2020年江苏中考数学压轴题精选精练2

合集下载

江苏省2020年中考数学押题试卷(含答案)

江苏省2020年中考数学押题试卷(含答案)

江苏省中考数学押题试卷(满分:150分考试时间:120分钟)友情提醒:本卷中的所有题目均在答题卷上作答,在本卷中作答无效。

一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上)1.下列各式结果是负数的是A.-(-3) B.3--C.23-D.2(3)-2.下列函数中,自变量x的取值范围是3x>的是A.3y x=-B.13yx=-C.3y x=-D.3yx=-3. 已知反比例函数3yx=-,下列结论不正确...的是A.图象必经过点(-1,3) B.若x>1,则-3﹤y﹤0C.图象在第二、四象限内D.y随x的增大而增大4.下列事件中最适合使用普查方式收集数据的是A.了解某班同学的身高情况B.了解全市每天丢弃的废旧电池数C.了解50发炮弹的杀伤半径D.了解我省农民的年人均收入情况5.下列水平放置的四个几何体中,主视图与其它三个不相同的是A B C D6.如图,在平面直角坐标系中,菱形OACB的顶点O在原点,点C的坐标为(4,0),点B的纵坐标是−1,则顶点A坐标是A.(2,1)B.(1,−2)2,-1)7.已知一次函数y kx b=+的图象如图所示,则关于x的不等式(4)20k x b-->的解集为OABCyx(第5题)3yxOy = kx +b(第15题)G FO AEC42°BCDA(第16题)A .2x >-B .2x <-C .2x >D .3x < 8.在△ABC 中, AB =3,AC = 3. 当∠B 最大时,BC 的长是A .32B .32C . 6D .2 3二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡...相应..位置..上) 9. 3的倒数为 ▲ .10. 南海资源丰富,其面积约为350万平方千米,相当于我国渤海、黄海和东海总面积的3倍.其中350万用科学记数法表示为 ▲ .11. 如果实数x 、y 满足方程组221,4,x y x y -=⎧⎨+=⎩ 那么22x y -= ▲ .12.某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是 ▲ .13. 口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是 ▲ . 14.若正多边形的一个内角等于140°,则这个正多边形的边数是 ▲ .15.如图,⊙O 的半径是4,△ABC 是⊙O 的内接三角形,过圆心O 分别作AB 、BC 、AC 的垂线,垂足为E 、F 、G ,连接EF .若OG ﹦1,则EF = ▲ .16. 在△ABC 中,AB =AC ,CD =CB ,若∠ACD =42°,则∠BAC = ▲ °.17.如图,一段抛物线y =-x (x -3)(0≤x ≤3),记为C 1,它与x 轴交于点O ,A 1;将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3;……如此进行下去,得到一条“波浪线”.若点P (37,m )在此“波浪线”上,则m 的值为 ▲ .18. 如图,矩形ABCD 被分成四部分,其中△ABE 、△ECF 、△ADF 的面积分别为2、3、4,则跳绳数/个100.595.590.585.580.5△AEF 的面积为 ▲ .三、解答题(本大题共有10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)(1212cos30()12-+--;(2)解不等式:122123x x -+-≥.20.(本题满分8分)先化简再求值: 232(1)121x x x x x ---÷--+,其中x 是方程22x x =的根.21.(本题满分8分)某中学初三(1)班共有40名同学,在一次30秒跳绳测试中他们的成绩统计如下表:将这些数据按组距5(个)分组,绘制成如图的频数分布直方图(不完整). (1)将表中空缺的数据填写完整,并补全频数分布直方图;(2)这个班同学这次跳绳成绩的众数是 ▲ 个,中位数是 ▲ 个;(3)若跳满90个可得满分,学校初三年级共有720人,试估计该中学初三年级还有多少人跳绳不能得满分.22.(本题满分8分)甲、乙、丙、丁四位同学进行一次羽毛球单打比赛,要从中选出两位同学打第一场比赛.请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.23.(本题满分10分)如图,在□ABCD 中,点E 、F 分别是AD 、BC 的中点,分别连接BE 、DF 、BD .(1)求证:△AEB ≌△CFD ;(2)若四边形EBFD 是菱形,求∠ABD 的度数.24.(本题满分10分)为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天; 信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.25.(本题满分10分)如图所示,把一张长方形卡片ABCD 放在每格宽度为12mm 的横格纸中,恰好四个顶点都在横格线上,已知α=36°,求长方形卡片的周长.(精确到1mm )(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)26.(本题满分10分)如图,点E 是边长为1的正方形ABCD 的边AB 上任意一点(不含A 、B ),ABCDFE过B 、C 、E 三点的圆与BD 相交于点F ,与CD 相交于点G ,与∠ABC 的外角平分线相交于点H .(1)求证:四边形EFCH 是正方形;(2)设BE =x ,△CFG 的面积为y ,求y 与x 的函数关系式,并求y 的最大值.27.(本题满分12分)已知:点E 为AB 边上的一个动点.(1)如图1,若△ABC 是等边三角形,以CE 为边在BC 的同侧作等边△DEC ,连结AD .试比较∠DAC 与∠B 的大小,并说明理由;(2)如图2,若△ABC 中,AB=AC ,以CE 为底边在BC 的同侧作等腰△DEC ,且△DEC ∽△ABC ,连结AD .试判断AD 与BC 的位置关系,并说明理由;(3)如图3,若四边形ABCD 是边长为2的正方形,以CE 为边在BC 的同侧作正方形ECGF .①试说明点G 一定在AD 的延长线上;②当点E 在AB 边上由点B 运动至点A 时,点F28.(本题满分12分)在平面直角坐标系xOy 中,抛物线42++=bx ax y 经过A (-3,0)、B(图1)(图2)(4,0)两点,且与y轴交于点C,点D在x轴的负半轴上,且BD=BC,有一动点P从点A 出发,沿线段AB以每秒1个单位长度的速度向点B移动,同时另一个动点Q从点C出发,沿线段CA以某一速度向点A移动.(1)求该抛物线的解析式;(2)若经过t秒的移动,线段PQ被CD垂直平分,求此时t的值;(3)该抛物线的对称轴上是否存在一点M,使MQ+MA的值最小?若存在,求出点M的坐标;若不存在,请说明理由.丁丙乙甲参考答案及评分建议说明:如果考生的解法与本解答不同,参照本评分标准的精神酌情给分. 一、选择题(本大题共有8小题,每小题3分,共24分)二、填空题(本大题共有10小题,每小题3分,共30分)9.310.63.510⨯ 11.2 12.20%13.0.3 14.915 16.32 17.2 18.7三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、证明过程或演算步骤) 19.(1)原式41)=- …………………………………………4分 5=(此步错误扣1分) …………………………………………4分 (2) 去分母得:36624x x --≥+ ……………………………………………………2分移项、合并同类项得:87x -≥ …………………………………………………3分化系数为1得:78x ≤-……………………………………………………4分 20.原式2242121x x x x x --=÷--+ ……………………………………………………2分 2(2)(2)(1)12x x x x x +--=-⋅-- ……………………………………………………4分22x x =--+ ……………………………………………………5分解22x x =得:120,2(x x ==使分式无意义,舍去) ……………………7分当0x =时,原式2= ……………………………………………………8分 21.(1)5 8 图略 …………………………………………………3分 (2)95(1分) 95 (2分) …………………………………………………6分 (3)54 …………………8分 22. ⑴画树状图(或列表如下): ……………………………4分∴ 共有12个等可能的结果,其中恰好是甲乙的占2个,∴ P(甲乙)=21126=……… 8分 23.(1)证明:∵四边形ABCD 是平行四边形,∴∠A =∠C ,AD =BC ,AB =CD .… 2分∵点E 、F 分别是AD 、BC 的中点,∴AE =12AD ,FC =12BC .∴AE =CF . ……………………3分∴△AEB ≌△CFD . ……………………5分(2)解:∵四边形EBFD 是菱形,∴BE =DE .∴∠EBD =∠EDB . ……………7分∵AE =DE ,∴BE =AE .∴∠A =∠ABE . ……………………8分 ∵∠EBD +∠EDB +∠A +∠ABE =180°,∴∠ABD =∠ABE +∠EBD =12×180°=90°. ………………10分24.解:设甲工厂每天能加工x 件新产品,则乙工厂每天能加工1.5x 件新产品. ……1分 依题意得 105.112001200+=x x . ………………………………5分解得40=x . …………………………7分 经检验,40=x 是原方程的解,并且符合题意. …………… 8分 ∴ 605.1=x .答: 甲工厂每天能加工40件新产品, 乙工厂每天能加工60件新产品. ………………10分 25.解:作BE l ⊥于点E ,DF l ⊥于点F .18018090909036.DAF BAD ADF DAF ADF αα+∠=-∠=-=∠+∠=︒∴∠==︒Q °°°°,,根据题意,得BE =24mm ,DF =48mm. 在Rt ABE △中,sin BEABα=, 2440sin 360.60BE AB ∴===°mm ………………………………………4分在Rt ADF △中,cos DFADF AD∠=,4860cos360.80DF AD ∴===°mm . ………………………………………8分∴矩形ABCD 的周长=2(40+60)=200mm . ………………………………10分26.(1)证明:∵B 、H 、C 、F 、E 在同一圆上,且∠EBC =90° ∴∠EFC =90°,∠EHC =90° ………………2分 又∠FBC =∠HBC =45°,∴CF =CH ………………3分 ∵∠HBF +∠HCF =180°,∴∠HCF =90° ………………4分∴四边形EFCH 是正方形 ………………5分 (2)∵∠BFG +∠BCG =180°,∴∠BFG =90° 由(1)知∠EFC =90°,∴∠CFG +∠BFC =∠BFE +∠BFC ∴∠CFG =∠BFE ,∴CG =BE =x ………………7分 ∴DG =DC -CG =1-x易知△DFG 是等腰直角三角形∴△CFG 中CG 边上的高为 1 2DG =12(1-x)……………8分∴y =1 2 x ·1 2 ( 1-x )=- 1 4 ( x - 1 2 )2+116………………9分∴当x =12时,y 有最大值116………………10分27.解:(1) ∠DAC =∠B 理由如下: ……………1分 ∵△ABC 和△DEC 都是等边三角形 ∴∠DCE=∠ACB=60° ∴∠BCE=∠ACD ∵BC=AC CE=CD ∴△BCE ≌△ACD ……………2分 ∴∠B=∠DAC ……………3分 (2)AD ∥BC 理由如下: ……………4分∵△ABC 和△DEC 都是等腰三角形,且△DEC ∽△ABC ∴DC ACCE BC=∵∠DCE=∠ACB ∴∠DCA=∠ECB ∴△DCA ∽△ECB ……………6分 ∴∠DAC=∠EBC=∠AC B ∴AD ∥BC ……………7分 (3)①连结DG ,∵四边形ABCD 和FECG 都是正方形∴BC=CD CE=CG ∠BCD=∠ECG=90°∴∠BCE=∠DCG ∴△BCE ≌△DCG ……………8分 ∴∠B=∠CDG=90°∵∠ADC=90°∴∠ADC+∠CDG=180°∴点G 一定在AD 的延长线上. ……………9分 ②作FH ⊥AG 于点H ,易证:△FHG ≌△GDC ≌△EBC ∴FH=BE=DG HG=BC∴AH=AG-GH=AD+DG-GH= BC+DG-BC=DG=FH ∴△AFH 是等腰直角三角形 ∴∠F AG=45° ……………11分28.解:(1)∵抛物线42++=bx ax y 经过A (-3,0),B (4,0)两点,∴⎩⎨⎧=++=+-.04416,0439b a b a 解得⎪⎩⎪⎨⎧=-=.31,31b a ∴所求抛物线的解析式为431312++-=x x y . ……………………………3分(2)如图,依题意知AP =t ,连接DQ ,由A (-3,0),B (4,0),C (0,4), 可得AC =5,BC =24,AB =7. ∵BD =BC ,∴247-=-=BD AB AD . 4分 ∵CD 垂直平分PQ ,∴QD =DP ,∠∵BD =BC ,∴∠DCB = ∠CDB .∴∠CDQ = ∠DCB .∴DQ ∥BC . …………………………6分 ∴△ADQ ∽△ABC .∴BCDQ AB AD =.∴BC DP AB AD =. ∴247247DP=-.解得 73224-=DP . …………………7分 ∴717=+=DP AD AP . …………………………8分 ∴线段PQ 被CD 垂直平分时,t 的值为717.(3)设抛物线431312++-=x x y 的对称轴21=x 与x 轴交于点E .点A 、B 关于对称轴21=x 对称,连接BQ 交该对称轴于点M .则MB MQ MA MQ +=+,即BQ MA MQ =+. …………9分当BQ ⊥AC 时,BQ 最小. ………………10分 此时,∠EBM = ∠ACO .∴43tan tan =∠=∠ACO EBM .∴43=BE ME .∴4327=ME ,解得821=ME . ………………11分xy D CBA OP Qxy x =12MQE CB A O精品资料∴M (21,821). ………………………12分 即在抛物线431312++-=x x y 的对称轴上存在一点M (21,821),使得MQ +MA 的值最小.。

2020年全国各地中考数学压轴题按题型(几何综合)汇编(二)四边形中的计算和证明综合(原卷版)

2020年全国各地中考数学压轴题按题型(几何综合)汇编(二)四边形中的计算和证明综合(原卷版)

图1@2 图3 二、四边形中的计算和证明综合题1. (2020安徽)如图1,已知四边形ABCD 是矩形,点E 在的延长线上,AE=AD. EC 与8D 相交于点 G,与A 。

相交于点F, AF=AB.求证:BDREC ;2. (2020黑龙江七台河)以Rt&BC 的两边AB 、AC 为边,向外作正方形ABDE 和正方形ACFG,连接EG, 过点A 作AMLBC 于M,延长MA 交EG 于点N.(1)如图①,若ZBAC=90° , AB=AC,易证:EN=GN :(2)如图②,ZBAC=90c :如图③,匕8ACK90° , (1)中结论, 形进行证明;若不成立,写出你的结论,并说明理由.(2) 若AB=1,求AE 的长:如图2,连接AG,求证:EG ・DG= y/^AG.是否成立,若成立,选择一个图 (3) ® 1ENGB M C3.(2020黑龙江绥化)如图,在正方形A8CD中,A8=4,点G在边8C上,连接AG,作。

EVAG于点E,BGBFA.AG 于点、F,连接BE、OF,设ZEDF=a. ZEBF=B,— =k.BC(1)求证:AE=BF;(2)求证:tana=k・tai】。

:(3)若点G从点B沿8C边运动至点C停止,求点E, F所经过的路径与边A8围成的图形的面积.4. (2020湖南长沙)在矩形ABCD中,E为DC边上一点,把左ADE沿AE翻折,使点。

恰好落在BC边上的点F.(1)求证:△ABFs/^FCE;(2)若AB=2V5, AO=4,求EC 的长:(3)若AE・DE=2EC,记N8AF=a, ZME=p.求tana+tanp 的值.5. (2020江苏连云港)(1)如图1,点P为矩形ABCD对角线上一点,过点P作EF〃BC,分别交A8、CD 于点、E、F.若BE=2, PF=6, ZkAEP 的面积为Si, 的面积为则Si+S2=:(2)如图2,点P为"ABCD内一点(点P不在BD上),点E、F、G、H分别为各边的中点.设四边形AEPH的面积为Si,四边形PFCG的面积为S2 (其中S2>Si),求△P8O的面积(用含Si、S?的代数式表示):(3)如图3,点P为"BCD内一点(点P不在BD上),过点P作EF〃A。

2020年江苏中考数学压轴题精选精练(含解析)

2020年江苏中考数学压轴题精选精练(含解析)

