机电一体化模块化控制系统

合集下载

机电一体化系统设计方法及其发展

机电一体化系统设计方法及其发展

机电一体化系统设计方法及其发展【摘要】机电一体化系统设计方法是将机械、电子、控制系统等多个学科领域相互融合,从而实现系统的高效化、智能化。

本文首先介绍了机电一体化系统设计方法的概述,描述了其涉及的主要内容和特点。

接着分析了机电一体化系统设计方法的发展历程,阐述了其在工程领域中的重要性和应用前景。

然后对比分析了传统的机电分离式系统与机电一体化系统的优劣,强调了机电一体化系统的优势与创新性。

随后探讨了机电一体化系统设计方法的关键技术,包括传感器技术、控制算法等方面的内容。

阐述了机电一体化系统设计方法在工程实践中的应用案例,并展望了未来发展的趋势和挑战。

通过本文的研究,可以帮助读者更好地了解和应用机电一体化系统设计方法,促进相关领域的深入发展。

【关键词】机电一体化系统、设计方法、发展历程、对比分析、关键技术、工程实践、未来发展趋势、总结与展望1. 引言1.1 研究背景机电一体化系统设计方法是以机械、电气和计算机等多学科知识为基础,通过综合运用现代工程技术和方法,实现机械系统、电气系统和控制系统的有机结合,以实现更高效、更精准的系统设计和控制。

随着科学技术的不断发展和工业生产的不断进步,机电一体化系统设计方法逐渐受到人们的重视和关注。

其在提高生产效率、降低生产成本、改善生产环境等方面具有重要的意义和价值。

在过去,传统的机械系统、电气系统和控制系统往往是相对独立地设计和运行的,缺乏有效的协调和整合,导致系统性能不佳、效率低下等问题。

而机电一体化系统设计方法的提出,正是为了解决这些问题,将机械、电气和控制等多个领域的知识和技术有机融合在一起,实现系统的一体化设计和运行,从而更好地满足人们对系统性能和效率的需求。

