步进电机的速度控制

合集下载

PLC控制步进电机正实现正反转速度控制定位

PLC控制步进电机正实现正反转速度控制定位

PLC控制步进电机正实现正反转速度控制定位 1.步进电机正反转如何实现2.如何控制步进电机速度(即,如何计算脉冲频率):实际步进电机控制很简单,应用都是傻瓜了,厂家做好步进电机的驱动器,步进电机如何工作由驱动器来控制,我们不需要对步进电机做深入的了解,只要知道步进电机驱动器的应用方法即可。

当然简单的步进电机工作特性,还是必须知道的,下面我会介绍!细分的作用:两相步进电机,基本步距角1.8度,即:200个脉冲电机转一圈,称之为整步。

可以在步进电机的驱动器上设定细分数,其作用是:设置为2细分(也称为半步)时,则步距角为0.9度,400个脉冲转一圈。

设置为4细分时,则步距角为0.45度,800个脉冲转一圈。

设置为8细分时,则步距角为0.225度,1600个脉冲转一圈。

细分数越高,上位机发一个脉冲走的长度越小,精度越高!这个很好理解,一个脉冲走10毫米,10%误差时,一个脉冲误差1毫米,一个脉冲走1毫米,同样是10%误差时,一个脉冲误差0.1毫米。

当然,我们不可能把细分数设的很大,达到每个脉冲行走的长度特别小的目的。

您记住两相步进电机200个脉冲转一圈就行了!细分越大,步进电机转一圈的脉冲数越大!如果想让步进机以每分钟600转的速度,行走400毫米,我们如何计算上位机需要发出的脉冲数及脉冲频率?如何控制步进电机速度(即,如何计算脉冲频率):假定设置为四细分数,电机转一圈所需要的脉冲数即为800个,要实现步进电机600转/分的转速,上位机应该发送的脉冲频率计算方法:频率的概念是一秒钟的时间发送的脉冲个数所以,先计算步进电机每秒钟的转数600/60=10转/秒再计算10转/秒需要的脉冲数10 X 800 = 8000个即脉冲频率为 8000 ,也就是8K结论,为了实现步进电机600转/分的转速,上位机应该保持8K的脉冲输出频率现在您明白了吧?为了计算脉冲频率必须知道的两个前提条件是:1、知道步进电机转一圈需要的脉冲数;2、知道步进电机的转速,转速单位是:转/如何计算步进电机所需要的脉冲数:假定设置为四细分数,电机转一圈所需要的脉冲数即为800个,要实现步进电机行走400毫米的距离,上位机应该发送的脉冲个数计算方法:如果步进电机输出轴与丝杠(螺距:10mm )直连,或是通过皮带轮传动,轮周长10mm. 即,步进电机转一圈,机械的行走长度为10mm。