中考数学压轴题精选精练一、选择题(6题)1.如图,点A是射线y═(x≥0)上一点,过点A作AB⊥x轴于点B,以AB为边在其右侧作正方形ABCD,过点A的双曲线y=交CD边于点E,则的值为()A.B.C.D.12.如图,在△ABC中,∠C=90°,AC=4,BC=2,点A、C分别在x轴、y轴上,当点A 在x轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点的最大距离是()A.6 B.C.D.3. 如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点D是AB的中点,点P是直线BC上一点,将△BDP沿DP所在的直线翻折后,点B落在B1处,若B1D⊥BC,则点P 与点B之间的距离为()A.1 B.54C.1或3 D.54或54.已知直线y=﹣x+7a+1与直线y=2x﹣2a+4同时经过点P,点Q是以M(0,﹣1)为圆心,MO为半径的圆上的一个动点,则线段PQ的最小值为()A.103B.163C.85D.1855.如图,平行四边形ABCD的顶点A的坐标为(﹣,0),顶点D在双曲线y=(x>0)上,AD交y轴于点E(0,2),且四边形BCDE的面积是△ABE面积的3倍,则k的值为()A.4 B.6 C.7 D.86.如图,已知矩形ABCD,AB=4,BC=6,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为()A.3+2B.4+3C.2+2D.10二、填空题(6题)1.如图,矩形ABCD中,AB=4,BC=8,P,Q分别是直线BC,AB上的两个动点,AE =2,△AEQ沿EQ翻折形成△FEQ,连接PF,PD,则PF+PD的最小值是.2.如图,在四边形ABCD中,AB∥CD,AB=BC=BD=2,AD=1,则AC=.3.如图,四边形ABCD的顶点都在坐标轴上,若AB∥CD,△AOB与△COD 面积分别为8和18,若双曲线kyx恰好经过BC的中点E,则k的值为.第3题第4题4.如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.5.如图,在平面直角坐标系中,已知点A(0,1),B(0,1+m),C(0,1﹣m)(m>0),点P在以D(﹣4,﹣2)为圆心,为半径的圆上运动,且始终满足∠BPC=90°,则m的取值范围是.第3题第4题6.如图,在矩形ABCD中,AB=15,AD=10,点P是AB边上任意一点(不与A点重合),连接PD,以线段PD为直角边作等腰直角△DPQ(点Q在直线PD右侧),∠DPQ=90°,连接BQ,则BQ的最小值为.三、解答题(6题)1.如图,正方形ABCD的边长为2,点E、F分别是边AB、AD上的动点,且∠ECF=45°,CF的延长线交BA的延长线于点G,GE的延长线交DA的延长线于点H,连接AE、CF.(1)求证:△AEF的周长为定值;(2)求AG•AH的值;(3)当△CGH是等腰三角形时,求AF的值.2.如图,抛物线y =ax 2+bx ﹣3与x 轴交于A (﹣1,0),B (3,0),与y 轴交于点C ,顶点为D .(1)求抛物线的解析式及点D 的坐标.(2)在线段BC 下方的抛物线上,是否存在异于点D 的点E ,使S △BCE =S △BCD ?若存在,求出点E 的坐标;若不存在,请说明理由. (3)点M在抛物线上,点P 为y 轴上一动点,求MP +PC 的最小值.3.如图①,一次函数122y x =-的图象交x 轴于点A ,交y 轴于点B ,二次函数212y x bx c =-++的图象经过A 、B 两点,与x 轴交于另一点C .(1)求二次函数的关系式及点C 的坐标;(2)如图②,若点P 是直线AB 上方的抛物线上一点,过点P 作PD ∥x 轴交AB 于点D ,PE ∥y 轴交AB 于点E ,求PD +PE 的最大值;(3)如图③,若点M 在抛物线的对称轴上,且∠AMB =∠ACB ,求出所有满足条件的点M 的坐标.4.如图,矩形ABCD中,AB=6,AD=8.动点E,F同时分别从点A,B出发,分别沿着射线AD和射线BD的方向均以每秒1个单位的速度运动,连接EF,以EF为直径作⊙O 交射线BD于点M,设运动的时间为t.(1)当点E在线段AD上时,用关于t的代数式表示DE,DM.(2)在整个运动过程中,①连结CM,当t为何值时,△CDM为等腰三角形.②圆心O处在矩形ABCD内(包括边界)时,求t的取值范围,并直接写出在此范围内圆心运动的路径长.5.如图1,矩形ABCD中,AB=6,动点P从点A出发,沿A→B→C的方向在AB和BC 上移动,记P A=x,点D到直线P A的距离为y,y关于x的函数图象由C1、C2两段组成,如图2所示.(1)求AD的长;(2)求图2中C2段图象的函数解析式;(3)当△APD为等腰三角形时,求y的值.6.如图,顶点为A的抛物线y=a(x+2)2﹣4交x轴于点B(1,0),连接AB,过原点O 作射线OM∥AB,过点A作AD∥x轴交OM于点D,点C为抛物线与x轴的另一个交点,连接CD.(1)求抛物线的解析式;(2)若动点P从点O出发,以每秒1个单位长度的速度沿着射线OM运动,设点P运动的时间为t秒,问:当t为何值时,OB=AP;(3)若动点P从点O出发,以每秒1个单位长度的速度沿线段OD向点D运动,同时动点Q从点C出发,以每秒2个单位长度的速度沿线段CO向点O运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动时间为t秒,连接PQ.问:当t为何值时,四边形CDPQ的面积最小?并求此时PQ的长.【答案与解析】一、选择题1.【分析】设点A的横坐标为m(m>0),则点B的坐标为(m,0),把x=m代入y=x得到点A的坐标,结合正方形的性质,得到点C,点D和点E的横坐标,把点A的坐标代入反比例函数y=,得到关于m的k的值,把点E的横坐标代入反比例函数的解析式,得到点E的纵坐标,求出线段DE和线段EC的长度,即可得到答案.【解答】解:设点A的横坐标为m(m>0),则点B的坐标为(m,0),把x=m代入y=x得:y=m,则点A的坐标为:(m,m),线段AB的长度为m,点D的纵坐标为m,∵点A在反比例函数y=上,∴k=m2,即反比例函数的解析式为:y=,∵四边形ABCD为正方形,∴四边形的边长为m,点C,点D和点E的横坐标为m+m=m,把x=m代入y=得:y=m,即点E的纵坐标为m,则EC=m,DE=m﹣m=m,=,故选:A.2.【分析】点A,C分别在x轴、y轴上,当点A在x轴运动时,点C随之在y轴上运动,在运动过程中,点O在到AC的中点的距离不变.本题可通过设出AC的中点坐标,根据B、D、O在一条直线上时,点B到原点O的最大可得出答案.【解答】解:作AC的中点D,连接OD、DB,∵OB≤OD+BD,∴当O、D、B三点共线时OB取得最大值,∵D是AC中点,∴OD=AC=2,∵BD==2,OD=AC=2,∴点B到原点O的最大距离为2+2,故选:D.3.【分析】分点B1在BC左侧,点B1在BC右侧两种情况讨论,由勾股定理可AB=5,由平行线分线段成比例可得,可求BE,DE的长,由勾股定理可求PB的长.【解答】解:如图,若点B1在BC左侧,∵∠C=90°,AC=3,BC=4,∴AB==5∵点D是AB的中点,∴BD=BA=∵B1D⊥BC,∠C=90°∴B1D∥AC∴∴BE=EC=BC=2,DE=AC=∵折叠∴B1D=BD=,B1P=BP∴B1E=B1D﹣DE=1∴在Rt△B1PE中,B1P2=B1E2+PE2,∴BP2=1+(2﹣BP)2,∴BP=如图,若点B1在BC右侧,∵B1E=DE+B1D=+,∴B1E=4在Rt△EB1P中,B1P2=B1E2+EP2,∴BP2=16+(BP﹣2)2,∴BP=5故答案为:或5 故选:D.4.【分析】先解方程组得P点坐标为(3a﹣1,4a+2),则可确定点P为直线y =x+上一动点,设直线y=x+与坐标的交点为A、B,如图,则A(﹣,0),B(0,),利用勾股定理计算出AB=,过M点作MP⊥直线AB于P,交⊙M于Q,此时线段PQ的值最小,证Rt△MBP∽Rt△ABO,利用相似比计算出MP=,则PQ =,即线段PQ的最小值为.【解答】解:解方程组得,∴P点坐标为(3a﹣1,4a+2),设x=3a﹣1,y=4a+2,∴y=x+,即点P为直线y=x+上一动点,设直线y=x+与坐标的交点为A、B,如图,则A(﹣,0),B(0,),∴AB==,过M点作MP⊥直线AB于P,交⊙M于Q,此时线段PQ的值最小,∵∠MBP=∠ABO,∴Rt△MBP∽Rt△ABO,∴MP:OA=BM:AB,即MP:=:,∴MP=,∴PQ=﹣1=,即线段PQ的最小值为.故选:C.5.【分析】连结BD,由四边形EBCD的面积是△ABE面积的3倍得平行四边形ABCD的面积是△ABE面积的4倍,根据平行四边形的性质得S△ABD=2S△ABE,则AD=2AE,即点E为AD的中点,E点坐标为(0,2),A点坐标为(﹣,0),利用线段中点坐标公式得D点坐标为,再利用反比例函数图象上点的坐标特征得k的值.【解答】解:如图,连结BD,∵四边形EBCD的面积是△ABE面积的3倍,∴平行四边形ABCD的面积是△ABE面积的4倍,∴S△ABD=2S△ABE,∴AD=2AE,即点E为AD的中点,∵E点坐标为(0,2),A点坐标为(﹣,0),∴D点坐标为(,4),∵顶点D在双曲线y=(x>0)上,∴k=×4=6,故选:B.6.【分析】将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,推出AM=MM’可得MA+MD+ME=D’M+MM’+ME,共线时最短;由于点E也为动点,可得当D’E⊥BC时最短,此时易求得D’E=DG+GE 的值;【解答】解:将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,∴AM=MM’,∴MA+MD+ME=D’M+MM’+ME,∴D′M、MM′、ME共线时最短,由于点E也为动点,∴当D’E⊥BC时最短,此时易求得D’E=DG+GE=4+3,∴MA+MD+ME的最小值为4+3.故选:B.二、填空题.【分析】如图作点D关于BC的对称点D′,连接PD′,ED′.由DP=PD′,推出PD+PF =PD′+PF,又EF=EA=2是定值,即可推出当E、F、P、D′共线时,PF+PD′定值最小,最小值=ED′﹣EF.【解答】解:如图作点D关于BC的对称点D′,连接PD′,ED′.在Rt△EDD′中,∵DE=6,DD′=8,∴ED′==10,∵DP=PD′,∴PD+PF=PD′+PF,∵EF=EA=2是定值,∴当E、F、P、D′共线时,PF+PD′定值最小,最小值=10﹣2=8,∴PF+PD的最小值为8,故答案为8.2.【分析】不能用全等、相似的判定和性质求得AC的情况下,考虑构造直角三角形用勾股定理来求,故过点C作AB垂线CF.由于△ABD三边确定,可用勾股定理列方程求得AB边上的高DE的长.根据平行线间距离处处相等,即有CF=DE,进而求得BF和AF,再在Rt△ACF中用勾股定理求AC.【解答】解:过点D作DE⊥AB于点E,过点C作CF⊥AB交AB延长线于点F∴∠AED=∠BED=∠F=90°设AE=x,∵AB=BC=BD=2,AD=1∴BE=AB﹣AE=2﹣x∵在Rt△ADE中,AE2+DE2=AD2,在Rt△BDE中,BE2+DE2=BD2∴DE2=AD2﹣AE2=BD2﹣BE2得:12﹣x2=22﹣(2﹣x)2解得:x=∴DE2=AD2﹣AE2=12﹣()2=∵AB∥CD∴CF=DE∴在Rt△BCF中,BF=∴AF=AB+BF=2+=∴在Rt△ACF中,AC=3.【分析】由平行线的性质得∠OAB=∠OCD,∠OBA=∠ODC,两个对应角相等证明△OAB∽△OCD,其性质得,再根据三角形的面积公式,等式的性质求出m=,线段的中点,反比例函数的性质求出k的值为6.【解答】解:如图所示:∵AB∥CD,∴∠OAB=∠OCD,∠OBA=∠ODC,∴△OAB∽△OCD,∴,若=m,由OB=m•OD,OA=m•OC,又∵,,∴=,又∵S△OAB=8,S△OCD=18,∴,解得:m=或m=(舍去),设点A、B的坐标分别为(0,a),(0,b),∵,∴点C的坐标为(0,﹣a),又∵点E是线段BC的中点,∴点E的坐标为(),又∵点E在反比例函数上,∴=﹣=,故答案为6.4.【分析】根据菱形的性质得到AB=1,∠ABD=30°,根据平移的性质得到A′B′=AB =1,A′B′∥AB,推出四边形A′B′CD是平行四边形,得到A′D=B′C,于是得到A'C+B'C的最小值=A′C+A′D的最小值,根据平移的性质得到点A′在过点A且平行于BD的定直线上,作点D关于定直线的对称点E,连接CE交定直线于A′,则CE 的长度即为A'C+B'C的最小值,求得DE=CD,得到∠E=∠DCE=30°,于是得到结论.【解答】解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△A'B'D',∴A′B′=AB=1,A′B′∥AB,∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴A′B′=CD,A′B′∥CD,∴四边形A′B′CD是平行四边形,∴A′D=B′C,∴A'C+B'C的最小值=A′C+A′D的最小值,∵点A′在过点A且平行于BD的定直线上,∴作点D关于定直线的对称点E,连接CE交定直线于A′,则CE的长度即为A'C+B'C的最小值,∵∠A′AD=∠ADB=30°,AD=1,∴∠ADE=60°,DH=EH=AD=,∴DE=CD,∵∠CDE=∠EDB′+∠CDB=90°+30°=120°,∴∠E=∠DCE=30°,∴CE=2×CD=.故答案为:.5.【分析】由题意P A=AB=AC=m,求出P A的最大值和最小值即可解决问题;【解答】解:∵A(0,1),B(0,1+m),C(0,1﹣m)(m>0),∴AB=AC=m,∵∠BPC=90°,∴P A=AB=AC,∵D(﹣4,﹣2),A(0,1),∴AD==5,∵点P在⊙D上运动,∴P A的最小值为5﹣,P A的最大值为5+,∴满足条件的m的取值范围为:5﹣≤m≤5+故答案为5﹣≤m≤5+.6.【分析】过Q作QE⊥AB于E,在EP上截取EF=EQ,连接QF,依据全等三角形的性质,即可得到AF=PE=10(定值),依据△EFQ是等腰直角三角形,可得FQ与FB的夹角始终为45°,进而得到当BQ⊥FQ时,BQ的长最小,根据△BQF是等腰直角三角形,即可得到BQ的长度.【解答】解:如图所示,过Q作QE⊥AB于E,在EP上截取EF=EQ,连接QF,∵△DPQ是等腰直角三角形,四边形ABCD是矩形,∴DP=PQ,∠A=∠PEQ,∠ADP=∠EPQ,∴△ADP≌△EPQ(AAS),∴AP=QE=FE,AD=PE=10,∴AF=PE=10(定值),又∵△EFQ是等腰直角三角形,∴∠QFE=45°,即FQ与FB的夹角始终为45°,如图,当BQ⊥FQ时,BQ的长最小,此时,△BQF是等腰直角三角形,又∵QE⊥BF,∴BE=EF=QE=AP,∴BE=AP==,∴BF=5,∴BQ=cos45°×BF=,即BQ的最小值为,故答案为:.三、解答题1.【分析】(1)先构造出△CDN≌△CBE(SAS),得出CN=CE,∠DCN=∠BCE,进而判断出△FCN≌△FCE,即可得出结论;(2)利用等式的性质得出∠AHC=∠ACG,进而判断出△ACH∽△AGC,即可得出结论;(3)分三种情况,①当HC=HG时,判断出△HCD≌△GHA(AAS),得出AH=CD=2,HD=AG=4,再判断出△AFG∽△BCG,即可得出结论;②当GC=GH时,判断出△GBC≌△HAG(AAS),得出AG=BC=2=AB,进而判断出AF是三角形BCG的中位线,即可得出结论;③当CG=CH时,先判断出△CAG≌△CAH(SAS),得出∠DCF=∠ACF=22.5°,在CD上取点M使DM=DF=m,得出MF=CM=m,再判断出CM=MF,得出m+m =2,即可得出结论.【解答】(1)证明:如图,延长AD至N,使DN=BE,∵四边形ABCD是正方形,∴∠CDN=∠B=90°,CD=CB,∴△CDN≌△CBE(SAS),∴CN=CE,∠DCN=∠BCE,∵∠ECF=45°,∴∠DCF+∠BCE=45°,∴∠DCF+DCN=45°=∠FCN,∴∠FCN=∠FCE,∵CF=CF,∴△FCN≌△FCE,∴FN=EF,∴△AEF的周长为AE+AF+EF=AB﹣BE+AF+FN=AB﹣BE+AF+DF+DN=AB﹣BE+AF+DF+BE=AB+AD=2AB=4是定值;(2)∵AC是正方形ABCD的对角线,∴∠CAD=∠CAB=45°,∴∠CAH=∠CAG=135°,又∵∠DAC=∠AHC+∠ACH=45°,∠ECF=∠ACF+∠ACH=45°,∴∠AHC=∠ACG,∴△ACH∽△AGC,∴,∴AC2=AG•AH,∵正方形ABCD的边长为2,∴AC=2,∴AG•AH=8;(3)①当HC=HG时,∴∠HGC=∠HCG=45°,∴∠CHG=90°,∴∠CHD+∠AHG=90°,∴∠CHD+∠DCH=90°,∴∠DCH=∠AHG,∵∠CDH=∠HAG=90°∴△HCD≌△GHA(AAS)∴AH=CD=2,HD=AG=4,∵AF∥BC,∴△AFG∽△BCG,∴,∴,∴AF=,②当GC=GH时,∴∠CHG=∠HCG=45°,∴∠CGH=90°,∴∠BGC+∠AGH=90°,∵∠BGC+∠BCG=90°,∴∠BCG=∠AGH,∵∠CBG=∠GAH=90°,∴△GBC≌△HAG(AAS),∴AG=BC=2=AB,∵AF∥BC,∴CF=GF,∴AF=BC=1;③当CG=CH时,∴∠CGH=∠CHG,∵AC是正方形ABCD的对角线,∴∠DAC=∠BAC=45°,∴∠CAG=∠CAH=135°,∵CA=CA,∴△CAG≌△CAH(SAS),∴∠DCF=∠ACF=22.5°如备用图,在CD上取点M使DM=DF=m,连接MF,∴MF=CM=m,∠DFM=45°=∠CFM+∠DCF=∠CFM+22.5°,∴∠CFM=22.5°=∠DCF,∴CM=MF,∴m+m=2 ∴m=2﹣2,∴AF=AD﹣DF=4﹣2综上所述:当△CGH是等腰三角形时,AF的值为或1或4﹣2.2.【分析】(1)根据点A,B的坐标,利用待定系数法可求出抛物线的解析式,再利用配方法可求出顶点D的坐标;(2)利用二次函数图象上点的坐标特征可求出点B的坐标,过点D作DE∥BC,交抛物线于点E,则S△BCE=S△BCD,由点B,C的坐标,利用待定系数法可求出直线BC的解析式,由BC∥DE结合点D的坐标可得出直线DE的解析式,再连接直线DE和抛物线的解析式成方程组,通过解方程组可求出点E的坐标;(3)利用二次函数图象上点的坐标特征可求出点M的坐标,过点M作MF⊥直线BC于点F,交y轴于点P,过点B作BN⊥直线BC,交y轴于点N,由OC=OB结合BN⊥直线BC可得出点N的坐标,由点B,N的坐标,利用待定系数法可求出直线BN的解析式,由MF∥BN结合点M的坐标可得出直线MF的解析式,联立直线MF和直线BC的解析式成方程组,通过解方程组可求出点F的坐标,进而可求出MF的长度,由∠PCF=45°,∠PFC=90°可得出△PCF为等腰直角三角形,进而可得出PF=PC,结合点到直线之间垂直线段最短可得出当MF⊥BC时,MP+PC取得最小值,最小值为MF的长度,此题得解.【解答】解:(1)将A(﹣1,0),B(3,0)代入y=ax2+bx﹣3,得:,解得:,∴抛物线的解析式为y=x2﹣2x﹣3.∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点D的坐标为(1,﹣4).(2)当x=0时,y=x2﹣2x﹣3=﹣3,∴点C的坐标为(0,﹣3).过点D作DE∥BC,交抛物线于点E,则S△BCE=S△BCD,如图1所示.设直线BC的解析式为y=kx+c(k≠0),将B(3,0),C(0,﹣3)代入y=kx+c,得:,解得:,∴直线BC的解析式为y=x﹣3.∵BC∥DE,∴设直线DE的解析式为y=x+d,将D(1,﹣4)代入y=x+d,得:﹣4=1+d,解得:d=﹣5,∴直线DE的解析式为y=x﹣5.连接直线DE和抛物线的解析式成方程组,得:,解得:,,∴在线段BC下方的抛物线上,存在异于点D的点E,使S△BCE=S△BCD,点E的坐标为(2,﹣3).(3)当x=﹣时,y=x2﹣2x﹣3=,∴点M的坐标为(﹣,).过点M作MF⊥直线BC于点F,交y轴于点P,过点B作BN⊥直线BC,交y轴于点N,如图2所示.∵OB=OC,∴∠BCO=45°,∴∠BNC=45°=∠BCO,∴ON=OC=3,∴点N的坐标为(0,3).设直线BN的解析式为y=nx+t(n≠0),将B(3,0),N(0,3)代入y=nx+t,得:,解得:,∴直线BN的解析式为y=﹣x+3.设直线MF的解析式为y=﹣x+q,将M(﹣,)代入y=﹣x+q,得:+q=,解得:q=,∴直线MF的解析式为y=﹣x+.联立直线MF和直线BC的解析式成方程组,得:,解得:,∴点F的坐标为(,﹣),∴MF==.∵∠PCF=45°,∠PFC=90°,∴△PCF为等腰直角三角形,∴PF=PC,∴当MF⊥BC时,MP+PC=MP+PF=MF最小,最小值为.3.【分析】(1)先根据一次函数解析式确定A(4,0),B(0,﹣2),再利用待定系数法求抛物线解析式;然后解方程﹣x2+x﹣2=0得C点坐标;(2)如图2,先证明△PDE∽△OAB.利用相似比得到PD=2PE.设P(m,﹣m2+m ﹣2),则E(m,m﹣2).再利用m表示出PD+PE得到PD+PE=3×[﹣m2+m﹣2﹣(m﹣2)],然后根据二次函数的性质解决问题;(3)讨论:当点M在直线AB上方时,根据圆周角定理可判断点M在△ABC的外接圆上,如图1,由于抛物线的对称轴垂直平分AC,则△ABC的外接圆O1的圆心在对称轴上,设圆心O1的坐标为(,﹣t),根据半径相等得到()2+(﹣t+2)2=(﹣4)2+t2,解方程求出t得到圆心O1的坐标为(,﹣2),然后确定⊙O1的半径半径为.从而得到此时M点坐标;当点M在在直线AB下方时,作O1关于AB的对称点O2,如图2,通过证明∠O1AB=∠OAB可判断O2在x轴上,则点O2的坐标为(,0),然后计算出DM即可得到此时M点坐标.【解答】解:(1)令y==0,解得x=4,则A(4,0).令x=0,得y=﹣2,则B(0,﹣2);∵二次函数y=的图象经过A、B两点,∴,解得∴二次函数的关系式为y=﹣x2+x﹣2;当y=0时,﹣x2+x﹣2=0,解得x1=1,x2=4,则C(1,0);(2)如图2,∵PD∥x轴,PE∥y轴,∴∠PDE=∠OAB,∠PED=∠OBA.∴△PDE∽△OAB.∴===2,∴PD=2PE.设P(m,﹣m2+m﹣2),则E(m,m﹣2).∴PD+PE=3PE=3×[﹣m2+m﹣2﹣(m﹣2)]=﹣m2+6m=﹣(m﹣2)2+6;∵0<m<4,∴当m=2时,PD+PE有最大值6;(3)当点M在直线AB上方时,则点M在△ABC的外接圆上,如图1.∵△ABC的外接圆O1的圆心在对称轴上,设圆心O1的坐标为(,﹣t),∵O1B=O1A,∴()2+(﹣t+2)2=(﹣4)2+t2,解得t=2.∴圆心O1的坐标为(,﹣2).∴O1A==,即⊙O1的半径半径为.此时M点坐标为(,);当点M在在直线AB下方时,作O1关于AB的对称点O2,如图2.∵AO1=O1B=,∴∠O1AB=∠O1BA.∵O1B∥x轴,∴∠O1BA=∠OAB.∴∠O1AB=∠OAB,O2在x轴上,∴点O2的坐标为(,0).∴O2D=1,∴DM==.此时点M的坐标为(,).综上所述,点M的坐标为(,)或(,).4.【分析】(1)在Rt△ABD中,依据勾股定理可求得BD的长,然后依据MD=ED•cos∠MDE,cos∠MDE=cos∠ADB=,由此即可解决问题.(2)①可分为点E在AD上,点E在AD的延长线上画出图形,然后再依据MC=MD,CM=CD、DM=DC三种情况求解即可;②当t=0时,圆心O在AB边上.当圆心O在CD边上时,过点E作EH∥CD交BD的延长线与点H.先求得DH的长,然后依据平行线分线段成比例定理可得到DF=DH,然后依据DF=DH列出关于t的方程,从而可求得t的值,故此可得到t的取值范围.【解答】解:(1)如图1所示:连接ME.∵AE=t,AD=8,∴ED=AD﹣AE=8﹣t.∵EF为⊙O的直径,∴∠EMF=90°.∴∠EMD=90°.∴MD=ED•cos∠MDE=.(2)①a、如图2所示:连接MC.当DM=CD=6时,=6,解得t=;b、如图3所示:当MC=MD时,连接MC,过点M作MN⊥CD,垂足为N.∵MC=MD,MN⊥CD,∴DN=NC.∵MN⊥CD,BC⊥CD,∴BC∥MN.∴M为BD的中点.∴MD=5,即=5,解得t=;c、如图4所示:CM=CD时,过点C作CG⊥DM.∵CM=CD,CG⊥MD,∴GD=MD=.∵=,∴DG=CD=.∴=.解得:t=﹣1(舍去).d、如图5所示:当CD=DM时,连接EM.∵AE=t,AD=8,∴DE=t﹣8.∵EF为⊙O的直径,∴EM⊥DM.∴DM=ED•cos∠EDM=.∴=6,解得:t=.综上所述,当t=或t=或t=时,△DCM为等腰三角形.②当t=0时,圆心O在AB边上.如图6所示:当圆心O在CD边上时,过点E作EH∥CD交BD的延长线与点H.∵HE∥CD,OF=OE,∴DF=DH.∵DH==,DF=10﹣t,∴=10﹣t.解得:t=.综上所述,在整个运动过程中圆心O处在矩形ABCD内(包括边界)时,t的取值范围为0≤t≤.5.【分析】(1)由图1和图2直接确定出AD;(2)先利用互余即可得出∠BAP=∠DGA,进而判断出△ABP∽△DGA即可确定出函数关系式;(3)分三种情况利用等腰三角形的性质和勾股定理求出x的值,即可求出y的值.【解答】解:(1)如图,当点P在AB上移动时,点P到P A的距离不变,当点P从B点向C点移动时,点D到P A的距离在变化,由图2知,AD=10,(2)∵四边形ABCD是矩形,∴∠ABP=∠BAD=90°,∵DG⊥AP,∴∠AGD=90°,∴∠ABP=∠DGA,∵∠BAP+∠GAD=90°,∠CAG+∠ADG=90°,∴∠BAP=∠DGA,∴△ABP∽△DGA,∴,∵AB=6,AP=x,DG=y,AD=10,∴,∴y=(6<x≤2);即:图2中C2段图象的函数解析式y=(6<x≤2);(3)∵四边形ABCD是矩形,∴CD=AB=6,BC=AD=10,∠ABC=∠DCB=90°,当AD=AP时,∵AD=10,∴x=AP=10,∴y==6,当AD=DP时,∴DP=10,在Rt△DCP中,CD=AB=6,DP=10,∴CP=8,∴BP=BC﹣CP=2,在Rt△ABP中,根据勾股定理得,x=AP===2,∴y===3,当AP=DP时,点P是线段AD的垂直平分线,∴点P是BC的中点,∴BP=BC=AD=5,在Rt△ABP中,根据勾股定理得,x=AP===,∴y===.6.【分析】(1)将点B的坐标代入到抛物线的解析式中即可求得a值,从而求得其解析式;(2)利用两点坐标求得线段AB的长,然后利用平行四边形的对边相等求得t=5时,四边形ABOP为平行四边形;若四边形ABOP为等腰梯形,连接AP,过点P作PG⊥AB,过点O作OH⊥AB,垂足分别为G、H,根据△APG≌△BOH求得线段OP=GH=AB﹣2BH=.(3)首先判定四边形ABOD是平行四边形,然后确定S△DOC=×5×4=10.过点P作PN⊥BC,垂足为N,利用△OPN∽△BOH得到PN=t,然后表示出四边形CDPQ的面积S=S△DOC﹣S△OPQ=10﹣×(5﹣2t)×t=t2﹣2 t+10,从而得到当t=时,四边形CDPQ的面积S最小.然后得到点P的坐标是(﹣,﹣1),点Q的坐标是(﹣,0),利用两点坐标公式确定PQ的长即可.【解答】解:(1)把(1,0)代入y=a(x+2)2﹣4,得a=.∴y=(x+2)2﹣4,即y=x2+x﹣;(2)由题意得OP=t,AB==5,若OB∥AP,即四边形ABOP为平行四边形时,OB=AP,且OP=AB=5,即当t=5时,OB=AP,若OB不平行于AP,即四边形ABOP为等腰梯形时,OB=AP,连接AP,过点P作PG ⊥AB,过点O作OH⊥AB,垂足分别为G、H,∴△APG≌△BOH,在Rt△OBM中,∵OM=,OB=1,∴BM=,∴OH=,∴BH=,∴OP=GH=AB﹣2BH=,即当t=时,OB=AP;(3)将y=0代入y=x2+x﹣,得x2+x﹣=0,解得x=1或﹣5.∴C(﹣5,0).∴OC=5,∵OM∥AB,AD∥x轴,∴四边形ABOD是平行四边形,∴AD=OB=1,∴点D的坐标是(﹣3,﹣4),∴S△DOC=×5×4=10,过点P作PN⊥BC,垂足为N.易证△OPN∽△BOH,∴=,即=,∴PN=t,∴四边形CDPQ的面积S=S△DOC﹣S△OPQ=10﹣×(5﹣2t)×t=t2﹣2t+10,∴当t=时,四边形CDPQ的面积S最小,此时,点P的坐标是(﹣,﹣1),点Q的坐标是(﹣,0),∴PQ==.。