研究机电一体化系统设计方法具有重要的现实意义和理论价值,可以为工程领域的发展和创新提供重要的支撑和指导。

通过深入研究和探讨机电一体化系统设计方法,可以不断拓展系统设计的思路和方法,推动工程技术的进步和发展。

机电一体化发展趋势

机电一体化发展趋势

机电一体化发展趋势一、背景介绍机电一体化是指将机械和电气技术有机结合,通过电子技术、传感技术、控制技术等手段,实现机械设备的自动化、智能化和网络化。

随着科技的不断进步和工业化的发展,机电一体化的应用范围不断扩大,成为推动工业现代化的重要手段之一。

本文将从技术、市场和政策三个方面分析机电一体化的发展趋势。

二、技术趋势1. 智能化:随着人工智能和大数据技术的快速发展,机电一体化设备将越来越智能化。

通过搭载智能传感器和控制系统,设备能够实时感知和分析生产环境,自动调整工作参数,提高生产效率和产品质量。

2. 网络化:物联网技术的应用将进一步推动机电一体化设备的网络化发展。

设备之间可以实现无线通信和远程监控,实现生产过程的实时监测和远程控制,提高生产效率和管理水平。

3. 模块化:机电一体化设备的模块化设计将成为未来的发展趋势。

模块化设计可以实现设备的快速组装和更换,提高设备的灵活性和适应性,降低生产成本和维护成本。

4. 绿色化:环保意识的提高将推动机电一体化设备的绿色化发展。

通过采用节能技术和环保材料,减少能源消耗和环境污染,实现可持续发展。

三、市场趋势1. 自动化需求增加:随着劳动力成本的上升和劳动力供应的减少,企业对自动化设备的需求将不断增加。

机电一体化设备可以实现生产过程的自动化和智能化,提高生产效率和降低生产成本,因此市场需求将持续扩大。

2. 行业应用拓展:机电一体化技术在制造业、能源行业、交通运输等领域的应用已经取得了显著成效,未来还将拓展到更多行业。

例如,在医疗领域,机电一体化设备可以实现手术机器人的精确操作,提高手术成功率和患者安全性。

3. 个性化定制需求增加:消费者对个性化产品的需求不断增加,这将推动机电一体化设备向个性化定制方向发展。

通过灵活的模块化设计和智能化控制系统,可以实现产品的个性化定制,提高产品的市场竞争力。

四、政策趋势1. 政府支持:政府将加大对机电一体化技术的支持力度,通过财政补贴、税收优惠等措施,鼓励企业进行技术创新和设备升级。

机电一体化概论

机电一体化概论

机电一体化概论第一章机电一体化概述2•机电一体化的发展趋势:智能化,模块化,网络化,微型化,绿色化,系统化.3•机电一体化的基本含义:机电一体化乃是在机械的主功能、动力功能、信息功能和控制功能上引进徽电子技术,并将机核装置与电子设备以及相关软件有机结合而构成的系统总称。

5•机电一体化的相关技术:机械技术、传感检测技术、信息处理技术、自动控制技术、伺服驱动技术、系统总体技术。

6.机电一体化系统的基本要素及其功能:8•机电一体化一词最早于1971年出现在日本。

它是取机械学的前半部和电子学的后半部拼合而成,但是,机电一体化并非机械技术和电子技术的简单叠加,而是有着自身体系的新型学科。

第二章机电一体化的相关技术L机电一体化系统中的机械系统:传动部分、导向机构、执行机构、轴系、机座或机架。

2.机电一体化中机械系统的基本要求:高精度、小惯量、大刚度、快速响应性、良好的稳定性。

9•传感器的定义:传感器是一种能感受规定的被测量,并按照一定的规律转换成可用的输出信号的器件或装置。

13•常见的接近开关及其应用:电涡式接近开关(金属)、电容式接近开关(导体和非导体)、霍尔接近开关(磁性物件)、光电开关:透射型,反射型(统计产量,检测包装,精确定位等)。

16.在控制系统中根据系统信号相对于时间的连续性,通常分为连续时间系统和离散时间系统(连续系统和离散系统)。

18•计算机控制系统的类型及计算机担当的角色:操作指导控制系统(助手)、宜接数字控制系统(DDC,决策者,操作者)、监督计算机控制系统(SCC, 操作指导系统与DDC系统的综合与发展,决策人)、分级控制系统、集散控制系统(DCS)、工厂自动化(FA)系统。

25•接口的分类(1)根据接口的变换和调整功能特征:零接口、被动接口、主动接口、智能接口。

(2)根据接口的输入\输出功能的性质:信息接口、机械接口、物理接口、环境接口。

(3)按照所联系的子系统不同:人机接口、机电接口。

机电一体化简介

机电一体化简介

机电一体化简介工程学院机械设计摘要:本文主要阐述的是关于机电一体化的基本内容。

机电一体化又称机械电子学,英语称为Mechatronics,它是由英文机械学Mechanics的前半部分与电子学Electronics的后半部分组合而成。

机电一体化系统由机械系统(机构)、信息处理系统(计算机)、动力系统(动力源)、传感检测系统(传感器)、执行元件系统(如电动机)五个子系统组成,具有以下三大“目的功能”,其系统内部必须具备五种内部功能。

机电一体化的发展经历了三个阶段,我国起步较晚,与先进国家相比仍有相当差距。

未来机电一体化将更智能化、模块化、绿色化、网络化、微型化、系统化方向发展。

关键词:机电一体化机械电子模块系统智能一、机电一体化的定义机电一体化技术是将机械技术、电工电子技术、微电子技术、信息、技术、传感器技术、接口技术、信号变换技术等多种技术进行有机地结合,并综合应用到实际中去的综合技术。

是现代化的自动生产设备几乎可以说都是机电一体化的设备。

中国机电设计迈入PLM全新阶段,正挑战着了前所未有的,不可预测的难题,一个个久战沙场经久不衰精兵良将正褪去了昨日英雄的光环,唯有CAMEL VIEW 能够胜任军统三国,光复旧业的重任,此时数系科技与德国iXtronics GmbH公司携手共同开拓机电设计领域的新篇章,CAMEL VIEW 作为机电一体化设计系统,从产品的概念设计到产品性能的测试、验证、通过都是一体化的,流程化的、规范化的,在满足用户设计的前提下,数值实验的仿真与结果的验证无不精确化,支持复杂环境下,多工况,多耦合场设计。

