产物的实际质量与通过同样电量理论上应电解出的产物质量之比,用公式表示为ηi=M/(qIt)×100%粒度分布:指不同粒径的的颗粒在粉末总质量中所占的百分数,可以用某种统计分布曲线或统计分布函数描述。
松装密度:粉末在规定条件下自然填充容器时,单位体积内粉末的质量,单位为g/cm3。
振实密度:在规定条件下,粉末受敲打或振动填充规定容器时单位体积的粉末质量。
单颗粒:晶粒或多晶粒聚集,粉末中能分开并独立存在的最小实体。
一次颗粒:最先形成的不可以独立存在的颗粒,它只有聚集成二次颗粒时才能独立存在。
二次颗粒:由两个以上的一次颗粒结合而又不易分离的能独立存在的聚集颗粒称为二次颗粒。
压缩性: 粉末被压紧的能力成形性: 粉末压制后,压坯保持既定形状的能力净压力:单元系烧结:纯金属、固定化学成分的化合物和均匀固溶体的粉末烧结体系,是一种简单形式的固相烧结。
多元系固相烧结:由两种以上组元(元素、化合物、合金、固溶体)在固相线以下烧结的过程。
气氛的碳势:某一含碳量的材料在某种气氛烧结时既不渗碳也不脱碳,以材料中碳含量表示气氛中的碳势。
活化烧结:系指能降低烧结活化能,是体系的烧结在较低的温度下以较快的速度进行,烧结体性能得以提高的烧结方法。
氢损值:金属粉末的试样在纯氢气中煅烧足够长时间,粉末中的氧被还原成了水蒸气,某些元素与氢气生成挥发性的化合物,与挥发性金属一同排除,测的试样粉末的相对质量损失,称为氢损。
液相烧结:烧结温度高于烧结体系低熔组分的熔点或共晶温度的多元系烧结过程,即烧结过程中出现液相的粉末烧结过程统称为液相烧结。
机械合金化是指金属或合金粉末在高能球磨机中通过粉末颗粒与磨球之间长时间激烈地冲击、碰撞,使粉末颗粒反复产生冷焊、断裂,导致粉末颗粒中原子扩散,从而获得合金化粉末的一种粉末制备技术。
热等静压:把粉末压坯或把装入特制容器内的粉末体在等静高压容器内同时施以高温和高压,使粉末体被压制和烧结成致密的零件或材料的过程冷等静压:室温下,利用高压流体静压力直接作用在弹性模套内的粉末体的压制方法1、粉末制备的方法有哪些,各自的特点是什么1 物理化学法1还原法:碳还原法(铁粉)气体(氢和一氧化碳)还原法(W,Mo,Fe,Ni,Cu,Co及其合金粉末)金属热还原法(Ta,Nb,Ti,Zr,Th,U)→SHS自蔓延高温合成。
粉末冶金成型原理

中小学生足球学习兴趣的提高策略分析随着体育教育的普及和足球运动的热度不断增加,越来越多的中小学生对足球运动产生了浓厚的兴趣。
如何提高中小学生对足球学习的兴趣,让他们在足球运动中得到快乐和成长,是每个足球教练和老师都需要思考和关注的问题。
本文将分析并总结一些有效的策略,帮助中小学生提高足球学习兴趣。
一、注重趣味性和互动性中小学生的足球学习应该是一种快乐的体验。
教练和老师们可以通过增加趣味性和互动性,激发学生对足球的兴趣。
可以利用小游戏和趣味赛事的形式,让学生在轻松愉快的氛围中学习和训练足球技能,增强学生的参与感和归属感。
还可以引入一些趣味性的训练器材和设备,如彩色训练球、趣味障碍训练道具等,让学生在训练中感受到乐趣。
二、激发学生的竞争欲望竞争是足球运动中不可缺少的元素,教练和老师们可以通过设置一些竞赛和比赛,激发学生的竞争欲望,让他们在比赛中感受到胜利的喜悦和失败的挫折,从而提高学生的学习兴趣和积极性。
