七年级数学上册与直角有关的折叠、旋转习题新版鲁教版
初中数学鲁教版(五四制)七年级上册第二章 轴对称4 利用轴对称进行设计-章节测试习题

章节测试题1.【答题】过新年时,小刚家的窗户上贴着如图所示的美丽图案,它的对称轴有______条.【答案】8【分析】【解答】2.【答题】如图,把一个正方形纸片折叠三次后沿虚线剪断,则展开①后得到的是()A. B. C. D.【答案】C【分析】【解答】3.【题文】利用下图设计一个轴对称图案.【答案】略.【分析】【解答】4.【题文】如图,请你用三种方法分别在方格内填涂2个小正方形,使这7个小正方形组成的图形是轴对称图形.【答案】略.【分析】【解答】5.【答题】如图,把三角形纸片ABC沿DE折叠,当点A落在四边形BCDE外部时,∠A与∠1,∠2之间的数量关系是()A. 2∠A=∠1+∠2B. 2∠A=∠1-∠2C. 3∠A=2∠1-∠2D. 3∠A=2(∠1-∠2)【答案】B【分析】【解答】6.【答题】把一张长方形纸片按如图①、图②所示的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是()A. B. C. D.【答案】C【分析】【解答】7.【答题】例1如图,在3×3正方形网格中,已有3个小正方形被涂黑,将剩余的白色小正方形再任意涂黑一个,则所得图案是轴对称图形的情况有()A. 6种B. 5种C. 4种D. 2种【答案】C【分析】此题考查轴对称图形问题,关键是根据题意涂黑一个小正方形.【解答】根据题意,涂黑每一个小正方形都会出现一种情况,共出现6种可能情况.其中,涂左上角和右下角的小正方形所得到的黑色图案是中心对称图形而不是轴对称图形,故一共有4种情形.8.【答题】例2 把一张长方形纸按如图所示方式折叠后,如果∠AOB′=20°,那么∠BOG的度数是______.【答案】80°【分析】根据轴对称的性质可得∠B′OG=∠BOG,再根据∠AOB′=20°可得出∠BOG的度数.本题考查轴对称的性质,在解答此类问题时要注意数形结合的应用.【解答】根据轴对称的性质得∠B′OG=∠BOG,由∠AOB′=20°可得∠B′OG+∠BOG=160°,∴.9.【答题】如图,把一张长方形纸片对折两次,然后沿图中虚线剪下一个角.为了得到一个正方形,剪切线与折痕所成的角的大小等于()A. 30°B. 45°C. 60°D. 90°【答案】B【分析】【解答】10.【答题】如图,小聪用一张面积为1的正方形纸片按如下方式操作:①将正方形纸片的四个角向内折叠,使四个顶点重合,展开后沿折痕剪开,把四个等腰直角三角形扔掉;②在余下的纸片上依次重复以上操作.当完成第2019次操作时,余下纸片的面积为()A. 22019B.C.D.【答案】C【分析】【解答】11.【答题】如图是4×4正方形网格,其中已有3个小方格涂成黑色,在剩下的13个白色小方格中随意选一个涂成黑色,使得黑色小方格组成的图形为轴对称图形,则有______种涂法.【答案】4【分析】【解答】12.【答题】将如图所示的正方形沿对角线对折,把对折后重合的两个小正方形内的单项式相乘,乘积是______(写出一个结论即可).【答案】-6ab2等(答案不唯一).【分析】【解答】13.【答题】2011年11月2日,即20111102,正好前后对称,因而被称为“完美对称日”.请你写出本世纪的一个“完美对称日”:______.【答案】20011002或20100102(答案不唯一).【分析】【解答】14.【题文】请你应用轴对称的知识画这三个图形,并涂上彩色.与同学比一比,看谁画得正确、漂亮.【答案】略.【分析】【解答】15.【题文】已知点阵内有一个图形和一条直线,试画出这个图形关于直线成轴对称的图形.【答案】略.【分析】【解答】16.【答题】一条线段的对称轴有______条,一个正三角形的对称轴有______条,一个圆的对称轴有______条.【答案】【分析】【解答】17.【题文】在半圆、长方形、等腰三角形、线段中选择两种以上,设计一个轴对称图形,并说明你的设计意图.【答案】【分析】【解答】18.【答题】小华将一张如图所示的矩形纸片沿对角线剪开,他利用所得的两个直角三角形进行图形变换,构成了下列四个图形,其中不是轴对称图形的是()A. B. C. D.【答案】A【分析】【解答】19.【答题】把一张长方形纸片按如图①、图②的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是()A. B.C.D.【答案】C【分析】【解答】20.【答题】如图所示,这个美丽的剪纸图案有______条对称轴.【答案】1【分析】【解答】。
初中数学鲁教版(五四制)七年级上册第一章 三角形本章综合与测试-章节测试习题

章节测试题1.【答题】下列每组数分别是三根木棒的长度,能用它们摆成三角形的是()A. 3cm,4cm,8cmB. 8cm,3cm,11cmC. 5cm,5cm,11cmD. 6cm,5cm,3cm【答案】D【分析】【解答】2.【答题】如图,下列图形中,AD是△ABC中BC边上的高的是()A. B. C. D.【答案】D【分析】【解答】3.【答题】在△ABC中,,则△ABC是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形【答案】B【分析】【解答】4.【答题】如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A. BC=EC,∠B=∠EB. BC=EC,∠A=∠DC. BC=EC,AC=DCD. ∠BCE=∠ACD,∠A=∠D【答案】B【分析】【解答】5.【答题】如图,在△ABC中,∠ACB=90°,∠A=20°.若将△ABC沿CD折叠,使点B 落在AC边上的点E处,则∠ADE的度数是()A. 30°B. 40°C. 50°D. 70°【答案】C【分析】【解答】6.【答题】如图,欲测量内部无法到达的古塔相对两点A,B间的距离,可延长AO至C,使CO=AO,延长BO至D,使DO=BO,则△COD≌△AOB,从而通过测量CD就可测得A,B间的距离.其全等的根据是()A. SASB. ASAC. AASD. SSS【答案】A【分析】【解答】7.【答题】如图,在△ABC中,已知D,E,F分别为BC,AD,CE的中点,且S△ABC=4cm2,则阴影部分的面积等于()A. 2cm2B. 1cm2C.D.【答案】B【分析】【解答】8.【答题】如图,网格中有△ABC及线段DE,在网格上找一点F(必须在网格的交点处),使△DEF与△ABC全等,这样的点有()A. 1个B. 2个C. 3个D. 4个【答案】D【分析】【解答】9.【答题】如图,建高楼时常需要塔吊来吊建筑材料,而塔吊的上部是三角形结构,这是应用了三角形的______.【答案】稳定性【分析】【解答】10.【答题】已知三角形的两条边长分别为2cm和7cm,第三边的长为奇数,则第三边的长为______cm.【答案】7【分析】【解答】11.【答题】如图,已知△ABC中AD是BC边上的高,AE,BF分别是∠CAB,∠ABC的平分线,并相交于点O.若∠CAB=50°,∠C=60°,则∠DAE=______,∠BOA=______.【答案】5° 120°【分析】【解答】12.【答题】如图,CA⊥AB,垂足为点A,AB=8,AC=4,射线BM⊥AB,垂足为点B.一动点E从A点出发以2cm/s的速度沿射线AN运动,点D为射线BM上的一个动点,随着E点运动而运动,且始终保持ED=CB.当点E离开点A后(E不在A点上),运动______s,△DEB与△BCA全等.【答案】2,6,8【分析】【解答】13.【题文】(10分)已知线段a和∠α,求作一个三角形,使其一个内角等于∠α,另一个内角等于2∠α,且这两个内角的夹边等于2a.【答案】见解答.【分析】本题考查利用基本作图作三角形.【解答】如图,△ABC即为所求.14.【题文】(12分)如图,A,C,F,D在同一直线上,且AF=DC,AB∥DE,AB=DE.请写出BC与EF的关系,并说明理由.【答案】见解答.【分析】本题考查全等三角形的判定和性质.【解答】BC=EF,BC∥EF.理由:∵AF=CD,∴AF-FC=CD-FC,即AC=DF.∵AB∥DE,∴∠A=∠D.在△ABC和△DEF中,∴△ABC≌△DEF(SAS).∴BC=EF,∠ACB=∠DFE.∴∠BCF=∠EFC,∴BC∥EF.15.【题文】(12分)如图,点E在AC上,AB=AD,BE=DE,试说明∠3=∠4.【答案】见解答.【分析】本题考查全等三角形的判定和性质.【解答】在△ABE和△ADE中,∴△ABE≌△ADE(SSS),∴∠1=∠2.在△ABC和△ADC中,∴△ABC≌△ADC(SAS),∴∠3=∠4.16.【题文】(14分)如图1,将一块等腰直角三角板ABC的直角顶点C置于直线l上,图2是由图1抽象出的几何图形,过A,B两点分别作直线l的垂线,垂足分别为D,E.(1)△ACD与△CBE全等吗?说明你的理由.(2)猜想线段AD,BE,DE之间的关系,并说明理由.(3)若把两块等腰直角三角板按图3所示的方式放置,连接BE,AD,AD分别交BE,BC于点F,G.猜想AD与BE有怎样的数量关系和位置关系,并说明理由.【答案】见解答.【分析】本题考查全等三角形的判定和性质.【解答】(1)△ACD与△CBE全等.理由如下:∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°.又∵∠ACB=90°,∴∠ACD=∠CBE=90°-∠ECB.在△ACD与△CBE中,∴△ACD≌△CBE(AAS).(2)AD=BE-DE.理由如下:∵△ACD≌△CBE,∴AD=CE.CD=BE.∴AD=CE=CD-DE=BE-DE.(3)AD=BE,AD⊥BE.理由如下:在△BCE和△ACD中,∵∠DCE=∠ACB=90°,∴∠DCE+∠DCB=∠ACB+∠BCD,∴∠BCE=∠ACD.在△BCE和△ACD中,∴△BCE≌△ACD(SAS),∴BE=AD,∠EBC=∠CAD.在Rt△ACG中,∵∠CGA+∠CAG=90°,∠BGF=∠CGA,∴∠BGF+∠GBF=90°,∴∠BFG=90°,即AD⊥BE.17.【答题】下列图形是全等图形的是()A. B. C.D.【答案】B【分析】【解答】18.【答题】如图,为估计池塘岸边A,B间的距离,小明在池塘的一侧选取一点O,测得OA=15m,OB=10m,则A,B间的距离可能是()A. 30mB. 25mC. 20mD. 5m【答案】C【解答】19.【答题】如图,要测量湖两岸相对两点A,B间的距离,可以在AB的垂线BF上取两点C,D,使CD=BC,再作BF的垂线DE,使A,C,E在一条直线上,这时可得△ABC≌△EDC. 用于判定全等的依据是()A. SSSB. SASC. ASAD. AAS【答案】C【分析】【解答】20.【答题】在△ABC中,已知下列条件:①∠A=60°,∠C=30°;②∠A+∠B=∠C;③∠A:∠B:∠C=3:4:5;④∠A=90°-∠C.能确定△ABC是直角三角形的有()A. 1个B. 2个C. 3个D. 4个【分析】【解答】。
七年级数学上册 勾股定理及其逆定理习题 (新版)鲁教版

学习资料专题勾股定理及其逆定理(习题)例题示范例1:如图,强大的台风使得一棵树在离地面 3m 处折断倒下,树的顶部落在离树的底部 4m 处,这棵树折断之前有多高?解:如图,由题意,得AC=3,BC=4,∠ACB=90°A在 Rt△ABC 中,∠ACB=90°,由勾股定理,得AC2+BC2=AB2∴32+42=AB2∴AB=5 C B∴AB+AC=5+3=8答:这棵树折断之前高 8m.例2:如图,在△ABC 中,AB=13cm,AC=5cm,BC=12cm.求证:∠C=90°.AC B证明:如图在△ABC 中,AB=13,AC=5,BC=12∵52+122=132∴AC2+BC2=AB2∴△ABC 为直角三角形,且∠C=90°.2 2巩固练习1.如图,在 Rt △ABC 中,∠C =90°,若 BC =8,AB =17,则 AC的长为 .BCA2.已知甲、乙两人从同一地点出发,甲往东走了 12km ,乙往南走了 5km,这时甲、乙两人之间的距离为 .3.如图,分别以直角三角形的三边为直径作半圆,三个半圆的面积从小到大依次记为 S 1,S 2,S 3,则 S 1,S 2,S 3 之间的关系是 ( ) A .S l +S 2>S 3 B .S l +S 2<S 3C .S 1+S 2=S 3D .S 12+S 2 =S 34.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,若其中最大正方形的边长为 7cm ,则正方形 A ,B ,C , D 的面积之和为 cm 2.S 3 S 1S2cc5.如图 1 是用硬纸板做成的两个全等的直角三角形,两直角边的长分别为 a 和 b ,斜边长为 c .图 2 是以 c 为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个能证明勾股定理的图形.(1)画出拼成的这个图形的示意图,并利用这个图形证明勾股定理; (2)假设图 1 中的直角三角形有若干个,你能运用图 1 中所给的直角三角形拼出另一种能证明勾股定理的图形吗?请画出拼成的图形的示意图,并利用该图形证明勾股定理.bbaa图1图26.以下列长度的三条线段为边,不能组成直角三角形的是( ) A .1.5,2,2.5 B .9,12,15 C .7,24,25D .1,1,2ccE9 bc ,,7.已知三条线段的长是:①5k,12k,13k(k>0);②111;③32,42,52;3 4 5④11,60,61;⑤(m n)2 1,2(m n),(m n)2 1 (m,n为正整数).其中能构成直角三角形的有()A.2 个B.3 个C.4 个D.5 个8.如图,在正方形ABCD 中,点E,F 分别在AD,CD 边上,A D若AB=4,AE=2,DF=1,则图中的直角三角形共有个. F 9.如图,求出下列直角三角形中未知边的长度:b= ,c= .B C1015 2410.如图,一架长 25 米的云梯斜靠在一面墙上,梯子底端与墙根之间的距离为 7 米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4 米,那么梯子的底端在水平方向上滑动了几米?AA'O B B'11.在△ABC 中,AB=10,BC=12,BC 边上的中线AD=8,求AC的长. AB D C12.在△ABC 中,点D是线段BC 上的一点,已知AB=15,AD=12,AC=13,BD=9.求BC 的长.思考小结1.赵爽弦图和毕达哥拉斯弦图都是由四个全等的三角形拼成的,但是在拼的过程中有区别,赵爽弦图的弦在(填“内”或“外”),毕达哥拉斯弦图的弦在(填“内”或“外”),请你画出对应的弦图.赵爽弦图毕达哥拉斯弦图2.我们知道3,4,5 是一组勾股数,那么3k,4k,5k(k 是正整数)(填“是”或“不是”)一组勾股数;一般地,如果a,b,c(a bc )是一组勾股数,那么ak,bk,ck(k 是正整数)是一组勾股数吗?若是,请证明;若不是,请说明理由.解:ak,bk,ck(k 是正整数)一组勾股数,理由如下:∵a,b,c 是一组勾股数∴∵k≠0∴k2a2+k2b2k2c2∴(ak)2+(bk)2(ck)2∵k 为正整数∴ak,bk,ck 也是∴ak,bk,ck(k 是正整数)一组勾股数Ca bB c A【参考答案】巩固练习1. 152.13 km3. C4. 495.略6.D7. B8. 49. 12,2610. (1)24 米(2)8 米11.AC 的长为 1012.BC 的长为 14思考小结1. 直角,外,内图略2. 是,是,a2 b2 c2 ,=,=,正整数,是。
鲁教版七年级数学上第一章三角形 练习题

鲁教版七年级数学上1.1三角形及其内角和【基本知识方法】1.一位同学用三根木棒拼成如下图形,则其中符合三角形概念的是( )(A)①(B)②(C)③(D)④2.(2019杭州)在△ABC中,若一个内角等于另两个内角的差,则( )(A)必有一个内角等于30° (B)必有一个内角等于45°(C)必有一个内角等于60° (D)必有一个内角等于90°3.(2019赤峰)如图,点D在BC的延长线上,DE⊥AB于点E,交AC于点F.若∠A=35°,∠D=15°,则∠ACB的度数为( )(A)65°(B)70°(C)75°(D)85°4.如图,在△ABC中,点D在AB上,点E在AC上,DE∥BC.若∠A=62°,∠AED=54°,则∠B的度数为.5.如图,AB∥CD,FE⊥DB,垂足为点E,∠1=50°,则∠2的度数是______6.在△ABC中,∠A-∠B=90°,∠B=2∠C,求△ABC的各内角的度数.7.如图,DF与AC交于点E,已知∠B=42°,∠C=56°,∠DEC=48°,求∠F的度数.【综合】8.如图,点D在△ABC边AB的延长线上,DE∥BC.若∠A=35°,∠C=24°,则∠D的度数是( )(A)24° (B)59° (C)60° (D)69°9.如图,在△ABC中,AD,BF,CE相交于O点,则图中的三角形的个数是( )(A)7个(B)10个 (C)15个(D)16个10.如图,∠1+∠2+∠3+∠4等于( )(A)150°(B)240°(C)300°(D)330°11.如图,有一块直角三角板XYZ放置在△ABC上,三角板XYZ的两条直角边XY,XZ改变位置,但始终满足经过B,C两点.如果△ABC中,∠A=40°,则∠ABX+∠ACX=_________12.如图,在△ABC中,若∠BAC=85°,∠ADB=70°,∠BAD=∠B,求∠C.【提高训练】13.(分类讨论思想)当三角形中一个内角α是另一个内角β的2倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”中最小的内角为30°,那么其中“特征角”的度数为___________鲁教版七年级数学上1.2三角形的分类及直角三角形的性质【基础练习】1.在一个直角三角形中,有一个锐角等于65°,则另一个锐角的度数是( )(A)115°(B)125°(C)25° (D)35°2.如图所示,AB⊥BD,AC⊥CD,若∠D=35°,则∠A的度数为( )(A)65° (B)35° (C)55° (D)45°3.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( )(A)45° (B)60° (C)75° (D)85°4.如图,在△ABC中,∠C=90°,点D在BC上,∠B=40°,∠DAC=20°,则∠BAD= 度.第4题图5.如图,∠ACB=90°,CD⊥AB,则图中与∠1互余的角有个,它们分别是.第5题图6.在Rt△ABC中,∠C=90°,∠A=4∠B,则∠A= .7.如图,∠B=∠C,DE⊥BC于点E,EF⊥AB于点F,∠ADE=140°,求∠FEB的度数.【综合训练】8.下列判断:①有两个内角分别为55°和25°的三角形一定是钝角三角形;②直角三角形中两锐角之和为90°;③三角形的三个内角中至少有两个锐角;④△ABC中,若∠A∶∠B∶∠C=1∶5∶6,则△ABC是直角三角形.其中正确的有( )(A)1个(B)2个(C)3个(D)4个9.如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )(A)90° (B)135°(C)150°(D)270°10.一把直尺和一块三角板ABC(含30°,60°角)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点D,点E,另一边与三角板的两直角边分别交于点F,点A,且∠CDE=40°,那么∠BAF的大小为( )(A)40° (B)45° (C)50° (D)10°11.(2019哈尔滨)在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD为直角三角形,则∠BCD的度数为.12.如图,EO⊥CO于点O,若∠B=30°,∠E=40°,求∠OAD的度数.13.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE交于点H,已知∠B=48°,∠BAC=72°,求∠CAD与∠DHE的度数.【能力提升】14.(探究题)(1)如图①,直角三角形ABC中CD⊥AB,图中有与∠A相等的角吗?为什么?(2)如图②,把图①中的CD平移到ED处,图中还有与∠A相等的角吗?为什么?(3)如图③,把图①中的CD平移到ED处,交BC的延长线于点E,图中还有与∠A相等的角吗?为什么?鲁教版七年级数学上1.3三角形的三边关系【基础练习】1.(2019台州)下列长度的三条线段,能组成三角形的是( )(A)3,4,8 (B)5,6,10 (C)5,5,11 (D)5,6,112.(2020任城区期中)小红已有两根长度分别是10 cm、20 cm的木条,现要钉一个三角形木架,则她还需要第三根木条的长度可以是( )(A)5 cm (B)10 cm (C)20 cm (D)40 cm3.若一个三角形的两边长分别为2和4,则该三角形的周长可能是( )(A)6 (B)7 (C)11 (D)124.(2020河口期中)一个等腰三角形的两边长分别是3 cm和7 cm,则它的周长是 cm.5.已知三角形两边的长分别为1,5,第三边长为整数,则第三边的长为6.已知一个三角形的三边长分别为2,8,x,若其周长是偶数,则x的值是;若x是奇数,则x的值是.7.一个三角形的两边长为3和5,(1)求它的第三边a的取值范围;(2)求它的周长L的取值范围;(3)若周长为偶数,求三角形的第三边长.8.