研究将电子器件的信息处理和控制功能附加或融合在机械装置中的一种复合化技术。

俗称机电一体化。

机械电子学 (mechatronics)是由机械学(mechanics)和电子学(electronics)两个词结合而成的新词。

其全称为机械电子工程学,英语为mechanical and electronical engineering。

机电一体化系统在智能制造中的应用与发展

机电一体化系统在智能制造中的应用与发展

机电一体化系统在智能制造中的应用与发展智能制造是21世纪制造业的发展趋势,其核心是通过信息技术与传统制造技术的深度融合,实现制造过程的智能化和自动化。

在智能制造中,机电一体化系统扮演着重要的角色。

本文将探讨机电一体化系统在智能制造中的应用与发展,并分析其带来的益处和挑战。

一、机电一体化系统的定义与特点机电一体化系统是指将机械、电气、传感器、控制与信息技术相结合,形成一个整体的系统。

通过机电一体化系统,不仅可以实现机械结构的运动控制,还能够进行信号采集、数据处理、通信与控制等功能。

其主要特点包括智能化、高效率、高精度和高可靠性。

二、机电一体化系统在智能制造中的应用1. 生产线自动化:机电一体化系统可以应用于生产线自动化控制,实现产品的快速生产。

通过与传感器和控制系统的连接,可实现对生产过程的实时监测和调整,提高生产效率和质量。

2. 机器人技术:机电一体化系统在机器人技术中的应用越来越广泛。

机器人的运动控制、力传感器、视觉系统等都离不开机电一体化系统的支持。

通过机电一体化系统的应用,机器人可以实现复杂任务的自动化完成,提升生产效率和安全性。

3. 智能交通:机电一体化系统在智能交通领域的应用也日益增多。

例如,智能交通信号灯系统可以通过机电一体化系统进行精确的控制,根据交通流量和道路状况进行智能的信号调度,提高交通效率和安全性。

4. 智能家居:机电一体化系统在智能家居中的应用有助于实现家居设备的远程监控和控制。

通过连接各种传感器和执行器,居民可以通过智能手机或其他终端对家居设备进行远程操控,提高居住的舒适度和便利性。

三、机电一体化系统在智能制造中的发展趋势1. 智能化:随着人工智能和物联网技术的发展,机电一体化系统将更加智能化。

未来的机电一体化系统将具备学习和决策能力,能够根据环境变化和用户需求做出相应的调整和优化。

2. 高度集成:机电一体化系统将趋向于更高的集成度。

不同的机电组件将更紧密地结合在一起,形成更为简洁、高效的系统架构,降低系统成本和维护难度。

机电一体化课程设计

机电一体化课程设计

1引言1.1课题简介本次毕业设计课题为“模块化生产控制系统设计”。

其主要任务就是通过分析研究学校实验工作台系统,结合所学知识以及先进控制技术,对模块化生产线控制系统进行研究。

1.2 工业模块化系统发展现状工业模块系统是一种以机电一体化为基础的自动化系统,其中控制的部分现今在我国大都是采用的是PLC控制。

PLC是由摸仿原继电器控制原理发展起来的,二十世纪七十年代的PLC只有开关量逻辑控制,首先应用的是汽车制造行业。

它以存储执行逻辑运算、顺序控制、定时、计数和运算等操作的指令;并通过数字输入和输出操作,来控制各类机械或生产过程。

用户编制的控制程序表达了生产过程的工艺要求,并事先存入PLC的用户程序存储器中。

运行时按存储程序的内容逐条执行,以完成工艺流程要求的操作。

PLC的CPU内有指示程序步存储地址的程序计数器,在程序运行过程中,每执行一步该计数器自动加1,程序从起始步(步序号为零)起依次执行到最终步(通常为END 指令),然后再返回起始步循环运算。

PLC每完成一次循环操作所需的时间称为一个扫描周期。

不同型号的PLC,循环扫描周期在1微秒到几十微秒之间。

PLC用梯形图编程,在解算逻辑方面,表现出快速的优点,在微秒量级,解算1K逻辑程序不到1毫秒。

它把所有的输入都当成开关量来处理,16位(也有32位的)为一个模拟量。

大型PLC使用另外一个CPU来完成模拟量的运算。

把计算结果送给PLC的控制器。

最终达到控制的目的。

工业模块与智能系统是六十年代以来在信号处理、人工智能、控制论、计算机技术等学科基础上发展起来的新型学科。

该学科以各种传感器为信息源,以信息处理与模式识别的理论技术为核心,以数学方法与计算机为主要工具,探索对各种媒体信息进行处理、分类、理解并在此基础上构造具有某些智能特性的系统或装置的方法、途径与实现,以提高系统性能。