2020-2022江苏省中考数学精选题(含答案解析)

2020-2022江苏省中考数学精选题(含答案解析)

2020-2022江苏省中考精选题(含答案解析)一.选择题(共24小题)1.(3分)(2020•无锡)反比例函数y=的图象上有一点A(3,2),将直线OA绕点A顺时针旋转90°,交双曲线于点B,则点B的坐标为()A.(2,3)B.(1,6)C.()D.(,2)2.(3分)(2020•无锡)▱ABCD中,若AB=4,AD=m,∠A=60°,将▱ABCD沿某直线翻折,使得点A与CD的中点重合,若折痕与直线AD交于点E,DE=1,则m的值为()A.+1或﹣1B.﹣1或+1C.﹣1或﹣1D.+1或+13.(3分)(2020•镇江)点P(m,n)在以y轴为对称轴的二次函数y=x2+ax+4的图象上.则m﹣n 的最大值等于()A.B.4C.﹣D.﹣4.(3分)(2020•镇江)如图①,AB=5,射线AM∥BN,点C在射线BN上,将△ABC沿AC所在直线翻折,点B的对应点D落在射线BN上,点P,Q分别在射线AM、BN上,PQ∥AB.设AP =x,QD=y.若y关于x的函数图象(如图②)经过点E(9,2),则cos B的值等于()A.B.C.D.5.(3分)(2020•宿迁)如图,在平面直角坐标系中,Q是直线y=﹣x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点Q',连接OQ',则OQ'的最小值为()A.B.C.D.6.(3分)(2020•南通)如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为()A.B.2C.2D.37.(3分)(2020•徐州)如图,在平面直角坐标系中,函数y=(x>0)与y=x﹣1的图象交于点P(a,b),则代数式﹣的值为()A.﹣B.C.﹣D.8.(3分)(2020•常州)如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH ⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是()A.3B.4C.5D.69.(3分)(2020•常州)如图,点D是▱OABC内一点,CD与x轴平行,BD与y轴平行,BD=,=2.若反比例函数y=(x>0)的图象经过A、D两点,则k的值是∠ADB=135°,S△ABD()A.2B.4C.3D.610.(3分)(2020•扬州)如图,由边长为1的小正方形构成的网格中,点A、B、C都在格点上,以AB为直径的圆经过点C、D,则sin∠ADC的值为()A.B.C.D.11.(3分)(2020•苏州)如图,平行四边形OABC的顶点A在x轴的正半轴上,点D(3,2)在对角线OB上,反比例函数y=(k>0,x>0)的图象经过C、D两点.已知平行四边形OABC的面积是,则点B的坐标为()A.(4,)B.(,3)C.(5,)D.(,)12.(3分)(2020•无锡)如图,在四边形ABCD中(AB>CD),∠ABC=∠BCD=90°,AB=3,BC=,把Rt△ABC沿着AC翻折得到Rt△AEC,若tan∠AED=,则线段DE的长度()A.B.C.D.13.(3分)(2020•无锡)如图,等边△ABC的边长为3,点D在边AC上,AD=,线段PQ在边BA上运动,PQ=,有下列结论:①CP与QD可能相等;②△AQD与△BCP可能相似;③四边形PCDQ面积的最大值为;④四边形PCDQ周长的最小值为3+.其中,正确结论的序号为()A.①④B.②④C.①③D.②③14.(3分)(2021•无锡)如图,正方形ABCD中,E是CD的中点,AE、BC的延长线交于点F,AE的垂直平分线分别交AE、BC于点H、G,连接EG,则与△FEC相似的三角形个数为()A.1B.2C.3D.415.(3分)(2021•无锡)在平面直角坐标系中,O为坐标原点,点A(a,2)是反比例函数的图象上的点,连接AO并延长与反比例函数图象交于另一点B,将直线AB向下平移,与反比例函数的图象交于C、D两点.若△ABC的面积为5,则向下平移的距离是()A.3B.5C.4D.16.(3分)(2021•无锡)在锐角△ABC中,∠A=60°,BD,CE为高,F是BC的中点,连接DE,DF,EF.有下列结论:①AD:AB=AE:AC;②△DEF是等边三角形;③BE+CD=BC;④△ADE与四边形BCDE的面积比是1:3.其中正确结论的个数是()A.1B.2C.3D.417.(3分)(2021•无锡)在Rt△ABC中,∠A=90°,AB=6,AC=8,点P是△ABC所在平面内一点,则PA2+PB2+PC2取得最小值时,下列结论正确的是()A.点P是△ABC三边垂直平分线的交点B.点P是△ABC三条内角平分线的交点C.点P是△ABC三条高的交点D.点P是△ABC三条中线的交点18.(3分)(2021•宿迁)如图,折叠矩形纸片ABCD,使点B落在点D处,折痕为MN,已知AB =8,AD=4,则MN的长是()A.B.2C.D.419.(3分)(2021•宿迁)已知二次函数y=ax2+bx+c的图象如图所示,有下列结论:①a>0;②b2﹣4ac>0;③4a+b=1;④不等式ax2+(b﹣1)x+c<0的解集为1<x<3,正确的结论个数是()A.1B.2C.3D.420.(3分)(2021•扬州)如图,一次函数y=x+的图象与x轴、y轴分别交于点A,B,把直线AB绕点B顺时针旋转30°交x轴于点C,则线段AC长为()A.+B.3C.2+D.+21.(3分)(2021•扬州)如图,点P是函数y=(k1>0,x>0)的图象上一点,过点P分别作x轴和y轴的垂线,垂足分别为点A、B,交函数y=(k2>0,x>0)的图象于点C、D,连接OC、OD、CD、AB,其中k1>k2.下列结论:①CD∥AB;②S△OCD=;③S△DCP=,其中正确的是()A.①②B.①③C.②③D.①22.(3分)(2021•连云港)如图,△ABC中,BD⊥AB,BD、AC相交于点D,AD=AC,AB=2,∠ABC=150°,则△DBC的面积是()A.B.C.D.23.(3分)(2022•南通)已知实数m,n满足m2+n2=2+mn,则(2m﹣3n)2+(m+2n)(m﹣2n)的最大值为()A.24B.C.D.﹣424.(3分)(2022•泰州)如图,正方形ABCD的边长为2,E为与点D不重合的动点,以DE为一边作正方形DEFG.设DE=d1,点F、G与点C的距离分别为d2、d3,则d1+d2+d3的最小值为()A.B.2C.2D.4二.填空题(共35小题)25.(3分)(2020•无锡)如图,在网格图中(每个小正方形的边长为1),点A、B、C、D均为格点,给出下列四个命题:①点B到点C的最短距离为;②点A到直线CD的距离为;③直线AB、CD所交的锐角为45°;④四边形ABCD的面积为11.其中,所有正确命题的序号为.(填序号)26.(3分)(2020•无锡)二次函数y=ax2+c的图象与直线y=kx+b(k>0)交于点M(﹣2,m)、N (1,n)两点(mn<0),则关于x的不等式ax2+kx+(c﹣b)>0的解集为.27.(3分)(2020•镇江)如图,在△ABC中,BC=3,将△ABC平移5个单位长度得到△A1B1C1,点P、Q分别是AB、A1C1的中点,PQ的最小值等于.28.(3分)(2020•宿迁)如图,点A在反比例函数y=(x>0)的图象上,点B在x轴负半轴上,直线AB交y轴于点C,若=,△AOB的面积为6,则k的值为.29.(3分)(2020•宿迁)如图,在矩形ABCD中,AB=1,AD=,P为AD上一个动点,连接BP,线段BA与线段BQ关于BP所在的直线对称,连接PQ,当点P从点A运动到点D时,线段PQ在平面内扫过的面积为.30.(3分)(2020•南通)将双曲线y=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y=kx﹣2﹣k(k>0)相交于两点,其中一个点的横坐标为a,另一个点的纵坐标为b,则(a﹣1)(b+2)=.31.(3分)(2020•盐城)如图,已知点A(5,2)、B(5,4)、C(8,1).直线l⊥x轴,垂足为点M(m,0).其中m<,若△A′B′C′与△ABC关于直线l对称,且△A′B′C′有两个顶点在函数y=(k≠0)的图象上,则k的值为.32.(3分)(2020•徐州)在△ABC中,若AB=6,∠ACB=45°.则△ABC的面积的最大值为.33.(3分)(2020•常州)如图,在△ABC中,∠B=45°,AB=6,D、E分别是AB、AC的中点,连接DE,在直线DE和直线BC上分别取点F、G,连接BF、DG.若BF=3DG,且直线BF 与直线DG互相垂直,则BG的长为.34.(3分)(2020•淮安)如图,等腰△ABC的两个顶点A(﹣1,﹣4)、B(﹣4,﹣1)在反比例函数y=(x<0)的图象上,AC=BC.过点C作边AB的垂线交反比例函数y=(x<0)的图象于点D,动点P从点D出发,沿射线CD方向运动3个单位长度,到达反比例函数y=(x>0)图象上一点,则k2=.35.(3分)(2020•扬州)如图,在▱ABCD中,∠B=60°,AB=10,BC=8,点E为边AB上的一个动点,连接ED并延长至点F,使得DF=DE,以EC、EF为邻边构造▱EFGC,连接EG,则EG的最小值为.36.(3分)(2020•连云港)如图,正六边形A1A2A3A4A5A6内部有一个正五边形B1B2B3B4B5,且A3A4∥B3B4,直线l经过B2、B3,则直线l与A1A2的夹角α=°.37.(3分)(2020•连云港)如图,在平面直角坐标系xOy中,半径为2的⊙O与x轴的正半轴交于点A,点B是⊙O上一动点,点C为弦AB的中点,直线y=x﹣3与x轴、y轴分别交于点D、E,则△CDE面积的最小值为.38.(3分)(2020•泰州)如图所示的网格由边长为1个单位长度的小正方形组成,点A、B、C在直角坐标系中的坐标分别为(3,6),(﹣3,3),(7,﹣2),则△ABC内心的坐标为.39.(3分)(2020•泰州)如图,点P在反比例函数y=的图象上,且横坐标为1,过点P作两条坐标轴的平行线,与反比例函数y=(k<0)的图象相交于点A、B,则直线AB与x轴所夹锐角的正切值为.40.(3分)(2020•苏州)如图,已知∠MON是一个锐角,以点O为圆心,任意长为半径画弧,分别交OM、ON于点A、B,再分别以点A、B为圆心,大于AB长为半径画弧,两弧交于点C,画射线OC.过点A作AD∥ON,交射线OC于点D,过点D作DE⊥OC,交ON于点E.设OA =10,DE=12,则sin∠MON=.41.(3分)(2020•无锡)如图,在Rt△ABC中,∠ACB=90°,AB=4,点D,E分别在边AB,AC 上,且DB=2AD,AE=3EC,连接BE,CD,相交于点O,则△ABO面积最大值为.42.(3分)(2021•无锡)如图,在平面直角坐标系中,O为坐标原点,已知二次函数y=x2,OACB 为矩形,A,B在抛物线上,当A,B运动时,点C也在另一个二次函数图象上运动,设C(x,y),则y关于x的函数表达式为.43.(3分)(2021•无锡)如图,在△ABC中,AD是高,E是AB上一点,CE交AD于点F,且AD:BD:CD:FD=12:5:3:4,则sin∠BEC的值是.44.(3分)(2021•镇江)如图,等腰三角形ABC中,AB=AC,BC=6,cos∠ABC=,点P在边AC上运动(可与点A,C重合),将线段BP绕点P逆时针旋转120°,得到线段DP,连接BD,则BD长的最大值为.45.(3分)(2021•淮安)如图(1),△ABC和△A′B′C′是两个边长不相等的等边三角形,点B′、C′、B、C都在直线l上,△ABC固定不动,将△A′B′C′在直线l上自左向右平移.开始时,点C′与点B重合,当点B′移动到与点C重合时停止.设△A′B′C′移动的距离为x,两个三角形重叠部分的面积为y,y与x之间的函数关系如图(2)所示,则△ABC的边长是.46.(3分)(2021•泰州)如图,四边形ABCD中,AB=CD=4,且AB与CD不平行,P、M、N分别是AD、BD、AC的中点,设△PMN的面积为S,则S的范围是.47.(3分)(2021•常州)如图,在Rt△ABC中,∠ACB=90°,∠CBA=30°,AC=1,D是AB 上一点(点D与点A不重合).若在Rt△ABC的直角边上存在4个不同的点分别和点A、D成为直角三角形的三个顶点,则AD长的取值范围是.48.(3分)(2021•无锡)如图,在Rt△ABC中,∠BAC=90°,AB=2,AC=6,点E在线段AC上,且AE=1,D是线段BC上的一点,连接DE,将四边形ABDE沿直线DE翻折,得到四边形FGDE,当点G恰好落在线段AC上时,AF=.49.(3分)(2021•无锡)如图,在平面直角坐标系中,O为坐标原点,点C为y轴正半轴上的一个动点,过点C的直线与二次函数y=x2的图象交于A、B两点,且CB=3AC,P为CB的中点,设点P的坐标为P(x,y)(x>0),写出y关于x的函数表达式为:.50.(3分)(2021•盐城)如图,在矩形ABCD中,AB=3,AD=4,E、F分别是边BC、CD上一点,EF⊥AE,将△ECF沿EF翻折得△EC′F,连接AC′,当BE=时,△AEC′是以AE为腰的等腰三角形.51.(3分)(2021•南京)如图,在四边形ABCD中,AB=BC=BD.设∠ABC=α,则∠ADC=(用含α的代数式表示).52.(3分)(2021•南京)如图,将▱ABCD绕点A逆时针旋转到▱AB′C′D′的位置,使点B′落在BC上,B′C′与CD交于点E.若AB=3,BC=4,BB′=1,则CE的长为.53.(3分)(2021•宿迁)如图,点A、B在反比例函数y=(x>0)的图象上,延长AB交x轴于C点,若△AOC的面积是12,且点B是AC的中点,则k=.54.(3分)(2021•宿迁)如图,在△ABC中,AB=4,BC=5,点D、E分别在BC、AC上,CD=2BD,CE=2AE,BE交AD于点F,则△AFE面积的最大值是.55.(3分)(2021•苏州)如图,四边形ABCD为菱形,∠ABC=70°,延长BC到E,在∠DCE内作射线CM,使得∠ECM=15°,过点D作DF⊥CM,垂足为F,若DF=,则对角线BD的长为.(结果保留根号)56.(3分)(2021•苏州)如图,射线OM,ON互相垂直,OA=8,点B位于射线OM的上方,且在线段OA的垂直平分线l上,连接AB,AB=5.将线段AB绕点O按逆时针方向旋转得到对应线段A′B′,若点B′恰好落在射线ON上,则点A′到射线ON的距离d=.57.(3分)(2022•淮安)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点D是AC边上的一点,过点D作DF∥AB,交BC于点F,作∠BAC的平分线交DF于点E,连接BE.若△ABE的面积是2,则的值是.58.(3分)(2022•南通)如图,点O是正方形ABCD的中心,AB=3.Rt△BEF中,∠BEF=90°,EF过点D,BE,BF分别交AD,CD于点G,M,连接OE,OM,EM.若BG=DF,tan∠ABG =,则△OEM的周长为.59.(3分)(2022•无锡)△ABC是边长为5的等边三角形,△DCE是边长为3的等边三角形,直线BD与直线AE交于点F.如图,若点D在△ABC内,∠DBC=20°,则∠BAF=°;现将△DCE绕点C旋转1周,在这个旋转过程中,线段AF长度的最小值是.三.解答题(共1小题,满分13分,每小题13分)60.(13分)(2020•宿迁)【感知】如图①,在四边形ABCD中,∠C=∠D=90°,点E在边CD上,∠AEB=90°,求证:=.【探究】如图②,在四边形ABCD中,∠C=∠ADC=90°,点E在边CD上,点F在边AD的延长线上,∠FEG=∠AEB=90°,且=,连接BG交CD于点H.求证:BH=GH.【拓展】如图③,点E在四边形ABCD内,∠AEB+∠DEC=180°,且=,过E作EF交AD于点F,若∠EFA=∠AEB,延长FE交BC于点G.求证:BG=CG.2020-2022江苏省中考精选题参考答案与试题解析一.选择题(共24小题,满分72分,每小题3分)1.(3分)(2020•无锡)反比例函数y=的图象上有一点A(3,2),将直线OA绕点A顺时针旋转90°,交双曲线于点B,则点B的坐标为()A.(2,3)B.(1,6)C.()D.(,2)【解答】解:设O点旋转后的对应点为C,如图,作AD⊥y轴于D,CE⊥AD与E,∵反比例函数y=的图象上有一点A(3,2),∴k=3×2=6,∴反比例函数为y=,∵将直线OA绕点A顺时针旋转90°,∴∠DAO+∠EAC=90°,∵∠AOD+∠DAO=90°,∴∠AOD=∠EAC,在△AOD和△CAE中,∴△AOD≌△CAE(AAS),∴AE=OD=2,BE=AD=3,∴DE=3﹣2=1,∴C(1,5),设直线AC的解析式为y=kx+b,把A(3,2),C(1,5)代入得,解得,∴直线AC的解析式为y=﹣x+,解得或,∴点B的坐标为(,),故选:C.2.(3分)(2020•无锡)▱ABCD中,若AB=4,AD=m,∠A=60°,将▱ABCD沿某直线翻折,使得点A与CD的中点重合,若折痕与直线AD交于点E,DE=1,则m的值为()A.+1或﹣1B.﹣1或+1C.﹣1或﹣1D.+1或+1【解答】解:如图1中,当点E在线段AD上时,过点F作FH⊥AD交AD的延长线于H.∵四边形ABCD是平行四边形,∴AB=CD=4,AB∥CD,∴∠FDH=∠BAD=60°,∴DF=CF=CD=2,∴DH=DF•cos60°=1,FH=DF•sin60°=,∵DE=1,∴EH=DE+DH=2,∴AE=EF===,∴m=AD=AE+DE=+1.如图2中,当点E在线段AD的延长线上时,同法可得DH=1,此时点E与H重合,AE=FH=,AD=AE﹣DE=﹣1.综上所述,满足条件的AD的值为+1或﹣1.故选:A.3.(3分)(2020•镇江)点P(m,n)在以y轴为对称轴的二次函数y=x2+ax+4的图象上.则m﹣n 的最大值等于()A.B.4C.﹣D.﹣【解答】解:∵点P(m,n)在以y轴为对称轴的二次函数y=x2+ax+4的图象上,∴a=0,∴n=m2+4,∴m﹣n=m﹣(m2+4)=﹣m2+m﹣4=﹣(m﹣)2﹣,∴当m=时,m﹣n取得最大值,此时m﹣n=﹣,故选:C.4.(3分)(2020•镇江)如图①,AB=5,射线AM∥BN,点C在射线BN上,将△ABC沿AC所在直线翻折,点B的对应点D落在射线BN上,点P,Q分别在射线AM、BN上,PQ∥AB.设AP =x,QD=y.若y关于x的函数图象(如图②)经过点E(9,2),则cos B的值等于()A.B.C.D.【解答】解:∵AM∥BN,PQ∥AB,∴四边形ABQP是平行四边形,∴AP=BQ=x,由图②可得当x=9时,y=2,此时点Q在点D下方Q'处,且BQ'=x=9时,y=2,如图①所示,∴BD=BQ'﹣Q'D=x﹣y=7,∵将△ABC沿AC所在直线翻折,点B的对应点D落在射线BN上,∴BC=CD=BD=,AC⊥BD,∴cos B===,故选:D.5.(3分)(2020•宿迁)如图,在平面直角坐标系中,Q是直线y=﹣x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点Q',连接OQ',则OQ'的最小值为()A.B.C.D.【解答】解:作QM⊥x轴于点M,Q′N⊥x轴于N,∵∠PMQ=∠PNQ′=∠QPQ′=90°,∴∠QPM+∠NPQ′=∠PQ′N+∠NPQ′,∴∠QPM=∠PQ′N在△PQM和△Q′PN中,∴△PQM≌△Q′PN(AAS),∴PN=QM,Q′N=PM,设Q(m,﹣),∴PM=|m﹣1|,QM=|﹣m+2|,∴ON=|3﹣m|,∴Q′(3﹣m,1﹣m),∴OQ′2=(3﹣m)2+(1﹣m)2=m2﹣5m+10=(m﹣2)2+5,当m=2时,OQ′2有最小值为5,∴OQ′的最小值为,故选:B.6.(3分)(2020•南通)如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为()A.B.2C.2D.3【解答】解:如图,过点C作CK⊥l于点K,过点A作AH⊥BC于点H,在Rt△AHB中,∵∠ABC=60°,AB=2,∴BH=1,AH=,在Rt△AHC中,∠ACB=45°,∴AC===,∵点D为BC中点,∴BD=CD,在△BFD与△CKD中,,∴△BFD≌△CKD(AAS),∴BF=CK,延长AE,过点C作CN⊥AE于点N,可得AE+BF=AE+CK=AE+EN=AN,在Rt△ACN中,AN<AC,当直线l⊥AC时,最大值为,综上所述,AE+BF的最大值为.故选:A.7.(3分)(2020•徐州)如图,在平面直角坐标系中,函数y=(x>0)与y=x﹣1的图象交于点P(a,b),则代数式﹣的值为()A.﹣B.C.﹣D.【解答】解:法一:由题意得,,解得,或(舍去),∴点P(,),即:a=,b=,∴﹣=﹣=﹣;法二:由题意得,函数y=(x>0)与y=x﹣1的图象交于点P(a,b),∴ab=4,b=a﹣1,∴﹣==;故选:C.8.(3分)(2020•常州)如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH ⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是()A.3B.4C.5D.6【解答】解:∵CH⊥AB,垂足为H,∴∠CHB=90°,∵点M是BC的中点.