已知等腰三角形的两边长a,b满足|a-4|+(b-9)2=0,求这个等腰三角形的周长.【综合训练】9.已知四根长度分别为3 cm,6 cm,8 cm,10 cm的木棒,任意选取三根木棒组成一个三角形,那么可以组成三角形的个数为( )(A)1个(B)2个 (C)3个(D)4个10.已知a,b,c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为( )(A)2a+2b-2c (B)2a+2b (C)2c (D)011.已知△A B C的周长为13,且各边长均为整数,那么这样的等腰△ABC有个.12.一个等腰三角形的周长为28 cm.(1)如果底边长是腰长的1.5倍,求这个等腰三角形的三边长;(2)如果一边长为10 cm,求这个等腰三角形的另两边长.【提高训练】13.(分论讨论题)某等腰三角形的三边长分别为x,3,2x-1,则该三角形的周长为( )(A)11 (B)11或8 (C)11或8或5 (D)与x的取值有关14.小明同学在研究了课本上的一道问题“四根小木棍的长度分别为2 cm,3 cm,4 cm和5 cm,任取其中3根,可以搭成几个不同的三角形?”后,提出下列问题:长度分别为a,b,c(单位: cm)的三根小木棍搭成三角形,已知a,b,c都是整数,且a≤b<c,如果b=5 cm,用满足上述条件的三根小木棍能够搭出几个不同的三角形?请你参与研究,并写出探究过程.鲁教版七年级数学上1.4三角形中的三条重要线段【基础练习】1.(2020广饶期中)如图,在△ABC中,BC边上的高是( )(A)AF (B)BH (C)CD (D)EC2.如图,在△ABC中,AB=2,BC=4,△ABC的高AD与CE的比为( )(A)1∶2 (B)2∶1 (C)1∶4 (D)4∶13.如图,在△ABC中,AD是△ABC的高AE平分∠BAC,若∠1=30°,∠2=20°,则∠B的度数是( B )(A)40° (B)50° (C)60° (D)70°4.在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多3 cm,已知AB=4 cm,则AC的长为( )(A)1 cm (B)6 cm (C)7 cm (D)8 cm5.在一块三角形的优良品种试验基地,如图所示,由于引进四个优良品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种划分方案.(温馨提示:请准确作图)6.在△ABC中,AB∶AC=3∶2,BC=AC+1,若△ABC的中线BD把△ABC的周长分成两部分的比是8∶7,求AB,AC的长(边长为整数).7.如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°,则∠DAC的大小是( )(A)15°(B)20°(C)25°(D)30°【综合训练】7.如图,△ABC中,AD是BC边上的高,AE,BF分别是∠BAC,∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠DAE+∠ACD等于( )(A)75° (B)80° (C)85° (D)90°8.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4 cm2,则S阴影等于( )(A)2 cm2(B)1 cm2(C)2 cm2(D)4 cm29.已知BD,CE是△ABC的高,直线BD,CE相交所成的角中有一个角为65°,则∠BAC= .10.如图,AD是△ABC的中线,BE是△ABD的中线.若△ABC的面积为20,BD=5,则点E到BC边的距离为 .11.已知:如图,在△ABC中,AD,AE分别是△ABC的高和角平分线.(1)若∠B=30°,∠C=50°,求∠DAE的度数;(2)试问∠DAE与∠C-∠B有怎样的数量关系?说明理由.【提高训练】12.(动点问题)如图,△ABC中,∠C=90°,AC=8 cm,BC=6 cm,AB=10 cm.若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒2 cm.设运动的时间为t秒.(1)当t= 秒时,CP把△ABC的周长分成相等的两部分;(2)当t= 秒时,CP把△ABC的面积分成相等的两部分;(3)当t= 时,△BCP的面积为12鲁教版数学七年级上阶段训练1认识三角形【例题】1.如果等腰三角形的两边长分别为2和5,则它的周长为()(A)9 (B)7 (C)12 (D)9或122.现有3 cm,4 cm,7 cm,9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()(A)1 (B)2 (C)3 (D)43.如图,△ABC中,点D是BC边上的一点,且S△ACD=S△ABD,则AD为()(A)高(B)中线(C)角平分线(D)不能确定4.如图,AE⊥BC于点E,试问AE为哪些三角形的高.5.等腰三角形周长为16,一边长为6,另外两边长为.6.已知AD是△ABC的高,∠BAD=70°,∠CAD=20°,求∠BAC的度数.【练习测试】1.在下列长度的三条线段中,不能组成三角形的是()(A)2 cm,3 cm,4 cm (B)3 cm,6 cm,7 cm (C)2 cm,2 cm,6 cm (D)5 cm,6 cm,7 cm2.(2020任城区期中)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()3.若一个三角形的两边长分别是4 cm和10 cm,那么第三边的长度在以下选项中不能是()(A)6 cm (B)7 cm (C)8 cm (D)9 cm4.如图,以BC为边的三角形的个数是()(A)3 (B)4 (C)5 (D)65.如图,△ABC中,∠ABC=50°,∠ACB=70°,AD平分∠BAC,DE是△ABD的高,则∠ADE的度数是()(A)45°(B)50°(C)60°(D)70°6.如图,在△ABC中,∠C=90°,点D,E分别在边AC,AB上.若∠B=∠ADE,则下列结论不正确的是()(A)∠A和∠B互为余角(B)△ADE是直角三角形(C)∠A和∠ADE互为余角(D)∠B和∠CDE互为余角7.已知(a-5)2+|b-9|=0,那么以a,b为边长的等腰三角形的周长为()(A)19 (B)19或23 (C)23 (D)14或238.小华要从长度分别为5 cm,6 cm,11 cm,16 cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒形成的三角形的周长为cm.9.如图,已知BE和CF是△ABC的两条高,∠ABC=44°,∠ACB=72°,则∠BDC= .10.如图,在△ABC中,∠1=∠2,G为AD中点,延长BG交AC于点E,F为AB上一点,CF⊥AD于点H.下列结论:①AD是△ABC的角平分线;②BE是△ABD的AD边上的中线;③CH为△ACD边AD上的中线;④AH是△ACF的角平分线和高线.正确的有.11.如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,如果△DEF的面积是2,那么△ABC的面积为.12.一个三角形的两边长分别为5 cm和3 cm,第三边的长是整数,且周长是偶数,则第三边的长是.13.已知:在△ABC中,∠A∶∠B∶∠C=1∶3∶5,求∠A,∠B和∠C的度数,它是什么三角形?14.已知AD为△ABC的中线,AB=5 cm,且△ACD的周长比△ABD的周长少2 cm,求AC的长度.15.如图,已知AB∥CD,直线EF分别交AB,CD于点E,F,EP平分∠BEF,FP平分∠DFE.试说明:△PEF是直角三角形.16.如图所示,已知AD是△ABC的边BC上的中线.(1)作出△ABD的边BD上的高;(2)若△ABC的面积为10,求△ADC的面积;(3)若△ABD的面积为6,且BD边上的高为3,求BC的长.17.如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于点E,若∠DAC=26°,∠CBE=22°.求∠BAC的度数.18.已知a,b,c是△ABC的三边长,a=4,b=6,设三角形的周长是x.(1)求出c及x的取值范围;(2)若x是小于18的偶数.①求c的长;②判断△ABC的形状.鲁教版七年级数学上1.2图形的全等【基础练习】1.如图,与左边正方形图案属于全等的图案是( )2.如图,△AOB≌△COD,点A与点C是对应点,那么下列结论中错误的是( )(A)∠B=∠D (B)∠AOB=∠COD(C)AC=BD (D)AO=CO3.如图,△ABC≌△DEF,若∠A=50°,∠B=100°,则∠F的度数是( )(A)100°(B)60° (C)50° (D)30°4.如图,△ABD≌△EBC,若 AC=12,BE=5,则DE的长为( )(A)2 (B)3 (C)4 (D)55.如图,△OAD≌△OBC,若∠O=65°,∠C=20°,则∠DAC= .6.如图,已知△ABD≌△CAE,∠BDA=∠CEA=90°,试说明:DE=BD+CE.7.如图,已知△ABE≌△ACD.(1)如果BE=6,DE=2,求BC的长;(2)如果∠BAC=75°,∠BAD=30°,求∠DAE的度数.【综合训练】8.如图,如果△ABC≌△DEF,△DEF周长是32 cm,DE=9 cm,EF=13 cm,∠E=∠B,则AC= cm.9.如图,已知△A B C≌△A D E,点D是∠B A C的平分线上的一点,且∠BAC=60°,则∠CAE= .10.如图,△A B C≌△A D E,若∠C=35°,∠D=75°,∠D A C=25°,则∠BAD= .11.如图,C D⊥A B于点D,B E⊥A C于点E,△A B E≌△A C D,∠C=42°, AB=9,AD=6,G为AB延长线上一点.(1)求∠EBG的度数;(2)求CE的长.【提高训练】12.如图,已知△ABC≌△DBE,点D在AC上,BC与DE交于点P.(1)若∠ABE=160°,∠DBC=30°,求∠CBE的度数;(2)若AD=DC=3 cm,BC=4.5 cm,求△DCP与△BPE的周长之和.鲁教版七年级数学上1.3.1探索三角形全等的条件(边边边)【基础训练】1.下列不是利用三角形稳定性的是( )(A)伸缩晾衣架(B)三角形房架 (C)自行车的三角形车架 (D)矩形门框的斜拉条2.如图,已知AB=AD,BC=DC,若∠B=30°,∠BAC=23°,则∠ACD的度数为( )(A)120°(B)125°(C)127°(D)104°3.如图,△ABC中,AB=AC,EB=EC,则由“SSS”可以判定( )(A)△ABD≌△ACD (B)△ABE≌△ACE (C)△BDE≌△CDE (D)以上答案都不对4.如图,点B,C,F,E在同一条直线上,AB=DE,AC=DF,BC=EF,小雪根据这些条件得出了四个结论:①AB∥DE;②AC∥DF;③BF=CE;④∠1=∠2,其中正确的有( )(A)1个(B)2个(C)3个(D)4个5.如图,AC=DC,BC=EC,请你添加一个适当的条件: ,使得△ABC≌△DEC.6.如图,AB=DF,AC=DE,BE=FC,问:△ABC与△DFE全等吗?AB与DF平行吗?请说明你的理由.【综合训练】7.如图,在△ABC中,∠ACB=90°,按如下步骤操作:①以点A为圆心,任意长为半径作弧,分别交AC,AB于D,E两点;②以点C为圆心,AD长为半径作弧,交AC的延长线于点F;③以点F为圆心,DE 长为半径作弧,两弧交于点G;④作射线CG,若∠FCG=50°,则∠B为( )(A)30°(B)40° (C)50° (D)60°8.如图,已知AB=AC,BD=CD,CE=BE,E是AD上的一点,则下列结论中不成立的是( )(A)∠BDE=∠CDE (B)∠ECD=∠AEB (C)∠BAD=∠CAD (D)∠BED=∠CED9.已知:∠AOB,求作:∠AOB的平分线.作法:①以点O为圆心,适当长为半径画弧,分别交OA,OB于点M,N;②分别以点M,N为圆心,大于MN的长为半径画弧,两弧在∠AOB内部交于点C;③画射线OC.射线OC即为所求.上述作图用到了全等三角形的判定方法,这个方法是.10.如图,AB=CD,CB=AD,O为AC上任意一点,过O作直线分别交AB,CD的延长线于F,E两点,试说明:∠E=∠F.11.(核心素养—逻辑推理)如图,已知AB=CD,AC=DB,∠A与∠D相等吗?为什么?【提高训练】12.如图,在△ABC中,AC=BC,点D是AB上的一点,AE⊥CD于点E,BF⊥CD于点F,若CE=BF,AE=EF+BF.试判断AC与BC的位置关系,并说明理由.鲁教版七年级数学上1.3.2探索三角形全等的条件(角边角或角角边)【基础训练】1.如图所示,∠1=∠2,∠B=∠C,若能得到BD=CD,则所用的判定两三角形全等的依据是( )(A)角角角(B)边边边 (C)角边角(D)角角边2.如图,AB∥CD,点C是BE的中点,直接应用“ASA”定理证明△ABC≌△DCE还需要的条件是( )(A)AB=CD (B)∠ACB=∠E (C)∠A=∠D (D)AC=DE3.如图,点D在AB上,点E在AC上,且∠B=∠C,那么补充下列一个条件后,仍无法判定△ABE≌△ACD的是( )(A)AD=AE (B)∠AEB=∠ADC (C)BE=CD (D)AB=AC4.(2020东平期中)如图,已知AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是( )(A)∠1=∠2 (B)∠A=∠2(C)△ABC≌△CED (D)AB=CE5.如图所示,点E为△ABC的边AC的中点,CN∥AB,点N,E,M在同一直线上,若MB=6 cm,CN=4 cm,则 AB= .6.如图,点A,F,C,D在同一条直线上,已知AF=DC,∠A=∠D,BC∥EF.试说明:AB=DE.【综合训练】7.如图,在Rt△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC 交CD的延长线于点F,如果EF=5 cm,那么AE等于( )(A)1 cm (B)2 cm (C)3 cm (D)4 cm8.如图,△AEB,△AFC中,∠E=∠F,∠B=∠C,AE=AF,则下列结论错误的是( )(A)∠EAM=∠FAN (B)BE=CF (C)△ACN≌△ABM (D)CD=DN9.如图,C,F在BE上,若∠A=∠D,AC∥DF,AC=DF,BE=8,CF=2,则EC= .10.(2020东平期中)如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,点C作过点A的直线的垂线BD,CE,垂足为点D,E.试说明:(1)△ABD≌△CAE;(2)DE=BD+CE.11.如图,∠A=∠B,A E=B E,点D在A C边上,∠1=∠2,A E和B D相交于点O.试说明:△AEC≌△BED.【提高训练】12.(核心素养—逻辑推理)B,F,C,E在一条直线上,F B=C E,A B∥E D, AC∥FD,AD交BE于点O,AD与BE互相平分吗?为什么?鲁教版七年级数学上1.3.3探索三角形全等的条件(边角边)【基本训练】1.如图,FE=BC,DE=AB,若∠B=∠E=40°,∠F=70°,则∠A等于( )第1题图(A)40° (B)50° (C)60° (D)70°2.(2020利津期中)下列各图中a,b,c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是( )(A)甲和乙(B)乙和丙(C)甲和丙(D)只有丙3.(2020济宁附中期中)如图,在△ABC和△DEF中,已知:AC=DF,BE=CF,要使△ABC≌△DEF,还需要的条件可以是.(只填写一个条件)第3题图4.(2020利津期中)如图,在△A B C与△A E F中,A B=A E,B C=E F,∠B= ∠E,AB交EF于点D.给出下列结论:①∠EAB=∠FAC;②AF=AC;③∠C=∠EFA;④AD=AC.其中正确的结论是(填序号).5.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.试说明:BD=CE.6.如图,AC∥EG,BC∥EF,直线GE分别交BC,BA于P,D.且AC=GE,BC=FE.试说明:∠A=∠G.【综合训练】7.(2020利津期中)如图,AB∥CD,BC∥AD,AB=CD,AE=CF,其中全等三角形的对数是( )(A)4 (B)3(C)2 (D)18.如图,给出下列四个条件,AB=DE,BC=EF,∠B=∠E,∠C=∠F,从中任选三个条件能使得△ABC≌△DEF的共有( )(A)1组(B)2组(C)3组(D)4组9.(2020利津期中)如图,E,F分别是等边三角形ABC的边AB,AC上的点,且BE=AF,CE与BF交于点P.(1)试说明:CE=BF;(2)求∠BPC的度数.【提高训练】10.(探究题)如图,在△ABC中,BE,CF分别是AC,AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD,AG.试说明:(1)AD=AG;(2)AD与AG的位置关系如何?鲁教版七年级数学上1.4三角形的尺规作图【基础训练】1.尺规作图的画图工具是( )(A)刻度尺、圆规(B)三角尺和量角器(C)直尺和量角器(D)没有刻度的直尺和圆规2.利用尺规作图不能唯一作出三角形的是( )(A)已知三边(B)已知两边及夹角(C)已知两角及夹边(D)已知两边及其中一边的对角3.已知三边作三角形时,用到所学知识是( )(A)作一个角等于已知角(B)作一个角使它等于已知角的一半(C)作一线段等于已知线段(D)作一条直线的平行线或垂线4.(2019贵港)尺规作图(只保留作图痕迹,不要求写出作法):如图,已知△ABC,请根据“SAS”基本事实作出△DEF,使△DEF≌△ABC.【综合训练】5.下列选项所给条件能画出唯一△ABC的是( )(A)∠A=50°,∠B=30°,AB=2(B)AC=4,AB=5,∠B=60°(C)∠C=90°,AB=10(D)AC=3,AB=4,BC=86.如图,通过(1)画∠DA′E=∠A;(2)在射线 A′D 上截取A′B′=AB,在射线A′E上截取A′C′=AC;(3)连接B′C′得到的△A′B′C′≌△ABC的依据是.7.如图,在△ABC中,∠B>∠C,小明以BC为一边作△DBC,使它与△ABC全等,并且点D与点A不重合,这样的三角形可以作个.8.如图,已知a和∠α,用尺规作一个三角形A B C,使A B=A C=2a, ∠BAC=180°-∠α(不写作法,但要保留作图痕迹).【提高训练】9.(分类讨论题)已知一个三角形的两条边长分别是 1 cm 和2 cm,一个内角为40°(请在图中标出已知角的度数和已知边的长度,用直尺和圆规作图,不写作法,保留作图痕迹).(1)如图,请你用直尺和圆规画出一个满足题设条件的三角形;(2)你是否还能画出既满足题设条件,又与(1)中所画的三角形不全等的三角形?若能,则用直尺和圆规画出一个这样的三角形;若不能,则说明理由.鲁教版七年级数学上1.5利用三角形全等测距离【基础训练】1.在一次小制作活动中,艳艳剪了一个燕尾图案,她用刻度尺量得AB=AC,BO=CO,为了保证图案的美观,她准备再用量角器量一下∠B和∠C是否相等.小麦走过来说:“不用量了,肯定相等.因为△ABO≌△ACO.”小麦利用的判定三角形全等的方法是( )(A)ASA (B)SAS (C)SSS (D)AAS2.如图,欲测量内部无法到达的古塔相对两点A,B间的距离,可延长AO至C,使CO=AO,延长BO至D,使DO=BO,则△COD≌△AOB,从而通过测量CD就可测得A,B间的距离,其全等的根据是( )(A)SAS (B)ASA (C)AAS (D)SSS3.如图,AA′,BB′表示两根长度相同的木条,若O是AA′,BB′的中点,经测量AB=9 cm,则容器的内径A′B′为( )(A)8 cm (B)9 cm (C)10 cm (D)11 cm4.在新修的花园小区中,有一条“Z”字形绿色长廊ABCD(如图所示),其中AB∥CD,在AB,BC,CD三段绿色长廊上各修建一凉亭E,M,F,且BE=CF,点M是BC的中点,在凉亭M与F之间有一池塘,不能直接到达,要想知道M与F之间的距离,要测出线段的长度.5.如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AB∥DE,∠A=∠D.(1)试说明:△ABC≌△DEF;(2)若BE=10 cm,BF=3 cm,求FC的长度.【综合训练】6.如图,是工人师傅用同一种材料制成的金属框架,已知∠B=∠E,AB=DE,BF=EC,其中△ABC的周长为24 cm,CF=3 cm,则制成整个金属框架所需这种材料的总长度为.7.如图,两根旗杆间相距12 m,某人从点B沿BA走向点A,一段时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=MD.已知旗杆AC的高为3 m,该人的运动速度为1 m/s,则这个人运动到点M所用时间是s.第7题图8.如图,O为码头,A,B两个灯塔与码头的距离相等,OA,OB为海岸线,一轮船从码头开出,计划沿∠AOB的平分线航行,航行途中,测得轮船与灯塔A,B的距离相等,此时轮船有没有偏离航线?画出图形并说明你的理由.9.如图,A,B两点分别位于一个假山两边,请你利用全等三角形的知识设计一种测量A,B间距离的方案,并说明其中的道理.(1)测量方案:(2)理由:【提高训练】10.某同学根据数学知识原理制作了如图所示的一个测量工具——拐尺,其中O为AB的中点,CA⊥AB,BD⊥AB,CA=BD,现要测量一透明隔离房间的深度x,如何使用此测量工具,说明理由.。