工业模块与智能系统是一门理论与实际紧密结合,具有广泛应用价值的控制科学与工程的重要学科分支。

机电的一体化系统设计

机电的一体化系统设计

机电的一体化系统设计机电一体化系统设计是指将机械、电子、电气、自动化等技术相结合的一种综合性设计。

它通过将机械结构、电气设备、传感器、执行器和控制系统等有机地结合在一起来实现系统的功能。

一体化设计能够提高系统的整体性能和运行效率。

因为机械、电子和自动化等不同专业领域的知识被集成在一起,可以更好地协同工作,提升系统的综合效益。

在机电一体化系统设计中,首先需要进行系统分析和需求分析,明确系统的功能和性能要求。

然后进行系统设计,包括机械结构设计、电气设计、自动化控制设计等方面。

机械结构设计是机电一体化系统设计的重要组成部分。

在设计机械结构时,需要考虑系统的稳定性、刚度和强度等因素。

同时还需要考虑材料的选择和加工工艺的优化,以提高系统的可靠性和寿命。

电气设计是机电一体化系统设计的另一个重要方面。

在电气设计时,需要选择适当的电气设备和元件,并设计电路图和布线图。

同时还需要进行电气参数计算和控制系统设计,以实现对整个系统的控制和监测。

此外,还需要考虑系统的电磁兼容性和安全性等因素。

自动化控制设计是机电一体化系统设计中的关键一环。

通过使用传感器和执行器,可以实现对系统的自动化控制。

在自动化控制设计中,需要选择合适的传感器和执行器,并进行控制算法的设计和优化。

同时还需要进行系统的建模和仿真,以验证设计的正确性和可行性。

在机电一体化系统设计中,还需要考虑系统的可拓展性和模块化设计。

通过模块化设计,可以将整个系统划分为若干个独立的子系统,每个子系统都具有独立的功能和自主控制。

这样可以提高系统的灵活性和可维护性,同时也方便对系统进行拓展和更新。

此外,在机电一体化系统设计中还需要考虑系统的能效和环保性。

通过优化设计和选择节能设备和材料,可以提高系统的能源利用效率和减少对环境的影响。

综上所述,机电一体化系统设计是一项复杂而综合的工作。

它需要综合运用机械、电子、自动化等多个学科的知识,进行系统的分析、设计和优化。

只有通过科学的设计和综合考虑各个方面的因素,才能确保机电一体化系统具有良好的性能和可靠性。

机电一体化概论

机电一体化概论
四、计算机辅助工程
计算机辅助工程(CAE)是采用CAE技术以 及有限元分析发,可实现对质量、体积、
惯性力矩、强度等计算分析;对产品的运 动精度,动、静态特征等的性能分析;对 产品的应力、变形等的结构分析。
五、并行工程
并行工程是集成地、并行地设计产品及其 部件和相关各种过程的一种系统工作模式。
律、分析方法和自控系统的构造等。 三、机电一体化技术的特点 机电一体化技术具有以下特点: 1、体积小、重量轻
2、速度快、精度高 3、可靠性高 4、柔性好
由于机电一体化技术的上述特点,使其机 电一体化产品具有节能、高质、高效、低 成本的共性,从而产生一系列过去不可想 象的新产品。
管理信息系统(MIS)、物料需求计划(MRP) 制造资源计划(MRP)等。
从狭义上来讲,先进制造是指各种计算机辅助制 造设备和计算机集成制造系统。
生产过程中机电一体化所包括的内容: 一、计算机的辅助设计
计算机的辅助设计是在计算机硬件与软件的支撑 下,通过对产品的描述、造型、系统分析、优化、 仿真和图形处理的研究,使计算机辅助完成产品 的全部设计过程,最后输出满意的设计结果和产 品图形。
为系统提供能量和动力。使系统正常运行。 (4)传感器(检测要素) 传感器是将被测对象的状态、性质等信息
转换为一定的物理量或者化学量。 (5)计算机控制装置(控制要素) 为达到一定的目的而实行的适当的操作成
为控制。
6、接口
机电一体化系统由许多要素或子系统构成, 各子系统之间必须能顺利进行物质、能量 和信息的传递与交换,为此各要素或子系 统相接处必须具备一定的联系部件,这个 部件称为接口,其基本功能主要有三个:1、 交换,需要进行信息交换和传输之间,2、 放大,在两个信息强度相差悬殊的环节间, 经接口放大,达到能量的匹配;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