步进电机的控制的原理

步进电机的控制的原理

步进电机的控制的原理步进电机(Stepper Motor)是一种将电脉冲信号转换为角度让电机转动的电机。

它通常由定子和转子组成,定子线圈通过控制电流的输入来产生磁场,而转子则是由磁材料制成的。

步进电机有许多种类型,其中最常见的是单圈、双圈和四圈步进电机。

步进电机凭借其高精度、高可靠性等优点,在很多领域都有广泛的应用,包括打印机、电子门锁、数码相机等。

步进电机的控制原理主要包括两个方面,即脉冲信号的输入以及驱动电流的控制。

下面将详细介绍这两个方面的原理。

首先是脉冲信号的输入。

步进电机的转动是通过输入脉冲信号驱动的。

脉冲信号可以由切换电路产生,也可以由计算机或其他控制系统发出。

脉冲信号的频率决定了步进电机转动的速度,而脉冲信号的数量则决定了步进电机转动的角度。

当脉冲信号输入到步进电机的一个定子线圈时,该线圈产生一个磁场。

根据电磁感应定律,该磁场将对转子产生一个力矩,使其转动一定的角度。

当脉冲信号不再输入时,磁场也消失,转子停止转动。

如果脉冲信号连续输入,那么步进电机将不断地进行转动。

接下来是驱动电流的控制。

步进电机的线圈通常由绝缘性材料包裹,以防止电流损耗。

驱动电流的控制是通过对步进电机的定子线圈施加合适的电压来实现的。

根据欧姆定律,电流与电压的比值等于线圈的电阻。

通过改变电压的大小,可以控制线圈中的电流,进而控制步进电机的转动速度和力矩。

为了更好地控制步进电机的转动,常常采用两相驱动方式。

两相驱动方式是指将步进电机的两个定子线圈分别驱动,使其产生独立的磁场。

通过交替输入脉冲信号,可以让步进电机转动一个固定的角度。

在实际应用中,常常使用驱动器来控制步进电机的驱动电流。

驱动器接受外部脉冲信号,并通过电流放大器将电流信号传输给定子线圈。

此外,通过改变定子线圈的电流方向,可以改变步进电机的转动方向。

例如,如果一个线圈中的电流是顺时针方向的,而另一个线圈中的电流是逆时针方向的,那么步进电机就会向顺时针方向转动。

步进电机常用升降速控制方法说明

步进电机常用升降速控制方法说明

步进电机常用升降速控制方法说明步进电机常用的升降频控制方法有两种:直线升降频和指数曲线升降频。

指数曲线法具有较强的跟踪能力,但当速度变化较大时平衡性差。

直线法平稳性好,适用于速度变化较大的快速定位方式。

以恒定的加速度升降,规律简练,用软件实现比较简单。

步进电机驱动执行机构从一个位置向另一个位置移动时,要经历升速、恒速和减速过程。

当信浓步进电机的运行频率低于其本身起动频率时,可以用运行频率直接起动并以此频率运行,需要停止时,可从运行频率直接降到零速。

当步进电机运行频率fbfa(有载起动时的起动频率)时,若直接用fb频率起动会造成步进电机失步甚至堵转。

同样在fb频率下突然停止时,由于惯性作用,步进电机会发生过冲,影响定位精度。

如果非常缓慢的升降速,信浓步进电机虽然不会产生失步和过冲现象,但影响了执行机构的工作效率。

所以对信浓步进电机加减速要保证在不失步和过冲前提下,用最快的速度(或最短的时间)移动到指定位置。

1。

步进电机运动规律及速度控制方法

步进电机运动规律及速度控制方法

步进电机运动规律及速度控制方法姓名:吴良辰班级:10机设(2)学号:201010310206学期我们专业开设了机电传动控制这么课,它是机电一体化人才所需要知识结构的躯体,由于电力传动控制装置和机械设备是一个不可分割的整体,所以我么能从中了解到机电传动控制的一般知识,要掌握电机、电器、晶闸管等工作原理、特性、应用和选用的方法。

了解最新控制技术在机械设备中的应用。

在现代工业中,机电传动不仅包括拖动生产机械的电动机,而且还包括控制电动机的一整套控制,以满足生产过程自动化的要求。

也就是说,现代机电传动是和各种控制元件组成的自动控制系统联系在一起。

机电系统一般可分为图一所示的三个部分。

图1 机电传动控制在没上这门课之前,在我自己认为,电机就是那些就是高中学的那些直流电动机,就是通电线圈在磁场转动。

那是直流电动机了,慢慢的我接触了交流电动机,刚开始知道220V市电。

记得大一下学期,我们金工实习了,看到工训下面那么多的车床,铣床,钻床……由于要提供大的功率,所以主电机都是选用380V。

上完这门让我更详细了解他们内部的结构和工作原理。

还说明知识是慢慢积累的过程。

见的多学的多。

我明白了很多以前的疑惑。

看到电视机上那些智能机器人,他们的活动很自如,就像仿生肌肉一样。

尤其是日本的机器人。

它的机械臂很有可能是步进电机控制的,还有一种说法是液压与气压控制的。

我觉的两者都有。

很有幸大一时候进入了第二课堂,在里面学到东西,也接触了步进电机,我是在学51单片机那时候也买了一个,就觉得很神奇。

在加上前几天参加了江西省电子设计大赛,我就感觉到要是要选控制类的题目做,步进电机是不能少的。

所以步进电机是个好东西。

我在网上查了一下资料,上个世纪就出现了步进电机,它是一种可以自由回转的电磁铁,动作原理和今天的反应式步进电机没有什么区别,也是依靠气隙磁导的变化来产生电磁转矩。

很遗憾的是它是国外人发明的。

开始写正题了,上完这门课,那个步进电机是让我很痴迷的。

步进电机的速度控制和位移控制公式

步进电机的速度控制和位移控制公式

步进电机的速度控制和位移控制公式下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!步进电机是一种常见的电动机,用于控制机械系统的运动。