还可以利用小组合作的形式进行比赛训练,培养学生的团队合作意识和集体荣誉感,增强学生的足球学习兴趣。
三、关注学生的个性化需求中小学生的个性差异较大,教练和老师们应该关注学生的个性化需求,根据学生的特长和兴趣,灵活调整训练内容和方式。
对于对足球技能有特长的学生,可以给予重点培养和引导,提供更高级的技战术训练;对于对足球漫技能较为薄弱但对足球运动很感兴趣的学生,可以通过一些外围活动和故事分享,激发他们学习足球的热情。
只有关注学生的个性化需求,才能真正激发学生的学习兴趣。
四、营造积极的学习氛围教练和老师们应该努力营造一个积极向上的足球学习氛围,让学生在积极的氛围中学习和成长。
可以通过举办足球文化节、足球运动会等活动,让学生感受到足球运动的魅力和魅力,增强他们对足球的热爱。
还可以邀请一些足球明星或资深教练来学校做客,与学生分享足球学习经验和技巧,激发学生的学习兴趣。
五、鼓励学生坚持训练和比赛足球学习是一个长期的过程,教练和老师们应该鼓励学生坚持训练和比赛,培养学生的毅力和耐心。
粉末冶金知识讲义

粉末冶金知识讲义简介粉末冶金是一种通过将金属或陶瓷的粉末加工成所需的产品的方法。
它在各种工业领域中都有广泛的应用,包括汽车制造、航空航天、电子设备等。
本篇讲义将介绍粉末冶金的基本原理、工艺流程以及应用领域。
希望通过本讲义的学习,读者能够对粉末冶金有更深入的了解。
粉末冶金的基本原理粉末冶金是利用金属或陶瓷的粉末制备材料的一种冶金方法。
它的基本原理是通过将粉末状的金属或陶瓷原料压制成形,在高温下进行烧结或热处理,使其形成致密的材料。
粉末冶金的主要原理包括:1.粉末制备:金属或陶瓷原料首先需要经过研磨和筛分等工艺步骤,制备成具有一定粒径和形状的粉末。
2.粉末成形:粉末通过压制工艺成形,常见的成形方法包括压制成型、注射成型和挤压成型等。
3.烧结或热处理:压制成形的粉末被置于高温下,经过烧结或热处理,使其形成致密的材料。
4.后续加工:经过烧结或热处理后的材料需要进行后续加工,例如机加工、表面处理等,以满足产品的具体要求。
粉末冶金的工艺流程粉末冶金的工艺流程包括粉末制备、成形、烧结或热处理以及后续加工等步骤。
具体工艺流程如下:粉末制备粉末制备是粉末冶金的第一步,它决定了最终材料的粒度和形状。
常见的粉末制备方法包括:•研磨:将金属块或陶瓷块通过研磨设备研磨成粉末状。
•气相沉积:通过将金属或陶瓷元素在高温下蒸发,然后在室温下与气体反应产生粉末。
•溶液法:通过将金属或陶瓷溶解在溶剂中,然后通过蒸发溶剂得到粉末。
成形成形是粉末冶金的第二步,它将粉末状的原料转化为所需的形状。
常见的成形方法包括:•压制成型:将粉末状原料放入模具中,通过压力将其固化成形。
•注射成型:将粉末与粘结剂混合后注射到模具中,通过固化将其成形。
•挤压成型:在高温下将粉末状原料通过挤压工艺转化为所需的形状。
烧结或热处理烧结或热处理是粉末冶金的关键步骤,它将成形后的粉末进行高温处理,使其结合成致密的材料。
常见的烧结或热处理方法包括:•烧结:将成形后的粉末置于高温下,使其颗粒之间发生结合,形成致密的材料。
粉末冶金原理

粉末冶金原理粉末冶金是一种利用金属粉末或者金属粉末与非金属粉末混合后,再经过压制和烧结等工艺制造金属零件的方法。
在粉末冶金工艺中,粉末的特性和原理起着至关重要的作用。
粉末冶金原理主要包括粉末的制备、成型、烧结和后处理等几个方面。