鲁教版五四制七年级上册数学全册各个单元测试卷(及答案)

鲁教版五四制七年级上册数学全册试卷(五套单元试卷+一套期末测试卷)第一章测试卷一、选择题(每题3分,共30分)1.若三角形的两个内角的和是85°,那么这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.不能确定2.如图,AE⊥BC于点E,BF⊥AC于点F,CD⊥AB于点D,则△ABC中AC 边上的高是线段()A.AE B.CD C.BF D.AF3.如图,△ABC≌△EDF,AF=20,EC=8,则AE等于()A.6B.8C.10D.124.下列各条件中,能作出唯一的△ABC的是()A.AB=4,BC=5,AC=10B.AB=5,BC=4,∠A=30°C.∠A=90°,AB=10D.∠A=60°,∠B=50°,AB=55.如图,AB∥ED,CD=BF,若要说明△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.AB=ED C.∠B=∠E D.不用补充6.如图,在△ABC中,∠ABC,∠ACB的平分线分别为BE,CD,BE与CD相交于点F,∠A=60°,则∠BFC等于()A.118°B.119°C.120°D.121°7.如果某三角形的两边长分别为5和7,第三边的长为偶数,那么这个三角形的周长可以是()A.14B.17C.22D.268.如图,下列四个条件:①BC=B′C;②AC=A′C;③∠A′CA=∠B′CB;④AB =A′B′.从中任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1B.2C.3D.49.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC ,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF等于()A.1B.2C.3D.410.如图,△ABC 的三个顶点和它内部的点P 1,把△ABC 分成3个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P 1,P 2,把△ABC 分成5个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P 1,P 2,P 3,把△ABC 分成7个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P 1,P 2,P 3,…,P n ,把△ABC 分成()个互不重叠的小三角形.A .2nB .2n +1C .2n -1D .2(n +1)二、填空题(每题3分,共24分)11.一个三角形的其中两个内角为88°,32°,则这个三角形的第三个内角的度数为________.12.要测量河两岸相对的两点A ,B 间的距离(AB 垂直于河岸BF ),先在BF 上取两点C ,D ,使CD =CB ,再作出BF 的垂线DE ,且使A ,C ,E 三点在同一条直线上,如图,可以得到△EDC ≌△ABC ,所以ED =AB .因此测得ED 的长就是AB 的长.判定△EDC ≌△ABC 的理由是____________.13.如图,E 点为△ABC 的边AC 的中点,∥AB ,若MB =6 cm ,=4 cm ,则AB=________.14.用直尺和圆规作一个角等于已知角,如图所示,则要说明∠A′O′B′=∠AOB,需要说明△C′O′D′≌△COD,则这两个三角形全等的依据是____________(写出全等的简写).15.已知△ABC的三边长分别为a,b,c,若a=3,b=4,则c的取值范围是____________;已知四边形EFMN的四边长分别为e,f,m,n,若e=3,f =4,n=10,则m的取值范围是____________.16.如图,在△ABC中,AD是BC边上的高,BE是AC边上的高,且AD,BE 交于点F,若BF=AC,CD=3,BD=8,则线段AF的长度为________.17.如图是由相同的小正方形组成的网格,点A,B,C均在格点上,连接AB,AC,则∠1+∠2=________.1(AB 18.如图,已知四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且AE=2+AD),若∠D=115°,则∠B=________.三、解答题(19题7分,20,21题每题8分,25题13分,其余每题10分,共66分)19.如图,在△ABC中,AD是角平分线,∠B=54°,∠C=76°.(1)求∠ADB和∠ADC的度数;(2)若DE⊥AC,求∠EDC的度数.20.如图,已知线段m,n,如果以线段m,n分别为等腰三角形的底或腰作三角形,能作出几个等腰三角形?请作出.不写作法,保留作图痕迹.21.如图,在△ABC中,AB=AC,D在AC的延长线上,试说明:BD-BC<AD -AB.22.如图,是一座大楼相邻的两面墙,现需测量外墙根部两点A,B之间的距离(人不能进入墙内测量).请你按以下要求设计一个方案测量A,B的距离.(1)画出测量图案;(2)写出简要的方案步骤;(3)说明理由.23.如图,已知△ABC≌△ADE,AB与ED交于点M,BC与ED,AD分别交于点F,N.请写出图中两对全等三角形(△ABC≌△ADE除外),并选择其中的一对加以说明.24.如图,在R t△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5 cm,求线段AE的长.25.已知点P是R t△ABC斜边AB上一动点(不与点A,B重合),分别过点A,B 向直线CP作垂线,垂足分别为点E,F,点Q为斜边AB的中点.(1)如图①,当点P与点Q重合时,AE与BF的位置关系是________,QE与QF的数量关系是________;(2)如图②,当点P在线段AB上且不与点Q重合时,试判断QE与QF的数量关系,并说明理由.(温馨提示:直角三角形斜边上的中线等于斜边的一半)答案一、1.A2.C :因为BF ⊥AC 于点F ,所以△ABC 中AC 边上的高是线段BF ,故选C.3.A :因为△ABC ≌△EDF ,所以AC =EF .所以AE =CF .因为AF =20,EC =8,所以AE =CF =6.故选A.4.D5.B :由已知条件AB ∥ED 可得,∠B =∠D ,由CD =BF 可得,BC =DF ,再补充条件AB =ED ,可得△ABC ≌△EDF ,故选B.6.C 7.C 8.B119.B :易得S △ABE =3×12=4,S △ABD =2×12=6,所以S △ADF -S △BEF =S △ABD -S △ABE =2.10.B :△ABC 的三个顶点和它内部的点P 1,把△ABC 分成的互不重叠的小三角形的个数=3+2×0;△ABC 的三个顶点和它内部的点P 1,P 2,把△ABC 分成的互不重叠的小三角形的个数=3+2×1;△ABC 的三个顶点和它内部的点P 1,P 2,P 3,把△ABC 分成的互不重叠的小三角形的个数=3+2×2,所以△ABC的三个顶点和它内部的点P 1,P 2,P 3,…,P n ,把△ABC 分成的互不重叠的小三角形的个数=3+2(n -1)=2n +1.二、11.60°12.ASA :由题意可知,∠ECD =∠ACB ,∠EDC =∠ABC =90°,CD =CB ,故可用ASA 说明两个三角形全等.13.10 cm :由∥AB ,点E 为AC 的中点,可得∠EAM =∠E ,AE =CE .又因为∠AEM =∠CEN ,所以△AEM ≌△CEN .所以AM ==4 cm.所以AB =AM +MB =4+6=10(cm).14.SSS15.1<c <7;3<m <17:由三角形的三边关系得第三边的取值范围为4-3<c <4+3,即1<c <7.同理,得四边形EFMN 对角线EM 的取值范围为4-3<EM <4+3,即1<EM <7.所以10-7<m <10+7,即3<m <17.16.5:由已知可得,∠ADC =∠BDF =∠BEC =90°,所以∠DAC =∠DBF .又因为AC =BF ,所以△ADC ≌△BDF .所以AD =BD =8,DF =DC =3.所以AF =AD -DF =8-3=5.17.90°:如图,由题意可知,∠ADC =∠E =90°,AD =BE ,CD =AE ,所以△ADC ≌△BEA .所以∠CAD =∠2.所以∠1+∠2=∠1+∠CAD =90°.18.65°:过点C 作CF ⊥AD ,交AD 的延长线于点F .因为AC 平分∠BAD ,所以∠CAF =∠CAE .又因为CF ⊥AF ,CE ⊥AB ,所以∠AFC =∠AEC =90°.在⎧∠AFC =∠AEC ,△CAF 和△CAE 中,⎨∠CAF =∠CAE ,⎩AC =AC ,1所以△CAF ≌△CAE (AAS).所以FC =EC ,AF =AE .又因为AE =2(AB +AD ),1所以AF =2(AE +EB +AD ),即AF =BE +AD .又因为AF =AD +DF ,所以DF⎧CF =CE ,=BE .在△FDC 和△EBC 中,所⎨∠CFD =∠CEB ,所以△FDC ≌△EBC (SAS).⎩DF =BE ,以∠FDC =∠EBC .又因为∠ADC =115°,所以∠FDC =180°-115°=65°.所以∠B =65°.三、19.解:(1)因为∠B =54°,∠C =76°,所以∠BAC =180°-54°-76°=50°.因为AD 平分∠BAC ,所以∠BAD =∠CAD =25°.所以∠ADB =180°-54°-25°=101°.所以∠ADC =180°-101°=79°.(2)因为DE ⊥AC ,所以∠DEC =90°.所以∠EDC =180°-90°-76°=14°.20.解:能作出两个等腰三角形,如图所示.21.解:因为AB =AC ,所以AD -AB =AD -AC =CD .因为BD -BC <CD ,所以BD -BC <AD -AB .22.解:(1)如图所示.(2)延长BO 至D ,使DO =BO ,连接AD ,则AD 的长即为A ,B 间的距离.(3)因为AO =AO ,∠AOB =∠AOD =90°,BO =DO ,所以△AOB ≌△AOD .所以AD =AB .23.解:△AEM ≌△A ,△BMF ≌△DNF ,△ABN ≌△ADM .(任写其中两对即可)选择△AEM ≌△A :因为△ABC ≌△ADE ,所以AC =AE ,∠C =∠E ,∠CAB⎧∠E =∠C ,=∠EAD .所以∠EAM =∠CAN .在△AEM 和△A 中,⎨AE =AC ,所以⎩∠EAM =∠CAN ,△AEM ≌△A (ASA).选择△ABN ≌△ADM :因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D .又因为∠BAN =∠DAM ,所以△ABN ≌△ADM (ASA).选择△BMF ≌△DNF :因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D .又因为∠BAN =∠DAM ,所以△ABN ≌△ADM (ASA).所以AN =AM .所以BM =DN .又因为∠B =∠D ,∠BFM =∠DFN ,所以△BMF ≌△DNF (AAS).(任选一对进行说明即可)24.解:因为∠ACB =90°,所以∠ECF +∠BCD =90°.因为CD ⊥AB ,所以∠BCD +∠B =90°.所以∠ECF =∠B .在△ABC和△FCE中,∠B=∠ECF,BC=CE,∠ACB=∠FEC=90°,所以△ABC≌△FCE(ASA).所以AC=FE.因为EC=BC=2 cm,EF=5 cm,所以AE=AC-CE=FE-BC=5-2=3(cm).25.解:(1)AE∥BF;QE=QF(2)QE=QF.理由:如图,延长EQ交BF于点D,由题意易得AE∥BF,所以∠AEQ=∠BDQ.在△AEQ和△BDQ中,∠AQE=∠BQD,∠AEQ=∠BDQ,AQ=BQ,所以△AEQ≌△BDQ.所以EQ=DQ.因为∠DFE=90°,所以QE=QF.第二章测试卷一、选择题(每题3分,共30分)1.下面所给的图中是轴对称图形的是()2.如图,△ABC和△ADE关于直线l对称,下列结论:①△ABC≌△ADE;②l 垂直平分DB;③∠C=∠E;④BC与DE的延长线的交点一定落在直线l上.其中错误的有()A.0个B.1个C.2个D.3个3.下列说法正确的是()A.等腰三角形的一个角的平分线是它的对称轴B.有一个内角是60°的三角形是轴对称图形C.等腰直角三角形是轴对称图形,它的对称轴是斜边上的中线所在的直线D.等腰三角形有3条对称轴4.如图是小明在平面镜里看到的电子钟示数,这时的实际时间是() A.12:01B.10:51C.10:21D.15:105.如图,在△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48°B.36°C.30°D.24°6.如图,A,B,C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.AC,BC两边高的交点处B.AC,BC两边中线的交点处C.AC,BC两边垂直平分线的交点处D.∠A,∠B两内角平分线的交点处7.如图,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是()8.如图,已知:AB-AC=2 cm,BC的垂直平分线交AB于点D,交BC于点E,△ACD的周长为14 cm,则AC的长是()A.6B.7C.8D.99.如图,已知D为△ABC边AB的中点,E在AC上,将△ABC沿着DE折叠,使A点落在BC上的F处,若∠B=65°,则∠BDF等于()A.65°B.50°C.60°D.57.5°10.如图,已知AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED 的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE =DF;②DB=DC;③AD⊥BC;④AC=3BF.其中正确的结论共有()A.4个B.3个C.2个D.1个二、填空题(每题3分,共24分)11.有些字母是轴对称图形,在E,H,I,M,N这5个字母中,是轴对称图形的是__________.12.我国传统的木结构房屋,窗子常用各种图案装饰,如图是一种常见的图案,这种图案有________条对称轴.13.如图是一个经过改造的台球桌面示意图(该图由相同的小正方形组成),图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入________号球袋.14.等腰三角形一腰上的高与底边所夹的角为∠α,则这个等腰三角形的顶角为________.15.如图,在△ABC中,AB=AC,AD⊥BC于点D,点E,F为AD上的两点,若△ABC的面积为12,则图中阴影部分的面积是________.16.如图,在直角三角形ABC中,∠B=90°,AD平分∠BAC,交边BC于点D,如果BD=2,AC=6,那么△ADC的面积等于________.17.如图,在△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O 恰好重合,则∠OEC=________.18.小威在计算时发现:11×11=121,111×111=12 321,1 111×1 111=1 234 321,…,他从中发现了一个规律.请根据他所发现的规律很快地写出111 111 111×111 111 111=________________________________________________________.三、解答题(19题8分,20~21题每题10分,24题14分,其余每题12分,共66分)19.如图,在正方形网格上有一个△ABC.(1)画△ABC关于直线MN的对称图形(不写画法);(2)若网格上的每个小正方形的边长为1,求△ABC的面积.20.两个城镇A,B与两条公路l1,l2的位置如图所示,电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在图中用尺规作图找出所有符合条件的点C(不写已知、求法、作法,只保留作图痕迹).21.如图,在等边三角形ABC中,∠ABC,∠ACB的平分线相交于点O,作BO,CO的垂直平分线分别交BC于点E和点F.小明说:“E,F是BC的三等分点.”你同意他的说法吗?请说明理由.22.如图,在△ABC中,AB=AC,AD⊥BC于点D,CE⊥AB于点E,AE=CE.试说明:(1)△AEF≌△CEB;(2)∠ABF=2∠FBD.23.操作与探究.(1)如图,分别画出①中“”和“”关于直线l的对称图形(画出示意图即可);(2)如图,②中小冬和小亮上衣上印的字母分别是什么?(3)把字母“”和“”写在薄纸上,观察纸的背面,写出你看到的字母背影;(4)小明站在三个学生的身后,这三个学生正向前方某人用手势示意一个三位数,从小明站的地方看(如图③所示),这个三位数是235.请你判断出他们示意的真实三位数是多少?24.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(不与点B,C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=115°时,∠BAD=________°,∠DEC=________°,点D从B向C运动时,∠BDA逐渐变________(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE?请说明理由;(3)在点D的运动过程中,是否存在△ADE是等腰三角形的情形?若存在,请直接写出此时∠BDA的度数;若不存在,请说明理由.答案一、1.A 2.A 3.C 4.B 5.A 6.C 7.A 8.A9.B :因为△DEF 是由△DEA 沿直线DE 翻折变换而来,所以AD =FD .因为D是AB 边的中点,所以AD =BD .所以BD =FD .所以∠B =∠BFD .因为∠B =65°,所以∠BDF =180°-∠B -∠BFD =180°-65°-65°=50°.故选B.10.A :因为BF ∥AC ,所以∠C =∠CBF .因为BC 平分∠ABF ,所以∠ABC =∠CBF .所以∠C =∠ABC .所以AB =AC .因为AD 是△ABC 的角平分线,所以⎧∠C =∠DBF ,BD =CD ,AD ⊥BC .故②③正确.在△CDE 与△BDF 中,⎨CD =BD ,⎩∠CDE =∠BDF ,所以△CDE ≌△BDF .所以DE =DF ,CE =BF .故①正确;因为AE =2BF ,所以AC =3BF .故④正确.故选A.二、11.E ,H ,I ,M12.213.1:如图,该球最后将落入1号球袋.14.2∠α15.6:因为AB =AC ,AD ⊥BC ,所以△ABC 关于直线AD 对称.所以S △BEF1=S △CEF .因为△ABC 的面积为12,所以图中阴影部分的面积=2S △ABC =6.16.6:过点D 作DE ⊥AC 于点E ,因为AD 平分∠BAC ,所以DE =BD =2.11所以S △ADC =2AC ·DE =2×6×2=6.17.108°18.12 345 678 987 654 321三、19.解:(1)如图,利用图中格点,可以直接确定出△ABC 中各顶点的对称点的位置,从而得到△ABC 关于直线MN 的对称图形,即为△A ′B ′C ′.111(2)S △ABC =4×6-2×4×1-2×3×6-2×2×4=9.20.解:如图.点C 1,C 2即为所求作的点.21.解:同意.理由如下:如图,连接OE ,OF .由题意知,BE =OE ,CF =OF ,∠OBC =∠OCB =30°,所以∠BOE =∠OBC =30°,∠COF =∠OCB =30°,∠BOC =120°.所以∠EOF =60°,∠OEF =60°,∠OFE =60°.所以△OEF 是等边三角形.所以OE =OF =EF =BE =CF .所以E ,F 是BC 的三等分点.22.解:(1)因为AD⊥BC,CE⊥AB,所以∠AEF=∠CEB=90°,∠AFE+∠EAF=90°,∠CFD+∠ECB=90°.又因为∠AFE=∠CFD,所以∠EAF=∠ECB.在△AEF和△CEB中,∠AEF=∠CEB,AE=CE,∠EAF=∠ECB,所以△AEF≌△CEB(ASA).(2)由△AEF≌△CEB,得EF=EB,所以∠EBF=∠EFB.在△ABC中,AB=AC,AD⊥BC,所以BD=CD.所以FB=FC.所以∠FBD=∠FCD.因为∠EFB=180°-∠BFC=∠FBD+∠FCD=2∠FBD,所以∠EBF=2∠FBD,即∠ABF=2∠FBD.23.解:(1)图略.(2)“”和“”.(3)“”和“”.(4)他们示意的真实三位数是235.24.解:(1)25;115;小(2)当DC=2时,△ABD≌△DCE.理由如下:因为DC=2,AB=2,所以DC=AB.因为AB=AC,∠B=40°,所以∠C=∠B=40°.因为∠ADB=180°-∠ADC=∠DAC+∠C,∠DEC=180°-∠AED=∠DAC+∠ADE,且∠C=40°,∠ADE=40°,所以∠ADB=∠DEC.