∴MH=BC,∵BC的最大值是直径的长,⊙O的半径是3,∴MH的最大值为3,故选:A.9.(3分)(2020•常州)如图,点D是▱OABC内一点,CD与x轴平行,BD与y轴平行,BD=,=2.若反比例函数y=(x>0)的图象经过A、D两点,则k的值是∠ADB=135°,S△ABD()A.2B.4C.3D.6【解答】解:作AM⊥y轴于M,延长BD,交AM于E,设BC与y轴的交点为N,∵四边形OABC是平行四边形,∴OA∥BC,OA=BC,∴∠AOM=∠CNM,∵BD∥y轴,∴∠CBD=∠CNM,∴∠AOM=∠CBD,∵CD与x轴平行,BD与y轴平行,∴∠CDB=90°,BE⊥AM,∴∠CDB=∠AMO,∴△AOM≌△CBD(AAS),∴OM=BD=,==2,BD=,∵S△ABD∴AE=2,∵∠ADB=135°,∴∠ADE=45°,∴△ADE是等腰直角三角形,∴DE=AE=2,∴D的纵坐标为3,设A(m,),则D(m﹣2,3),∵反比例函数y=(x>0)的图象经过A、D两点,∴k=m=(m﹣2)×3,解得m=3,∴k=m=6.故选:D.10.(3分)(2020•扬州)如图,由边长为1的小正方形构成的网格中,点A、B、C都在格点上,以AB为直径的圆经过点C、D,则sin∠ADC的值为()A.B.C.D.【解答】解:如图,连接AC、BC.∵∠ADC和∠ABC所对的弧长都是,∴根据圆周角定理的推论知,∠ADC=∠ABC.在Rt△ACB中,根据锐角三角函数的定义知,sin∠ABC=,∵AC=2,BC=3,∴AB==,∴sin∠ABC==,∴sin∠ADC=.故选:A.11.(3分)(2020•苏州)如图,平行四边形OABC的顶点A在x轴的正半轴上,点D(3,2)在对角线OB上,反比例函数y=(k>0,x>0)的图象经过C、D两点.已知平行四边形OABC的面积是,则点B的坐标为()A.(4,)B.(,3)C.(5,)D.(,)【解答】解:∵反比例函数y=(k>0,x>0)的图象经过点D(3,2),∴2=,∴k=6,∴反比例函数y=,∵OB经过原点O,∴设OB的解析式为y=mx,∵OB经过点D(3,2),则2=3m,∴m=,∴OB的解析式为y=x,∵反比例函数y=经过点C,∴设C(a,),且a>0,∵四边形OABC是平行四边形,=2S△OBC,∴BC∥OA,S平行四边形OABC∴点B的纵坐标为,∵OB的解析式为y=x,∴B(,),∴BC=﹣a,=××(﹣a),∴S△OBC∴2×××(﹣a)=,解得:a=2或a=﹣2(舍去),∴B(,3),故选:B.解法2:∵反比例函数y=(k>0,x>0)的图象经过点D(3,2),∴2=,∴k=6,∴反比例函数y=,同上得:B(,),∴BC=﹣a,∵平行四边形OABC的面积是,∴(﹣a)×=,解得:a=2或a=﹣2(舍去),∴B(,3),故选:B.12.(3分)(2020•无锡)如图,在四边形ABCD中(AB>CD),∠ABC=∠BCD=90°,AB=3,BC=,把Rt△ABC沿着AC翻折得到Rt△AEC,若tan∠AED=,则线段DE的长度()A.B.C.D.【解答】解:方法一:如图,延长ED交AC于点M,过点M作MN⊥AE于点N,设MN=x,∵tan∠AED=,∴=,∴NE=2x,∵∠ABC=90°,AB=3,BC=,∴∠CAB=30°,∴AC=2,由翻折可知:∠EAC=30°,∴AM=2MN=2x,∴AN=MN=3x,∵AE=AB=3,∴5x=3,∴x=,∴AN=,MN=,AM=,∵AC=2,∴CM=AC﹣AM=,∵MN=,NE=2x=,∴EM==,∵∠ABC=∠BCD=90°,∴CD∥AB,∴∠DCA=30°,由翻折可知:∠ECA=∠BCA=60°,∴∠ECD=30°,∴CD是∠ECM的角平分线,∴==,∴=,解得,ED=.方法二:如图,过点D作DM⊥CE,由折叠可知:∠AEC=∠B=90°,∴AE∥DM,∴∠AED=∠EDM,∴tan∠AED=tan∠EDM=,∵∠ACB=60°,∠ECD=30°,设EM=m,由折叠性质可知,EC=CB=,∴CM=﹣m,由翻折可知:∠ECA=∠BCA=60°,∴∠ECD=30°,∴tan∠ECD==,∴DM=(﹣m)×=1﹣m,∴tan∠EDM==,即=解得,m=,∴DM=,EM=,在直角三角形EDM中,DE2=DM2+EM2,解得,DE=.故选:B.13.(3分)(2020•无锡)如图,等边△ABC的边长为3,点D在边AC上,AD=,线段PQ在边BA上运动,PQ=,有下列结论:①CP与QD可能相等;②△AQD与△BCP可能相似;③四边形PCDQ面积的最大值为;④四边形PCDQ周长的最小值为3+.其中,正确结论的序号为()A.①④B.②④C.①③D.②③【解答】解:①利用图象法可知PC>DQ,或通过计算可知DQ的最大值为,PC的最小值为,所以PC>DQ,故①错误.②设AQ=x,则BP=AB﹣AQ﹣PQ=3﹣x﹣=﹣x,∵∠A=∠B=60°,∴当=或=时,△ADQ与△BPC相似,即或=,解得x=1或或,∴当AQ=1或或时,两三角形相似,故②正确③设AQ=x,则四边形PCDQ的面积=S△ABC﹣S△ADQ﹣S△BCP=×32﹣×x××﹣×3×(3﹣x﹣)×=+x,∵x的最大值为3﹣=,∴x=时,四边形PCDQ的面积最大,最大值=,故③正确,如图,作点D关于AB的对称点D′,作D′F∥PQ,使得D′F=PQ,连接CF交AB于点P′,在射线P′A上取P′Q′=PQ,此时四边形P′CDQ′的周长最小.过点C作CH⊥D′F交D′F的延长线于H,交AB于J.由题意,DD′=2AD•sin60°=,HJ=DD′=,CJ=,FH=﹣﹣=,∴CH=CJ+HJ=,∴CF===,∴四边形P′CDQ′的周长的最小值=3+,故④错误,故选:D.14.(3分)(2021•无锡)如图,正方形ABCD中,E是CD的中点,AE、BC的延长线交于点F,AE的垂直平分线分别交AE、BC于点H、G,连接EG,则与△FEC相似的三角形个数为()A.1B.2C.3D.4【解答】解:∵四边形ABCD是正方形,∴EC∥AB,∠D=∠DCB=∠DCF=90°,∴△FEC∽△FAB,∵DE=EC,∠AED=∠FEC,∴△ECF≌EDA(ASA),∵GH⊥AF,∴∠FCE=∠FHG,∵∠F=∠F,∴△ECF∽△FHG,故选:C.15.(3分)(2021•无锡)在平面直角坐标系中,O为坐标原点,点A(a,2)是反比例函数的图象上的点,连接AO并延长与反比例函数图象交于另一点B,将直线AB向下平移,与反比例函数的图象交于C、D两点.若△ABC的面积为5,则向下平移的距离是()A.3B.5C.4D.【解答】解:∵点A(a,2)是反比例函数的图象上的点,∴2a=﹣2,∴a=﹣1,∴A(﹣1,2),∵AB过原点,∴B(1,﹣2),∴AB==2,直线AB为y=﹣2x,过C点作CD⊥AB于D,CE∥x轴交AB于E,=CD•AB=5,∵S△ABC∴CD===,设直线AB向左平移m个单位,∴得y=﹣2(x+m)=﹣2x﹣2m(m>0),∴CE=m,CD=CE•sin∠CED,作AH⊥y轴于H,∵CE∥AH,∴∠CED=∠OAH,∵sin∠OAH===,∴CD=m•=,解得m=,∴﹣2m=﹣5,∴向下平移的距离是5,故选:B.16.(3分)(2021•无锡)在锐角△ABC中,∠A=60°,BD,CE为高,F是BC的中点,连接DE,DF,EF.有下列结论:①AD:AB=AE:AC;②△DEF是等边三角形;③BE+CD=BC;④△ADE与四边形BCDE的面积比是1:3.其中正确结论的个数是()A.1B.2C.3D.4【解答】解:∵BD⊥AC,CE⊥AB,∴∠AEC=∠ADB=90°,∵∠A=∠A,∴△ABD∽△ACE,∴=,故①正确;∵∠A=60°,∴∠ABC+∠ACB=180°﹣∠A=120°,∴∠BEF+∠BFE+∠CFD+∠CDF=360°﹣(∠ABC+∠ACB)=240°,∵∠BEC=∠BDC=90°,F是BC的中点,∴EF=BF=BC,DF=CF=BC,∴EF=DF=BF=CF,∴∠BEF=∠BFE,∠CFD=∠CDF,∴∠BFE+∠CFD=120°,∴∠EFD=180°﹣(∠BFE+∠CFD)=60°,∴△DEF是等边三角形,故②正确;在Rt△BEC中,BE=BC•cos∠ABC,在Rt△BDC中,CD=BC•cos∠ACB,∴BE+CD=BC•cos∠ABC+BC•cos∠ACB=BC(cos∠ABC+cos∠ACB)≠BC,故③不正确;∵∠A=60°,∠ADB=90°,∴∠ABD=90°﹣∠A=30°,∴AD=AB,∵=,∠A=∠A,∴△ADE∽△ABC,∴=()2=()2=,∴△ADE与四边形BCDE的面积比是1:3,故④正确,所以,上列结论正确的个数是3,故选:C.17.(3分)(2021•无锡)在Rt△ABC中,∠A=90°,AB=6,AC=8,点P是△ABC所在平面内一点,则PA2+PB2+PC2取得最小值时,下列结论正确的是()A.点P是△ABC三边垂直平分线的交点B.点P是△ABC三条内角平分线的交点C.点P是△ABC三条高的交点D.点P是△ABC三条中线的交点【解答】解:过P作PD⊥AC于D,过P作PE⊥AB于E,延长CP交AB于M,延长BP交AC 于N,如图:∵∠A=90°,PD⊥AC,PE⊥AB,∴四边形AEPD是矩形,设AD=PE=x,AE=DP=y,Rt△AEP中,AP2=x2+y2,Rt△CDP中,CP2=(8﹣x)2+y2,Rt△BEP中,BP2=x2+(6﹣y)2,∴AP2+CP2+BP2=x2+y2+(8﹣x)2+y2+x2+(6﹣y)2=3x2﹣16x+3y2﹣12y+100=3(x﹣)2+3(y﹣2)2+,∴x=,y=2时,AP2+CP2+BP2的值最小,此时AD=PE=,AE=PD=2,∵∠A=90°,PD⊥AC,∴PD∥AB,∴=,即=,∴AM=3,∴AM=AB,即M是AB的中点,同理可得AN=AC,N为AC中点,∴P是△ABC三条中线的交点,故选:D.18.(3分)(2021•宿迁)如图,折叠矩形纸片ABCD,使点B落在点D处,折痕为MN,已知AB =8,AD=4,则MN的长是()A.B.2C.D.4【解答】解:如图,连接BD,BN,∵折叠矩形纸片ABCD,使点B落在点D处,∴BM=MD,BN=DN,∠DMN=∠BMN,∵AB∥CD,∴∠BMN=∠DNM,∴∠DMN=∠DNM,∴DM=DN,∴DN=DM=BM=BN,∴四边形BMDN是菱形,∵AD2+AM2=DM2,∴16+AM2=(8﹣AM)2,∴AM=3,∴DM=BM=5,∵AB=8,AD=4,∴BD===4,=×BD×MN=BM×AD,∵S菱形BMDN∴4×MN=2×5×4,∴MN=2,故选:B.19.(3分)(2021•宿迁)已知二次函数y=ax2+bx+c的图象如图所示,有下列结论:①a>0;②b2﹣4ac>0;③4a+b=1;④不等式ax2+(b﹣1)x+c<0的解集为1<x<3,正确的结论个数是()A.1B.2C.3D.4【解答】解:①抛物线开口向上,则a>0,故正确;②由图象可知:抛物线与x轴无交点,即Δ<0∴Δ=b2﹣4ac<0,故错误;③由图象可知:抛物线过点(1,1),(3,3),即当x=1时,y=a+b+c=1,当x=3时,ax2+bx+c=9a+3b+c=3,∴8a+2b=2,即b=1﹣4a,∴4a+b=1,故正确;④∵点(1,1),(3,3)在直线y=x上,由图象可知,当1<x<3时,抛物线在直线y=x的下方,∴ax2+(b﹣1)x+c<0的解集为1<x<3,故正确;故选:C.20.(3分)(2021•扬州)如图,一次函数y=x+的图象与x轴、y轴分别交于点A,B,把直线AB绕点B顺时针旋转30°交x轴于点C,则线段AC长为()A.+B.3C.2+D.+【解答】解:∵一次函数y=x+的图象与x轴、y轴分别交于点A、B,令x=0,则y=,令y=0,则x=﹣,则A(﹣,0),B(0,),则△OAB为等腰直角三角形,∠ABO=45°,∴AB==2,过点C作CD⊥AB,垂足为D,∵∠CAD=∠OAB=45°,∴△ACD为等腰直角三角形,设CD=AD=x,∴AC==x,由旋转的性质可知∠ABC=30°,∴BC=2CD=2x,∴BD==x,又BD=AB+AD=2+x,∴2+x=x,解得:x=+1,∴AC=x=(+1)=,故选:A.21.(3分)(2021•扬州)如图,点P是函数y=(k1>0,x>0)的图象上一点,过点P分别作x轴和y轴的垂线,垂足分别为点A、B,交函数y=(k2>0,x>0)的图象于点C、D,连接OC、OD、CD、AB,其中k1>k2.下列结论:①CD∥AB;②S△OCD=;③S△DCP=,其中正确的是()A.①②B.①③C.②③D.①【解答】解:∵PB⊥y轴,PA⊥x轴,点P在上,点C,D在上,设P(m,),则C(m,),A(m,0),B(0,),令,则,即D(,),∴PC=,PD=,∵==,==,即,又∠DPC=∠BPA,∴△PDC∽△PBA,∴∠PDC=∠PBA,∴CD∥AB,故①正确;△PDC的面积==,故③正确;S△OCD=S四边形OAPB﹣S△OCA﹣S△OBD﹣S△DPC==,故②错误;故选:B.22.(3分)(2021•连云港)如图,△ABC中,BD⊥AB,BD、AC相交于点D,AD=AC,AB=2,∠ABC=150°,则△DBC的面积是()A.B.C.D.【解答】解:如图,过点C作BD的垂线,交BD的延长线于点E,则∠E=90°,∵BD⊥AB,CE⊥BD,∴AB∥CE,∠ABD=90°,∴△ABD∽△CED,∴==,∵AD=AC,∴=,∴===,则CE=,∵∠ABC=150°,∠ABD=90°,∴∠CBE=60°,∴BE=CE=,∴BD=BE=,=•BD•CE=×=.∴S△BCD故选:A.23.(3分)(2022•南通)已知实数m,n满足m2+n2=2+mn,则(2m﹣3n)2+(m+2n)(m﹣2n)的最大值为()A.24B.C.D.﹣4【解答】解:方法1、∵m2+n2=2+mn,∴(2m﹣3n)2+(m+2n)(m﹣2n)=4m2+9n2﹣12mn+m2﹣4n2=5m2+5n2﹣12mn=5(mn+2)﹣12mn=10﹣7mn,∵m2+n2=2+mn,∴(m+n)2=2+3mn≥0(当m+n=0时,取等号),∴mn≥﹣,∴(m﹣n)2=2﹣mn≥0(当m﹣n=0时,取等号),∴mn≤2,∴﹣≤mn≤2,∴﹣14≤﹣7mn≤,∴﹣4≤10﹣7mn≤,即(2m﹣3n)2+(m+2n)(m﹣2n)的最大值为,故选:B.方法2、设m+n=k,则m2+2mn+n2=k2,∴mn+2+2mn=k2,∴mn=k2﹣,∴原式=10﹣7mn=﹣k2+≤,故选:B.24.(3分)(2022•泰州)如图,正方形ABCD的边长为2,E为与点D不重合的动点,以DE为一边作正方形DEFG.设DE=d1,点F、G与点C的距离分别为d2、d3,则d1+d2+d3的最小值为()A.B.2C.2D.4【解答】解:如图,连接AE,∵四边形DEFG是正方形,∴∠EDG=90°,EF=DE=DG,∵四边形ABCD是正方形,∴AD=CD,∠ADC=90°,∴∠ADE=∠CDG,∴△ADE≌△CDG(SAS),∴AE=CG,∴d1+d2+d3=EF+CF+AE,∴点A,E,F,C在同一条线上时,EF+CF+AE最小,即d1+d2+d3最小,连接AC,∴d1+d2+d3最小值为AC,在Rt△ABC中,AC=AB=2,∴d1+d2+d3最小=AC=2,故选:C.二.填空题(共35小题,满分105分,每小题3分)25.(3分)(2020•无锡)如图,在网格图中(每个小正方形的边长为1),点A、B、C、D均为格点,给出下列四个命题:①点B到点C的最短距离为;②点A到直线CD的距离为;③直线AB、CD所交的锐角为45°;④四边形ABCD的面积为11.其中,所有正确命题的序号为①③.(填序号)【解答】解:由图可得,点B到点C的最短距离为=,故①正确.如图取格点E,连接DE,AE,则C,D,F,E共线,过点A作AH⊥CD于H.=×2×2=×EF×AH,∵S△AEF∴AH==,故②错误.取格点J,连接AJ,JB,则AJ∥CD,△AJB是等腰直角三角形,∴∠BAJ=45°,∴直线AB、CD所交的锐角为45°,故③正确,S四边形ABCD=4×5﹣×1×3﹣×3×2﹣2﹣×1×2﹣×1×5=10,故④错误.故答案为:①③.26.(3分)(2020•无锡)二次函数y=ax2+c的图象与直线y=kx+b(k>0)交于点M(﹣2,m)、N (1,n)两点(mn<0),则关于x的不等式ax2+kx+(c﹣b)>0的解集为﹣1<x<2.【解答】解:由题意,可大致画出函数图象如下,则直线y=kx+b关于y轴对称的直线为y=﹣kx+b,根据图形的对称性,设点M、N关于y轴的对称点分别为点C、D,则点C、D的横坐标分别为﹣1,2,观察函数图象ax2+c>﹣kx+b的解集为﹣1<x<2,即x的不等式ax2+kx+(c﹣b)>0的解集为﹣1<x<2,故答案为:﹣1<x<2.27.(3分)(2020•镇江)如图,在△ABC中,BC=3,将△ABC平移5个单位长度得到△A1B1C1,点P、Q分别是AB、A1C1的中点,PQ的最小值等于.【解答】解:取A1B1的中点N,连接NQ,PN,∵将△ABC平移5个单位长度得到△A1B1C1,∴B1C1=BC=3,PN=5,∵点P、Q分别是AB、A1C1的中点,∴NQ=B1C1=,∴5﹣≤PQ≤5+,即≤PQ≤,∴PQ的最小值等于,故答案为:.28.(3分)(2020•宿迁)如图,点A在反比例函数y=(x>0)的图象上,点B在x轴负半轴上,直线AB交y轴于点C,若=,△AOB的面积为6,则k的值为6.【解答】解:过点A作AD⊥y轴于D,则△ADC∽△BOC,∴,∵=,△AOB的面积为6,∴=2,∴=1,∴△AOD的面积=3,根据反比例函数k的几何意义得,,∴|k|=6,∵k>0,∴k=6.故答案为:6.29.(3分)(2020•宿迁)如图,在矩形ABCD中,AB=1,AD=,P为AD上一个动点,连接BP,线段BA与线段BQ关于BP所在的直线对称,连接PQ,当点P从点A运动到点D时,线段PQ在平面内扫过的面积为.【解答】解:∵当点P从点A运动到点D时,PQ=PA,∴点Q运动轨迹是圆弧,如图,阴影部分的面积即为线段PQ在平面内扫过的面积,∵矩形ABCD中,AB=1,AD=,∴∠ABC=∠BAC=∠C=∠Q=90°.∴∠ADB=∠DBC=∠ODB=∠OBQ=30°,∴∠ABQ=120°,由矩形的性质和轴对称性可知,△BOQ≌△DOC,S△ABD=S△BQD,∴S阴影部分=S四边形ABQD﹣S扇形ABQ=2S△ABD﹣S扇形ABQ,=S矩形ABCD﹣S扇形ABQ=1×﹣.故答案为:﹣.30.(3分)(2020•南通)将双曲线y=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y=kx﹣2﹣k(k>0)相交于两点,其中一个点的横坐标为a,另一个点的纵坐标为b,则(a﹣1)(b+2)=﹣3.【解答】解:一次函数y=kx﹣2﹣k(k>0)的图象过定点P(1,﹣2),而点P(1,﹣2)恰好是原点(0,0)向右平移1个单位长度,再向下平移2个单位长度得到的,因此将双曲线y=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y =kx﹣2﹣k(k>0)相交于两点,在没平移前是关于原点对称的,平移前,这两个点的坐标为(a﹣1,),(,b+2),∴a﹣1=﹣,∴(a﹣1)(b+2)=﹣3.故答案为:﹣3.31.(3分)(2020•盐城)如图,已知点A(5,2)、B(5,4)、C(8,1).直线l⊥x轴,垂足为点M(m,0).其中m<,若△A′B′C′与△ABC关于直线l对称,且△A′B′C′有两个顶点在函数y=(k≠0)的图象上,则k的值为﹣6或﹣4.【解答】解:∵点A(5,2)、B(5,4)、C(8,1),直线l⊥x轴,垂足为点M(m,0).其中m<,△A′B′C′与△ABC关于直线l对称,∴A′(2m﹣5,2),B′(2m﹣5,4),C′(2m﹣8,1),∵A′、B′的横坐标相同,∴在函数y=(k≠0)的图象上的两点为,A′、C′或B′、C′,当A′、C′在函数y=(k≠0)的图象上时,则k=2(2m﹣5)=2m﹣8,解得m=1,∴k=﹣6;当B′、C′在函数y=(k≠0)的图象上时,则k=4(2m﹣5)=2m﹣8,解得m=2,∴k=﹣4,综上,k的值为﹣6或﹣4,故答案为﹣6或﹣4.32.(3分)(2020•徐州)在△ABC中,若AB=6,∠ACB=45°.则△ABC的面积的最大值为9+9.【解答】解:作△ABC的外接圆⊙O,过C作CM⊥AB于M,∵弦AB已确定,∴要使△ABC的面积最大,只要CM取最大值即可,如图所示,当CM过圆心O时,CM最大,∵CM⊥AB,CM过O,∴AM=BM(垂径定理),∴AC=BC,∵∠AOB=2∠ACB=2×45°=90°,∴OM=AM=AB==3,∴OA==3,∴CM=OC+OM=3+3,=AB•CM=×6×(3+3)=9+9.∴S△ABC故答案为:9+9.33.(3分)(2020•常州)如图,在△ABC中,∠B=45°,AB=6,D、E分别是AB、AC的中点,连接DE,在直线DE和直线BC上分别取点F、G,连接BF、DG.若BF=3DG,且直线BF 与直线DG互相垂直,则BG的长为4或2.。

2020年中考数学压轴题(含答案) (2)

2020年中考数学压轴题(含答案) (2)