首先,粉末的制备是粉末冶金的第一步。
金属粉末的制备可以通过机械研磨、化学方法和物理方法等多种途径。
机械研磨是指将金属块或者金属棒经过研磨机械的加工,得到所需的金属粉末。
化学方法则是通过化学反应得到金属粉末,而物理方法则是通过物理手段如电解、喷雾等得到金属粉末。
在粉末冶金中,粉末的制备质量直接影响着最终制品的质量和性能。
其次,成型是指将金属粉末进行成型工艺,使其成为所需形状的工件。
成型方法包括压制成型、注射成型、挤压成型等多种方式。
压制成型是将金属粉末放入模具中,再经过压制机械的加工,使其成为所需形状的工件。
注射成型则是将金属粉末与粘结剂混合后,通过注射成型机械将其注射成型。
挤压成型是将金属粉末放入容器中,再通过挤压机械的作用,使其成为所需形状的工件。
成型工艺的精密度和成型质量对于最终产品的质量和性能至关重要。
接下来,烧结是粉末冶金中的关键工艺。
烧结是指将成型后的金属粉末在高温下进行加热处理,使其颗粒间发生结合,形成致密的金属材料。
烧结工艺的温度、压力和时间等参数对于最终产品的致密度、硬度和耐磨性等性能有着重要影响。
最后,后处理是指对烧结后的金属制品进行表面处理、热处理和精加工等工艺。
表面处理可以提高金属制品的耐腐蚀性和美观度,热处理可以改善金属制品的硬度和强度,精加工则可以提高金属制品的精度和表面质量。
总之,粉末冶金原理是一个复杂而又精密的工艺体系,涉及到材料科学、机械工程、化学工程等多个领域的知识。
通过对粉末的制备、成型、烧结和后处理等环节的深入研究和探索,可以不断提高粉末冶金工艺的精度和效率,为制造业的发展和进步提供更加可靠的技术支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温度对C+1/2O2 CO反 应速度的影响
PPT文档演模板
粉末冶金原理
对于 反应物为球状的反应速度计算公式
y
r0
dy
PPT文档演模板
粉末冶金原理
二、氧化铁还原基本原理
• 1.还原热力学
• Fe2O3 Fe3O4 FeO Fe • CO还原 在570℃以上
•
3 Fe2O3 + CO = 2 Fe3O4 +CO2
化反应相反; • 4.在同一温度下位置越低的氧化物生成物
越稳定。
PPT文档演模板
粉末冶金原理
2金属氧化物还原反应动力学
• 动力学研究的问题是反应进 行的速度和影响反应速度的 因素
• 1)碰撞理论 碰撞-接触-反应 是分子之间的反应的必要条 件,参加化学反应的物质浓 度越高则碰撞几率越大,则 化学反应速度越快,因此有:
0 25 50 75 100(MJ)
材料利用率
每kg零件的能耗
各种方法材料利用率与能耗
粉末冶金原理
径向可达到的ISO公差标准
级 5 6 7 8 9 10 11 12 13 14 15 16
加工工艺
精密锻造
****
锻造(冲裁)
******
高精度锻造
****
冷压
*****
粉末冶金
****
拉拔成型
****
金属氧化物
金属氧化物及 盐类金属氧化 物
Fe,W
Fe,W,Mo, Ni,Co,Cu
Fe-Mo,WRe Cr-Ni
碳化物 硼化物 硅化物 氮化物
气态金属卤化 物
气态金属卤化 物
W,Mo Ta,Nb,Ti, Zr
气态金属卤化 物
Co-W,W-Mo
碳化物 硼化物 硅化物 氮化物
粉末冶金原理