在△ABD与△DCE中,∠ADB=∠DEC,∠B=∠C,AB=DC,所以△ABD≌△DCE(AAS).(3)存在,∠BDA=110°或∠BDA=80°.第三章测试卷一、选择题(每题3分,共30分)1.下列各组数中,能够作为直角三角形的三边长的一组是() A.1,2,3B.2,3,4C.4,5,6D.3,4,52.在Rt△ABC中,∠C=90°,若角A,B,C所对的三边分别为a,b,c,且a =7,b=24,则c的长为()A.26B.18C.25D.213.如图,阴影部分是一个正方形,此正方形的面积是()A.16B.8C.4D.24.已知四个三角形分别满足下列条件:①一个内角等于另两个内角之和;②三个内角度数之比为3∶4∶5;③三边长分别为7,24,25;④三边长之比为5∶12∶13.其中直角三角形有()A.1个B.2个C.3个D.4个5.若△ABC的三边长分别为a,b,c,且满足(a-b)(a2+b2-c2)=0,则△ABC 是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形6.如图,直线l上有三个正方形a,b,c,若a,b的面积分别为5和13,则c 的面积为()A.4B.8C.12D.187.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线上的D′处.若AB=3,AD=4,则ED的长为()3 A. 2B.3C.14D.38.如图,在△ABC中,AD是BC边上的中线,AC=17,BC=16,AD=15,则△ABC的面积为()A.128B.136C.120D.2409.如图是台阶的示意图,已知每个台阶的宽度都是30 cm,每个台阶的高度都是15 cm,则A,B两点之间的距离等于()A.195 cm B.200 cm C.205cm D.210 cm10.如图是一个圆柱形的饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一根到达底部的直吸管在罐内部分的长度a(罐壁的厚度和小圆孔的大小忽略不计)的范围是()A.12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤13二、填空题(每题3分,共24分)11.在Rt△ABC中,a,b为直角边,c为斜边,若a2+b2=16,则c=________.12.如图,在△ABC中,AB=5 cm,BC=6 cm,BC边上的中线AD=4 cm,则∠ADB=________.13.如图,一架长为4 m的梯子,一端放在离墙脚2.4 m处,另一端靠墙,则梯子顶端离墙脚的距离是________.14.飞机在空中水平飞行,某一时刻刚好飞到一个男孩正上方4 000 m处,过了10 s,飞机距离这个男孩头顶5 000 m,则飞机平均每小时飞行__________.15.已知a,b,c是△ABC的三边长,且满足关系(c2-a2-b2)2+|a-b|=0,则△ABC 的形状为____________.16.在△ABC中,AB=13 cm,AC=20 cm,BC边上的高为12 cm,则△ABC的面积为________.17.如图,在一根长90 cm的灯管上缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4 cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为________.18.如图,在Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=5,BC=12,则AD的长为________.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.如图,在△ABC中,AD⊥BC于D,AD=12,BD=16,CD=5.(1)求△ABC的周长;(2)判断△ABC是否是直角三角形.20.如图,在△ADC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB.若AB=20,求△ABD的面积.21.如图,∠ABC=90°,AB=6 cm,AD=24 cm,BC+CD=34 cm,C是直线l 上一动点,请你探索当点C离点B多远时,△ACD是一个以CD为斜边的直角三角形.22.若△ABC的三边长a,b,c满足a2+b2+c2+50=6a+8b+10c,判断△ABC 的形状.23.如图,在△ABC中,AB:BC:CA=3:4:5,且周长为36 cm,点P从点A 开始沿AB边向点B以1 cm/s的速度移动,点Q从点B开始沿BC边向点C 以2 cm/s的速度移动,如果同时出发,过3 s时,△BPQ的面积为多少?24.如图,圆柱形玻璃容器高19 cm,底面周长为60 cm,在外侧距下底1.5 cm 的点A处有一只蜘蛛,在蜘蛛正对面的圆柱形容器的外侧,距上底1.5 cm处的点B处有一只苍蝇,蜘蛛急于捕捉苍蝇充饥,请你帮蜘蛛计算它沿容器侧面爬行的最短距离.25.如图,甲是一个直角三角形ABC,它的两条直角边长分别为a,b,斜边长为c.如图乙、丙那样分别取四个与直角三角形ABC全等的三角形,放在边长为a+b的正方形内.(1)由图乙、图丙,可知①是以________为边长的正方形,②是以________为边长的正方形,③的四条边长都是________,且每个角都是直角,所以③是以________为边长的正方形;(2)图乙中①的面积为________,②的面积为________,图丙中③的面积为________;(3)图乙中①②面积之和为________;(4)图乙中①②的面积之和与图丙中③的面积有什么关系?为什么?由此你能得到关于直角三角形三边长的关系吗?答案一、1.D 2.C 3.B 4.C 5.D 6.B 7.A 8.C9.A 10.A 二、11.412.90°13.3.2 m 14.1 080 km 15.等腰直角三角形16916.126 cm 2或66 cm 217.150 cm 18.24三、19.解:(1)因为AD ⊥BC ,所以△ABD 和△ACD 均为直角三角形.所以AB 2=AD 2+BD 2,AC 2=AD 2+CD 2.又因为AD =12,BD =16,CD =5,所以AB =20,AC =13.所以△ABC 的周长为20+13+16+5=54.(2)由(1)知AB =20,AC =13,BC =21,因为AB 2+AC 2=202+132=569,BC 2=212=441,所以AB 2+AC 2≠BC 2.所以△ABC 不是直角三角形.20.解:在△ADC 中,因为AD =15,AC =12,DC =9,所以AC 2+DC 2=122+92=152=AD 2.所以△ADC 是直角三角形,且∠C =90°.在Rt △ABC 中,AC 2+1BC 2=AB 2,所以BC =16.所以BD =BC -DC =16-9=7.所以S △ABD =2×7×12=42.21.解:设当BC =x cm 时,△ACD 是一个以CD 为斜边的直角三角形.因为BC+CD =34 cm ,所以CD =(34-x )cm.因为∠ABC =90°,AB =6 cm ,所以在Rt △ABC 中,由勾股定理得AC 2=AB 2+BC 2=36+x 2.在Rt △ACD 中,AD =24 cm ,由勾股定理得AC 2=CD 2-AD 2=(34-x )2-576,所以36+x 2=(34-x )2-576.解得x =8.所以当点C 离点B 8 cm 时,△ACD 是一个以CD 为斜边的直角三角形.22.解:因为a 2+b 2+c 2+50=6a +8b +10c ,所以a 2+b 2+c 2-6a -8b -10c +50=0,即(a -3)2+(b -4)2+(c -5)2=0.所以a =3,b =4,c =5.因为32+42=52,即a 2+b 2=c 2,所以根据勾股定理的逆定理可判定△ABC 是直角三角形.:本题利用配方法,先求出a ,b ,c 的值,再利用勾股定理的逆定理进行判断.23.解:设AB 为3x cm ,则BC 为4x cm ,AC 为5x cm.因为△ABC 的周长为36 cm ,所以AB +BC +AC =36 cm ,即3x +4x +5x =36.解得x =3.所以AB =9 cm ,BC =12 cm ,AC =15 cm.因为AB 2+BC 2=AC 2,所以△ABC 是直角三角形,且∠B =90°.过3 s 时,BP =9-3×1=6(cm),BQ =2×3=6(cm),11所以S △BPQ =2BP ·BQ =2×6×6=18(cm 2).故过3 s 时,△BPQ 的面积为18 cm 2.24.解:如图,将圆柱侧面展开成长方形MNQP ,过点B 作BC ⊥MN 于点C ,连接AB ,则线段AB 的长度即为所求的最短距离.在Rt △ACB 中,AC =MN -AN -CM =16 cm ,BC 的长等于底面周长的一半,即BC =30 cm.由勾股定理得,AB 2=AC 2+BC 2=162+302=1 156=342,所以AB =34 cm.故蜘蛛沿容器侧面爬行的最短距离为34 cm.25.解:(1)a ;b ;c ;c (2)a 2;b 2;c 2(3)a 2+b 2(4)图乙中①②的面积之和与图丙中③的面积相等.由大正方形的边长为a +b ,得大正方形的面积为(a +b )2,图乙中把大正方形分成了四部分,分别是边长为a 的正方形,边长为b 的正方形,还有两个长为a ,宽为b 的长方形.根12据面积相等得(a +b )2=a 2+b 2+2ab .由图丙可得(a +b )2=c 2+4×ab .所以a +2b 2=c 2.能得到关于直角三角形三边长的关系:两直角边的平方和等于斜边的平方.第四章测试卷一、选择题(每题3分,共30分)1.9的算术平方根是()A.±3B.3 C.-3 D.3222.下列4个数:9,7,π,(3)0,其中无理数是()A.922B.7C.πD.(3)03.下列各式中正确的是()A.497=±14412B.-3273-8=-2C.-9=-33D.(-8)2=44.已知a+2+|b-1|=0,那么(a+b)2 018的值为()A.1B.-1C.32 018D.-32 0185.若平行四边形的一边长为2,面积为45,则此边上的高介于() A.3与4之间B.4与5之间C.5与6之间D.6与7之间6.设边长为a的正方形的面积为2.下列关于a的四种结论:①a是2的算术平方根;②a是无理数;③a可以用数轴上的一个点来表示;④0<a<1.其中正确的是()A.①②C.①②③B.①③D.②③④7.实数a,b在数轴上对应点的位置如图所示,则化简a2-|a+b|的结果为() A.2a+b B.-2a+b C.b D.2a-b8.有一个数值转换器,原理如图所示,当输入x为64时,输出y的值是()A.4C.33B.43D.29.一个正方体木块的体积是343 cm3,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是()74949147A.2cm2B.4cm2C.8cm2D.2cm210.如图,数轴上A,B两点表示的实数分别为1和3,若点A关于点B的对称点为点C,则点C所表示的实数为()A.23-1B.1+3C.2+3D.22+1二、填空题(每题3分,共24分)11.6的相反数是________;绝对值等于2的数是________.12.一个数的平方根与这个数的立方根相等,那么这个数是________.313.估算比较大小:(1)-10________-3.2;(2)130________5.314.若2x+7=3,(4x+3y)3=-8,则x+y=________.15.点A在数轴上和表示1的点相距6个单位长度,则点A表示的数为________.16.若两个连续整数x,y满足x<5+1<y,则x+y的值是________.17.若x,y为实数,且|x-2|+y+3=0,则(x+y)2 017的值为________.18.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[3]=1.现对72第一次第二次第三次进行如下操作:72――→[72]=8――→[8]=2――→[2]=1,这样对72只需进行3次操作后变为1,类似地,对81只需进行________次操作后变为1;只需进行3次操作后变为1的所有正整数中,最大的是________.三、解答题(19题16分,20题12分,24、25题每题10分,其余每题6分,共66分)19.计算:(1)(-1)2 018+16-(3)-(-2)+(-2)--82;(4)2+|3-32|-(-5)2.20.求下列各式中未知数的值:(1)|a -2|=5;(2)4x 2=25;(3)(x -0.7)3=0.0272294;(2)132+0.5-8;43|a|-|a+b|+(c-a)2 21.已知a,b,c在数轴上对应点的位置如图所示,化简:+|b-c|.322.若实数a,b互为相反数,c,d互为倒数,求2(a+b)+8c d的值.23.已知a,b,c是△ABC的三边长,化简:(a+b+c)2-(b+c-a)2+(c-b-a)2.24.我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;33(2)若1-2x与3x-5互为相反数,求1-x的值.25.全球气候变暖导致一些冰川融化并消失.在冰川消失12年后,一种低等植物苔藓就开始在岩石上生长.每一个苔藓都会长成近似圆形,苔藓的直径和冰川消失后经过的时间近似地满足如下的关系式:d=7×t-12(t≥12).其中d代表苔藓的直径,单位是厘米;t代表冰川消失后经过的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35厘米,问冰川约是在多少年前消失的?答案一、1.B 2.C3.D :A 中正确.4.A 5.B6.C:∵a 2=2,a >0,∴a =2≈1.414,即a >1,故④错误.37.C 8.B :64的立方根是4,4的立方根是 4.9.D 10.A二、11.-6;±212.013.(1)>(2)>14.-115.1-6或1+6:数轴上到某个点距离为a (a >0)的点有两个,易忽略左边的点而漏解.注意运用数形结合思想,利用数轴帮助分析.16.7:∵2<5<3,∴3<5+1<4.∵x <5+1<y ,且x ,y 为两个连续整数,∴x =3,y =4.∴x +y =3+4=7.17.-1:∵|x -2|+y +3=0,∴|x -2|=0,y +3=0,∴x =2,y =-3.∴(x +y )2 017=[2+(-3)]2 017=(-1)2 017=-1.18.3;255三、19.解:(1)(-1)2 018+16-(2)937=1+4-42=2.3497273=;B 中--144128=2;C 中-9无算术平方根;只有D1132+0.5-8=42+0.5-2=-1.3(3)-(-2)2+(-2)2--82=-4+2-(-4)=2.(4)2+|3-32|-(-5)2=2+(32-3)-5=2+32-3-5=32-6.20.解:(1)由|a -2|=5,得a -2=5或a -2=- 5.当a -2=5时,a =5+2;当a -2=-5时,a =-5+2.255(2)因为4x 2=25,所以x 2=4.所以x =±2.(3)因为(x -0.7)3=0.027,所以x -0.7=0.3.所以x =1.21.解:由数轴可知b <a <0<c ,所以a +b <0,c -a >0,b -c <0.所以原式=-a -[-(a +b )]+(c -a )+[-(b -c )]=-a +a +b +c -a -b +c =-a +2c .322.解:由已知得a +b =0,cd =1,所以原式=0+8=2.23.解:因为a ,b ,c 是△ABC 的三边长,所以a +b +c >0,b +c -a >0,c -b -a <0.所以原式=a +b +c -(b +c -a )+(a +b -c )=3a +b -c .24.解:(1)因为2+(-2)=0,而且23=8,(-2)3=-8,有8+(-8)=0,所以结论成立.所以“若两个数的立方根互为相反数,则这两个数也互为相反数”是成立的.(2)由(1)验证的结果知,1-2x +3x -5=0,所以x =4,所以1-x =1-2=-1.25.解:(1)当t =16时,d =7×16-12=7×2=14(厘米).答:冰川消失16年后苔藓的直径为14厘米.(2)当d =35时,t -12=5,即t -12=25,解得t =37.答:如果测得一些苔藓的直径是35厘米,冰川约是在37年前消失的.第五章测试卷一、选择题(每题3分,共30分)1.点P(4,3)所在的象限是()A.第一象限B.第二象限 C.第三象限 D.第四象限2.根据下列表述,能确定位置的是()A.红星电影院2排C.北偏东30°B.北京市四环路D.东经118°,北纬40°3.如图,在直角坐标系中,卡片盖住的点的坐标可能是() A.(2,3)B.(-2,1)C.(-2,-2.5)D.(3,-2)4.点P(-2,3)关于x轴对称的点的坐标是()A.(-3,2)B.(2,-3)C.(-2,-3)D.(2,3)5.已知点A(-1,-4),B(-1,3),则()A.点A,B关于x轴对称B.点A,B关于y轴对称C.直线AB平行于y轴D.直线AB垂直于y轴6.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(-2,-2),“马”位于点(1,-2),则“兵”位于点()A.(-1,1)B.(-2,-1)C.(-4,1)D.(1,2)7.如图,将长为3的长方形ABCD放在平面直角坐标系中,AD∥x轴,若点D 的坐标为(6,3),则点A的坐标为()A.(5,3)B.(4,3)C.(4,2)D.(3,3)8.在平面直角坐标系xOy中,若点A的坐标为(-3,3),点B的坐标为(2,0),则三角形ABO的面积是()A.15B.7.5C.6D.39.已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是()A.(3,3)B.(3,-3)C.(6,-6)D.(3,3)或(6,-6)10.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位长度,第2步向右走2个单位长度,第3步向上走1个单位长度,第4步向右走1个单位长度,……以此类推,第n步的走法是:当n能被3整除时,向上走1个单位长度;当n被3除,余数为1时,向右走1个单位长度;当n被3除,余数为2时,向右走2个单位长度,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)二、填空题(每题3分,共24分)11.写出平面直角坐标系中第三象限内一个点的坐标:________.12.在直角坐标系中,第四象限内一点P到x轴的距离为2,到y轴的距离为5,那么点P的坐标是________.13.如图是益阳市行政区域图,图中益阳市区所在地用坐标表示为(1,0),安化县城所在地用坐标表示为(-3,-1),那么南县县城所在地用坐标表示为________.14.第二象限内的点P(x,y)满足|x|=9,y2=4,则点P的坐标是__________.15.已知点N的坐标为(a,a-1),则点N一定不在第________象限.16.如图,点A,B的坐标分别为(2,4),(6,0),点P是x轴上一点,且△ABP 的面积为6,则点P的坐标为________.17.如图,长方形OABC的边OA,OC分别在x轴、y轴上,点B的坐标为(3,2).点D,E分别在AB,BC边上,BD=BE=1.沿直线DE将三角形BDE翻折,点B落在点B′处,则点B′的坐标为________.18.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断地移动,每移动一个单位长度,得到点A1(0,1),A2(1,1),A 3(1,0),A4(2,0),…,那么点A4n+1(n为自然数)的坐标为______(用n表示).三、解答题(19题6分,20题8分,21,23题每题9分,22题10分,其余每题12分,共66分)19.如图,如果规定北偏东30°的方向记作30°,从O点出发沿这个方向走50 m 记作50,图中点A记作(30°,50);北偏西45°的方向记作-45°,从O点出发沿着该方向的反方向走20 m记作-20,图中点B记作(-45°,-20).(1)(-75°,-15),(10°,-25)分别表示什么意义?(2)在图中标出点(60°,-30)和(-30°,40).20.春天到了,七(1)班组织同学到人民公园春游,张明、李华对着景区示意图(如图)描述牡丹园的位置(图中小正方形的边长为100 m).张明:“牡丹园的坐标是(300,300).”李华:“牡丹园在中心广场东北方向约420m处.”实际上,他们所说的位置都是正确的.根据所学的知识解答下列问题:(1)请指出张明同学是如何在景区示意图上建立平面直角坐标系的,并在图中画出所建立的平面直角坐标系;(2)李华同学是用什么来描述牡丹园的位置的?请用张明同学所用的方法,描述出公园内其他地方的位置.。
2024七年级数学上册第3章勾股定理全章热门考点整合应用习题课件鲁教版五四制.pptx

的点, CE =3 cm, AB =8 cm.若沿 AE 折叠△ ADE ,点
D 恰好落在 BC 边上的 F 点处,求阴影部分的面积.