步进电机调速方法

步进电机调速方法

一、变极对数调速方法这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的,特点如下: 1、具有较硬的机械特性,稳定性良好; 2、无转差损耗,效率高; 3、接线简单、控制方便、价格低; 4、有级调速,级差较大,不能获得平滑调速; 5、可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。

本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。

二、变频调速方法变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。

变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。

其特点: 1、效率高,调速过程中没有附加损耗; 2、应用范围广,可用于笼型异步电动机; 3、调速范围大,特性硬,精度高; 4、技术复杂,造价高,维护检修困难。

5、本方法适用于要求精度高、调速性能较好场合。

三、串级调速方法串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的。

大部分转差功率被串入的附加电势所吸收,再利用产生附加的装置,把吸收的转差功率返回电网或转换能量加以利用。

根据转差功率吸收利用方式,串级调速可分为电机串级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速,其特点为: 1、可将调速过程中的转差损耗回馈到电网或生产机械上,效率较高; 2、装置容量与调速范围成正比,投资省,适用于调速范围在额定转速70%-90%的生产机械上; 3、调速装置故障时可以切换至全速运行,避免停产; 4、晶闸管串级调速功率因数偏低,谐波影响较大。

5、本方法适合于风机、水泵及轧钢机、矿井提升机、挤压机上使用。

四、绕线式电动机转子串电阻调速方法绕线式异步电动机转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下运行。