机机
械
械 粉
法碎
磨加工
****
各种方法可达到的径向尺寸公差
PPT文档演模板
粉末冶金原理
平均粗糙度
粉末冶金原理
630 400 250 160 100 63 40 25 16 10 6.30 4.00 2.50 1.60 1.00 0.63 0.40 0.25 0.16 0.10 0.06
加工工艺 锻造 冲压 高精度锻造 机械加工 磨加工 粉末冶金
D
e
c
60 d o
40
20
B
C
b
400 600 800 1000 1200
PPT文档演模板
粉末冶金原理
原料粉末
添加剂 混合
压制
等静压
注射
挤压
轧制
粉浆浇注
热等静压
烧结
热挤压
复压 复烧
精整 浸油
锻造
轧制
热处理
后处理
PPT文档演模板
成品 粉末冶金材料和制品生产工艺流程
粉末冶金原理
3粉末冶金特点
• (1)粉末冶金能生产普通冶炼方法无法生产的具 有特殊性能的材料;
• 1)孔隙度可控 • 2)可组成相图不成立的合金,如金属与非金属,
原料粉
润滑剂
成型
PPT文档演模板
压坯
混合 烧结
粉末制品生产示意图
产品 粉末冶金原理
PPT文档演模板
粉末冶金原理
PPT文档演模板
粉末冶金原理
PPT文档演模板
粉末冶金原理
PPT文档演模板
粉末冶金原理
2.粉末冶金生产工艺
• 粉末冶金生产工艺由三大步骤组成: • (1)粉末生产 • (2)粉末成型 • (3)成形坯烧结 • 粉末冶金材料和零件主要制造流程
PPT文档演模板
耐热材料
粉末超合金
难熔金属及其合 金
金属陶瓷
高温金属陶瓷
弥散强化材料
高温涂层
纤维强化材料 原子能工程材料 核燃料元件
其他原子能工程 材料
粉末镍基超合金 粉末钴基超合金
氧化物基 碳化钛基
氧化物弥散 碳化物 硼化物 氮化物
铀合金 化合物 弥散强化
粉末冶金原理
粉末冶金在汽车上的应用
据资料介绍:发达国家汽车制造业粉末
• v= kCACB • 一级反应速度与浓度的关系:
PPT文档演模板
粉末冶金原理
2)活化能
• 根据可逆反应达到平衡是 的平衡常数与温度的关系:
• 可得到 • 公式中的E即为反应活化能,
其含义是发生反应必须克 服的势垒大小,降低反应 的活化能是提高反应速度 的重要措施。
PPT文档演模板
粉末冶金原理
3)多相反应特点
• 2X+O2=2XO (2)
• ½[(2)-(1)] MeO+X=Me+XO
PPT文档演模板
粉末冶金原理
根据标准等压位△ZӨ= -RTlnKp 则(1)式的
△ZӨ= -RTlnKp =- RTln
PPT文档演模板
粉末冶金原理
则(2)式的
△ZӨ= -RTlnKp =- RTln 则
△ZӨ =1/2(△ZӨ (2)- △ZӨ( 1))
冶金制品的用量占其粉末冶金制品总产量
的绝大多数,如美国占90%,欧洲为80%,
而我国目前尚不足40%。欧洲平均每辆汽
车的粉末冶金制品使用量是14kg,日本为
16kg,美国已达到19.5kg以上,预计未来
可能达到22kg。而我国目前平均每辆汽车
粉末冶金制品的用量却只有4kg多点(按
2010乘用车产量1826万辆计算为4.15kg/
PPT文档演模板
粉末冶金原理
生产方法
原材料
粉末产品 金属粉末
合金、化合物粉末
物 理 化 学 法
PPT文档演模板
还 原
还 原 化 合
气像还原
化学气相沉积
碳还原 气体还原 金属热还原