1
2
3
4
5
6
7
8
9
10
11
12
【解】由折叠可知△ ADE 和△ AFE 关于直线 AE 成轴对称,所
以 AF = AD ,EF = DE .
−
c2 =
- +1= + +1,
2
=n +
+
= + +1,所以 a2+ b2= c2.
又易知 a , b , c 均为正整数,所以( a , b , c )是一组
勾股数.
1
2
3
4
5
6
7
8
9
10
11
12
考点4 三种方法
方法1 化曲(折)为直法
根据勾股定理得 AO2=
BO2+ AB2=25,所以 AO =5 cm.
在Rt△ AFO 中,由勾股定理得 FO2= AO2+ AF2=169,
所以 FO =13 cm.
所以半圆形的面积= π·
= π×
=
(cm2).
1
2
3
4
5
6
7
8
9
10
11
12
考点2 一个判定——直角三角形的判定
与直角有关的折叠问题(二)(北师版)(含答案)
与直角有关的折叠问题(二)(北师版)一、单选题(共7道,每道10分)1.如图,在矩形ABCD中,,将矩形沿直线EF折叠,使点B落在AD边中点P 的位置.如果∠DPE=60°,则矩形的周长为( )cm.A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:折叠问题2.如图,在长方形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.若,则( )A.kB.C.D.答案:C解题思路:试题难度:三颗星知识点:折叠问题3.如图,将矩形ABCD沿AE折叠,使点D落在处,若,DE=2,则的长为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:等边三角形的判定和性质4.如图,在一张矩形纸片ABCD中,AD=6cm,点E,F分别是CD和AB的中点,现将这张纸片折叠,使点B落在EF上的点G处,折痕为AH,若HG的延长线恰好经过点D,则CD的长为( )A.6B.C.3D.答案:D解题思路:试题难度:三颗星知识点:等边三角形的判定和性质5.如图,CD是Rt△ABC斜边AB上的高,直角边,现将△BCD沿CD折叠,点B 恰好落在AB的中点E处,则图中阴影部分的面积为( )A.2B.C. D.答案:D解题思路:试题难度:三颗星知识点:直角三角形斜边中线等于斜边一半6.如图,正方形ABCD边长为12,E为CD上一点,沿AE将△ADE折叠得到△AEF,延长EF 交BC于G,连接AG,CF.若BG=6,有下列说法:①△ABG≌△AFG;②DE=4;③AG∥CF;④S△FGC=.其中正确的有( )A.1个B.2个C.3个D.4个答案:D解题思路:试题难度:三颗星知识点:全等三角形的性质与判定7.如图,圆柱形玻璃杯,高为6cm,底面周长为16cm,在杯内离杯底2cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为( )cm.A. B.C. D.10答案:D解题思路:试题难度:三颗星知识点:轴对称—最短路线问题二、填空题(共2道,每道12分)8.已知:如图,在Rt△ABC中,∠ACB=90°,∠A<∠B,CM是斜边AB上的中线,将△ACM 沿直线CM折叠,点A落在点D处,如果CD恰好与AB垂直,那么∠A是____度.答案:30解题思路:试题难度:知识点:等边三角形的判定和性质9.如图,在三角形纸片ABC中,已知∠ABC=90°,AB=8,BC=10,过点A作直线平行于BC,折叠三角形纸片ABC,使直角顶点B落在直线上的点P处,折痕为MN,当点P在直线上移动时,折痕的端点M,N也随之移动,若限定端点M,N分别在AB,BC边上(包括端点)移动,则线段AP长度的最大值与最小值的差为____.答案:4解题思路:试题难度:知识点:折叠问题。
解题技巧专题:菱形、矩形、正方形中折叠、旋转问题之七大考点(解析版)
解题技巧专题:菱形、矩形、正方形中折叠、旋转问题之七大考点【考点导航】目录【典型例题】1【考点一菱形中的折叠求角度、线段长等问题】【考点二矩形中的折叠求角度、线段长等问题】【考点三正方形中的折叠求角度、线段长等问题】【考点四特殊平行四边形折叠后求周长、面积问题】【考点五菱形中旋转求角度、线段长等问题】【考点六矩形中旋转求角度、线段长等问题】【考点七正方形中旋转求角度、线段长等问题】【典型例题】【考点一菱形中的折叠求角度、线段长等问题】1(2022秋·九年级课时练习)如图,在菱形ABCD中,∠A=120°,AB=2,点E是边AB上一点,以DE 为对称轴将△DAE折叠得到△DGE,再折叠BE使BE落在直线EG上,点B的对应点为点H,折痕为EF且交BC于点F.(1)∠DEF=;(2)若点E是AB的中点,则DF的长为.【答案】 90° 2.8【分析】(1)由折叠得∠DEG+∠HEF=∠AED+∠BEF,再根据平角的定义可得结论;(2)首先证明B、G、D在同一条直线上,再运用勾股定理列方程求解即可.【详解】解由折叠得,∠AED=∠DEG,∠BEF=∠HEF∴∠DEG+∠HEF=∠AED+∠BEF∵∠AED+∠DEG+∠HEF+∠BEF=180°×180°=90°∴∠DEG+∠HEF=12即∠DEF=90°故答案为:90°;(2)∵四边形ABCD是菱形∴AD⎳BC,DC⎳AB,AB=BC=CD=DA=2∴∠B+∠A=180°∵∠A=120°∴∠B=180°-∠A=180°-120°=60°∵点E为AB的中点,且AB=2∴AE=BF=12AB=12×2=1.∵点A与点G重合,∴∠DGE=∠A=120°∵点B与点H重合∴∠EHF=∠B=60°又AE=EG,BE=EH,AE=BE∴EG=EH∴点G与点H重合∵∠DGE+∠FHE=∠DGE+∠FGE=100°+80°=180°∴B,G,D三点在同一条直线上过点D作DO⊥BC,交BC的延长线于点O,如图,∵DC⎳AB∴∠DCO=∠B=60°,DC=AB=2∴∠CDO=30°∴CO=12DC=12×2=1.在Rt△DCO中,OD=DC2-OC2=22-12=3由折叠得,BF=FH,AD=DH=2设BF=x,则FC=2-x∴DF=DF+GF=2+x,FO=FC+CO=2-x+1=3-x在Rt△DFO中,DF2=FO2+DO2∴(2+x)2=(3-x)2+(3)2解得,x=0.8∴DF=2+0.8=2.8故答案为2.8【点睛】本题主要考查了菱形的性质,折叠的性质,勾股定理等知识,正确作出辅助线构造直角三角形是解答本题的关键.【变式训练】1(2023春·全国·八年级专题练习)图,把菱形ABCD沿AE折叠,点B落在BC边上的F处,若∠BAE=15°,则∠FDC的大小为.【答案】22.5°【分析】根据翻折变换的性质可得AB=AF,然后根据等腰三角形两底角相等求出∠B=∠AFE=75°,可得∠C,根据AF=AD,求出∠AFD,由三角形外角等于不相邻的两个内角的和即可得答案.【详解】解:∵菱形ABCD沿AE折叠,B落在BC边上的点F处,∴AD=AB=AF,∠AEB=90°=∠AEF,∠FAE=∠BAE=15°,∴∠B=∠AFE=75°,在菱形ABCD中,AB∥CD,AD∥BC,∴∠DAF=∠AFE=75°,∠C=180°-∠B=105°,∵AF=AD,∴∠ADF=∠AFD=180°-75°2=52.5°,∴∠DFB=∠AFE+∠AFD=127.5°,∴∠FDC=∠DFB-∠B=22.5°,故答案为:22.5°.【点睛】本题考查了菱形中的翻折问题,等腰三角形的性质,解题的关键是掌握翻折的性质及菱形的性质.2(2023春·八年级课时练习)如图,在菱形ABCD中,∠B=60°,AB=4,E,F分别是边AB,BC上的点,将△EBF沿EF折叠,使点B的对应点B'落在边AD上,若AE=AB',则CF的长为.【答案】4-23##-23+4【分析】根据菱形性质和∠B=60°,可得BC=AB=4,AD⎳BC,∠BAD=120°,过点A作AG⊥EB'于点G,AP⊥BC于点P,过点B'Q⊥BC于点Q,得矩形APQB',然后利用含30度角的直角三角形可得1 24-AE=32AE,得AE=23-2,再利用勾股定理即可解决问题.【详解】解:在菱形ABCD中,∠B=60°,BC=AB=4,AD⎳BC,∴∠BAD=120°,如图,过点A作AG⊥EB'于点G,AP⊥BC于点P,过点B'Q⊥BC于点Q,得矩形APQB',如图所示:∴PQ=AB',B'Q=AP,∵AE =AB ',AG ⊥EB ',∴EG =B 'G =12EB ',∠AEG =30°,由翻折可知:BE =B 'E ,BF =B 'F ,∴BE =B 'E =AB -AE =4-AE ,∴EG =B 'G =124-AE ,∵EG =AE ⋅cos30°,∴124-AE =32AE ,解得AE =23-2,∴PQ =AB '=AE =23-2,在Rt △ABP 中,∠B =60°,AB =4,∴BP =12AB =2,∴AP =23,∴B 'Q =AP =23,∴CF =BC -BF =4-BF ,QF =BF -BP -PQ =BF -2-23-2 =BF -23,在Rt △B 'QF 中,根据勾股定理,得:B 'Q 2+QF 2=B 'F 2,∴(23)2+(BF -23)2=BF 2,解得BF =23,∴CF =4-BF =4-23,故答案为:4-23.【点睛】本题考查勾股定理求线段长,涉及到翻折变换的性质、菱形的性质、等边三角形的判定与性质、勾股定理,熟练掌握翻折变换的性质,由勾股定理得出方程是解题的关键.3(2023春·江苏苏州·八年级苏州工业园区星湾学校校考阶段练习)如图,菱形纸片ABCD ,AB =8,∠B =60°,将该菱形纸片折叠,使点B 恰好落在CD 边的中点B 处,折痕与边BC 、BA 分别交于点M 、N .则CM 的长为.【答案】2.4【分析】过点B 作B E ⊥BC 与BC 的延长线交于点E ,根据含30°角的直角三角形的性质和勾股定理求出CE 和B ′E ,设BM =x ,则B ′M =x ,用x 表示出ME ,然后在Rt △B ME 中,利用勾股定理得出方程进行解答.【详解】解:过点B 作B E ⊥BC 与BC 的延长线交于点E ,∵四边形ABCD 是菱形,∴AB =BC =CD =AD =8,AB ∥CD ,∵B 是CD 的中点,∴B′C=4,∵∠B=60°,∴∠B′CE=∠B=60°,∠CB′E=30°,∴CE=2,∴B′E=42-22=23,设BM=x,则ME=BC+CE-BM=8+2-x=10-x,由折叠的性质知:B′M=BM=x,在Rt△B ME中,B′M2=B′E2+ME2,∴x2=232+10-x2,解得:x=5.6,8-x=2.4,即CM的长为2.4,故答案为:2.4.【点睛】本题主要考查了菱形的性质,折叠的性质,含30°角的直角三角形的性质,勾股定理,二次根式的运算等知识,关键是作辅助线构造直角三角形.【考点二矩形中的折叠求角度、线段长等问题】1(2023·湖南长沙·校联考一模)如图,在矩形ABCD中,E在AD边上,将△ABE沿BE折叠,点A恰好落在矩形ABCD的对称中心O处,若AB=3,则BC的长为.【答案】33【分析】连接OD,由O是矩形ABCD中心,得到B,O,D共线,由翻折变换得到OB=AB,由矩形的性质得到BD=2OB=2AB=6,由勾股定理求出AD的长即可.【详解】解:连接OD,∵O是矩形ABCD中心,∴B,O,D共线,∵△ABE沿BE翻折到△OBE,∴OB=BA,∵四边形ABCD是矩形,O是它的中心,∴BD=2OB=2AB=2×3=6,BC=AD,∵∠BAD=90°,∴AD=BD2-AB2=62-32=33,∴BC=AD=33.故答案为:33【点睛】本题考查矩形的性质,中心对称,翻折变换,关键是掌握矩形的性质.【变式训练】1(2023秋·福建福州·八年级福建省福州第一中学校考期末)如图,长方形ABCD中,E为BC的中点,将△ABE沿直线AE折叠时点B落在点F处,连接FC,若∠DAF=16°,则∠DCF=度.【答案】37【分析】由折叠的性质得:FE=BE,∠FAE=∠BAE,∠AEB=∠AEF,求出∠BAE=∠FAE=37°,可得到∠AEF=∠AEB=53°,求出∠CEF=74°,求出FE=CE,由等腰三角形的性质求出∠ECF=53°,即可得出∠DCF的度数.【详解】解:∵四边形ABCD是长方形,∴∠BAD=∠B=∠BCD=90°,由折叠的性质得:FE=BE,∠FAE=∠BAE,∠AEB=∠AEF,∵∠DAF=16°,∴∠BAE=∠FAE=12×90°-16°=37°,∴∠AEF=∠AEB=90°-37°=53°,∴∠CEF=180°-2×53°=74°,∵E为BC的中点,∴BE=CE,∴FE=CE,∴∠ECF=12×180°-74°=53°,∴∠DCF=90°-∠ECF=37°;故答案为:37.【点睛】本题主要考查了折叠变换的性质、等腰三角形的性质、三角形内角和定理;求出∠ECF的度数是解题的关键.2(2023春·八年级课时练习)长方形纸片ABCD中,AB=3,BC=4,点E是BC边上一动点,连接AE,把∠B沿AE折叠,使点B落在点F处,连接CF,当△CEF为直角三角形时,BE的长为.【答案】32或3【分析】当△CEF为直角三角形时,有两种情况:①当点F落在矩形内部时,如答图1所示.连接AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AFE=∠B=90°,而当△CEF为直角三角形时,只能得到∠EFC=90°,所以点A、F、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点F处,则EB= EF,AB=AF=3,可计算出CF=2,设BE=x,则EF=x,CE=4-x,然后在Rt△CEF中运用勾股定理可计算出x .②当点F 落在AD 边上时,如答图2所示.此时ABEF 为正方形.【详解】解:当△CEF 为直角三角形时,有两种情况:当点F 落在矩形内部时,如答图1所示.连接AC ,在Rt △ABC 中,AB =3,BC =4,∴AC =AB 2+BC 2=32+42=5,∵∠B 沿AE 折叠,使点B 落在点F 处,∴∠AFE =∠B =90°,当△CEF 为直角三角形时,只能得到∠EFC =90°,∴点A 、F 、C 共线,即∠B 沿AE 折叠,使点B 落在对角线AC 上的点F 处,∴EB =EF ,AB =AF =3,∴CF =5-3=2,设BE =x ,则EF =x ,CE =4-x ,在Rt △CEF 中,∵EF 2+CF 2=CE 2,∴x 2+22=4-x 2解得:x =32;②当点F 落在AD 边上时,如答图2所示.此时ABEF 为正方形,∴BE =AB =3.故答案为:32或3;【点睛】本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.3(2023·安徽合肥·统考一模)如图,点E 是矩形ABCD 的边CD 上的点,连接AE ,将矩形ABCD 沿AE 折叠,点D 的对应点P 恰好在边BC 上.(1)写出图中与∠CEP 相等的角;(2)若AD =5,AB =4,则折痕AE 的长为.【答案】 ∠DAP 和∠APB 552【分析】(1)根据矩形的性质得到∠D =90°,AD ∥BC ,由折叠知∠D =∠APE =90°,由此得到∠DAP +∠PED =180°,即可证明∠DAP =∠CEP ,再由平行线的性质得到∠DAP =∠APB ,则∠APB =∠CEP ;(2)由矩形的性质得到AB =CD =4,BC =AD =5,∠C =∠D =90°,由折叠知AP =AD =5,DE =PE ,利用勾股定理求出BP =3,则CP =2,在Rt △CPE 中,根据勾股定理得DE 2=4-DE 2+22,解得DE =52,则AE =AD 2+DE 2=552.【详解】解:(1)∵四边形ABCD 是矩形,∴∠D =90°,AD ∥BC ,由折叠知∠D =∠APE =90°,∴∠DAP +∠PED =180°,∵∠CEP +∠PED =180°,∴∠DAP =∠CEP ,∵AD ∥BC ,∴∠DAP =∠APB ,∴∠APB =∠CEP ;故答案为:∠DAP 和∠APB ;(2)∵四边形ABCD 是矩形,∴AB =CD =4,BC =AD =5,∠C =∠D =90°,由折叠知AP =AD =5,DE =PE ,∴BP =AP 2-AB 2=52-42=3,∴CP =BC -BP =2,在Rt △CPE 中,根据勾股定理DE 2=CE 2+CP 2,∴DE 2=4-DE 2+22解得DE =52,∴AE =AD 2+DE 2=52+52 2=552,故答案为:552.【点睛】本题主要考查了矩形与折叠问题,勾股定理与折叠问题,灵活应用所学知识是解题的关键.4(2023春·江苏盐城·九年级校考阶段练习)如图,在矩形ABCD 中,点E 在边CD 上,将△BCE 沿BE 折叠,使点C 落在AD 边上的点F 处,过点F 作FG ∥CD ,交BE 于点G ,连接CG .(1)判断四边形CEFG 的形状,并说明理由.(2)若AB =6,AD =10,求四边形CEFG 的面积.【答案】(1)见解析(2)203.【分析】(1)由翻折得∠BEC =∠BEF ,FE =CE ,根据FG ∥CE ,可得∠FGE =∠BEC ,从而∠FGE =∠BEF ,FG =FE ,故FG =EC ,四边形CEFG 是平行四边形,即可得证;(2)在Rt △ABF 中,利用勾股定理求得AF 的长,可得DF =1,设EF =x ,则CE =x ,DE =3-x ,在Rt △DEF 中,用勾股定理列方程可解得CE ,在Rt △BCE 中,即可求出答案.