串入的电阻越大,电动机的转速越低。

电机控制公式

电机控制公式

电机控制公式
电机控制公式可以根据具体的电机类型和控制方式有所不同。

以下是一些常见的电机控制公式:
1.直流电机速度控制公式:
o电动势方程:E = Kϕω,E为电动势,K为电机常数,ϕ为磁通量,ω为角速度。

o转矩方程:T = KtI,T为转矩,Kt为电机转矩常数,I 为电流。

2.三相感应电机速度控制公式:
o转矩方程:T = KsIs,T为转矩,Ks为电机转矩常数,Is为电流。

o转速公式:N = (120f) / P,N为转速,f为电网频率,P为极数。

3.步进电机控制公式:
o步进角度公式:θ = 360 / S,θ为步进角度,S为步进角度。

o脉冲频率公式:f = N / (S × T),f为脉冲频率,N为转速,T为步进周期。

需要注意的是,电机控制公式通常是基于理想条件下的模型推导出来的,并且不考虑实际电机的非线性和动态特性。

在实际应用中,电机控制还需要考虑到控制器的影响、传感器反馈、电机参数变化等因素,因此在具体控制系统设计时,需要结合
实际情况进行调整和优化。

步进电机控制速度的方法

步进电机控制速度的方法

步进电机只能够由数字信号控制运行的,当脉冲提供给驱动器时,在过于短的时间里,控制系统发出的脉冲数太多,也就是脉冲频率过高,将导致步进电机堵转。

要解决这个问题,必须采用加减速的办法。

就是说,在步进电机起步时,要给逐渐升高的脉冲频率,减速时的脉冲频率需要逐渐减低。

这就是我们常说的“加减速”方法。

步进电机转速度是根据输入的脉冲信号的变化来改变的,从理论上讲,给驱动器一个脉冲,步进电机就旋转一个步距角(细分时为一个细分步距角)。

实际上,如果脉冲信号变化太快,步进电机由于内部的反向电动势的阻尼作用,转子与定子之间的磁反应将跟随不上电信号的变化,将导致堵转和丢步。

所以步进电机在高速启动时,需要采用脉冲频率升速的方法,在停止时也要有降速过程,以保证实现步进电机精密定位控制。

加速和减速的原理是一样的。

以加速实例加以说明:加速过程是由基础频率(低于步进电机的直接起动最高频率)与跳变频率(逐渐加快的频率)组成加速曲线(降速过程反之)。

跳变频率是指步进电机在基础频率上逐渐提高的频率,此频率不能太大,否则会产生堵转和丢步。

步电机系统解决方案加减速曲线一般为指数曲线或经过修调的指数曲线,当然也可采用直线或正弦曲线等。

使用单片机或者PLC,都能够实现加减速控制。

对于不同负载、不同转速,需要选择合适的基础频率与跳变频率,才能够达到最佳控制效果。

指数曲线,在软件编程中,先算好时间常数存贮在计算机存贮器内,工作时指向选取。

通常,完成步进电机的加减速时间为300ms以上。

如果使用过于短的加减速时间,对绝大多数步进电机来说,就会难以实现步进电机的高速旋转。

深圳市维科特机电有限公司成立于2005年,是步进电机产品的销售、系统集成和应用方案提供商。

我们和全球产品性价比高的生产厂家合作,结合本公司专家团队多年的客户服务经验,给客户提供有市场竞争力的步进电机系统解决方案。

我们的主要产品有信浓(SHINANO KENSHI)混合式步进电机、日本脉冲(NPM)永磁式步进电机、减速步进电机、带刹车步进电机、直线步进电机、空心轴步进电机、防水步进电机以及步进驱动器、减振垫、制振环、电机引线、拖链线、齿轮、同步轮、手轮等专业配套产品。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

步进电机的速度控制
步进电机区别于其他控制用途电机的最大特点是,它可接受数字控制信号(电脉冲信号)并转化成与之相对应的角位移或直线位移,因而本身就是一个完成数字模拟转化的执行元件。

而且它能进行开环位置控制,输入一个脉冲信号就得到一个规定的位置增量。

这样的增量位置控制系统与传统的直流伺服系统相比,其成本明显降低,几乎不必进行系统调整。

因此,步进电机广泛应用于数控机床、机器人、遥控、航天等领域,特别是微型计算机和微电子技术的发展,使步进电机获得更为广泛的应用。

步进电机的速度特性
步进电机的转速取决于脉冲频率、转子齿数和拍数。

其角速度与脉冲频率成正比,而且在时间上与脉冲同步。

因而在转子齿数和运行拍数一定的情况下,只要控制脉冲频率即可获得所需速度。

由于步进电机是借助它的同步转矩而启动的,为了不发生失步,启动频率是不高的。

特别是随着功率的增加,转子直径增大,惯量增大,启动频率和最高运行频率可能相差10倍之多。

为了充分发挥电机的快速性能,通常使电机在低于启动频率下启动,然后逐步增加脉冲频率直到所希望的速度,所选择的变化速率要保证电机不发生失步,并尽量缩短启动加速时间。

为了保证电机的定位精度,在停止以前必须使电机从最高速度逐步减小脉冲率降到能够停止的速度(等于或稍大于启动速度)。

因此,步进电机拖动负载高速移动一定距离并精确定位时,一般来说都应包括“启动-加速-高速运行(匀速)-减速-停止”五个阶段,速度特性通常为梯形,如果移动的距离很短则为三角形速度特性,如图1所示。

图1 步进电机的速度曲线
步进电机控制系统结构
PC机在适当的时刻通过对硬件控制电路上的8253计数器0赋初值,设置好加减速过程的频率变化(即速度、加速度变化),以防止失步。

例如,在点位控制中设置好速度曲线图,在起动和升速时,使步进电机产生足够的转矩驱动负载,跟上规定的速度和加速度;在减速时,下降特性使负载不产生过冲,停止在规定的位置。

硬件控制电路板上的8253产生脉冲方波作为中断信号源,启动细分驱动电路中的固化程序以产生一定频率的脉冲,经功率放大后驱动步进电机运动。

步进电机运动方向的改变及启动和停止均由计算机控制硬件控制电路实现。

图2 步进电机控制系统
软件和硬件结合起来一起进行控制,具有电路简单、控制方便等优点。

在这种控制中,微机软件占用的存储单元少,程序开发不受定时限制。

只要外部中断允许,微机就能在电机的每一步之间自由地执行其他任务,以实现多台步进电机的运动控制。

定时器初值的确定
步进电机的实时控制运用PC机,脉冲方波的产生采用8253定时器,其计数器0工作于方式0以产生脉冲方波,计数器
1工作于方式1起记数作用,8253计数器0的钟频由2MHz晶振提供。