2020年中考数学压轴题一、选择题1.如图,在△ABC中,点D、E、F分别在AB、AC、BC边上,DE∥BC,EF∥AB,则下列比例式中错误的是()A.B.C.D.第1题第2题2.如图,在平面直角坐标系xOy中,A(﹣3,0),B(3,0),若在直线y=﹣x+m上存在点P满足∠APB=60°,则m的取值范围是()A.≤m≤B.﹣﹣5≤m≤+5C.﹣2≤m≤+2D.﹣﹣2≤m≤+2二、填空题18.如图,点G是矩形ABCD的对角线BD上一点,过点G作EF∥AB交AD于E,交BC 于F,若EG=5,BF=2,则图中阴影部分的面积为.第3题第4题24.如图为二次函数y=ax2+bx+c图象,直线y=t(t>0)与抛物线交于A,B两点,A,B 两点横坐标分别为m,n.根据函数图象信息有下列结论:①abc>0;②若对于t>0的任意值都有m<﹣1,则a≥1;③m+n=1;④m<﹣1;⑤当t为定值时,若a变大,则线段AB变长.其中,正确的结论有(写出所有正确结论的序号)三、解答题5.如图,已知点A(1,0),B(0,3),将△AOB绕点O逆时针旋转90°,得到△COD,设E为AD的中点.(1)若F为CD上一动点,求出当△DEF与△COD相似时点F的坐标;(2)过E作x轴的垂线l,在直线l上是否存在一点Q,使∠CQO=∠CDO?若存在,求出Q点的坐标;若不存在,请说明理由.6.如图1,在平面直角坐标系中,直线y=x+4与抛物线y=﹣x2+bx+c(b,c是常数)交于A、B两点,点A在x轴上,点B在y轴上.设抛物线与x轴的另一个交点为点C.(1)求该抛物线的解析式;(2)P是抛物线上一动点(不与点A、B重合),①如图2,若点P在直线AB上方,连接OP交AB于点D,求的最大值;②如图3,若点P在x轴的上方,连接PC,以PC为边作正方形CPEF,随着点P的运动,正方形的大小、位置也随之改变.当顶点E或F恰好落在y轴上,直接写出对应的点P的坐标.【答案与解析】一、选择题1.【分析】根据平行线分线段成比例定理列出比例式,再分别对每一项进行判断即可.【解答】A.∵EF∥AB,∴=,故本选项正确,B.∵DE∥BC,∴=,∵EF∥AB,∴DE=BF,∴=,∴=,故本选项正确,C.∵EF∥AB,∴=,∵CF≠DE,∴≠,故本选项错误,D.∵EF∥AB,∴=,∴=,故本选项正确,故选:C.2.【分析】作等边三角形ABE,然后作外接圆,求得直线y=﹣x+m与外接圆相切时的m的值,即可求得m的取值范围.【解答】解:如图,作等边三角形ABE,∵A(﹣3,0),B(3,0),∴OA=OB=3,∴E在y轴上,当E在AB上方时,作等边三角形ABE的外接圆⊙Q,设直线y=﹣x+m与⊙Q相切,切点为P,当P与P1重合时m的值最大,当P与P1重合时,连接QP1,则QP1⊥直线y=﹣x+m,∵OA=3,∴OE=3,设⊙Q的半径为x,则x2=32+(3﹣x)2,解得x=2,∴EQ=AQ=PQ=2,∴OQ=,由直线y=﹣x+m可知OD=OC=m,∴DQ=m﹣,CD=m,∵∠ODC=∠P1DQ,∠COD=∠QP1D,∴△QP1D∽△COD,∴=,即=,解得m=+2,当E在AB下方时,作等边三角形ABE的外接圆⊙Q,设直线y=﹣x+m与⊙Q相切,切点为P,当P与P2重合时m的值最小,当P与P2重合时,同理证得m=﹣﹣2,∴m的取值范围是﹣﹣2≤m≤+2,故选:D.二、填空题3.【分析】由矩形的性质可证明S矩形AEGM=S矩形CFGN=2×5=10,即可求解.【解答】解:作GM⊥AB于M,延长MG交CD于N.则有四边形AEGM,四边形DEGN,四边形CFGN,四边形BMGF都是矩形,∴AE=BF=2,S△ADB=S△DBC,S△BGM=S△BGF,S△DEG=S△DNG,∴S矩形AEGM=S矩形CFGN=2×5=10,∴S阴=S矩形CFGN=5,故答案为:5.4.【分析】由图象分别求出a>0,c=﹣2,b=﹣a<0,则函数解析式为y=ax2﹣ax﹣2,则对称轴x=,由开口向上的函数的图象开口与a的关系可得:当a变大,函数y=ax2﹣ax﹣2的开口变小,依据这个性质判断m的取值情况.【解答】解:由图象可知,a>0,c=﹣2,∵对称轴x=﹣=,∴b=﹣a<0,∴abc>0;∴①正确;A、B两点关于x=对称,∴m+n=1,∴③正确;a>0时,当a变大,函数y=ax2﹣ax﹣2的开口变小,则AB的距离变小,∴⑤不正确;若m<﹣1,n>2,由图象可知n>1,∴④不正确;当a=1时,对于t>0的任意值都有m<﹣1,当a>1时,函数开口变小,则有m>﹣1的时候,∴②不正确;故答案①③.三、解答题5.【分析】(1)当△DEF∽△COD时,=,DF=DE cos∠CDO=,据此求出EF的长度和点F的坐标即可;(2)首先以CD为直径作圆,设其圆心为P,交直线a于点Q、Q′,连接PQ,P Q′,由圆周角定理,可得∠CQO=∠CQ′O=∠CDO,在Rt△CDO中,由勾股定理可得CD=,则PQ=CD=;然后求出点P的坐标是多少;设Q(﹣1,a),则()2+(a﹣)2=,据此求出a的值是多少,进而求出Q点坐标是多少即可.【解答】解:(1)∵A(1,0),B(0,3),∴OA=1,OB=3,∵将△AOB绕点O逆时针旋转90°,得到△COD,∴OC=1,OD=3,∴C(0,1),D(﹣3,0),如图1,当△DEF∽△COD时,=∴EF=,∴F(﹣1,);当△DEF∽△COD时,DF=DE cos∠CDO=,作FK⊥OD于K,则FK=DF sin∠CDO=,DK=DF cos∠CDO=,∴F(﹣,);(2)如图2,以CD为直径作圆,设其圆心为P,交直线a于点Q、Q′,连接PQ,P Q′,由圆周角定理,可得∠CQO=∠CQ′O=∠CDO,在Rt△CDO中,由勾股定理可得CD=,则PQ=CD=,又∵P为CD中点,P(﹣,),设Q(﹣1,a),则()2+(a﹣)2=,解得a=2或﹣1,∴Q(﹣1,2)或(﹣1,﹣1).6.【分析】(1)利用直线解析式求出点A、B的坐标,再利用待定系数法求二次函数解析式解答;(2)作PF∥BO交AB于点F,证△PFD∽△OBD,得比例线段,则PF取最大值时,求得的最大值;(3)(i)点F在y轴上时,P在第一象限或第二象限,如图2,3,过点P作PH⊥x轴于H,根据正方形的性质可证明△CPH≌△FCO,根据全等三角形对应边相等可得PH=CO=2,然后利用二次函数解析式求解即可;(ii)点E在y轴上时,过点PK⊥x轴于K,作PS⊥y轴于S,同理可证得△EPS≌△CPK,可得PS=PK,则P点的横纵坐标互为相反数,可求出P点坐标;点E在y轴上时,过点PM⊥x轴于M,作PN⊥y轴于N,同理可证得△PEN≌△PCM,可得PN=PM,则P点的横纵坐标相等,可求出P点坐标.由此即可解决问题.【解答】解:(1)直线y=x+4与坐标轴交于A、B两点,当x=0时,y=4,x=﹣4时,y=0,∴A(﹣4,0),B(0,4),把A,B两点的坐标代入解析式得,,解得,,∴抛物线的解析式为;(2)如图1,作PF∥BO交AB于点F,∴△PFD∽△OBD,∴,∵OB为定值,∴当PF取最大值时,有最大值,设P(x,),其中﹣4<x<0,则F(x,x+4),∴PF==,∵且对称轴是直线x=﹣2,∴当x=﹣2时,PF有最大值,此时PF=2,;(3)∵点C(2,0),∴CO=2,(i)如图2,点F在y轴上时,若P在第二象限,过点P作PH⊥x轴于H,在正方形CPEF中,CP=CF,∠PCF=90°,∵∠PCH+∠OCF=90°,∠PCH+∠HPC=90°,∴∠HPC=∠OCF,在△CPH和△FCO中,,∴△CPH≌△FCO(AAS),∴PH=CO=2,∴点P的纵坐标为2,∴,解得,,x=﹣1+(舍去).∴,如图3,点F在y轴上时,若P在第一象限,同理可得点P的纵坐标为2,此时P2点坐标为(﹣1+,2)(ii)如图4,点E在y轴上时,过点PK⊥x轴于K,作PS⊥y轴于S,同理可证得△EPS≌△CPK,∴PS=PK,∴P点的横纵坐标互为相反数,∴,解得x=2(舍去),x=﹣2,∴,如图5,点E在y轴上时,过点PM⊥x轴于M,作PN⊥y轴于N,同理可证得△PEN≌△PCM,∴PN=PM,∴P点的横纵坐标相等,∴,解得,(舍去),∴,综合以上可得P点坐标为,,.。