WUHAN TEXTILE UNIVERSITY《机电一体化模块化控制系统》课程设计名:机电一体化模块化控制系统指导老师:张智明班级:机械11201班姓名:程志超学号:1202281102供料单元的结构与控制一、供料单元功能供料单元可作为起始单元,在整个系统中,起着向系统中的其它单元提供原料的作用。

它的具体功能是:按照需要将放置在料仓中的待加工工件(原料)自动地取出,并将其传送到下个工作单元。

二、供料单元的结构组成供料单元的结构组成如上图所示。

其主要结构组成为:工件推出与支撑,漏斗,阀组,端子排组件,PLC,急停按钮和启动/停止按钮,走线槽、底板等。

2.1 工件推出与支撑及漏斗部分该部分如图所示。

用于储存工件原料,并在需要时将料仓中最下层的工件推出到物料台上。

它主要由大工件装料管、推料气缸、顶料气缸、磁感应接近开关、漫射式光电传感器组成。

该部分的工作原理是:工件垂直叠放在料仓中,推料缸处于料仓的底层并且其活塞杆可从料仓的底部通过。

当活塞杆在退回位置时,它与最下层工件处于同一水平位置,而夹紧气缸则与次下层工件处于同一水平位置。

在需要将工件推出到物料台上时,首先使夹紧气缸的活塞杆推出,压住次下层工件;然后使推料气缸活塞杆推出,从而把最下层工件推到物料台上。

在推料气缸返回并从料仓底部抽出后,再使夹紧气缸返回,松开次下层工件。

这样,料仓中的工件在重力的作用下,就自动向下移动一个工件,为下一次推出工件做好准备。

为了使气缸的动作平稳可靠,气缸的作用气口都安装了限出型气缸截流阀。

气缸截流阀的作用是调节气缸的动作速度。

截流阀上带有气管的快速接头,只要将合适外径的气管往快速接头上一插就可以将管连接好了,使用时十分方便。

A 气缸两端分别有缩回限位和伸出限位两个极限位置,这两个极限位置都分别装有一个磁感应接近开关,如下图所示。

磁感应接近开关的基本工作原理是:当磁性物质接近传感器时,传感器便会动作,并输出传感器信号。

若在气缸的活塞(或活塞杆)上安装上磁性物质,在气缸缸筒外面的两端位置各安装一个磁感应式接近开关,就可以用这两个传感器分别标识气缸运动的两个极限位置。

当气缸的活塞杆运动到哪一端时,哪一端的磁感应式接近开关就动作并发出电信号。

在PLC的自动控制中,可以利用该信号判断推料及顶料缸的运动状态或所处的位置,以确定工件是否被推出或气缸是否返回。

在传感器上设置有LED显示用于显示传感器的信号状态,供调试时使用。

传感器动作时,输出信号“1”,LED亮;传感器不动作时,输出信号“0”,LED不亮。

传感器(也叫做磁性开关)的安装位置可以调整,调整方法是松开磁性开关的紧定螺栓,让磁性开关顺着气缸滑动,到达指定位置后,再旋紧紧定螺栓。

磁性开关有蓝色和棕色2根引出线,使用时蓝色引出线应连接到PLC输入公共端,棕色引出线应连接到PLC输入端子。

磁性开关的内部电路如图3-6虚线框内所示,为了防止实训时错误接线损坏磁性开关,YL-335A上所有磁性开关的棕色引出线都串联了电阻和二极管支路。

因此,使用时若引出线极性接反,该磁性开关不能正常工作。

磁性开关内部电路在底座和装料管第4层工件位置,分别安装一个漫射式光电开关。

漫射式光电接近开关是利用光照射到被测物体上后反射回来的光线而工作的,由于物体反射的光线为漫射光,故称为漫射式光电接近开关。

它的光发射器与光接收器处于同一侧位置,且为一体化结构。

在工作时,光发射器始终发射检测光,若接近开关前方一定距离内没有物体,则没有光被反射到接收器,接近开关处于常态而不动作;反之若接近开关的前方一定距离内出现物体,只要反射回来的光强度足够,则接收器接收到足够的漫射光就会使接近开关动作而改变输出的状态。