设计算机赋给8253计数器0的初值为D1,则产生的脉冲方波频率为f1=f0/D1,周期为T1=1/f1=D1/f0,D1=f0T1=f0/f1。

其中,f1为启动频率,f0为晶振频率。

步进电机升降速数学模型为使步进电机在运行中不出现失步现象,一般要求其最高运行频率应小于(或等于)步进响应频率fs。

在该频率下,步进电机可以任意启动、停止或反转而不发生失步现象。

步进电机升降速有两种驱动方式,即三角形与梯形驱动方式(见图1),而三角形驱动方式是梯形驱动的特例,因而我们只要研究梯形方式。

电机的加速和减速是通过计算机不断地修改定时器初值来实现的。

在电机加速阶段,从启动瞬时开始,每产生一个脉冲,定时器初值减小某一定值,则相应的脉冲周期减小,即脉冲频率增加;在减速阶段,定时器初值不断增加,
则相应的脉冲周期增大,脉冲频率减小,对应梯形脉冲频率特性的减速阶段。

该设计的关键是确定脉冲定时tn,脉冲时间间隔即脉冲周期Tn和脉冲频率fn。

假设从启动瞬时开始计算脉冲数,加速阶段的脉冲数为n,并设启动瞬时为计时起点,定时器初值为D1,定时器初值的减量为△。

从加速阶段的物理过程可知,第一个脉冲周期,即启动时的脉冲周期T1=D1/f0,t1=0。

由于定时器初值的修改,第2个脉冲周期T2=(D1-△)/f0=T1-△/f0,脉冲定时t2=T1,则第n个脉冲的周期为:
Tn=T1-(n-1)△/f0 (1)
脉冲定时为:
(2)
脉冲频率为:
1/fn=Tn=T1-(n-1)△/f0 (3)
上式分别显示了脉冲数n与脉冲频率fn和时间tn的关系。

令△/f0=δ,即加速阶段相邻两脉冲周期的减量,则上述公式简化为:
tn=(n-1)T1-(n-2)(n-1)δ/2 (4)
1/fn=T1-(n-1)δ(5)
联立(4)、(5),并简化fn与tn的关系,得出加速阶段的数学模型为:
(6)
其中,是常数,其值与定时器初值及定时器变化量有关,A=-δ, B=(2T1+δ)2,C=8δ。

加速阶段脉冲频率的变化为:
(7)
从(6)、(7)式可以看出,在加速阶段,脉冲频率不断升高,且加速度以二次函数增加。

这种加速方法对步进电机运行十分有利,因为启动时,加速度平缓,一旦步进电机具有一定的速度,加速度增加很快。

这样一方面使加速度平稳过渡,有利于提高机器的定位精度,另一方面可以缩短加速过程,提高快速性能。

对于减速阶段,按照与上述类似的分析方法,可以得出脉冲频率特性的表达方式为:(8)
(9)
其中,A=-δ, B=(2T1-δ)2,C=8δ,T1为减速开始时脉冲周期,δ为减速阶段相邻两个脉冲周期的增量。

由于T1>>δ,则B=4T12,由(8)、(9)式可以看出,脉冲频率在减速阶段不断下降,且加速度为负,绝对值以二次函数减小。

这种减速性能对步进电机同样有利,它使步进电机在减速时能够平稳地停止而没有冲击,提高了机器的定位精度。

综上所述,可以得出本设计的脉冲频率特性(见图3)。

实验及总结
该方法已经成功的应用于本人设计的智能运动控制单元,通过开发Windows环境下的控制软件,利用VC++设计良好的控制接口界面,方便地实现了运动方式、速度、加减速的选择和位置控制,具有一定程度的智能。

该控制单元减少了PC机被占用时间,以便于在电机运行的同时去完成别的工作,从而实现了三台步进电机的加减速和速度及位置控制。

并且利用了细分驱动电源,提高了步进精度和定位精度。

原创文章:"/bbs/viewthread.php?tid=165416&extra=page%3D1"
【请保留版权,谢谢!】文章出自电子元件技术网。

相关文档
最新文档