中考数学压轴题分类试卷(2020江苏版)专题02 二次函数与面积的最值定值问题

中考数学压轴题分类试卷(2020江苏版)专题02 二次函数与面积的最值定值问题

2020年中考数学压轴题(江苏版)专题02 二次函数与面积的最值定值问题【真题再现】1.(2019年常州27题)如图,二次函数y=﹣x2+bx+3的图象与x轴交于点A、B,与y轴交于点C,点A 的坐标为(﹣1,0),点D为OC的中点,点P在抛物线上.(1)b=2;(2)若点P在第一象限,过点P作PH⊥x轴,垂足为H,PH与BC、BD分别交于点M、N.是否存在这样的点P,使得PM=MN=NH?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点P的横坐标小于3,过点P作PQ⊥BD,垂足为Q,直线PQ与x轴交于点R,且S△PQB=2S△QRB,求点P的坐标.【分析】(1)把点A坐标代入二次函数解析式即求得b的值.(2)求点B 、C 、D 坐标,求直线BC 、BD 解析式.设点P 横坐标为t ,则能用t 表示点P 、M 、N 、H 的坐标,进而用含t 的式子表示PM 、MN 、NH 的长.以PM =MN 为等量关系列得关于t 的方程,求得t 的值合理(满足P 在第一象限),故存在满足条件的点P ,且求得点P 坐标.(3)过点P 作PF ⊥x 轴于F ,交直线BD 于E ,根据同角的余角相等易证∠EPQ =∠OBD ,所以cos ∠EPQ =cos ∠OBD =2√55,即在Rt △PQE 中,cos ∠EPQ =PQ PE =2√55;在Rt △PFR 中,cos ∠RPF =PF PR =2√55,进而得PQ =2√55PE ,PR =√52PF .设点P 横坐标为t ,可用t 表示PE 、PF ,即得到用t 表示PQ 、PR .又由S △PQB =2S △QRB 易得PQ =2QR .要对点P 位置进行分类讨论得到PQ 与PR 的关系,即列得关于t 的方程.求得t 的值要注意是否符合各种情况下t 的取值范围.【解析】(1)∵二次函数y =﹣x 2+bx +3的图象与x 轴交于点A (﹣1,0) ∴﹣1﹣b +3=0 解得:b =2 故答案为:2.(2)存在满足条件呢的点P ,使得PM =MN =NH . ∵二次函数解析式为y =﹣x 2+2x +3 当x =0时y =3, ∴C (0,3)当y =0时,﹣x 2+2x +3=0 解得:x 1=﹣1,x 2=3 ∴A (﹣1,0),B (3,0) ∴直线BC 的解析式为y =﹣x +3 ∵点D 为OC 的中点, ∴D (0,32)∴直线BD 的解析式为y =−12x +32,设P (t ,﹣t 2+2t +3)(0<t <3),则M (t ,﹣t +3),N (t ,−12t +32),H (t ,0)∴PM =﹣t 2+2t +3﹣(﹣t +3)=﹣t 2+3t ,MN =﹣t +3﹣(−12x +32)=−12t +32,NH =−12t +32 ∴MN =NH ∵PM =MN ∴﹣t 2+3t =−12t +32解得:t 1=12,t 2=3(舍去) ∴P (12,154)∴P 的坐标为(12,154),使得PM =MN =NH .(3)过点P 作PF ⊥x 轴于F ,交直线BD 于E∵OB =3,OD =32,∠BOD =90° ∴BD =√OB 2+OD 2=3√52 ∴cos ∠OBD =OB BD =3352=2√55∵PQ ⊥BD 于点Q ,PF ⊥x 轴于点F ∴∠PQE =∠BQR =∠PFR =90° ∴∠PRF +∠OBD =∠PRF +∠EPQ =90°∴∠EPQ =∠OBD ,即cos ∠EPQ =cos ∠OBD =2√55 在Rt △PQE 中,cos ∠EPQ =PQ PE =2√55∴PQ =2√55PE 在Rt △PFR 中,cos ∠RPF =PF PR =2√55∴PR =PF255=√52PF∵S △PQB =2S △QRB ,S △PQB =12BQ •PQ ,S △QRB =12BQ •QR ∴PQ =2QR设直线BD 与抛物线交于点G ∵−12x +32=−x 2+2x +3,解得:x 1=3(即点B 横坐标),x 2=−12∴点G 横坐标为−12设P (t ,﹣t 2+2t +3)(t <3),则E (t ,−12t +32)∴PF =|﹣t 2+2t +3|,PE =|﹣t 2+2t +3﹣(−12t +32)|=|﹣t 2+52t +32| ①若−12<t <3,则点P 在直线BD 上方,如图2, ∴PF =﹣t 2+2t +3,PE =﹣t 2+52t +32 ∵PQ =2QR ∴PQ =23PR ∴2√55PE =23•√52PF ,即6PE =5PF ∴6(﹣t 2+52t +32)=5(﹣t 2+2t +3) 解得:t 1=2,t 2=3(舍去) ∴P (2,3)②若﹣1<t <−12,则点P 在x 轴上方、直线BD 下方,如图3,此时,PQ <QR ,即S △PQB =2S △QRB 不成立. ③若t <﹣1,则点P 在x 轴下方,如图4,∴PF =﹣(﹣t 2+2t +3)=t 2﹣2t ﹣3,PE =−12t +32−(﹣t 2+2t +3)=t 2−52t −32∵PQ =2QR ∴PQ =2PR ∴2√55PE =2•√52PF ,即2PE =5PF ∴2(t 2−52t −32)=5(t 2﹣2t ﹣3) 解得:t 1=−43,t 2=3(舍去) ∴P (−43,−139) 综上所述,点P 坐标为(2,3)或(−43,−139). 点睛:本题考查了二次函数的图象与性质,一次函数的图象与性质,解一元二次方程,同角的余角相等,三角函数的应用.第(3)题解题过程容易受第(2)题影响而没有分类讨论点P 的位置,要通过图象发现每种情况下相同的和不同的解题思路.2.(2018年徐州27题)如图,在平面直角坐标系中,二次函数y =﹣x 2+6x ﹣5的图象与x 轴交于A 、B 两点,与y 轴交于点C ,其顶点为P ,连接P A 、AC 、CP ,过点C 作y 轴的垂线l . (1)求点P ,C 的坐标;(2)直线l 上是否存在点Q ,使△PBQ 的面积等于△P AC 的面积的2倍?若存在,求出点Q 的坐标;若不存在,请说明理由.【分析】(1)利用配方法求出顶点坐标,令x =0,可得y =﹣5,推出C (0,﹣5);(2)直线PC 的解析式为y =3x ﹣5,设直线交x 轴于D ,则D (53,0),设直线PQ 交x 轴于E ,当BE=2AD 时,△PBQ 的面积等于△P AC 的面积的2倍,分两种情形分别求解即可解决问题. 【解析】(1)∵y =﹣x 2+6x ﹣5=﹣(x ﹣3)2+4, ∴顶点P (3,4), 令x =0得到y =﹣5, ∴C (0.﹣5).(2)令y =0,x 2﹣6x +5=0,解得x =1或5, ∴A (1,0),B (5,0),设直线PC 的解析式为y =kx +b ,则有{b =−53k +b =4,解得{k =3b =−5,∴直线PC 的解析式为y =3x ﹣5,设直线交x 轴于D ,则D (53,0),设直线PQ 交x 轴于E ,当BE =2AD 时,△PBQ 的面积等于△P AC 的面积的2倍, ∵AD =23, ∴BE =43, ∴E (113,0)或E ′(193,0),则直线PE 的解析式为y =﹣6x +22, ∴Q (92,﹣5),直线PE ′的解析式为y =−65x +385, ∴Q ′(212,﹣5),综上所述,满足条件的点Q (92,﹣5),Q ′(212,﹣5).点睛:本题考查抛物线与x 轴的交点、二次函数的性质等知识,解题的关键是熟练掌握待定系数法,学会用转化的思想思考问题,属于中考常考题型.3.(2019年淮安26题)如图,已知二次函数的图象与x 轴交于A 、B 两点,D 为顶点,其中点B 的坐标为(5,0),点D 的坐标为(1,3). (1)求该二次函数的表达式;(2)点E 是线段BD 上的一点,过点E 作x 轴的垂线,垂足为F ,且ED =EF ,求点E 的坐标. (3)试问在该二次函数图象上是否存在点G ,使得△ADG 的面积是△BDG 的面积的35?若存在,求出点G 的坐标;若不存在,请说明理由.【分析】(1)依题意,利用二次函数的顶点式即可求解;(2)可通过点B ,点D 求出线段BD 所在的直线关系式,点E 在线段BD 上,即可设点E 的坐标,利用点与点的关系公式,通过EF =ED 即可求解;(3)分两种情形分别求解,求出直线DG 的解析式,构建方程组确定交点坐标即可. 【解析】(1)依题意,设二次函数的解析式为y =a (x ﹣1)2+3 将点B 代入得0=a (5﹣1)2+3,得a =−316 ∴二次函数的表达式为:y =−316(x ﹣1)2+3(2)依题意,点B (5,0),点D (1,3),设直线BD 的解析式为y =kx +b ,代入得{0=5k +b 3=k +b ,解得{k =−34b =154 ∴线段BD 所在的直线为y =−34x +154, 设点E 的坐标为:(x ,−34x +154) ∴ED 2=(x ﹣1)2+(−34x +154−3)2, EF 2=(−34x +154)2 ∵ED =EF , ∴(x ﹣1)2+(−34x +154−3)2=(−34x +154)2, 整理得2x 2+5x ﹣25=0, 解得x 1=52,x 2=﹣5(舍去). 故点E 的纵坐标为y =−34×52+154=158∴点E 的坐标为(52,158) (3)存在点G ,当点G 在x 轴的上方时,设直线DG 交x 轴于P ,设P (t ,0),作AE ⊥DG 于E ,BF ⊥DG 于F .由题意:AE :BF =3:5, ∵BF ∥AE ,∴AP :BP =AE :BF =3:5, ∴(﹣3﹣t ):(5﹣t )=3:5, 解得t =﹣15,∴直线DG 的解析式为y =316x +4516,由{y =316x +4516y =−316(x −1)2+3, 解得{x =0y =4516或{x =1y =3,∴G (0,4516).当点G 在x 轴下方时,如图2所示, ∵AO :OB =3:5∴当△ADG 与△BDG 的高相等时, 存在点G 使得S △ADG :S △BDG =3:5,此时,DG 的直线经过原点,设直线DG 的解析式为y =kx , 将点D 代入得k =3, 故y =3x ,则有{y =3xy =−316(x −1)2+3 整理得,(x ﹣1)(x +15)=0, 得x 1=1(舍去),x 2=﹣15 当x =﹣15时,y =﹣45, 故点G 为(﹣15,﹣45). 综上所述,点G 的坐标为(0,4516)或(﹣15,﹣45).点睛:主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.4.(2019年无锡27题)已知二次函数y =ax 2+bx ﹣4(a >0)的图象与x 轴交于A 、B 两点,(A 在B 左侧,且OA <OB ),与y 轴交于点C . (1)求C 点坐标,并判断b 的正负性;(2)设这个二次函数的图象的对称轴与直线AC 相交于点D ,已知DC :CA =1:2,直线BD 与y 轴交于点E ,连接BC .①若△BCE 的面积为8,求二次函数的解析式;②若△BCD 为锐角三角形,请直接写出OA 的取值范围.【分析】(1)确定C (0,﹣4),则OA <OB ,则对称轴在y 轴右侧,即−b2a >0,即可求解; (2)①过点D 作DM ⊥Oy ,则DC CA=DM OA=MC CO=12,DM =12AO ,求出D (m ,﹣6),B (4m ,0)、OE =8,由S △BEF =12×4×4m =8,即可求解;②分∠CDB 为锐角、当∠BCD 为锐角时,两种情况,分别求解即可.【解析】(1)令x =0,则y =﹣4,∴C (0,﹣4), ∵OA <OB ,∴对称轴在y 轴右侧,即−b2a >0 ∵a >0,∴b <0;(2)①过点D 作DM ⊥y 轴,则DC CA=DM OA =MC CO=12,∴DM =12AO ,设A (﹣2m ,0)m >0,则AO =2m ,DM =m ∵OC =4,∴CM =2, ∴D (m ,﹣6),B (4m ,0), 则MD BO=ME OE=OE−6OE,∴OE =8,S △BEC =12×4×4m =8, ∴m =1,∴A (﹣2,0),B (4,0), 设y =a (x +2)(x ﹣4), 即y =ax 2﹣2ax ﹣8a , 令x =0,则y =﹣8a , ∴C (0,﹣8a ), ∴﹣8a =﹣4,a =12, ∴y =12x 2−x −4;②由①知B (4m ,0)C (0,﹣4)D (m ,﹣6),则∠CBD 一定为锐角, CB 2=16m 2+16,CD 2=m 2+4,DB 2=9m 2+36, 当∠CDB 为锐角时,CD2+DB2>CB2,m2+4+9m2+36>16m2+16,解得﹣2<m<2;当∠BCD为锐角时,CD2+CB2>DB2,m2+4+16m2+16>9m2+36,解得m>√2或m<−√2(舍),综上:√2<m<2,2√2<2m<4;故:2√2<OA<4.点睛:本题考查的是二次函数综合运用,涉及到平行线分线段成比例、勾股定理运用等,其中(1),用平行线分线段成比例,是本题解题的关键.5.(2018年盐城27题)如图①,在平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点A(﹣1,0)、B (3,0)两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、Q两点(点P在点Q的左侧),连接PQ,在线段PQ上方抛物线上有一动点D,连接DP、DQ.(Ⅰ)若点P的横坐标为−12,求△DPQ面积的最大值,并求此时点D的坐标;(Ⅱ)直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.【分析】(1)根据点A、B的坐标,利用待定系数法即可求出抛物线的表达式;(2)(I)由点P的横坐标可得出点P、Q的坐标,利用待定系数法可求出直线PQ的表达式,过点D作DE∥y轴交直线PQ于点E,设点D的坐标为(x,﹣x2+2x+3),则点E的坐标为(x,﹣x+54),进而即可得出DE 的长度,利用三角形的面积公式可得出S △DPQ =﹣2x 2+6x +72,再利用二次函数的性质即可解决最值问题;(II )假设存在,设点P 的横坐标为t ,则点Q 的横坐标为4+t ,进而可得出点P 、Q 的坐标,利用待定系数法可求出直线PQ 的表达式,设点D 的坐标为(x ,﹣x 2+2x +3),则点E 的坐标为(x ,﹣2(t +1)x +t 2+4t +3),进而即可得出DE 的长度,利用三角形的面积公式可得出S △DPQ =﹣2x 2+4(t +2)x ﹣2t 2﹣8t ,再利用二次函数的性质即可解决最值问题.【解析】(1)将A (﹣1,0)、B (3,0)代入y =ax 2+bx +3,得: {a −b +3=09a +3b +3=0,解得:{a =−1b =2,∴抛物线的表达式为y =﹣x 2+2x +3.(2)(I )当点P 的横坐标为−12时,点Q 的横坐标为72,∴此时点P 的坐标为(−12,74),点Q 的坐标为(72,−94).设直线PQ 的表达式为y =mx +n ,将P (−12,74)、Q (72,−94)代入y =mx +n ,得:{−12m +n =7472m +n =−94,解得:{m =−1n =54, ∴直线PQ 的表达式为y =﹣x +54.如图②,过点D 作DE ∥y 轴交直线PQ 于点E ,设点D 的坐标为(x ,﹣x 2+2x +3),则点E 的坐标为(x ,﹣x +54), ∴DE =﹣x 2+2x +3﹣(﹣x +54)=﹣x 2+3x +74,∴S △DPQ =S △DPE +S △DQE =12DE •(x Q ﹣x P )=﹣2x 2+6x +72=−2(x −32)2+8. ∵﹣2<0,∴当x =32时,△DPQ 的面积取最大值,最大值为8,此时点D 的坐标为(32,154).(II )假设存在,设点P 的横坐标为t ,则点Q 的横坐标为4+t ,∴点P 的坐标为(t ,﹣t 2+2t +3),点Q 的坐标为(4+t ,﹣(4+t )2+2(4+t )+3), 利用待定系数法易知,直线PQ 的表达式为y =﹣2(t +1)x +t 2+4t +3.设点D 的坐标为(x ,﹣x 2+2x +3),则点E 的坐标为(x ,﹣2(t +1)x +t 2+4t +3),∴DE=﹣x2+2x+3﹣[﹣2(t+1)x+t2+4t+3]=﹣x2+2(t+2)x﹣t2﹣4t,∴S△DPQ=12DE•(x Q﹣x P)=﹣2x2+4(t+2)x﹣2t2﹣8t=﹣2[x﹣(t+2)]2+8.∵﹣2<0,∴当x=t+2时,△DPQ的面积取最大值,最大值为8.∴假设成立,即直尺在平移过程中,△DPQ面积有最大值,面积的最大值为8.点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、三角形的面积以及二次函数的最值,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)(I)利用三角形的面积公式找出S△DPQ=﹣2x2+6x+72;(II)利用三角形的面积公式找出S△DPQ=﹣2x2+4(t+2)x﹣2t2﹣8t.6.(2018年泰州24题)平面直角坐标系xOy中,二次函数y=x2﹣2mx+m2+2m+2的图象与x轴有两个交点.(1)当m=﹣2时,求二次函数的图象与x轴交点的坐标;(2)过点P(0,m﹣1)作直线l⊥y轴,二次函数图象的顶点A在直线l与x轴之间(不包含点A在直线l上),求m的范围;(3)在(2)的条件下,设二次函数图象的对称轴与直线l相交于点B,求△ABO的面积最大时m的值.【分析】(1)与x轴相交令y=0,解一元二次方程求解;(2)应用配方法得到顶点A坐标,讨论点A与直线l以及x轴之间位置关系,确定m取值范围.(3)在(2)的基础上表示△ABO的面积,根据二次函数性质求m.【解析】(1)当m =﹣2时,抛物线解析式为:y =x 2+4x +2 令y =0,则x 2+4x +2=0 解得x 1=﹣2+√2,x 2=﹣2−√2抛物线与x 轴交点坐标为:(﹣2+√2,0)(﹣2−√2,0) (2)∵y =x 2﹣2mx +m 2+2m +2=(x ﹣m )2+2m +2 ∴抛物线顶点坐标为A (m ,2m +2)∵二次函数图象的顶点A 在直线l 与x 轴之间(不包含点A 在直线l 上) ∴当直线l 在x 轴上方时 {2m +2<m −1m −1>02m +2>0不等式无解当直线l 在x 轴下方时 {2m +2>m −12m +2<0m −1<0解得﹣3<m <﹣1 (3)由(1)点A 在点B 上方,则AB =(2m +2)﹣(m ﹣1)=m +3 △ABO 的面积S =12(m +3)(﹣m )=−12m 2−32m ∵−12<0∴当m =−b2a =−32时,S 最大=98点睛:本题以含有字母系数m 的二次函数为背景,考查了二次函数图象性质以及分类讨论、数形结合的数学思想.【专项突破】 【题组一】1.(2019秋•亭湖区校级期末)如图,抛物线y =﹣x 2+bx +3与x 轴交于A ,B 两点,与y 轴交于点C ,其中点A (﹣1,0).过点A 作直线y =x +c 与抛物线交于点D ,动点P 在直线y =x +c 上,从点A 出发,以每秒√2个单位长度的速度向点D 运动,过点P 作直线PQ ∥y 轴,与抛物线交于点Q ,设运动时间为t (s ). (1)直接写出b ,c 的值及点D 的坐标;(2)点E 是抛物线上一动点,且位于第四象限,当△CBE 的面积为6时,求出点E 的坐标;(3)在线段PQ 最长的条件下,点M 在直线PQ 上运动,点N 在x 轴上运动,当以点D 、M 、N 为顶点的三角形为等腰直角三角形时,请求出此时点N 的坐标.【分析】(1)将点A 的坐标分别代入抛物线和直线的表达式即可求解; (2)求出直线CE 的表达式为:y =(2﹣m )x +3,则点H (32−m,0),△CBE 的面积=12BH ×(x C ﹣y E )=12×(3−32−m)(3+m 2﹣2m ﹣3)=6,即可求解; (3)PQ =﹣t 2+4t ﹣t =﹣t 2+3t ,故PQ 有最大值,点P (12,32),①当∠DMN 为直角时,(Ⅰ)当点M 在x 轴上方时,如图2,证明△DGM ≌△MHN (AAS ),则GD =MH ,NH =GM ,即可求解(Ⅱ)当点M 在x 轴下方时,同理可得:△MEN ≌△DHM (AAS ),即可求解;②当∠DNM 为直角时,同理可解. 【解答】解:(1)将点A 的坐标代入y =﹣x 2+bx +3得:0=﹣1﹣b +3, 解得:b =2,将点A 的坐标代入y =x +c 并解得:c =1,故抛物线和直线的表达式分别为:y =﹣x 2+2x +3,y =x +1; 联立上述两式得:{y =−x 2+2x +3y =x +1,解得:{x =2y =3,故点D (2,3);(2)如图1,设直线CE 交x 轴于点H ,设点E (m ,﹣m 2+2m +3),而点C (0,3),将点E 、C 坐标代入一次函数表达式y =sx +t 得:{−m 2+2m +3=ms +t t =3,解得:{s =−m +2t =3,故直线CE 的表达式为:y =(2﹣m )x +3, 令y =0,则x =32−m ,故点H (32−m ,0), △CBE 的面积=12BH ×(x C ﹣y E )=12×(3−32−m)(3+m 2﹣2m ﹣3)=6, 解得:m =2,故点E (2,3);(3)点C 、E 的纵坐标相同,故CD ∥x 轴,t 秒时,AP =√2t ,则点P 在x 轴和y 轴方向移动的距离均为t ,故点P (t ﹣1,t ), 当x =t ﹣1时,y =﹣x 2+2x +3=﹣t 2+4t ,故点Q (t ﹣1,﹣t 2+4t ), 则PQ =﹣t 2+4t ﹣t =﹣t 2+3t ,∵﹣1<0,故PQ 有最大值,此时,t =32,则点P (12,32),故直线PQ 表达式为:x =12;设点M (12,m ),点N (n ,0),而点D (2,3);①当∠DMN 为直角时,(Ⅰ)当点M 在x 轴上方时,如图2,设直线PQ 交x 轴于点H ,交CD 于点G ,∵∠DMG +∠GDM =90°,∠DMG +∠HMN =90°, ∴∠HMN =∠GDM ,MN =MD ,∠DGM =∠MHN =90°, ∴△DGM ≌△MHN (AAS ), ∴GD =MH ,NH =GM ,即:{m =2−123−m =n −12,解得:{m =32n =2, 故点N (2,0);(Ⅱ)当点M 在x 轴下方时,如图3,过点M 作x 轴的平行线交过点与y 轴的平行线于点H ,交过点N 与y 轴的平行线于点E , 同理可得:△MEN ≌△DHM (AAS ), 故:NE =MH ,EM =DH ,即{1−m =2−1212−n =3−m ,解得:{m =−32n =−4,故点N(﹣4,0);②当∠DNM为直角时,(Ⅰ)当点N在x轴左侧时,如图4,过点N作y轴的平行线交过点C与x轴的平行线于点H,交过点M与x轴的平行线于点R,同理可得:△DHN≌△NRM(AAS),∴RM=NH,即3=12−n,解得:n=﹣2.5;(Ⅱ)当点N在x轴右侧时,如图5,过点N作y轴的平行线交过点M与x轴的平行线于点H,交过点D与x轴的平行线于点G,同理可得:△MHN≌△NGD(AAS),∴MH=GN,即n−12=3,解得:n=3.5,综上,N的坐标为:(2,0)或(﹣4,0)或(﹣2.5,0)或(3.5,0).2.(2019秋•海州区校级期末)在平面直角坐标系中,直线y =x +3与x 轴交于点A ,与y 轴交于点B ,抛物线y =ax 2+bx +c (a <0)经过点A 、B . (1)求c 的值及a 、b 满足的关系式;(2)当x <0时,若y =ax 2+bx +c (a >0)的函数值随x 的增大而增大,求a 的取值范围;(3)如图,当a =﹣1时,在抛物线上是否存在点P ,使△P AB 的面积为32?若存在,请求出符合条件的所有点P 的坐标;若不存在,请说明理由.【分析】(1)求出点A 、B 的坐标,即可求解;(2)当x <0时,若y =ax 2+bx +c (a <0)的函数值随x 的增大而增大,则函数对称轴x =−b2a≥0,而b =3a +1,即:−3a+12a ≥0,即可求解;(3)过点P 作直线l ∥AB ,作PQ ∥y 轴交BA 于点Q ,作PH ⊥AB 于点H ,S △P AB =12×AB ×PH =12×3√2×PQ ×√22=32,则|y P ﹣y Q |=1,即可求解. 