【详解】(1)证明:(1)∵△BCE 沿BE 折叠,点C 落在AD 边上的点F 处,∴△BCE ≌△BFE ,∴∠BEC =∠BEF ,FE =CE ,∵FG∥CE,∴∠FGE=∠BEC,∴∠FGE=∠BEF,∴FG=FE,∴FG=EC,∴四边形CEFG是平行四边形,又∵CE=FE,∴四边形CEFG是菱形;(2)解:∵矩形ABCD中,AD=10,∴BC=10,∵△BCE沿BE折叠,点C落在AD边上的点F处,∴BF=BC=10,在Rt△ABF中,AB=6,AF=BF2-AB2=8,∴DF=AD-AF=2,设EF=x,则CE=x,DE=6-x,在Rt△DEF中,DF2+DE2=EF2,∴22+(6-x)2=x2,解得x=103,∴CE=103,∴四边形CEFG的面积是:CE•DF=103×2=203.【点睛】本题考查翻折变化、菱形的性质和判定、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.5(2023春·全国·八年级专题练习)如图,矩形ABCD中,AB=3,BC=5,现进行如下折叠:(1)沿着过点B的直线折叠,使点A 落在BC边上,此时折痕BE的长为;(2)沿着过点B的直线折叠,使点A 落在矩形内部,且恰好使点E、A 、C三点在同一直线上,此时折痕BE的长为.【答案】3210【分析】(1)根据折叠的性质,可得出三角形ABE是边长为3的等腰直角三角形,根据勾股定理可求出BE 的长;(2)根据三角形的面积公式可得出EC=BC=5,再根据勾股定理求出DE,AE,最后再根据勾股定理求出BE即可.【详解】解:(1)由折叠可得,AB=A′B,AE=A′E,∠ABE=∠A′BE,∵四边形ABCD是矩形,∴∠A=∠ABC=90°=∠BA′E,∴∠ABE=∠A′BE=45°,∴∠ABE=∠AEB=45°,∴AB=AE,在Rt△ABE中,由勾股定理得,BE=AB2+AE2=32+32=32,故答案为:32;(2)由折叠可得,AB=A′B=3,∠A=∠BA′E=90°,∵点E、A′、C三点在同一直线上,∴S△EBC=12BC•AB=12EC•A′B,∴EC=BC=5,在Rt△DCE中,由勾股定理可得,DE=EC2-DC2=52-32=4,∴AE=AD-DE=5-4=1,在Rt△ABE中,BE=AB2+AE2=32+12=10,故答案为:10.【点睛】本题考查矩形的性质、折叠的性质、勾股定理等知识点.有一定的综合性.6(2023春·全国·七年级专题练习)如图,把矩形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上.(1)折叠后,DC的对应线段是,CF的对应线段是;(2)若∠1=50°,求∠2、∠3的度数;(3)若AB=8,DE=10,求CF的长度.【答案】(1)BC′,C′F;(2)50°,80°;(3)6【分析】(1)根据折叠的性质即可得出;(2)由折叠的性质可得,∠2=∠BEF,由AD∥BC得∠1=∠2,所以∠2=∠BEF=50°,从而得∠3=80°;(3)根据勾股定理先求得AE的长度,也可求出AD,BC的长度,然后根据∠1=∠BEF=50°,可得BF= BE=10,继而可求得CF=BC-BF.【详解】(1)由折叠的性质可得:折叠后,DC的对应线段是BC′,CF的对应线段是C′F;故答案为:BC′,C′F.(2)由折叠的性质可得:∠2=∠BEF,∵AD∥BC,∴∠1=∠2=50°.∴∠2=∠BEF=50°,∴∠3=180°-50°-50°=80°;(3)∵AB=8,DE=10,∴AE=BE2-AB2=6,∴AD=BC=6+10=16,∵∠1=∠BEF=50°,∴BF=BE=10,∴CF=BC-BF=16-10=6.【点睛】本题考查了矩形折叠的性质,平行线的性质定理,勾股定理解直角三角形,等腰三角形判定相关知识.7(2023春·广东河源·八年级统考开学考试)如图,将一张长方形纸片OABC放在直角坐标系中,使得OA与x轴重合,OC与y轴重合,点D为AB边上的一点(不与点A、点B重合),且点A(6,0),点C (0,8).(1)如图1,折叠△ABC,使得点B的对应点B1落在对角线AC上,折痕为CD,求此刻点D的坐标.(2)如图2,折叠△ABC,使得点A与点C重合,折痕交AB与点D,交AC于点E,求直线CD的解析式.【答案】(1)D(6,5);x+8.(2)直线CD的解析式为y=-724【分析】(1)根据勾股定理求得AC=10,设AD=n,则BD=8-n,根据折叠的性质得出B1D=BD=8-n,CE=CB=6,AB1=10-6=4,在Rt△AB1D中,利用勾股定理得出关于n的方程,解方程求得n的值,即可求得D的坐标;(2)设AD=m,则BD=8-m,根据折叠的性质CD=AD=m,在Rt△CBD中,利用勾股定理得出关于m的方程,解方程求得m的值,即可求得D的坐标,然后根据待定系数法即可求得作出直线CD的解析式.【详解】(1)解:∵点A(6,0),点C(0,8),∴OA=BC=6,OC=AB=8,∴AC=OA2+OC2=10,设AD=n,则BD=8-n,由折叠的性质可知B1D=BD=8-n,CE=CB=6,∴AB1=10-6=4,由折叠的性质可知CD=AD=n,在Rt△AB1D中,AB21+B1D2=AD2,∴42+(8-n)2=n2,解得n=5,∴AD=5,(2)解:设AD =m ,则BD =8-m ,根据折叠的性质可知CD =AD =m ,在Rt △CBD 中,CB 2+BD 2=CD 2,∴62+(8-m )2=m 2,解得m =254,∴AD =254,∴D 6,254,设直线CD 的解析式为y =kx +8,代入D 6,254 得,254=6k +8,解得k =-724,∴直线CD 的解析式为y =-724x +8.【点睛】本题考查了待定系数法求一次函数的解析式,矩形的性质,折叠的性质,勾股定理的应用等,求得D 的坐标是解题的关键.【考点三正方形中的折叠求角度、线段长等问题】1(2022秋·广东梅州·九年级校考阶段练习)如图,将正方形纸片按如图折叠,AM 为折痕,点B 落在对角线AC 上的点E 处,则∠EMC 的度数为()A.22.5°B.30°C.45°D.67.5°【答案】C【分析】根据正方形的性质可得∠B =90°,∠ACB =12∠BCD =45°,再由折叠可得∠AEM =∠B =90°,然后利用三角形的外角进行计算即可解答.【详解】解:∵四边形ABCD 是正方形,∴∠B =90°,∠ACB =12∠BCD =45°,由折叠得:∠AEM =∠B =90°,∴∠EMC =∠AEM -∠ACB =90°-45°=45°,故选:C .【点睛】本题考查了正方形的性质,折叠的性质,三角形外角的性质,熟练掌握正方形的性质是解题的关键.【变式训练】1(2023·全国·八年级专题练习)如图,将正方形ABCD沿BE对折,使点A落在对角线BD上的A 处,连接A C,则∠BA C=°.【答案】67.5【分析】根据正方形的性质求出∠CBD,再根据折叠的性质得A B=BC,进而根据等腰三角形的性质得出答案.【详解】∵四边形ABCD为正方形,∴AB=BC,∠ABC=90°,BD平分∠ABC,∠ABC=45°,∴∠CBD=12根据折叠可知,AB=A B,∴A B=BC,=67.5°.∴∠BA C=∠BCA =180°-45°2故答案为:67.5.【点睛】本题主要考查了正方形的性质,折叠的性质,等腰三角形的性质等,判定等腰三角形是解题的关键.2(2022秋·四川成都·八年级成都七中校考期中)已知:如图,在边长为12的正方形ABCD中,点E在边BC上,BE=2CE,将△DCE沿DE折叠至△DFE,延长EF交AB于点G,连接DG(1)求∠GDE的度数:(2)求AG的长度【答案】(1)∠EDG=45°(2)6【分析】(1)根据△DCE沿DE折叠至△DFE,可得∠DFE=∠DFG=90°,DC=DF,证明Rt△DAG≌Rt△DFG HL可得∠ADG=∠FDG,根据对折可得∠CDE=∠FDE,即可得出∠GDE的度数;(2)令AG=x,则BG=12-x,GF=x,在Rt△BEG中,勾股定理即可求解.【详解】(1)∵将△DCE沿DE折叠至△DFE,∵四边形ABCD是正方形,∴∠DAG=∠DFG=90°,在Rt△DAG与Rt△DFG中,DF=DA DG=DG,∴Rt△DAG≌Rt△DFG HL,∴∠ADG=∠FDG,由对折得∠CDE=∠FDE,∴∠EDG=∠EDF+∠GDF=12∠ADC=45°;(2)令AG=x,则BG=12-x,GF=x,∵BE=2CE,∴BE=8,EF=CE=4,在Rt△BEG中,82+12-x2=4+x2,解得:x=6.∴AG=6.【点睛】本题考查了正方形的性质,全等三角形的性质与判定,勾股定理,折叠的性质,掌握以上知识是解题的关键.3(2023春·江苏·八年级专题练习)如图1,在正方形ABCD中,点E为BC上一点,连接DE,把△DEC沿DE折叠得到△DEF,延长EF交AB于G,连接DG.(1)求证:∠EDG=45°.(2)如图2,E为BC的中点,连接BF.①求证:BF∥DE;②若正方形边长为6,求线段AG的长.【答案】(1)证明见解析;(2)①证明见解析,②线段AG的长为2【分析】(1)由正方形的性质可得DC=DA.∠A=∠B=∠C=∠ADC=90°,由折叠的性质得出∠DFE =∠C,DC=DF,∠1=∠2,再求出∠DFG=∠A,DA=DF,然后由“HL”证明RtΔDGA≅RtΔDGF,由全等三角形对应角相等得出∠3=∠4,得出∠2+∠3=45°即可;(2)①由折叠的性质和线段中点的定义可得CE=EF=BE,∠DEF=∠DEC,再由三角形的外角性质得出∠5=∠DEC,然后利用同位角相等,两直线平行证明即可;②设AG=x,表示出GF、BG,根据点E是BC的中点求出BE、EF,从而得到GE的长度,再利用勾股定理列出方程求解即可;【详解】(1)证明:如图1:∵四边形ABCD是正方形,∴DC=DA.∠A=∠B=∠C=∠ADC=90°,∵ΔDEC沿DE折叠得到ΔDEF,∴∠DFG =∠A =90°,DA =DF ,在Rt △DGA 和Rt △DGF 中,DG =DG DA =DF ,∴Rt △DGA ≌Rt △DGF (HL ),∴∠3=∠4,∴∠EDG =∠3+∠2=12∠ADF +12∠FDC ,=12(∠ADF +∠FDC ),=12×90°,=45°;(2)证明:如图2所示:∵ΔDEC 沿DE 折叠得到ΔDEF ,E 为BC 的中点,∴CE =EF =BE ,∠DEF =∠DEC ,∴∠5=∠6,∵∠FEC =∠5+∠6,∴∠DEF +∠DEC =∠5+∠6,∴2∠5=2∠DEC ,即∠5=∠DEC ,∴BF ∥DE ;②解:设AG =x ,则GF =x ,BG =6-x ,∵正方形边长为6,E 为BC 的中点,∴CE =EF =BE =12×6=3,∴GE =EF +GF =3+x ,在Rt △GBE 中,根据勾股定理得:(6-x )2+32=(3+x )2,解得:x =2,即线段AG 的长为2.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、翻折变换的性质;熟练掌握正方形的性质,并能进行推理论证与计算是解决问题的关键.【考点四特殊平行四边形折叠后求周长、面积问题】1(2023·全国·九年级假期作业)如图1,菱形纸片ABCD 的边长为6cm ,∠ABC =60°,将菱形ABCD 沿EF ,GH 折叠,使得点B ,D 两点重合于对角线BD 上的点P (如图2).若AE =2BE ,则六边形AEFCHG 的面积为cm 2.【答案】133【分析】由菱形的性质可得AC⊥BD,∠BAD=120°,AB=BC=6cm,∠ABD=30°,,由折叠的性质可得EF⊥BP,∠BEF=∠PEF,BE=EP=2,可证四边形AEPG是平行四边形,可得AG= EP=2cm,DG=4cm,由面积和差关系可求解.【详解】解:如图,∵四边形ABCD是菱形,∠ABC=60°,∴AC⊥BD,∠BAD=∠BCD=120°,AB=BC=6cm,∠ABD=30°,∴OA=12AB=3cm,∠BAC=∠BCA=∠DAC=∠DCA=60°,∴OB=62-32=33cm∴BD=63cm.∵AE=2BE,∴AE=23×6=4cm,BE=13×6=2cm,∵将菱形ABCD沿EF,GH折叠,∴EF⊥BP,∠BEF=∠PEF,BE=EP=2cm,∴EF∥AC,∴∠BEF=∠BAC=60°,∴∠BEF=∠60°=∠PEF,∴∠BEP=∠BAD=120°,∴EP∥AD,同理可得:GP∥AB,∴四边形AEPG是平行四边形,∴AG=EP=2cm,∴DG=4cm,∴六边形AEFCHG面积=S菱形ABCD-S△BEF-S△GDH=12×6×63-34×22-34×42=133cm2,故答案为:133.【点睛】本题考查了折叠的性质,菱形的性质,含30°角的直角三角形的性质,勾股定理,平行四边形的判定和性质等知识,求出DG的长是本题的关键.【变式训练】1(2022秋·辽宁沈阳·九年级统考期末)如图,已知正方形ABCD面积为2,将正方形ABCD沿直线EF折叠,则图中阴影部分的周长为()A.2B.2C.4D.42【答案】D【分析】首先由正方形ABCD 面积为2,即可求得其边长为2,然后由折叠的性质,可得A M =AM ,D N =DN ,A D =AD ,则可得图中阴影部分的周长为:A M +BM +BC +CN +D N +A D =AB +BC +CD +AD ,继而求得答案.【详解】解:设折叠后A ,D 的点分别为A ,D ,EF 与AB ,CD 分别交于点M ,N ,如图所示,∵正方形ABCD 面积为2,∴AB =BC =CD =AD =2,由折叠的性质:A M =AM ,D N =DN ,A D =AD ,∴图中阴影部分的周长为:A M +BM +BC +CN +D N +A D=AM +BM +BC +CN +DN +AD=AB +BC +CD +AD=42.故选:D .【点睛】此题考查了折叠的性质与正方形的性质,掌握折叠的性质与正方形的性质是解题的关键.2(2022春·广东汕头·八年级校考阶段练习)如图,将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上点F 处,已知CE =3,AB =8,则阴影部分的面积为.【答案】30【分析】根据折叠的性质求出EF =DE =CD -CE =5,AD =AF =BC ,再根据勾股定理列出方程求解即可.【详解】解:由折叠的性质知,EF =DE =CD -CE =5,AD =AF =BC ,由勾股定理得,CF =4,AF 2=AB 2+BF 2,即AD 2=82+(AD -4)2,解得,AD =10,∴BF =6,CF =4,图中阴影部分面积=S △ABF +S △CEF =12×6×8+12×3×4=30cm 2.故答案为:30【点睛】本题考查了折叠的性质,解决本题的关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②勾股定理,三角形的面积公式求解.【考点五菱形中旋转求角度、线段长等问题】1(2023春·天津西青·九年级校考阶段练习)如图,将菱形ABCD 绕点A 顺时针旋转得到菱形AB C D ,使点D 落在对角线AC 上,连接DD ,B D ,则下列结论一定正确的是()A.DD =1B D B.∠DAB =90°2C.△AB D 是等边三角形D.△ABC≌△AD C【答案】D【分析】由菱形的性质可得AD=AB=BC=CD,∠ABC=∠ADC,由旋转的性质可得AD= AD ,CD=C D ,∠AD C =∠ADC,由“SAS”可证△ABC≌△AD C ,即可求解.【详解】解:∵四边形ABCD是菱形,∴AD=AB=BC=CD,∠ABC=∠ADC,∵将菱形ABCD绕点A顺时针旋转得到菱形AB C D ,∴AD=AD ,CD=C D ,∠AD C =∠ADC,∴AB=AD ,BC=C D ,∠ABC=∠AD C ,∴△ABC≌△AD C SAS,故选:D.【点睛】本题考查了旋转的性质,菱形的性质,全等三角形的判定和性质,灵活运用这些性质进行推理是本题的关键.【变式训练】1(2023·山东东营·统考中考真题)如图,在平面直角坐标系中,菱形OABC的边长为26,点B在x 轴的正半轴上,且∠AOC=60°,将菱形OABC绕原点O逆时针方向旋转60°,得到四边形OA B C (点A 与点C重合),则点B 的坐标是()A.36,32D.62,36C.32,62B.32,36【答案】B【分析】延长B C 交x轴于点D,根据旋转的性质以及已知条件得出∠B DO=90°,进而求得OD,DB 的长,即可求解.【详解】解:如图所示,延长B C 交x轴于点D,∵四边形ABCD是菱形,点B在x轴的正半轴上,OB平分∠AOC,∠AOC=60°,∴∠COB=∠AOB=30°,∠CBA=60°∵将菱形OABC绕原点O逆时针方向旋转60°,∴∠C OC=60°,则∠OB C=12∠C B C=30°,AB=CB∴∠B OD=60°∴∠B DO=90°,在Rt△CDO中,OC=B C=26∴CD=12OC=6,OD=3CD=3×6=32∴DB =36,∴B 32,36,故选:B.