图3-7为漫射式光电接近开关的工作原理示意图。

漫射式接近开关的工作原理由此可见,若该部分机构内没有工件,则处于底层和第4层位置的两个漫射式光电接近开关均处于常态;若仅在底层起有3个工件,则底层处光电接近开关动作而第4层处光电接近开关常态,表明工件已经快用完了。

这样,料仓中有无储料或储料是否足够,就可用这两个光电接近开关的信号状态反映出来。

在控制程序中,就可以利用该信号状态来判断底座和装料管中储料的情况,为实现自动控制奠定了硬件基础。

供料单元中,用来检测工件不足或工件有无的漫射式光电接近开关选用OMRON公司的E3Z-L型放大器内置型光电开关(细小光束型)。

该光电开关的外形和顶端面上的调节旋钮和显示灯如图3-8所示。

图3-9给出该光电开关的内部电路原理框图。

E3Z-L光电开关电路原理图被推料缸推出的工件将落到物料台上。

物料台面开有小孔,物料台下面设有一个园柱形漫射式光电接近开关,工作时向上发出光线,从而透过小孔检测是否有工件存在,以便向系统提供本单元物料台有无工件的信号。

在输送单元的控制程序中,就可以利用该信号状态来判断是否需要驱动机械手装置来抓取此工件。

该光电开关选用OTS41型。

2.2电磁阀组阀组,就是将多个阀与消声器、汇流板等集中在一起构成的一组控制阀的集成,而每个阀的功能是彼此独立的。

供料单元的阀组只使用两个由二位五通的带手控开关的单电控电磁阀,两个阀集中安装在汇流板上,汇流板中两个排气口末端均连接了消声器,消声器的作用是减少压缩空气在向大气排放时的噪声。

阀组的结构如图3-10所示。

本单元的两个阀分别对顶料气缸和推料气缸进行控制,以改变各自的动作状态。

本单元所采用的电磁阀,带手动换向、加锁钮,有锁定(LOCK)和开启(PUSH)2个位置。

用小螺丝刀把加锁钮旋到在LOCK位置时,手控开关向下凹进去,不能进行手控操作。

只有在PUSH位置,可用工具向下按,信号为“1”,等同于该侧的电磁信号为“1”;常态时,手控开关的信号为“0”。

在进行设备调试时,可以使用手控开关对阀进行控制,从而实现对相应气路的控制,以改变推料缸等执行机构的控制,达到调试的目的。

2.3 转运模块它的功能是吸取工件,并将工件传送到下一个工作单元。

转运模块主要由旋转气缸、摆臂、真空吸盘、真空压力检测传感器、真空吸盘方向保持装置等组成。

旋转气缸是摆臂的驱动装置,其转轴的最大转角为180°,转角可以根据需要进行调整。

在转动气缸的两个极限位置上各装有一个磁感应式的接近开关,利用接近开关的信号状态来标识两个极限位置。

真空吸盘用于抓取工件。

吸盘内腔的负压(真空)是靠真空发生器产生的。

真空检测传感器,它是具有开关量输出的真空压力检测装置,当进气口的气压小于一定的负压(真空)值时,传感器动作,输出开关量 1,同时 LED 点亮,否则,输出信号 0,LED 熄灭。

真空吸盘方向保持装置,它的作用是:使真空吸盘在摆臂转动的过程中始终保持垂直向下的姿态,以使被运送的工件在运送过程中不致翻转。

它的工作原理是:旋转气缸固定在支架上,输出轴从固定齿轮的轴孔中穿过,并可自由转动,摆臂则固定在旋转气缸的转轴上;摆臂的另一端安装有一个可以自由转动带有齿轮的吸嘴,吸嘴的齿轮与旋转气缸输出轴外围的固定齿轮通过一个同步带相连。