碳化或碳与金属氧 化物作用 硼化或碳化硼法 硅化或与硅与金属 氧化物作用 氮化或与氮与金属 氧化物作用
气相氢还原 气相金属热还原
Sn,Pb,Al,Cu,Fe
Cu,Fe
Cu,Fe, 难熔金属,无氧 铜
黄铜,青铜,合 金钢,不锈钢
黄铜,青铜,合 金钢
铝合金,钛合金, 不锈钢
PPT文档演模板
粉末冶金原理
第一节 还原法
• 1.还原法的特点 应用面广,原料易获得, 还原方法工艺简便,生产投资成本低,可 大规模生产;
• 2.应用范围:钨、钼、铁、铜、钴、镍 • 3.生产方法 固体碳还原,氢气还原,天然
PPT文档演模板
粉末冶金原理
齿轮的粉末生产工艺 粉末 成形 烧结 精整
高频淬火 成品
PPT文档演模板
齿轮的机加工生产工艺
冶炼
淬火
铸造
磨加工
锻打
成品
切割
退火 机加工
粉末冶金原理
PPT文档演模板
90 95
85 80 50
铸造
38
粉末冶金
28.5
冷成形
41
锻造
49
机械加工
82
100 75 50 25 0(%)
转化气还原,金属热还原,气相还原,
PPT文档演模板
粉末冶金原理
一、金属氧化物还原基本原理
• 1.还原热力学
• 用还原金属氧化物可以获得金属粉末和合 金粉末
• 一种氧化物能否被还原首先要从热力学上 进行判断
• 判断依据:
•
MeO+X=Me+XO
• 根据加和反应可写成:
PPT文档演模板
粉末冶金原理
• 2Me+O2=2MeO (1)
假合金,高合金含量等
• 3)复合材料 • (2)比普通冶炼法生产的材料性能优越; • 1)高合金材料,如超合金,高速钢等 • 2)难熔金属
PPT文档演模板
粉末冶金原理
(3)比普通熔炼法更经济
少切削、无切削和一次成形的特点
1)材料利用率高; 2)能耗低; 3)投资低,批量愈大成本愈低,粉末冶金产 品成本取决于模具和设备的一次投资; 4)可按照需要调节材料的成分; 5)可生产形状复杂的零件; 6)精度高,粗糙度低; 7)环境好,无污染、噪音;
• 自动催化
速
度
a
b
c
PPT文档演模板
时间 反应速度与时间的关系
粉末冶金原理
影响反应速度的因素 (1)反应物之间的接触面积,
3(W01/3-W1/3)=1K03t (2)化学反应速度
v=k2Acin 102 (3)扩散速度
v=D/δ A(c-ci)=k1Ac010
0.6 0.7 0.8 0.9 1.0 1.0 1.2
PPT文档演模板
粉末冶金原理
5粉末冶金材料的种类和应用
• (1)粉末冶金材料和制品的种类 • 1)机械零件 • 2)工具材料 • 3)磁性和电工材料 • 4)耐热材料 • 5)原子能工程材料 • (2)应用领域
PPT文档演模板
粉末冶金原理
类别
机械零件 和结构零 件
材料和制品的名称
减磨材料
多孔含油轴承
年,铂; 1909年钨丝。 • 3含油轴承的发明、硬质合金的生产推动了粉末冶金在机械制造业的
发展 • 4科学技术的发展带动了粉末冶金材料和技术的的发展 • 5粉末冶金制造技术和设备的发展 • 6我国粉末冶金的发展
• 7粉末冶金的发展现状和前景 新工艺和新技术:温压成形,粉末注射, 粉末锻造,粉末喷射成形,微波烧结,放电等离子烧结
辆)。
PPT文档演模板
粉末冶金原理
VVT链轮 凸轮轴链轮
平衡轴机构 平衡轴链轮 双联曲轴链轮 机油泵总成
PPT文档演模板