【点睛】本题考查了旋转的性质,菱形的性质,勾股定理,含30度角的直角三角形的性质,坐标与图形,熟练掌握菱形的性质是解题的关键.2(2023春·八年级单元测试)如图,在菱形ABCD中,AB=2,∠BAD=60°,将菱形ABCD绕点A逆时针方向旋转,对应得到菱形AEFG,点E在AC上.EF与CD交于点P,则PE的长是.【答案】3-1【分析】连接BD交AC于O,由菱形的性质得出CD=AB=2,∠BCD=∠BAD=60°,∠ACD=∠BAC=12∠BAD=30°,由直角三角形的性质求出OB=12AB=1,由直角三角形的性质得出AC=23,由旋转的性质得出AE=AB=2,∠EAG=∠BAD=60°,求出CE=AC-AE=23-2,证出∠CPE=90°,由直角三角形的性质得出PE的长【详解】解:连接BD交AC于O,如图所示:∵四边形ABCD是菱形,∴CD=AB=2,∠BCD=∠BAD=60°,∠ACD=∠BAC=12∠BAD=30°,OA=OC,AC⊥BD,∴OB=12AB=1∴OA=3OB=3,∴AC=23由旋转的性质得:AE=AB=2,∠EAG=∠BAD=60°,∴CE=AC-AE=23-2,∵四边形AEFG是菱形,∴EF∥AG,∴∠CEP=∠EAG=60°,∴∠CEP+∠ACD=90°,∴∠CPE=90°,∴PE=12CE=3-1故答案为:3-1【点睛】本题考查了菱形的性质、旋转的性质、含30°角的直角三角形的性质、平行线的性质等知识;熟练掌握旋转的性质和菱形的性质是解题的关键.3(2023·江苏·八年级假期作业)如图1,菱形AEFG的两边AE、AG分别在菱形ABCD的边AB和AD上,且∠BAD=60°,连接CF;(1)求证:3DG=CF;(2)如图2,将菱形AEFG绕点A进行顺时针旋转,在旋转过程中(1)中的结论是否发生变化?请说明理由.【答案】(1)见解析;(2)CF=3DG,(1)中的结论不变.理由见解析.【分析】(1)延长EF交CD于M点,证明三角形CMF是等腰三角形,且∠EMC=120°,过点M作MN⊥CF,垂足为N,根据30°角所对直角边等于斜边的一半,和勾股定理,得FN=NC=32DG即CF=2FN=3DG;(2)过D做∠NDC=∠ADG,使DN=DG,连接NC,证明△DGN为等腰三角形,四边形GFNC为平行四边形即可.【详解】(1)如图1,延长EF交CD于M点,∵四边形AEFG和四边形ABCD是菱形∴DC⎳GF⎳AB,DM⎳GF∴四边形GFMD是平行四边形则∠D=∠EMC=120°,∴∠MFC=∠MCF=30°,过点M作MN⊥CF,垂足为N,∴MN=12MF,根据勾股定理,得FN=32 DG,∵MC=MF,∴FN=NC,∴CF=2FN=3DG;(2)如图2,过D做∠NDC=∠ADG,使DN=DG,连接NC,∴△AGD≌△DNC(SAS)∴AG=NC∠DNC=∠AGD∴△DGN为等腰三角形,则∠DGN=∠DNG,∵∠NGF=360°-∠AGD-∠AGF-∠DGN=240°-∠DGA-∠DGN ∠GNC=∠DNC-∠DNG=∠DNC-∠DNG∴∠NGF +∠GNC =240°-∠DGN -∠DNG ,∵∠DGN +∠DNG =180°-∠GDN =60°∴∠NGF +∠GNC =180°∴NC ⎳GF ,∴四边形GFNC 为平行四边形∴CF =GN ,则GN =3DG ,∴CF =3DG ,结论(1)不变.【点睛】本题考查了菱形的性质,平行四边形的判定,三角形的全等,等腰三角形的性质,灵活构造辅助线是解题的关键.【考点六矩形中旋转求角度、线段长等问题】1(2023·江苏无锡·校考一模)如图,在矩形ABCD 中,AB =5,AD =4,将矩形ABCD 绕点A 逆时针旋转得到矩形AB ′C ′D ′,AB ′交CD 于点E ,且DE =B ′E ,则AE 的长为.【答案】4110【分析】根据旋转不变性得到AB ′=AB =5,设AE =CE =x ,在Rt ΔADE 中结合勾股定理即可得出结论.【详解】解:∵将矩形ABCD 绕点A 逆时针旋转得到矩形AB ′C ′D ′,∴AB ′=AB =5,∵DE =B ′E ,∴AE =CE ,设AE =CE =x ,∴DE =5-x ,∵∠D =90°,∴AD 2+DE 2=AE 2,即42+5-x 2=x 2,解得:x =4110,即AE 的长为4110(也可以写作4.1),故答案为:4110.【点睛】本题考查了利用旋转的性质结合勾股定理求线段长.解题过程中涉及到矩形的性质、勾股定理等知识,熟练掌握几何图形旋转不变性及勾股定理求线段长是解决问题的关键.【变式训练】1(2023·江苏南京·校联考三模)如图,将矩形ABCD 绕点C 旋转,使点B 落在对角线AC 上的B 处,延长AD 交A D 于点E .若AB =3,BC =4,则DE 的长为.【答案】1【分析】如图所示,连接A A ,A C ,CE ,由矩形的性质和勾股定理得到AC =5,CD =AB =3,AD =BC =4,由旋转的性质得到A B =AB =3,四边形A B C D 是矩形,证明S △AAC =S △ACE ,则可得AE =AC ⋅A B CD=5,则DE =AE -AD =1.【详解】解:如图所示,连接A A ,A C ,CE ,∵在矩形ABCD 中,AB =3,BC =4,∴AC =AB 2+BC 2=5,CD =AB =3,AD =BC =4,由旋转的性质可得A B =AB =3,四边形A B C D 是矩形,∴A D ∥B C ,A B ⊥AC ,∴S △AAC =S △ACE ,∴12AC ⋅A B =12AE ⋅CD ,∴AE =AC ⋅A B CD=3×53=5,∴DE =AE -AD =1,故答案为:1.【点睛】本题主要考查了矩形的性质,勾股定理,旋转的性质,证明S △AAC =S △ACE ,利用等面积法求出AE 的长是解题的关键.2(2023春·江苏淮安·八年级统考期中)如图,将矩形ABCD 绕点B 旋转得到矩形BEFG ,点E 在AD 上,延长DA 交GF 于点H .(1)求证:△ABE ≅△FEH ;(2)连接BH ,若∠EBC =30°,求∠ABH 的度数.【答案】(1)见解析;(2)15°.【分析】(1)根据矩形的性质得出AB =DC ,∠BAE =∠D =90°,根据旋转的性质得出FE =DC ,∠EFH =∠D =90°,再证明△ABE ≅△FEH AAS 即可;(2)根据矩形的性质得出∠HEB =∠EBC =30°,由全等三角形的性质得出∠EHB =∠EBH =12180°-30° =75°,再计算即可得出答案.【详解】(1)解:∵四边形ABCD 是矩形,∴AB =DC ,∠BAE =∠D =90°,由旋转性质,得:FE =DC ,∠EFH =∠D =90°,∴AB =FE ,∠BAE =∠EFH ,∵在矩形BEFG 中,GF ∥BE ,∴∠AEB =∠FHE ,在△ABE 和△FEH 中,∠AEB =∠FHE∠BAE =∠EFH AB =FE,∴△ABE ≅△FEH AAS ,(2)解:∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠HEB =∠EBC =30°,∵△ABE ≅△FEH ,∴BE =EH ,∴∠EHB =∠EBH =12180°-30° =75°,∵∠BAH =90°,∴∠ABH =90°-∠EHB =15°,即∠ABH 的度数为15°.【点睛】本题考查矩形的性质,平行线的性质,全等三角形的判定与性质,正确得出全等是解题的关键.3(2023春·福建三明·八年级统考期中)在长方形ABCD 中,AB =5,BC =3,将长方形ABCD 绕点A 顺时针旋转α0°<α<90° ,得到长方形AEFG .(1)如图1,当点E 落在CD 边上时,延长ED 交FG 于点M ,求证:EM=AE ;(2)如图2,当GC =GB 时,求α的值;(3)如图3,当点E 落在线段CF 上时,AE 与CD 交于点N ,求△ADN 的面积.【答案】(1)证明见解析;(2)60°:(3)125.【分析】(1)只需要证明△EFM ≌△ADE 即可得到答案;(2)连接DG ,证明△CDG ≌△BAG ,得到△ADG 为等边三角形,从而可以得到答案;(3)连接AC ,证明△ABC ≌△AEC ,得到∠EAC =∠BAC =∠ACD ,从而得到CN =AN ,再根据勾股定理计算即可得到答案.【详解】解:(1)由旋转的性质得:BC =EF ,∠B =∠FEA∵四边形ABCD 是矩形∴∠B =∠D =∠FEA =90°,BC =AD =EF∵∠FEM +∠AED =90°,∠DAE +∠AED =90°∴∠FEM =∠DAE∴△EFM ≌△ADE (HL )∴EM =AE(2)如图所示,连接DG∵四边形ABCD 是矩形∴∠ABC =∠BCD =90°,AB =CD∵GC =GB∴∠GCB =∠GBC∴∠DCG =∠ABG∴△CDG ≌△BAG∴DG =AG由翻折的性质可得:AD =AG∴AD =AG =DG∴△ADG 为等边三角形∴∠DAG =60°∴∠DAE =30°∴∠BAE =60°∴α=60°(3)如图所示,连接AC由矩形的性质和翻折的性质可得:AB =AE ,∠AEF =∠B =90°∵∠AEF =∠B =90°∴∠AEC =∠B =90°又∵AB =AE∴△ABC ≌△AEC (HL )∴∠EAC =∠BAC∵AB ∥CD∴∠BAC =∠ACD∴∠EAC =∠ACD∴NC =AN设DN =x ,则NC =AN =CD -DN =5-x 在直角三角形AND 中,AN 2=DN 2+AD 2∴x 2+32=5-x 2解得x =85∴S △ADN =12AD ∙DN =125【点睛】本题主要考查了矩形的性质,折叠的性质,全等三角形的性质与判定,勾股定理,等边三角形的性质与判定,等腰三角形的判定,解题的关键在于能够熟练掌握相关知识进行求解.【考点七正方形中旋转求角度、线段长等问题】1(2022秋·广东珠海·九年级统考期末)如图,将正方形ABCD绕顶点A顺时针旋转45°得到正方形A BC D ,BC与C D 相交于点E,连接BD,B D 相交于点F.(1)填空:∠D EC=度;(2)求证:四边形BED F是菱形.【答案】(1)45(2)见解析【分析】(1)根据正方形的性质求出相关角度,再根据角度之间的关系求出∠D EC即可.(2)先证出四边形BED F是平行四边形,再连接AE,构造全等三角形证邻边相等即可.【详解】(1)解:∵四边形ABCD和四边形A B C D 是正方形∴∠AD C =∠ABC=90°∵∠D AB=45°∴∠BED =180°-45°=135°∴∠D EC=45°(2)解:连接AE.∵四边形ABCD和四边形A B C D 是正方形∴∠AD C =∠ABC=90°∵∠D AB=45°∴∠BED =180°-45°=135°∴∠D EC=45°(方法不唯一,直接写由(1)得也可以)在正方形A B C D 中,∠B D C =45°∴∠D EC=∠B D C∴D F∥BC,即D F∥BE.同理∠DBC=∠D EC=45°,∴D E∥BF.∴四边形BED F是平行四边形在Rt△AD E和Rt△ABE中AD =AB AE=AE。
2022-2023学年鲁教版七年级数学上册期末模拟测试题(附答案)
2022-2023学年鲁教版七年级数学上册期末模拟测试题(附答案)一、选择题(满分36分)1.下列各数为无理数的是()①﹣3.14159;②2.5;③2π;④;⑤.A.①②③B.②③④C.①④⑤D.③④2.下列说法中正确的是()A.81的平方根是9B.的算术平方根是4C.与﹣相等D.64的立方根是±43.已知点P(0,m)在y轴的负半轴上,则点M(﹣m,﹣m+1)在()A.第一象限B.第二象限C.第三象限D.第四象限4.若式子+(k﹣1)0有意义,则一次函数y=(1﹣k)x+k﹣1的图象可能是()A.B.C.D.5.在平面直角坐标系中,若点M(﹣2,3)与点N(﹣2,y)之间的距离是5,那么y的值是()A.﹣2B.8C.2或8D.﹣2或86.如图所示,三角形纸片被正方形纸板遮住了一部分,小明根据所学知识画出了一个与该三角形完全重合的三角形,那么这两个三角形完全重合的依据是()A.SSS B.SAS C.AAS D.ASA7.已知点(﹣2,y1),(1,y2)都在一次函数y=kx﹣1(k<0)的图象上,则y1,y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.无法确定8.如图中的一张脸,小明说:“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成()A.(0,1)B.(2,1)C.(1,0)D.(1,﹣1)9.如图,某计算器中三个按键,以下是这三个按键的功能::将荧幕显示的数变成它的算术平方根;:将荧幕显示的数变成它的倒数;:将荧幕显示的数变成它的平方.小明输入一个数据后,按照如图步骤操作,依次按照从第一步到第三步循环按键.若一开始输入的数据为10,则第2025步后,显示的结果是()A.B.10C.D.10.如图,已知△ABC≌△AEF,其中AB=AE,∠B=∠E.在下列结论①AC=AF,②∠BAF=∠B,③EF=BC,④∠BAE=∠CAF中,正确的个数有()A.1个B.2个C.3个D.4个11.如图,已知AB=AC,∠A=36°,AB的垂直平分线MD交AC于D,AB于M,以下结论:①△BCD是等腰三角形;②射线BD是△ACB的角平分线;③△BCD的周长C△BCD=AC+BC;④△ADM≌△BCD.正确的有()A.①②B.①③C.①②③D.③④12.一次函数y=kx+b(k≠0)中变量x与y的部分对应值如下表x…﹣10123…y…86420…下列结论:①y随x的增大而减小;②点(6,﹣6)一定在函数y=kx+b的图象上;③当x>3时,y>0;④当x<2时,(k﹣1)x+b<0.其中正确的个数为()A.4B.3C.2D.1二、填空题(满分18分)13.﹣27的立方根与的平方根的和是.14.如图,在Rt△ABC中,∠ACB=90°,BC=6,正方形ABDE的面积为100,则正方形ACFG的面积为.15.如果+3是一次函数,则m的值是.16.如图,在长方形ABCD中,将∠A向内翻折,点A落在BC上,记为A′,折痕为DE.若将∠B沿EA′向内翻折,点B恰好落在DE上,记为B′,则∠B′A′D=.17.过点(﹣1,﹣3)且与直线y=1﹣2x平行的直线是.18.如图,一根橡皮筋放置在x轴上,固定两端A和B,其中A点坐标(0,0),B点坐标(8,0),然后把中点C向上拉升3cm到D,则橡皮筋被拉长了cm.三、解答题(满分66分)19.(1)计算;(2)已知y=,求(x+y)2021的立方根.20.如图(1)是超市的儿童玩具购物车,图(2)为其侧面简化示意图,测得支架AC=24cm,CB=18cm,两轮中心的距离AB=30cm,求点C到AB的距离.(结果保留整数)21.某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示,根据图象解答下列问题:(1)洗衣机的进水时间是分钟,清洗时洗衣机中的水量是升.(2)进水时y与x之间的关系式是.(3)已知洗衣机的排水速度是每分钟18升,如果排水时间为2分钟,排水结束时洗衣机中剩下的水量是升.22.如图,点A是x轴上左侧的一点,点B(2,m)在第一象限,直线BA交y轴于点C(0,2),S△AOB=6.(1)求S△COB;(2)求点A的坐标及m的值.23.如图,两个等腰直角△ABC和△CDE中,∠ACB=∠DCE=90°.(1)观察猜想如图1,点E在BC上,线段AE与BD的数量关系是,位置关系是.(2)探究证明把△CDE绕直角顶点C旋转到图2的位置,(1)中的结论还成立吗?说明理由.24.某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元).(1)请分别写出y1,y2与x之间的函数表达式.(2)若小亮一年内来此游泳馆的次数为15次,选择哪种方式比较划算?(3)若小亮计划拿出1400元用于在此游泳馆游泳,采用哪种付费方式更划算?25.如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),直线AB与y轴的交点为C,动点M在线段OA和射线AC上运动.(1)求直线AB对应的函数表达式;(2)求△OAC的面积;(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在,求出此时点M的坐标;若不存在,说明理由.参考答案一、选择题(满分36分)1.解:﹣3.14159,2.5是有限小数,属于有理数;是分数,属于有理数,2π;是无理数,故选:D.2.解:A:81的平方根是±9,∴不符合题意;B:的算术平方根是2,∴不符合题意;C:与﹣相等,∴符合题意;D:64的立方根是4,∴不符合题意;故选:C.3.解:由点P(0,m)在y轴的负半轴上,得m<0.由不等式的性质,得﹣m>0,﹣m+1>1,则点M(﹣m,﹣m+1)在第一象限,故选:A.4.解:∵式子+(k﹣1)0有意义,∴,解得k>1,∴1﹣k<0,k﹣1>0,∴一次函数y=(1﹣k)x+k﹣1的图象过一、二、四象限.故选:B.5.解:∵点M(﹣2,3)与点N(﹣2,y)之间的距离是5,∴|y﹣3|=5,解得:y=8或y=﹣2.故选:D.6.解:由图可知,三角形两角及夹边还存在,∴根据可以根据三角形两角及夹边作出图形,所以,依据是ASA.故选:D.7.解:∵一次函数y=kx﹣1中,k<0,∴y随x的增大而减小,∵﹣2<1,∴y1>y2.