当旋转气缸驱动摆臂转动时,摆臂与固定齿轮之间形成相对运动,导致同步带的运动,通过同步带带动了吸嘴的转动;固定齿轮与活动齿轮的传动比为 1:1,这样摆臂转动的角度等于吸嘴转动的角度,因此,保证了吸嘴在摆臂转动的过程中始终保持方向不变。

2.4电磁阀组阀组,就是将多个阀集中在一起构成的一组阀,而每个阀的功能是彼此独立的。

供料单元的阀组只使用两个由二位五通的带手控开关的单电控电磁阀,两个阀集中安装在汇流板上,汇流板中两个排气口末端均连接了消声器,消声器的作用是减少压缩空气在向大气排放时的噪声。

本单元的两个阀分别对顶料气缸和推料气缸的气路进行控制,以改变各自的动作状态。

本单元所采用的电磁阀,带手动换向、加锁钮,有锁定(LOCK)和开启(PUSH)2个位置。

用小螺丝刀把加锁钮旋到在LOCK位置时,手控开关向下凹进去,不能进行手控操作。

只有在PUSH位置,可用工具向下按,信号为“1”,等同于该侧的电磁信号为“1”;常态时,手控开关的信号为“0”。

三、气动控制回路3.1气动控制原理供料单元气动控制回路工作原理图该工作单元的执行机构是气动控制系统,其方向控制阀的控制方式为电磁控制或手动控制。

各执行机构的逻辑控制功能是通过 PLC 控制实现的。

在供料单元的气动控制原理图中,1A 为旋转缸;1B1 和 1B2 为磁感应式接近开关;2A为真空发生器;2B1 为真空压力检测传感器; 3A 为双作用推料气缸;3B1、3B2 为磁感应式接近开关;1Y1、1Y2 为控制旋转气缸的电磁阀的两个控制信号; 2Y1、2Y2 为控制真空发生器的电磁阀的两个电磁控制信号;3Y1 为控制推料缸的电磁阀的电磁控制信号。

3.2 电气接口地址系统中的每个部件上的输入、输出信号与 PLC 之间的通讯电路联接是通过I/O 接线端口实现的。

各接口地址已经固定。

各单元中的需要与 PLC 进行通讯联接的线路(包括各个传感器的线路、各个电磁阀的控制线路及电源线路)都已事先联接到了各自的 I/O 接线端口上,在与 PLC 联接时,只需使用一根专用电缆即可实现快速连接。

四、供料单元的PLC控制及编程4.1 供料单元的PLC工作任务本章节只考虑供料单元作为独立设备运行时的情况,单元工作的主令信号和工作状态显示信号来自PLC旁边的按钮/指示灯模块。

并且,按钮/指示灯模块上的工作方式选择开关SA应置于“单站方式”位置。

具体的控制要求为:①设备上电和气源接通后,若工作单元的两个气缸均处于缩回位置,且料仓内有足够的待加工工件,则“正常工作”指示灯HL1常亮,表示设备准备好。

否则,该指示灯以1Hz 频率闪烁。

②若设备准备好,按下启动按钮,工作单元启动,“设备运行”指示灯HL2常亮。

启动后,若出料台上没有工件,则应把工件推到出料台上。

出料台上的工件被人工取出后,若没有停止信号,则进行下一次推出工件操作。

③若在运行中按下停止按钮,则在完成本工作周期任务后,各工作单元停止工作,HL2指示灯熄灭。

④若在运行中料仓内工件不足,则工作单元继续工作,但“正常工作”指示灯HL1以1Hz的频率闪烁,“设备运行”指示灯HL2保持常亮。

若料仓内没有工件,则HL1指示灯和HL2指示灯均以2Hz频率闪烁。

工作站在完成本周期任务后停止。

除非向料仓补充足够的工件,工作站不能再启动。

4.2 PLC的I/O 接线本单元中,传感器信号占用7个输入点,留出1个点提供给启/停按钮作本地主令信号,则所需的PLC I/O点数为8点输入/2点输出。

选用西门子S7-222主单元,共8点输入和6点继电器输出,供料单元的I/O接线原理图如附录图一所示。

供料单元PLC的I/O接线是采用双层接线端子排连接的,端子排集中连接本工作单元所有电磁阀、传感器等器件的电气连接线、PLC的I/O端口及直流电源。

相关文档
最新文档