【解答】解:(1)y =x +3,令x =0,则y =3,令y =0,则x =﹣3, 故点A 、B 的坐标分别为(﹣3,0)、(0,3),则c =3, 则函数表达式为:y =ax 2+bx +3,将点A 坐标代入上式并整理得:b =3a +1;(2)当x <0时,若y =ax 2+bx +c (a <0)的函数值随x 的增大而增大, 则函数对称轴x =−b2a ≥0,而b =3a +1, 即:−3a+12a ≥0,解得:a ≥−13, 故:a 的取值范围为:−13≤a <0;(3)当a =﹣1时,b =3a +1=﹣2二次函数表达式为:y =﹣x 2﹣2x +3,过点P 作直线l ∥AB ,作PQ ∥y 轴交BA 于点Q ,作PH ⊥AB 于点H ,∵OA =OB ,∴∠BAO =∠PQH =45°, S △P AB =12×AB ×PH =12×3√2×PQ ×√22=32, 则PQ =|y P ﹣y Q |=1,在直线AB 下方作直线m ,使直线m 和l 与直线AB 等距离,则直线m 与抛物线两个交点,分别与点AB 组成的三角形的面积也为1, 故:|y P ﹣y Q |=1,设点P (x ,﹣x 2﹣2x +3),则点Q (x ,x +3), 即:﹣x 2﹣2x +3﹣x ﹣3=±1, 解得:x =−3±√52或−3±√132, 故点P (−3+√52,5+√52)或(−3−√52,5−√52)或(−3+√132,1+√132)或(−3−√132,1−√132). 3.(2020•无锡模拟)如图,已知二次函数y =ax 2﹣2ax +c (a <0)的图象交x 轴于A 、B 两点,交y 轴于点C .过点A 的直线y =kx +2k (k ≠0)与这个二次函数的图象的另一个交点为F ,与该图象的对称轴交于点E ,与y 轴交于点D ,且DE =EF . (1)求点A 的坐标;(2)若△BDF 的面积为12,求这个二次函数的关系式;(3)设二次函数的顶点为P ,连接PF ,PC ,若∠CPF =2∠DAB ,求此时二次函数的表达式.【分析】(1)当y =0时,kx +2k =0,解得x =﹣2,则A (﹣2,0);(2)函数的对称轴为直线x =1,则B 点坐标为(4,0),则抛物线解析式为y =﹣ax 2+2ax +8a ,S △BDF =S △F AB ﹣S △DAB ,即可求解;(3)证明△PCF 为等腰三角形,故PG 平分∠CPF ,即∠CPF =2∠CPG ,则Rt △ADO ∽Rt △PCG ,即可求解.【解答】解:(1)当y =0时,kx +2k =0,解得x =﹣2,则A (﹣2,0);(2)∵二次函数y =﹣ax 2+2ax +c (a >0)的图象的对称轴为直线x =1, ∴B 点坐标为(4,0),把A (﹣2,0)代入y =﹣ax 2+2ax +c 得﹣4a ﹣4a +c =0, ∴c =8a ,∴抛物线解析式为y =﹣ax 2+2ax +8a , ∵DE =EF ,∴F 点的横坐标为2, ∴F (2,8a ),把F (2,8a )代入y =kx +2k 得8a =2k +2k ,解得k =2a , ∴y =2ax +4a ,当x =0时,y =4a ,则D (0,4a ), ∵S △BDF =S △F AB ﹣S △DAB ,∴12•(4+2)•8a −12•(4+2)•4a =12,解得a =1,∴抛物线解析式为y =﹣x 2+2x +8;(3)如图,连接CF 交对称轴于G ,过点D 作DH ⊥PG 交函数对称轴于点H ,将点A 的坐标代入抛物线表达式并解得:c =﹣8a , 故抛物线的解析式表示为y =ax 2﹣2ax ﹣8a , 则点C (0,﹣8a ),点P (1,﹣9a ), ∵DE =EF ,∴△EHD ≌△EGF (AAS ),故DH =GF =GC , 即点F 、C 关于抛物线对称轴对称,故点F (2,﹣8a ), ∴CF ∥x 轴,G (1,﹣8a ), ∴△PCF 为等腰三角形,∴PG 平分∠CPF ,即∠CPF =2∠CPG , ∵∠CPF =2∠DAB , ∴∠DAB =∠CPG , ∴Rt △ADO ∽Rt △PCG , ∴AO PG=OD CG,2−a=−4a1,解得a =±√22(舍去负值)(舍去),∴抛物线的解析式表示为y =−√22x 2+√2x +4√2.4.(2019秋•溧阳市期末)如图,直线y =x ﹣1与抛物线y =﹣x 2+6x ﹣5相交于A 、D 两点.抛物线的顶点为C ,连结AC .(1)求A ,D 两点的坐标;(2)点P 为该抛物线上一动点(与点A 、D 不重合),连接P A 、PD . ①当点P 的横坐标为2时,求△P AD 的面积; ②当∠PDA =∠CAD 时,直接写出点P 的坐标.【分析】(1)由于A 、D 是直线直线y =x ﹣1与抛物线y =﹣x 2+6x ﹣5的交点,要求两个交点的坐标,需可联立方程组求解;(2)①要求△P AD 的面积,可以过P 作PE ⊥x 轴,与AD 相交于点E ,求得PE ,再用△P AE 和△PDE 的面积和求得结果;②分两种情况解答:过D 点作DP ∥AC ,与抛物线交于点P ,求出AC 的解析式,进而得PD 的解析式,再解PD 的解析式与抛物线的解析式联立方程组,便可求得P 点坐标;当P 点在AD 上方时,延长DP 与y 轴交于F 点,过F 点作FG ∥AC 与AD 交于点G ,则∠CAD =∠FGD =∠PDA ,则FG =FD ,设F 点坐标为(0,m ),求出G 点的坐标(用m 表示),再由FG =FD ,列出m 的方程,便可求得F 点坐标,从而求出DF 的解析式,最后解DF 的解析式与抛物线的解析式联立的方程组,便可求得P 点坐标. 【解答】解:(1)联立方程组{y =x −1y =−x 2+6x −5,解得,{x 1=1y 1=0,{x 2=4y 2=3,∴A (1,0),D (4,3),(2)①过P 作PE ⊥x 轴,与AD 相交于点E ,∵点P 的横坐标为2, ∴P (2,3),E (2,1), ∴PE =3﹣1=2,∴S △P AD =12PE (x D ﹣x A )=12×2×(4﹣1)=3;②过点D 作DP ∥AC ,与抛物线交于点P ,则∠PDA =∠CAD ,∵y =﹣x 2+6x ﹣5=﹣(x ﹣3)2+4, ∴C (3,4),设AC 的解析式为:y =kx +b (k ≠0), ∵A (1,0), ∴{k +b =03k +b =4, ∴{k =2b =−2, ∴AC 的解析式为:y =2x ﹣2, 设DP 的解析式为:y =2x +n , 把D (4,3)代入,得3=8+n , ∴n =﹣5,∴DP 的解析式为:y =2x ﹣5, 联立方程组{y =2x −5y =−x 2+6x −5,解得,{x 1=0y 1=−5,{x 2=4y 2=3,∴此时P (0,﹣5),当P 点在直线AD 上方时,延长DP ,与y 轴交于点F ,过F 作FG ∥AC ,FG 与AD 交于点G ,则∠FGD =∠CAD =∠PDA , ∴FG =FD , 设F (0,m ),∵AC 的解析式为:y =2x ﹣2, ∴FG 的解析式为:y =2x +m , 联立方程组{y =2x +m y =x −1,解得,{x =−m −1y =−m −2,∴G (﹣m ﹣1,﹣m ﹣2),∴FG =√(m +1)2+(2m +2)2,FD =√16+(m −3)2, ∵FG =FD ,∴√(m +1)2+(2m +2)2=√16+(m −3)2, ∴m =﹣5或1, ∵F 在AD 上方, ∴m >﹣1, ∴m =1, ∴F (0,1),设DF 的解析式为:y =qx +1(q ≠0), 把D (4,3)代入,得4q +1=3, ∴q =12,∴DF 的解析式为:y =12x +1,联立方程组{y =12x +1y =−x 2+6x −5∴{x 1=4y 1=3,{x 2=32y 2=74, ∴此时P 点的坐标为(32,74),综上,P 点的坐标为(0,﹣5)或(32,74).【题组二】5.(2019秋•越秀区期末)如图,抛物线y =ax 2+(4a ﹣1)x ﹣4与x 轴交于点A 、B ,与y 轴交于点C ,且OC =2OB ,点D 为线段OB 上一动点(不与点B 重合),过点D 作矩形DEFH ,点H 、F 在抛物线上,点E 在x 轴上.(1)求抛物线的解析式;(2)当矩形DEFH 的周长最大时,求矩形DEFH 的面积;(3)在(2)的条件下,矩形DEFH 不动,将抛物线沿着x 轴向左平移m 个单位,抛物线与矩形DEFH 的边交于点M 、N ,连接M 、N .若MN 恰好平分矩形DEFH 的面积,求m 的值.【分析】(1)先求出点C 的坐标,由OC =2OB ,可推出点B 坐标,将点B 坐标代入y =ax 2+(4a ﹣1)x ﹣4可求出a 的值,即可写出抛物线的解析式;(2)设点D 坐标为(x ,0),用含x 的代数式表示出矩形DEFH 的周长,用函数的思想求出取其最大值时x 的值,即求出点D 的坐标,进一步可求出矩形DEFH 的面积;(3)如图,连接BH ,EH ,DF ,设EH 与DF 交于点G ,过点G 作BH 的平行线,交ED 于M ,交HF 于点N ,则直线MN 将矩形DEFH 的面积分成相等的两半,依次求出直线BH ,MN 的解析式,再求出点M 的坐标,即可得出m 的值.【解答】解:(1)在抛物线y =ax 2+(4a ﹣1)x ﹣4中, 当x =0时,y =﹣4,∴C (0,﹣4), ∴OC =4, ∵OC =2OB , ∴OB =2, ∴B (2,0),将B (2,0)代入y =ax 2+(4a ﹣1)x ﹣4, 得,a =12,∴抛物线的解析式为y =12x 2+x ﹣4; (2)设点D 坐标为(x ,0), ∵四边形DEFH 为矩形, ∴H (x ,12x 2+x ﹣4),∵y =12x 2+x ﹣4=12(x +1)2−92, ∴抛物线对称轴为x =﹣1, ∴点H 到对称轴的距离为x +1, 由对称性可知DE =FH =2x +2,∴矩形DEFH 的周长C =2(2x +2)+2(−12x 2﹣x +4)=﹣x 2+2x +12=﹣(x ﹣1)2+13, ∴当x =1时,矩形DEFH 周长取最大值13, ∴此时H (1,−52), ∴HF =2x +2=4,DH =52, ∴S 矩形DEFH =HF •DH =4×52=10;(3)如图,连接BH ,EH ,DF ,设EH 与DF 交于点G ,过点G 作BH 的平行线,交ED 于M ,交HF 于点N ,则直线MN 将矩形DEFH 的面积分成相等的两半, 由(2)知,抛物线对称轴为x =﹣1,H (1,−52), ∴G (﹣1,−54),设直线BH 的解析式为y =kx +b , 将点B (2,0),H (1,−52)代入, 得,{2k +b =0k +b =−52,解得,{k =52b =−5,∴直线BH 的解析式为y =52x ﹣5, ∴可设直线MN 的解析式为y =52x +n , 将点(﹣1,−54)代入,得n =54, ∴直线MN 的解析式为y =52x +54, 当y =0时,x =−12, ∴M (−12,0), ∵B (2,0),∴将抛物线沿着x 轴向左平移52个单位,抛物线与矩形DEFH 的边交于点M 、N ,连接M 、N ,则MN 恰好平分矩形DEFH 的面积, ∴m 的值为52.6.(2019秋•丹阳市期末)如图,顶点为P (2,﹣4)的二次函数y =ax 2+bx +c 的图象经过原点,点A (m ,n)在该函数图象上,连接AP、OP.(1)求二次函数y=ax2+bx+c的表达式;(2)若∠APO=90°,求点A的坐标;(3)若点A关于抛物线的对称轴的对称点为C,点A关于y轴的对称点为D,设抛物线与x轴的另一交点为B,请解答下列问题:①当m≠4时,试判断四边形OBCD的形状并说明理由;②当n<0时,若四边形OBCD的面积为12,求点A的坐标.【分析】(1)由已知可得抛物线与x轴另一个交点(4,0),将(2,﹣4)、(4,0)、(0,0)代入y=ax2+bx 即可求表达式;(2)由∠APO=90°,可知AP⊥PO,所以m﹣2=12,即可求A(52,−154);(3)①由已知可得C(4﹣m,n),D(﹣m,n),B(4,0),可得CD∥OB,CD=CB,所以四边形OBCD 是平行四边形;②四边形由OBCD是平行四边形,n<0,所以12=4×(﹣n),即可求出A(1,﹣3)或A(3,﹣3).【解答】解:(1)∵图象经过原点,∴c=0,∵顶点为P(2,﹣4)∴抛物线与x轴另一个交点(4,0),将(2,﹣4)和(4,0)代入y=ax2+bx,∴a=1,b=﹣4,∴二次函数的解析式为y=x2﹣4x;(2)∵∠APO=90°,∴AP ⊥PO , ∵A (m ,m 2﹣4m ), ∴m ﹣2=12, ∴m =52, ∴A (52,−154);(3)①由已知可得C (4﹣m ,n ),D (﹣m ,n ),B (4,0), ∴CD ∥OB , ∵CD =4,OB =4,∴四边形OBCD 是平行四边形;②∵四边形OBCD 是平行四边形,n <0, S 平行四边形ABCD =OB ×|y D |, ∴12=4×(﹣n ), ∴n =﹣3,∴A (1,﹣3)或A (3,﹣3).7.(2019秋•徐州期末)如图,矩形OABC 中,O 为原点,点A 在y 轴上,点C 在x 轴上,点B 的坐标为(4,3),抛物线y =−38x 2+bx +c 与y 轴交于点A ,与直线AB 交于点D ,与x 轴交于C ,E 两点. (1)求抛物线的表达式;(2)点P 从点C 出发,在线段CB 上以每秒1个单位长度的速度向点B 运动,与此同时,点Q 从点A 出发,在线段AC 上以每秒53个单位长度的速度向点C 运动,当其中一点到达终点时,另一点也停止运动.连接DP 、DQ 、PQ ,设运动时间为t (秒). ①当t 为何值时,△DPQ 的面积最小?②是否存在某一时刻t ,使△DPQ 为直角三角形? 若存在,直接写出t 的值;若不存在,请说明理由.【分析】(1)点A (0,3),点C (4,0),将点A 、C 的坐标代入抛物线表达式并解得:b =12,c =4,即可求解;(2)①△DPQ 的面积=S △ABC ﹣(S △ADQ +S △PQC +S △BPD ),即可求解;②分DQ 、PQ 、DP 为斜边三种情况,分别求解即可.【解答】解:(1)点A (0,3),点C (4,0),将点A 、C 的坐标代入抛物线表达式{c =3−38×42+4b +c =0,解得:b =34,c =3,故抛物线的表达式为:y =−38x 2+34x +3;(2)y =−38x 2+12x +3=−38(x ﹣4)(x +2),故点E (﹣2,0); 抛物线的对称轴为:x =1,则点D (2,3), 由题意得:点Q (43t ,3﹣t ),点P (4,t ),①△DPQ 的面积=S △ABC ﹣(S △ADQ +S △PQC +S △BPD )=12×3×4−12[2×t +2(3﹣t )+(5−5t 3)×t ×45]=23t 2﹣2t .∵23>0,故△DPQ 的面积有最小值,此时,t =32;②点D (2,3),点Q (43t ,3﹣t ),点P (4,t ),(Ⅰ)当PQ 是斜边时,如图1,过点Q 作QM ⊥AB 于点M ,则MQ =t ,MD =2−43t ,BD =4﹣2=2,PB =3﹣t , 则tan ∠MQD =tan ∠BDP ,即3−t 2=2−43t t,解得:t =17±√1456(舍去17+√1456); (Ⅱ)当PD 为斜边时,过点Q 作y 轴的平行线交AB 于点N ,交过点P 于x 轴的平行线于点M ,则ND =2−43t ,QN =t ,MP =4−43t ,QM =3﹣t ﹣t =3﹣2t ,同理可得:3−2t 4−43t =2−43t t,解得:t =32或2417;(Ⅲ)当QD 为斜边时, 同理可得:故t =176; 综上,t =17−√1456或32或2417或176. 8.(2019秋•常熟市期末)如图,在平面直角坐标系中,抛物线y =ax 2+bx +c (a ≠0)的顶点为A (﹣2,0),且经过点B (﹣5,9),与y 轴交于点C ,连接AB ,AC ,BC . (1)求该抛物线对应的函数表达式;(2)点P 为该抛物线上点A 与点B 之间的一动点. ①若S △P AB =15S △ABC ,求点P 的坐标.②如图②,过点B 作x 轴的垂线,垂足为D ,连接AP 并延长,交BD 于点M .连接BP 并延长,交AD 于点N .试说明DN (DM +DB )为定值.【分析】(1)利用顶点式设出抛物线解析式,再将点B 坐标代入求解,即可得出结论;(2)先求出直线BC解析式,进而求出三角形ABC的面积,得出三角形ABP的面积为3,设出点P坐标,表示出点G坐标,利用三角形ABP的面积为3建立方程求解即可得出结论;②先设出直线BN的解析式y=k(x+5)+9①,得出DN,再设出直线AM的解析式为y=k'(x+2)②,进而得出DM,再联立①②求出点P坐标,再将点P坐标代入抛物线解析式中,得出k=k'﹣3,即可得出结论.【解答】解:(1)∵抛物线y=ax2+bx+c(a≠0)的顶点为A(﹣2,0),∴设抛物线的解析式为y=a(x+2)2,将点B(﹣5,9)代入y=a(x+2)2中,得,9=a(﹣5+2)2,∴a=1,∴抛物线的解析式为y=(x+2)2=x2+4x+4;(2)①如图①,由(1)知,抛物线的解析式为y=x2+4x+4,∴C(0,4),∵B(﹣5,9),∴直线BC的解析式为y=﹣x+4,过点A作AH∥y轴,交直线BC于H,过P作PG∥y轴,交直线BA于HG,∵A(﹣2,0),∴H(﹣2,6),∴S△ABC=12AH×(x C﹣x B)=12×6×5=15,∵S△P AB=15S△ABC,∴S△P AB=15×15=3,∵A(﹣2,0),B(﹣5,9),∴直线AB的解析式为y=﹣3x﹣6设点P(p,p2+4p+4),∴G(p,﹣3p﹣6),∴S△P AB=12PG×(x A﹣x B)=12[﹣3p﹣6﹣(p2+4p+4)]×(﹣2+5)=3,∴p=﹣3或p=﹣4,∴P(﹣3,1)或(﹣4,4);②如图②,∵BD⊥x轴,且B(﹣5,9),∴D(﹣5,0),设直线BN的解析式为y=k(x+5)+9①,令y=0,则k(x+5)+9=0,∴x=−5k+9k=−5−9k,∴N(﹣5−9k,0),∴DN=﹣5−9k+5=−9k,∵点A(﹣2,0),∴设直线AM的解析式为y=k'(x+2)②,当x=﹣5时,y=﹣3k',∴M(﹣5,﹣3k'),∴DM =﹣3k ',联立①②得{y =k(x +5)+9y =k′(x +2),解得,{x =−2−3×k+3k−k′y =−3k′×k+3k−k′, ∴P (﹣2﹣3×k+3k−k′,﹣3k '×k+3k−k′), ∵点P 在抛物线y =(x +2)2上, ∴(﹣2﹣3×k+3k−k′+2)2=﹣3k '×k+3k−k′, ∴3k+9k−k′=−k′,∴k =k '﹣3,∴DN (DM +DB )=−9k (﹣3k '+9)=27×1k (k '﹣3)=27×1k ×k =27; 即:DN (DM +DB )为定值27.【题组三】9.(2020•无锡模拟)如图,在平面直角坐标系中,抛物线y =ax 2﹣2ax +c 与x 轴交于A 、B 两点(点A 在点B 的左侧),且AB =4,又P 是第一象限抛物线上的一点,抛物线对称轴交x 轴于点F ,交直线AP 于点E ,AE :EP =1:2.(1)求点A 、点B 的坐标;(2)直线AP 交y 轴于点G ,若CG =5√33,求此抛物线的解析式;(3)在(2)的条件下,若点D 是射线AP 上一动点,沿着DF 翻折△ADF 得到△A ′DF (点A 的对应点为A ′),△A ′DF 与△ADB 重叠部分的面积为△ADB 的14,求此时△ADB 的面积.【分析】(1)根据对称轴的位置以及AB 的长度即可解决问题;(2)如图1中所示:过点P 作PF ⊥x 轴,垂足为F .设G (m ,0),求出点P 坐标,利用待定系数法构建方程组即可解决问题;(3)分两种情形:如图2中,作DM ⊥AB 于M ,设A ′F 交BD 于N .求出DM 的长度即可解决问题.如图3中,当点A ′在AB 的下方时,设DA ′交AB 于N ,观察图象可知:点N 不可能是BF 中点,此种情形不存在;【解答】解:(1)∵抛物线的对称轴x =1,AB =4, ∴AF =FB =2,∴A (﹣1,0),B (3,0);(2)如图1中所示:过点P 作PF ⊥x 轴,垂足为F .设G (m ,0),∵EG ∥PF ,AE :EP =1:2, ∴AG AP=AO AF=16.又∵A 0=1, ∴AF =6, ∴F (5,0), ∵OG ∥PF ,∴OG :PF =OA :AF , ∴PF =6m , ∴P (5,6m ),由题意:{3a +c=015a +c =6mm −c =5√33,解得{a =√33c =−√3m =2√33∴抛物线的解析式为y =√33x 2−2√33x −√3.(3)如图2中,作DM ⊥AB 于M ,设A ′F 交BD 于N .当DN =BN 时,△A ′DF 与△ADB 重叠部分的面积为△ADB 的14.∵AF =FB ,BN =ND , ∴AD ∥F A ′,∴∠ADF =∠DF A ′=∠FDA ′, ∴DA ′=A ′F =AD =AF , ∴四边形ADA ′F 是菱形, ∴AD =AF =2, ∵OG ∥DM , ∴AM DM=OA OG=2√33,设AM =x ,则DM =2√33x , 在Rt △ADM 中,∵AD 2=DM 2+AM 2, ∴4=x 2+43x 2, ∴x =2√217,∴DM =4√77, ∴S △ADB =12×4×4√77=8√77.如图3中,当点A ′在AB 的下方时,设DA ′交AB 于N ,观察图象可知:点N 不可能是BF 中点,此种情形不存在.∴当△A ′DF 与△ADB 重叠部分的面积为△ADB 的14时△ADB 的面积为8√77. 10.(2020•营口模拟)如图1,抛物线y =﹣x 2+mx +n 交x 轴于点A (﹣2,0)和点B ,交y 轴于点C (0,2). (1)求抛物线的函数表达式;(2)若点M 在抛物线上,且S △AOM =2S △BOC ,求点M 的坐标;(3)如图2,设点N 是线段AC 上的一动点,作DN ⊥x 轴,交抛物线于点D ,求线段DN 长度的最大值.【分析】(1)把A (﹣2,0),C (0,2)代入抛物线的解析式求解即可;(2)由(1)知,该抛物线的解析式为y =﹣x 2﹣x +2,则易得B (1,0).然后依据S △AOM =2S △BOC 列方程求解即可;(3)设直线AC 的解析式为y =kx +t ,将A (﹣2,0),C (0,2)代入可求得直线AC 的解析式,设N 点坐标为(x ,x +2),(﹣2≤x ≤0),则D 点坐标为(x ,﹣x 2﹣x +2),然后列出ND 与x 的函数关系式,最后再利用配方法求解即可.【解答】解:(1)A (﹣2,0),C (0,2)代入抛物线的解析式y =﹣x 2+mx +n , 得{−4−2m +n =0n =2,解得{m =−1n =2, ∴抛物线的解析式为y =﹣x 2﹣x +2.(2)由(1)知,该抛物线的解析式为y =﹣x 2﹣x +2,则易得B (1,0),设M (m ,n )然后依据S △AOM =2S △BOC 列方程可得:12•AO ×|n |=2×12×OB ×OC ,∴12×2×|﹣m 2﹣m +2|=2, ∴m 2+m =0或m 2+m ﹣4=0, 解得x =0或﹣1或−1±√172, ∴符合条件的点M 的坐标为:(0,2)或(﹣1,2)或(−1+√172,﹣2)或(−1−√172,﹣2).(3)设直线AC 的解析式为y =kx +b ,将A (﹣2,0),C (0,2)代入 得到{−2k +b =0b =2,解得{k =1b =2,∴直线AC 的解析式为y =x +2,设N (x ,x +2)(﹣2≤x ≤0),则D (x ,﹣x 2﹣x +2), ND =(﹣x 2﹣x +2)﹣(x +2)=﹣x 2﹣2x =﹣(x +1)2+1, ∵﹣1<0,∴x =﹣1时,ND 有最大值1. ∴ND 的最大值为1.11.(2020春•渝中区校级月考)平面直角坐标系中,抛物线y =ax 2+bx +c 交x 轴于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,点A ,C 的坐标分别为(﹣3,0),(0,3),对称轴直线x =﹣1交x 轴于点E ,点D 为顶点.(1)求抛物线的解析式;(2)点K 是直线AC 下方的抛物线上一点,且S △KAC =S △DAC 求点K 的坐标;(3)如图2若点P 是线段AC 上的一个动点,∠DPM =30°,DP ⊥DM ,则点P 的线段AC 上运动时,D 点不变,M 点随之运动,求当点P 从点A 运动到点C 时,点M 运动的路径长.。