故选:A.8.解:如图,嘴的位置可以表示成(1,0).故选:C.9.解:由题意知第1步结果为102=100,第2步结果为=0.01,第3步结果为=0.1,第4步结果为0.12=0.01,第5步结果为=100,第6步计算结果为10,……∴运算的结果以100、0.01、0.1、0.01、100、10六个数为周期循环,∵2025÷6=337……3,∴第2019步之后显示的结果为0.1,即.故选:C.10.解:∵△ABC≌△AEF,∴AC=AF,EF=BC,故①③正确;∠EAF=∠BAC,∴∠EAB=∠F AC,故④正确;∵AF≠BF,∴∠BAF≠∠B,故②错误;综上所述,结论正确的是①③④共3个.故选:C.11.解:由AB=AC,∠A=36°知∠ABC=∠C=72°,∵MN是AB的中垂线,∴AD=BD,∴∠ABD=∠A=36°,∴∠DBC=36°,∴∠C=∠CDB=72°,∴△CDB是等腰三角形,∴①正确,又∵∠ABC=72°,∴∠ABD=36°,∴线段BD是△ACB的角平分线,∵三角形的角平分线是线段,∴②错误,由AD=BD,AB=AC知,△BCD的周长=BC+CD+BD=AC+BC,∴③正确,∵AM⊥MD,而△BCD为锐角三角形,∴④错误,∴正确的为:①③.故选:B.12.解:由题意得,当x=1时,y=4,当x=0时,y=6,则,解得:,函数解析式为:y=﹣2x+6,①∵k=﹣2<0,∴y随x的增大而减小,正确;②当x=6时,y=﹣2×6+6=﹣6,∴点(6,﹣6)一定在函数y=kx+b的图象上,正确;③由表格得出当x>3时,y<0,故错误;④由表格得出当x<2时,kx+b>x,∴(k﹣1)x+b>0,故错误;故选:C.二、填空题(满分18分)13.解:∵﹣27的立方根是﹣3,的平方根是±3,所以它们的和为0或﹣6.故答案为:0或﹣6.14.解:因为S正方形ABDE=AB2=100,在Rt△ABC中,BC=6,所以S正方形ACFG=AC2=AB2﹣BC2=64.故答案为:64.15.解:∵+3是一次函数,∴2﹣m2=1且m﹣1≠0,解得m=﹣1.故答案是:﹣1.16.解:根据折叠的性质可得:∠A=∠EA′D=90°,∠ADE=∠A′DE,∠B=EB′A′=90°,∠BEA′=B′EA′,∵∠BA′E+BEA′=90°,∠A′DE+∠A′ED=90°,∴∠BA′E=∠A′DE,又∵∠BA′E+∠DA′C=90°,∠DA′C+∠CDA′=90°,∴∠BAE′=∠CDA′,∴∠CDA′=∠A′DE=∠ADE,∴∠CDA′+∠A′DE+∠ADE=90°,∴∠A′DE=30°,∴∠B′A′D=90°﹣∠A′DE=90°﹣30°=60°.故答案为:60°.17.解:设所求的直线为y=kx+b,∵直线y=kx+b与直线y=1﹣2x平行,∴k=﹣2,把点(﹣1,﹣3)代入y=﹣2x+b得2+b=﹣3,解得b=﹣5,∴所求的直线为y=﹣2x﹣5.故答案为y=﹣2x﹣5.18.解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD===5(cm);∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.故答案是:2.三、解答题(满分66分)19.解:(1)原式=﹣(﹣)+=++=;(2)由题意可得,解得:x=2,∴y=﹣3=﹣3,∴原式=(﹣3+2)2021=﹣1,﹣1的立方根为﹣1,∴(x+y)2021的立方根为﹣1.20.解:过点C作CE⊥AB于点E,则CE的长即点C到AB的距离,在△ABC中,∵AC=24,CB=18,AB=30,∴AC2+CB2=242+182=900,AB2=302=900,∴AC2+BC2=AB2,∴△ABC为直角三角形,即∠ACB=90°,∵S△ABC=AC•BC=CE•AB,∴AC•BC=CE•AB,即24×18=CE×30,∴CE=14.4≈14,答:点C到AB的距离约为14cm.21.解:(1)由图象可得,洗衣机的进水时间是4分钟,清洗时洗衣机中的水量是40升,故答案为:4,40;(2)设进水时y与x之间的关系式是y=kx,4k=40,得k=10,即进水时y与x之间的关系式是y=10x,故答案为:y=10x(0≤x≤4);(3)排水结束时洗衣机中剩下的水量是:40﹣18×2=40﹣36=4(升),故答案为:4.22.解:(1)∵点B(2,m),点C(0,2),∴S△COB=×2×2=2;(2)∵S△AOB=6,S△COB=2,∴S△AOC=6﹣2=4,∴OA•OC=4,即OA•2=4,解得OA=4,∴A点坐标为(﹣4,0);设直线AC的解析式为y=kx+b,把A(﹣4,0)、C(0,2)代入得,解得,∴直线AC的解析式为y=x+2,把B(2,m)代入得m=1+2=3.23.解:(1)如图1中,延长AE交BD于H.在△ACE与△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AEC=90°,∠AEC=∠BEH,∴∠BEH+∠EBH=90°,∴∠EHB=90°,即AE⊥BD,故答案为:AE=BD,AE⊥BD;(2)(1)中的结论还成立,理由如下:如图2中,延长AE交BD于H,交BC于O.∵∠ACB=∠ECD=90°,∴∠ACE=∠BCD,在△ACE与△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AOC=90°,∠AOC=∠BOH,∴∠BOH+∠OBH=90°,∴∠OHB=90°,即AE⊥BD,∴AE=BD,AE⊥BD,(1)中的结论还成立.24.解:(1)当游泳次数为x时,方式一费用为:y1=30x+200,方式二的费用为:y2=40x;(2)若小亮来此游泳馆的次数为15次,方式一的费用为:30×15+200=650(元),方式二的费用为:40×15=600(元),∵650>650,∴若小亮一年内来此游泳馆的次数为15次,选择方式比二较划算;(3)当y1=1400时,即1400=30x+200,得x=40,当y2=1400时,即1400=4x,得x=35,故采用方式一更划算.25.解:(1)设AB的直线解析式为y=kx+b,∴,∴,∴y=﹣x+6;(2)令x=0,则y=6,∴C(0,6),∴OC=6,∵点A(4,2),∴点A到OC的距离为4∴S△OAC=×6×4=12;(3)存在点M,使△OMC的面积是△OAC的面积的,理由如下:设直线OA的解析式为y=kx,∴4k=2,∴k=,∴y=x,∵△OMC的面积是△OAC的面积的,∴S△OMC=12×=3,设M点的横坐标为x,∴×6×|x|=3,∴|x|=1,∴x=±1,当M点在线段OA上时,M(1,);当M点在射线AC上时,M(1,5)或M(﹣1,7);综上所述:M点坐标为(1,)或(1,5)或(﹣1,7).。
初中数学鲁教版(五四制)七年级上册第二章 轴对称本章综合与测试-章节测试习题(1)
章节测试题1.【答题】如图,兔子的三个洞口A,B,C构成△ABC,猎狗想捕捉兔子,必须到三个洞口的距离相等,则猎狗应蹲守在()A. 三条边的垂直平分线的交点B. 三个角的角平分线的交点C. 三角形三条高的交点D. 三角形三条中线的交点【答案】A【分析】【解答】2.【答题】如图,把长方形ABCD沿EF折叠后,A,B分别落在点G,H处.若∠1=50°,则∠AEF=()A. 110°B. 115°C. 120°D. 125°【答案】B【分析】【解答】3.【答题】如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于的长为半径作弧,两弧相交于点M,N;②作直线MN,交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB的度数为()A. 90°B. 95°C. 100°D. 105°【答案】D【分析】【解答】4.【答题】如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE 交于点F,作CM⊥AD,垂足为M.下列结论不正确的是()A. AD=CEB.C. ∠BEC=∠CDAD. AM=CM【答案】D【分析】【解答】5.【答题】数学在我们的生活中无处不在,就连小小的台球桌上都有数学问题.如图,∠1=∠2,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1等于______.【答案】60°【分析】【解答】6.【答题】如图,∠MON内有一点P,P点关于OM的轴对称点是G,关于ON的轴对称点是H,GH分别交OM,ON于A,B点.若GH的长为14,则△PAB的周长为______.【答案】14【分析】【解答】7.【答题】如图,已知△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=4,则BC=______.【答案】12【分析】【解答】8.【答题】如图,在2×4网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形.在网格中,与△ABC成轴对称的格点三角形一共有______个.【答案】3【分析】【解答】9.【题文】(10分)如图,在所给的网格图中完成下列各题.(用直尺画图,否则不得分)(1)画出格点△ABC关于直线DE对称的△A1B1C1;(2)在DE上画出点P,使PA+PC最小;(3)在DE上画出点Q,使QA—QB最大.【答案】【分析】【解答】(1)如图,△A1B1C1即为所求.(2)如图,连接A1C交DE于点P,点P即为所求.(3)延长AB交DE于点Q,点Q即为所求.10.【题文】(12分)如图,已知△ABC中,AB=AC,BD,CE是高,BD与CE相交于点O.(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.【答案】【分析】【解答】(1)证明:∵AB=AC,∴∠ABC=∠ACB.∵BD,CE是△ABC的两条高线,∴∠BEC=∠BDC=90°.∴△BEC≌△CDB,∴∠DBC=∠ECB,∴OB=OC.(2)解:∵∠ABC=50°,AB=AC,∴∠A=180°-2×50°=80°,∴∠DOE+∠A=180°,∴∠BOC=∠DOE=180°-80°=100°.11.【题文】(12分)如图,点E在AB上,∠CEB=∠B,∠1=∠2=∠3,求证:CD=CA.【答案】【分析】【解答】证明:∵∠1=∠3,∠CFD=∠EFA,∴180°-∠1-∠CFD=180°-∠3-∠EFA,即∠D=∠A.∵∠1=∠2,∴∠1+∠ACE=∠2+∠ACE,即∠DCE=∠ACB.又∵∠CEB=∠B,∴CE=CB.在△DCE和△ACB中,∴△DCE≌△ACB(AAS).∴CD=CA.12.【题文】(14分)在△ABC中,已知∠A=90°,AB=AC,点D为BC的中点.(1)如图1,若点E,F分别为AB,AC上的点,且DE⊥DF,求证:BE=AF;(2)E,F分别为AB,CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图2说明理由.【答案】【分析】【解答】(1)证明:连接AD,如图所示.∵∠A=90°,AB=AC,∴△ABC为等腰直角三角形,∠EBD=45°.∵点D为BC的中点,∴,∠FAD=45°.∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°,∴∠BDE=∠ADF.在△BDE和△ADF中,∴△BDE≌△ADF(ASA),∴BE=AF.(2)解:BE=AF,理由如下:连接AD,如图所示.∵∠ABD=∠BAD=45°,∴∠EBD=∠FAD=135°.∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°,∴∠EDB=∠FDA.在△EDB和△FDA中,∴△EDB≌△FDA(ASA),∴BE=AF.13.【答题】下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,则对应选项中作法错误的是()A. ①B. ②C. ③D. ④【答案】C【分析】【解答】14.【答题】下列图案中有且只有三条对称轴的是()A. B. C. D.【答案】D【分析】【解答】15.【答题】已知:如图,点P在线段AB外,且PA=PB. 求证:点P在线段AB的垂直平分线上.在证明该结论时,需添加辅助线,则以下作法不正确的是()A. 作∠APB的平分线PC交AB于点CB. 过点P作PC⊥AB于点C,且AC=BCC. 取AB中点C,连接PCD. 过点P作PC⊥AB,垂足为C【答案】B【分析】【解答】16.【答题】如图,在△ABC中,AB=AC,D,E两点分别在AC,BC上,BD是∠ABC的平分线,DE∥AB. 若BE=5cm,CE=3cm,则△CDE的周长是()A. 15cmB. 13cmC. 11cmD. 9cm【答案】B【分析】【解答】17.【答题】等腰三角形一腰上的高与另一腰的夹角为40°,则这个等腰三角形的一个底角的度数为()A. 50°B. 80°C. 50°或80°D. 25°或65°【答案】D【分析】【解答】18.【答题】如图,在△ABC中,AB=AC,∠B=36°,D,E是BC上的两点,且∠ADE=∠AED=2∠BAD,则图中的等腰三角形共有()A. 3个B. 4个C. 5个D. 6个【答案】D【分析】【解答】19.【答题】等腰三角形有一个内角为150°,则其他两内角的度数为______.【答案】15°,15°【分析】【解答】20.【答题】如图,∠3=30°,为了使白球反弹后能将黑球直接撞入洞中,那么击打白球时,必须保证∠1的度数为______.【答案】60°【分析】【解答】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学+初中+高中
小学+初中+高中
3 B1 A' 30° B1 与直角有关的折叠、旋转(习题) 例题示范 例 1:将长方形纸片 ABCD 按如图所示方式折叠,AE,EF 为折痕,∠BAE=30°,BE=1,折叠后点 C 落在 AD 边上的 C1 处,并且点 B 落在 EC1 上的 B1 处,则 BC 的长为( ) A. B.2 C.3 D.2 A C1 D F A C1 D F B E C B E C 思路分析: ①在 Rt△ABE 中,由∠BAE=30°,BE=1 得 AB= ,AE=2; ②由折叠得∠AEB=∠AEB1,结合背景图形是长方形得∠EAC1= ∠AEB1,所以△AEC1 是等腰三角形; ③由∠EAC1=60°得△AEC1 是等边三角形,所以 EC1=AE=2; ④由折叠得 EC=EC1=2,所以 BC=BE+EC=3. 巩固练习 1. 如图,在长方形 ABCD 中,E 是 AD 的中点,将△ABE 沿 BE 折叠后得到△GBE,延长 BG,交 CD 边于点 F.若 DF=2FC, 则 BC 的值为 . AB A E D A P B F Q G B C O D C 第 1 题图 第 2 题图 2. 已知一个长方形纸片 OABC,OA=6,点 P 为 AB 边上一点, AP=2,将△OAP 沿 OP 折叠,点 A 落在点 A′处,延长 PA′交边 OC 于点 D,经过点 P 再次折叠纸片,点 B 恰好与点 D 重合,则 AB 的长为 . 3
3
3
小学+初中+高中
小学+初中+高中
C
3
3
9 3
O
3.
如图,在正方形纸片 ABCD 中,E,F 分别是 AD,BC 的中点, 沿过点 B 的
直线折叠,使点 C 落在 EF 上,落点为 N,折痕交 CD 边于点 M,BM 与
EF
交于点 P,再展开.有下列结论:
①CM=DM;②∠ABN=30°;③ AB 2 3CM 2 ;④△PMN 是等边三角形
.其中正确结论的序号是 .
A
E D
B'
M
B
F
C
A A' B
第 3 题图 第 4 题图
4.
如图,在 Rt△ABC 中,∠ACB=90°,∠ABC=30°,AC=1,将
△ABC 绕点 C 逆时针旋转至△A′B′C,使得点 A′恰好落在
AB
上,连接 BB′,则 BB′的长为 .
5.
如图,在 Rt△ABC 中,∠C=90°,∠B=70°,点 D 在 BC 边上,
且BD:DC=2: .将线段BD 绕点D 逆时针旋转m(0
.
A
A
O'
B
C
C D B
第 5 题图 第 6 题图
6.
如图,O 是等边三角形 ABC 内一点,OA=3,OB=4,OC=5,将线段 BO 以点
B
为旋转中心逆时针旋转 60°得到线段 BO′,连接
AO′.有下列结论:①点 O 与点 O′的距离为 4;②∠AOB
=150°;
③
S
四边形
AOBO
= 6
3
;④
S
△
AOC
+
S
△
AOB
= 6 .其中正确结
4
论的序号是 .
N
P
小学+初中+高中
小学+初中+高中
D
7.
如图,△ABC 和△CDE 都是等腰直角三角形,∠ACB=
∠ECD=90°,D 为 AB 边上一点.若 AD=5,BD=12,求
DE
的长.
A
E
C
B
8.
如图,在四边形 ABCD 中,∠BAD=∠BCD=90°,AB=AD.若四边形 ABCD 的
面积为 24,求 AC 的长.
A
D
B C
小学+初中+高中
小学+初中+高中
【参考答案】
1.
2 36
2. 12
3. ②③④
4.
5. 40 或 150
6. ①②④
7. 13
8. 4
3
3