2020年江苏中考数学填空压轴题专题(含解析)

2020年江苏中考数学填空压轴题专题(含解析)

2020年江苏中考数学填空压轴题专题一.填空题1.如图,在直角坐标系中,点A(4,0),点B(0,2),过点A的直线l⊥线段AB,P是直线l上一动点,过点P作PC⊥x轴,垂足为C,把△ACP沿AP翻折180°,使点C落在点D处,且以点A,D,P为顶点的三角形与△ABP 相似,则所有满足此条件的点P的坐标是.2.若抛物线y=ax2+bx+c(a<0)的对称轴为直线x=5,与x轴一交点为A(3,0),则不等式ax2+bx+c>0的解集是.3.如图,在Rt△ABC中,∠ABC=90°,AC=10,BC=8,AD是∠BAC的平分线,点E是斜边AC上的一点,且AE=AB,沿△DEC的一个内角平分线折叠,使点C落在DE所在直线上,则折痕的长度为.4.如图,已知Rt△ABC≌Rt△DEF,∠C=∠F=90°,AC=DF=3,BC=EF=4,△DEF绕着斜边AB的中点D旋转,DE、DF分别交AC、BC所在的直线于点P,Q.当△BDQ为等腰三角形时,AP的长为.5.如图所示,AB=4,AD=3,点E在CD上(不含端点C,D)的任一点,把△EBC沿BE折叠,当点C落在矩形ABCD的对角线上时,CE=.6.如图,在矩形ABCD中,AB=3,BC=6,AE=4,点F是边BC上一点,将△ABF沿AF折叠,使点B落在BE上的点B′处,射线DC与射线AF相交于点M,若点N是射线AF上一动点,则当△DMN是等腰三角形时,AN的长为.7.如图,正方形纸片ABCD的边长为1,M、N分别是AD、BC边上的点,且AB∥MN,将纸片的一角沿过点B的直线折叠,使A落在MN上,落点记为A′,折痕交AD于点E,若M是AD边上距D点最近的n等分点(n≥2,且n为整数),则A′N=.8.如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为.9.如图,在正方形ABCD中,AB=,点P为边AB上一动点(不与A、B重合),过A、P在正方形内部作正方形APEF,交边AD于F点,连接DE、EC,当△CDE为等腰三角形时,AP=.10.如图,在△ABC中,∠ACB=90°,∠ABC=30°,BC=2.将△ABC绕点C 逆时针旋转α角后得到△A′B′C,当点A的对应点A'落在AB边上时,旋转角α的度数是度,阴影部分的面积为.11.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为.12.已知如图所示,矩形ABCD,P为BC上的一点,连接AP,过D点做DH ⊥AP交AP与H,AB=2,BC=4,当△CDH为等腰三角形时,则BP=.13.如图所示,在一张长为4cm、宽为3cm的矩形纸片上,现要剪下一个腰长2cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,另两个顶点在矩形的边上),则剪下的等腰三角形面积为cm2.14.如图,P为正方形ABCD内一点,且PC=3,∠APB=135°,将△APB绕点B 顺时针旋转90°得到△CP′B,连接PP′.若BP的长为整数,则AP=.15.将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=6,BC=8,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是.16.矩形纸片ABCD中,AB=5,AC=3,将纸片折叠,使点B落在边CD上的B′处,折痕为AE.在折痕AE上存在一点P到边CD的距离与到点B的距离相等,则此相等距离为.17.如图,Rt△ABC中,BC=AC=2,D是斜边AB上一个动点,把△ACD沿直线CD折叠,点A落在同一平面内的A′处,当A′D平行于Rt△ABC的直角边时,AD的长为.18.如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO在y轴上,点B1,B2,B3,…都在直线y=x上,则A2014的坐标是.19.如图所示,⊙I是Rt△ABC的内切圆,点D、E、F分别是切点,若∠ACB=90°,AB=5cm,BC=4cm,则⊙I的周长为cm.20.如图,等腰Rt△ABC中,∠BAC=90°,AB=AC=2,点F是边BC上不与点B,C重合的一个动点,直线l垂直平分BF,垂足为D,当△AFC是等腰三角形时,BD的长为.21.如图,在△ABC中,BC=6,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,点P是优弧上的一点,且∠EPF=50°,则图中阴影部分的面积是.22.如图,在矩形ABCD中,AB=6,BC=4,点E是边BC上一动点,把△DCE 沿DE折叠得△DFE,射线DF交直线CB于点P,当△AFD为等腰三角形时,DP的长为.23.如图,直径为10的⊙A经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为.24.如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=.25.在矩形ABCD中,AB=4,BC=3,点P在AB上.若将△DAP沿DP折叠,使点A落在矩形对角线上的A′处,则AP的长为.26.如图,矩形ABCD中,AD=4,AB=7,点E为DC上一动点,△ADE沿AE 折叠,点D落在矩形ABCD内一点D′处,若△BCD′为等腰三角形,则DE 的长为.27.如图,在平面直角坐标系中,点A(0,2),B(﹣2,0),C(2,0),点D 是x轴上一个动点,以AD为一直角边在右侧作等腰直角三角形ADE,∠DAE=90°,若△ABD为等腰三角形时点E的坐标为.28.如图,等边△ABC的边长为10,点M是边AB上一动点,将等边△ABC 沿过点M的直线折叠,该直线与直线AC交于点N,使点A落在直线BC上的点D处,且BD:DC=1:4,折痕为MN,则AN的长为.29.如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把△ABE 沿AE折叠,当点B的对应点B′落在∠ADC的角平分线上时,则点B′到BC 的距离为.30.如图,在平面直角坐标系中,直线y=2x+4与x轴、y轴分别交于A、B两点,以AB为边在第二象限作正方形ABCD,点D在双曲线上,将正方形ABCD沿x轴正方向平移a个单位长度后,点C恰好也落在此双曲线上,则a的值是.31.如图,在矩形ABCD中,AB=6,BC=8,点E是对角线BD上一动点(不与点B、D重合),将矩形沿过点E的直线MN折叠,使得点A、B的对应点G、F分别在直线AD与BC上,当△DEF为直角三角形时,CN的长为.32.如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为.33.如图,已知菱形ABCD的边长2,∠A=60°,点E、F分别在边AB、AD上,若将△AEF沿直线EF折叠,使得点A恰好落在CD边的中点G处,则EF=.34.如图,在矩形ABCD中,点E,F分别是BC,DC上的一个动点,以EF为对称轴折叠△CEF,使点C的对称点G落在AD上,若AB=3,BC=5,则CF 的取值范围为.35.如图,在平行四边形ABCD中,AB=6,BC=4,∠B=60°,点E是边AB上的一点,点F是边CD上一点,将平行四边形ABCD沿EF折叠,得到四边形EFGC,点A的对应点为点C,点D的对应点为点G,则△CEF的面积.36.如图1,在矩形纸片ABCD中,AB=8,AD=10,点E是CD中点,将这张纸片依次折叠两次;第一次折叠纸片使点A与点E重合,如图2,折痕为MN,连接ME、NE;第二次折叠纸片使点N与点E重合,如图3,点B落到B′处,折痕为HG,连接HE,则tan∠EHG=.37.在矩形ABCD中,AB=3,BC=6,点E在边BC上,且BE=2CE,将矩形沿过点E的直线折叠,点C、D的对应点分别为C′、D′,折痕与边AD交于点F,当点B、C′、D′恰好在同一直线上时,AF的长为.38.如图,矩形纸片ABCD中,AB=6,AD=10,点P是边BC上的动点,现将纸片折叠,使点A与点P重合,折痕与矩形边的交点分别为E、F,要使折痕始终与边AB、AD有交点,则BP的取值范围是.三.解答题39.如图所示,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y 轴于点C.已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求直线AB和OB的解析式.(2)求抛物线的解析式.(3)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.问△BOD的面积是否存在最大值?若存在,求出这个最大值并写出此时点D的坐标;若不存在说明理由.参考答案与试题解析一.填空题(共38小题)1.如图,在直角坐标系中,点A(4,0),点B(0,2),过点A的直线l⊥线段AB,P是直线l上一动点,过点P作PC⊥x轴,垂足为C,把△ACP沿AP翻折180°,使点C落在点D处,且以点A,D,P为顶点的三角形与△ABP 相似,则所有满足此条件的点P的坐标是P(5,2),P(8,8),P(0,﹣8),P(3,﹣2).【解答】解:∵直线l过点A(4,0),且l⊥AB,∴直线L的解析式为;y=2x﹣8,∠BAO+∠PAC=90°,∵PC⊥x轴,∴∠PAC+∠APC=90°,∴∠BAO=∠APC,∵∠AOB=∠ACP,∴△AOB∽△PCA,∴=,∴==,设AC=m,则PC=2m,∵△PCA≌△PDA,∴AC=AD,PC=PD,∴==,如图1:当△PAD∽△PBA时,则=,则==,∵AB==2,∴AP=4,∴m2+(2m)2=(4)2,∴m=±4,当m=4时,PC=8,OC=8,P点的坐标为(8,8),当m=﹣4时,如图2,PC=8,OC=0,P点的坐标为(0,﹣8),如图3,若△PAD∽△BPA,则==,PA=AB=×2=,则m2+(2m)2=()2,∴m=±1,当m=1时,PC=2,OC=5,P点的坐标为(5,2),当m=﹣1时,如图4,PC=2,OC=3,P点的坐标为(3,﹣2);则所有满足此条件的点P的坐标是:P(5,2 ),p(8,8),P(0,﹣8),P(3,﹣2).故答案为:P(5,2 ),p(8,8),P(0,﹣8),P(3,﹣2).2.若抛物线y=ax2+bx+c(a<0)的对称轴为直线x=5,与x轴一交点为A(3,0),则不等式ax2+bx+c>0的解集是3<x<7.【解答】解:如图所示:∵抛物线y=ax2+bx+c(a<0)的对称轴为直线x=5,与x轴一交点为A(3,0),∴抛物线与x轴的另一个交点为:(7,0),∴不等式ax2+bx+c>0的解集是:3<x<7.故答案为:3<x<7.3.如图,在Rt△ABC中,∠ABC=90°,AC=10,BC=8,AD是∠BAC的平分线,点E是斜边AC上的一点,且AE=AB,沿△DEC的一个内角平分线折叠,使点C落在DE所在直线上,则折痕的长度为和.【解答】解:∵∠ABC=90°,AC=10,BC=8,∴AB==6,∵AD是∠BAC的平分线,∴∠BAD=∠EAD,在△ABD与△AED中,,∴△ABD≌△AED,∴∠AED=∠B=90°,BD=DE,如图1,过M作MP⊥DE于P,∵EM平分∠PEC,∴∠PEM=45°,∴PE=PM,∵△EC′M是△ECM沿EM折叠得到的,∴EC′=EC=AC﹣AE=4,设PE=PM=x,则PC′=4﹣x,∵tanC=tanC′=,∴,解得:x=,∴EM=PM=;如图2,∵tanC=,∴DE=BD=3,∴CD=C′D=5,∴C′E=2,∵tanC′=tanC=,∴EM=,∴DM===.综上所述:折痕的长度为:和.故答案为:和.4.如图,已知Rt△ABC≌Rt△DEF,∠C=∠F=90°,AC=DF=3,BC=EF=4,△DEF绕着斜边AB的中点D旋转,DE、DF分别交AC、BC所在的直线于点P,Q.当△BDQ为等腰三角形时,AP的长为或或.【解答】解:(1)当BD=BQ,∠C=∠F=90°,AC=DF=3,BC=EF=4,则AB=5,过D作DM⊥BC与M,DN⊥AC于N,如图,∵D为AB的中点,∴DM=AN=AC=,BD=AB=,DN=BM=BC=2,∴BQ=BD=,QM=﹣2=,∴∠3=90°﹣∠B,而∠2+∠3=90°,∴∠2=∠B,又∵Rt△ABC≌Rt△DEF,∴∠EDF=∠A=90°﹣∠B,而∠1+∠EDF+∠2=90°,∴∠1=∠B,即∠1=∠2,∴△DQM∽△DPN,∴PN:QM=DN:DM,即PN:=2:,∴PN=,∴AP=+=;(2)当DB=DQ,则Q点在C点,如图,DA=DC=,而Rt△ABC≌Rt△DEF,∴∠EDF=∠A,∴△CPD∽△CDA,∴CP:CD=CD:CA,即CP:=:3,∴CP=,∴AP=3﹣=;(3)当QB=QD,则∠B=∠BDQ,而∠EDF=∠A,∴∠EDF+∠BDQ=90°,即ED⊥AB,如图,∴Rt△APD∽Rt△ABC,∴AP:AB=AD:AC,即AP:5=:3,∴AP=.故答案为或或.5.如图所示,AB=4,AD=3,点E在CD上(不含端点C,D)的任一点,把△EBC沿BE折叠,当点C落在矩形ABCD的对角线上时,CE=.【解答】解:∵AB=4,AD=3,∴BD=5,∵把△EBC沿BC折叠得到△BC′E,∴C′E=CE,BC′=BC=AD=3,∵当点C落在矩形ABCD的对角线上,∴D,C′,B三点共线,∴C′D=2,∠DC′E=90°,∵DE=4﹣CE,∵DE2=DC′2+C′E2,即(4﹣CE)2=22+CE2,∴CE=.故答案为:.6.如图,在矩形ABCD中,AB=3,BC=6,AE=4,点F是边BC上一点,将△ABF沿AF折叠,使点B落在BE上的点B′处,射线DC与射线AF相交于点M,若点N是射线AF上一动点,则当△DMN是等腰三角形时,AN的长为2或5或18.【解答】解:由题意可知,AF⊥BE,∴∠BAF+∠ABE=90°,∵四边形ABCD是矩形,∴∠BAD=∠D=90°,∴∠BAF+∠DAM=90°,∴∠DAM=∠ABE,∴△ABE∽△DAM,∴=,∴=,∴DM=8,AM===10,①当MN=MD时,AN=AM﹣DM=10﹣8=2或AN=AM+DM=10+8=18,②当ND=NM时,易知点N是AM中点,所以AN=AM=5,综上所述,当AN=2或5或18时,△DMN是等腰三角形.7.如图,正方形纸片ABCD的边长为1,M、N分别是AD、BC边上的点,且AB∥MN,将纸片的一角沿过点B的直线折叠,使A落在MN上,落点记为A′,折痕交AD于点E,若M是AD边上距D点最近的n等分点(n≥2,且n为整数),则A′N=.【解答】解:∵将纸片的一角沿过点B的直线折叠,A落在MN上,落点记为A′,∴A′B=AB=1,∵AB∥MN,M是AD边上距D点最近的n等分点,∴MD=NC=,∴BN=BC﹣NC=1﹣=,在Rt△A′BN中,根据勾股定理得,A′N2=A′B2﹣BN2=12﹣()2=,所以,A′N==.故答案为:.8.如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为或.【解答】解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB﹣BM=7﹣x,又折叠图形可得AD=AD′=5,∴x2+(7﹣x)2=25,解得x=3或4,即MD′=3或4.在Rt△END′中,设ED′=a,①当MD′=3时,AM=7﹣3=4,D′N=5﹣3=2,EN=4﹣a,∴a2=22+(4﹣a)2,解得a=,即DE=,②当MD′=4时,AM=7﹣4=3,D′N=5﹣4=1,EN=3﹣a,∴a2=12+(3﹣a)2,解得a=,即DE=.故答案为:或.9.如图,在正方形ABCD中,AB=,点P为边AB上一动点(不与A、B重合),过A、P在正方形内部作正方形APEF,交边AD于F点,连接DE、EC,当△CDE为等腰三角形时,AP=﹣1或.【解答】解:连接AE,∵四边形ABCD、APEF是正方形,∴A、E、C共线,①当CD=CE=时,AE=AC﹣EC=2﹣,∴AP=AE=﹣1②当ED=EC时,∠DEC=90°,∠EDC=∠ECD=45°,EC=CD=1,∴AE=AC﹣EC=1,∴AP=AE=.∴当△CDE为等腰三角形时,AP=﹣1或.故答案为﹣1或.10.如图,在△ABC中,∠ACB=90°,∠ABC=30°,BC=2.将△ABC绕点C 逆时针旋转α角后得到△A′B′C,当点A的对应点A'落在AB边上时,旋转角α的度数是60度,阴影部分的面积为.【解答】解:∵AC=A′C,且∠A=60°,∴△ACA′是等边三角形.∴∠ACA′=60°,∴∠A′CB=90°﹣60°=30°,∵∠CA′D=∠A=60°,∴∠CDA′=90°,∵∠B′CB=∠A′CB′﹣∠A′CB=90°﹣30°=60°,∴∠CB′D=30°,∴CD=CB′=CB=×2=1,∴B′D==,=×CD×DB′=×1×=,∴S△CDB′S扇形B′CB==,则阴影部分的面积为:﹣,故答案为:﹣.11.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为.【解答】解:作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAD′中,,∴△BAD≌△CAD′(SAS),∴BD=CD′.∠DAD′=90°由勾股定理得DD′=,∠D′DA+∠ADC=90°由勾股定理得CD′=,∴BD=CD′=,故答案为:.12.已知如图所示,矩形ABCD,P为BC上的一点,连接AP,过D点做DH ⊥AP交AP与H,AB=2,BC=4,当△CDH为等腰三角形时,则BP=4﹣2、2或2.【解答】解:①当HD=HC时,过点H作HE⊥CD于点E,延长EH交AB于点F,连接DP,如图1所示.∵HD=HC,∴点E为CD的中点,∵EF∥AD,∴FH为△ABP的中位线,∴AH=HP.∵DH⊥AP,∴△DAP为等腰三角形,∴AD=DP.设BP=a,则CP=4﹣a,由勾股定理得:DP2=CD2+CP2,即16=8+(4﹣a)2,解得:a=4﹣2,或a=﹣4﹣2(舍去);②当DH=DC时,如图2所示.∵DC=AB=2,∴DH=2.在Rt△AHD中,AD=4,DH=2,∴AH==2,∴AH=DH,∴∠DAH=∠ADH=45°.∵AD∥BC,∴∠APB=∠DAH=45°,∵∠B=90°,∴△ABP为等腰直角三角形,∴BP=AB=2;③当CH=CD时,过点C作CE⊥DH于点E,延长CE交AD于点F,如图3所示.∵CH=CD,CE⊥DH,∴DE=HE=DH.∵DH⊥CF,DH⊥AP,∴CF∥AP,∵AF∥CP,∴四边形AFCP为平行四边形,∴AF=CP.∵EF∥AH,DE=HE,∴DF=AF=AD=2,∴BP=BC﹣CP=BC﹣AF=4﹣2=2.综上所述:BP的长度为4﹣2、2或2.故答案为:4﹣2、2或2.13.如图所示,在一张长为4cm、宽为3cm的矩形纸片上,现要剪下一个腰长2cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,另两个顶点在矩形的边上),则剪下的等腰三角形面积为2或cm2.【解答】解:如图1,等腰三角形面积为:×2×2=2,如图2,等腰三角形的高为:=,则其面积为:×2×=.故答案为:2或.14.如图,P为正方形ABCD内一点,且PC=3,∠APB=135°,将△APB绕点B 顺时针旋转90°得到△CP′B,连接PP′.若BP的长为整数,则AP=或1.【解答】解:∵△BP'C是由△BPA旋转得到,∴∠APB=∠CP'B=135°,∠ABP=∠CBP',BP=BP',AP=CP',∵∠ABP+∠PBC=90°,∴∠CBP'+∠PBC=90°,即∠PBP'=90°,∴△BPP'是等腰直角三角形,∴∠BP'P=45°,∵∠APB=∠CP'B=135°,∴∠PP'C=90°,设BP=BP'=a,AP=CP'=b,则PP'=a,在RT△PP'C中,∵PP'2+P'C2=PC2,且PC=3,∴CP'==,∵BP的长a为整数,∴满足上式的a为1或2,当a=1时,AP=CP'=,当a=2时,AP=CP'=1,故答案为:或1.15.将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=6,BC=8,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是或4.【解答】解:根据△B′FC与△ABC相似时的对应情况,有两种情况:①△B′FC∽△ABC时,=,又因为AB=AC=6,BC=8,B′F=BF,所以=,解得BF=;②△B′CF∽△BCA时,=,又因为AB=AC=6,BC=8,B′F=CF,BF=B′F,又BF+FC=8,即2BF=8,解得BF=4.故BF的长度是或4.故答案为:或4.16.矩形纸片ABCD中,AB=5,AC=3,将纸片折叠,使点B落在边CD上的B′处,折痕为AE.在折痕AE上存在一点P到边CD的距离与到点B的距离相等,则此相等距离为.【解答】解:如图所示,设PF⊥CD,∵BP=FP,由翻折变换的性质可得BP=B′P,∴FP=B′P,∴FP⊥CD,∴B′,F,P三点构不成三角形,∴F,B′重合分别延长AE,CD相交于点G,∵AB∥CD,∴∠BAG=∠AGD,∵∠BAG=∠B′AG,∴∠AGD=∠B′AG,∴GB′=AB′=AB=5,∵PB′(PF)⊥CD,∴PB′∥AC,∴△ACG∽△PB′G,∵Rt△ACB′中,AB′=AB=5,AC=3,∴B′C==4,∴CB′=5﹣4=1,CG=CB′+B′G=4+5=9,∴△ACG与△PB′G的相似比为9:5,∴AC:PB′=9:5,∵AC=3,∴PB′=.故答案为:.17.如图,Rt△ABC中,BC=AC=2,D是斜边AB上一个动点,把△ACD沿直线CD折叠,点A落在同一平面内的A′处,当A′D平行于Rt△ABC的直角边时,AD的长为2或2﹣2.【解答】解:Rt△ABC中,BC=AC=2,∴AB=2,∠B=∠A′CB=45°,①如图1,当A′D∥BC,设AD=x,∵把△ACD沿直线CD折叠,点A落在同一平面内的A′处,∴∠A′=∠A=∠A′CB=45°,A′D=AD=x,∵∠B=45°,∴A′C⊥AB,∴BH=BC=,DH=A′D=x,∴x+=2,∴x=2﹣2,∴AD=2﹣2;②如图2,当A′D∥AC,∵把△ACD沿直线CD折叠,点A落在同一平面内的A′处,∴AD=A′D,AC=A′C,∠ACD=∠A′CD,∵∠A′DC=∠ACD,∴∠A′DC=∠A′CD,∴A′D=A′C,∴AD=AC=2,综上所述:AD的长为:2或2﹣2.18.如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO在y轴上,点B1,B2,B3,…都在直线y=x上,则A2014的坐标是(2014,2016).【解答】解:过B1向x轴作垂线B1C,垂足为C,由题意可得:A(0,2),AO∥A1B1,∠B1OC=30°,∴CO=OB1cos30°=,∴B1的横坐标为:,则A1的横坐标为:,连接AA1,可知所有三角形顶点都在直线AA1上,∵点B1,B2,B3,…都在直线y=x上,AO=2,∴直线AA1的解析式为:y=x+2,∴y=×+2=3,∴A1(,3),同理可得出:A2的横坐标为:2,∴y=×2+2=4,∴A2(2,4),∴A3(3,5),…A2014(2014,2016).故答案为:(2014,2016).19.如图所示,⊙I是Rt△ABC的内切圆,点D、E、F分别是切点,若∠ACB=90°,AB=5cm,BC=4cm,则⊙I的周长为2πcm.【解答】解:∵∠ACB=90°,AB=5cm,BC=4cm,∴AC=3cm,设⊙I的半径为x,∵⊙I是Rt△ABC的内切圆,∴AE=3﹣x,BF=4﹣x,故3﹣x+4﹣x=5,解得:x=1,故⊙I的周长为2πcm.故答案为:2π.20.如图,等腰Rt△ABC中,∠BAC=90°,AB=AC=2,点F是边BC上不与点B,C重合的一个动点,直线l垂直平分BF,垂足为D,当△AFC是等腰三角形时,BD的长为或﹣1.【解答】解:∵等腰Rt△ABC中,AB=AC=2,∴BC=2,分两种情况:①当AF=CF时,∠FAC=∠C=45°,∴∠AFC=90°,∴AF⊥BC,∴BF=CF=BC=,∵直线l垂直平分BF,∴BD=BF=;②当CF=CA=2时,BF=BC﹣CF=2﹣2,∵直线l垂直平分BF,∴BD=BF=﹣1;故答案为:或﹣121.如图,在△ABC中,BC=6,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,点P是优弧上的一点,且∠EPF=50°,则图中阴影部分的面积是6﹣π.【解答】解:连接AD,∵BC是切线,点D是切点,∴AD⊥BC,∴∠EAF=2∠EPF=100°,∴S扇形AEF==π,S△ABC=AD•BC=×2×6=6,∴S阴影部分=S△ABC﹣S扇形AEF=6﹣π.故答案为:6﹣π.22.如图,在矩形ABCD中,AB=6,BC=4,点E是边BC上一动点,把△DCE 沿DE折叠得△DFE,射线DF交直线CB于点P,当△AFD为等腰三角形时,DP的长为或.【解答】解:∵AD=BC=4,DF=CD=AB=6,∴AD<DF,故分两种情况:①如图所示,当FA=FD时,过F作GH⊥AD与G,交BC于H,则HG⊥BC,DG=AD=2,∴Rt△DFG中,GF==4,∴FH=6﹣4,∵DG∥PH,∴△DGF∽△PHF,∴=,即=,解得PF=﹣6,∴DP=DF+PF=6+﹣6=;②如图所示,当AF=AD=4时,过F作FH⊥BC于H,交DA的延长线于G,则Rt△AFG中,AG2+FG2=AF2,即AG2+FG2=16;Rt△DFG中,DG2+FG2=DF2,即(AG+4)2+FG2=36;联立两式,解得FG=,∴FH=6﹣,∵∠G=∠FHP=90°,∠DFG=∠PFH,∴△DFG∽△PFH,∴=,即=,解得PF=﹣6,∴DP=DF+PF=6+﹣6=,故答案为:或.23.如图,直径为10的⊙A经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为.【解答】解:设⊙A与x轴的另一个交点为D,连接CD,∵∠COD=90°,∴CD是直径,即CD=10,∵C(0,5),∴OC=5,∴OD==5,∵∠OBC=∠ODC,∴cos∠OBC=cos∠ODC===.故答案为:.24.如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=360°.【解答】解:∠1+∠2+∠3+∠4+∠5=(180°﹣∠BAE)+(180°﹣∠ABC)+(180°﹣∠BCD)+(180°﹣∠CDE)+(180°﹣∠DEA)=180°×5﹣(∠BAE+∠ABC+∠BCD+∠CDE+∠DEA)=900°﹣(5﹣2)×180°=900°﹣540°=360°.故答案为:360°.25.在矩形ABCD中,AB=4,BC=3,点P在AB上.若将△DAP沿DP折叠,使点A落在矩形对角线上的A′处,则AP的长为或.【解答】解:①点A落在矩形对角线BD上,如图1,∵AB=4,BC=3,∴BD=5,根据折叠的性质,AD=A′D=3,AP=A′P,∠A=∠PA′D=90°,∴BA′=2,设AP=x,则BP=4﹣x,∵BP2=BA′2+PA′2,∴(4﹣x)2=x2+22,解得:x=,∴AP=;②点A落在矩形对角线AC上,如图2,根据折叠的性质可知DP⊥AC,∴△DAP∽△ABC,∴,∴AP===.故答案为:或.26.如图,矩形ABCD中,AD=4,AB=7,点E为DC上一动点,△ADE沿AE 折叠,点D落在矩形ABCD内一点D′处,若△BCD′为等腰三角形,则DE 的长为或.【解答】解:①:CD'=BD'时,如图,由折叠性质,得AD=AD′,∠DAE=∠D′AE,∵四边形ABCD是矩形,∴AB=CD,∠ABC=∠DCB=90°,∵△BCD′为等腰三角形,∴D′B=D′C,∠D′BC=∠D′CB,∴∠DCD′=∠ABD′,在△DD′C和△AD′B中,,∴△DD′C≌△AD′B,∴DD′=AD′,∴DD′=AD′=AD,∴△ADD′是等边三角形,∴∠DAD′=60°,∴∠DAE=30°,∴DE=AE,设DE=x,则AE=2x,(2x)2﹣x2=42,解得:x=,即DE=.②:当CD'=CB时,如图,连接AC,由于AD'=4,CD'=4,而AC==>4+4;故这种情况不存在.③当BD'=BC时,如图过D'作AB的垂线,垂足为F,延长D'F交CD于G,由于AD'=BD',D'F=D'F;易知AF=BF,从而由勾股定理求得D'F===,又易证△AD'F∽△D'EG,设DE=x,D'E=x,∴,即;解得x=综上,故答案为:或.27.如图,在平面直角坐标系中,点A(0,2),B(﹣2,0),C(2,0),点D 是x轴上一个动点,以AD为一直角边在右侧作等腰直角三角形ADE,∠DAE=90°,若△ABD为等腰三角形时点E的坐标为(2,2)或(2,4)或(2,2)或(2,﹣2).【解答】解:连接EC.∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△BAD和△ACE中,,∴△ABD≌△ACE,∴BD=EC.∠ABD=∠ACE=45°,∵∠ACB=45°,∴∠ECD=90°,∴点E在过点C垂直x轴的直线上,且EC=DB,①当DB=DA时,点D与O重合,BD=OB=2,此时E(2,2).②当AB=AD时,BD=CE=4,此时E(2,4).③当BD=AB=2时,E(2,2)或(2,﹣2),故答案为(2,2)或(2,4)或(2,2)或(2,﹣2).28.如图,等边△ABC的边长为10,点M是边AB上一动点,将等边△ABC 沿过点M的直线折叠,该直线与直线AC交于点N,使点A落在直线BC上的点D处,且BD:DC=1:4,折痕为MN,则AN的长为7或.【解答】解:①当点A落在如图1所示的位置时,∵△ACB是等边三角形,∴∠A=∠B=∠C=∠MDN=60°,∵∠MDC=∠B+∠BMD,∠B=∠MDN,∴∠BMD=∠NDC,∴△BMD∽△CDN.∴得==,∵DN=AN,∴得==,∵BD:DC=1:4,BC=10,∴DB=2,CD=8,设AN=x,则CN=10﹣x,∴==,∴DM=,BM=,∵BM+DM=10,∴+=10,解得x=7,∴AN=7;②当A在CB的延长线上时,如图2,与①同理可得△BMD∽△CDN.∴得==,∵BD:DC=1:4,BC=10,∴DB=,CD=,设AN=x,则CN=x﹣10,∴==,∴DM=,BM=,∵BM+DM=10,∴+=10,解得:x=,∴AN=.故答案为:7或.29.如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把△ABE 沿AE折叠,当点B的对应点B′落在∠ADC的角平分线上时,则点B′到BC 的距离为2或1.【解答】解:连接B′D,过点B′作B′M⊥AD于M.∵点B的对应点B′落在∠ADC的角平分线上,∴设DM=B′M=x,则AM=7﹣x,又由折叠的性质知AB=AB′=5,∴在直角△AMB′中,由勾股定理得到:AM2=AB′2﹣B′M2即(7﹣x)2=25﹣x2,解得x=3或x=4,则点B′到BC的距离为2或1.故答案为:2或1.30.如图,在平面直角坐标系中,直线y=2x+4与x轴、y轴分别交于A、B两点,以AB为边在第二象限作正方形ABCD,点D在双曲线上,将正方形ABCD沿x轴正方向平移a个单位长度后,点C恰好也落在此双曲线上,则a的值是2.【解答】解:过点CE⊥y轴于点E,交双曲线于点G,过点D作DF⊥x轴于点F,在y=2x+4中,令x=0,解得:y=4,即B的坐标是(0,4).令y=0,解得:x=﹣2,即A的坐标是(﹣2,0).则OB=4,OA=2.∵∠BAD=90°,∴∠BAO+∠DAF=90°,又∵直角△ABO中,∠BAO+∠OBA=90°,∴∠DAF=∠OBA,在△OAB和△FDA中,,∴△OAB≌△FDA(AAS),同理,△OAB≌△FDA≌△BEC,∴AF=OB=EC=4,DF=OA=BE=2,∴D的坐标是(﹣6,2),C的坐标是(﹣4,6).将点D代入y=得:k=﹣12,则函数的解析式是:y=﹣.∴OE=6,则C的纵坐标是6,把y=6代入y=﹣得:x=﹣2.即G的坐标是(﹣2,6),∴CG=4﹣2=2.∴a=2.故答案为:2.31.如图,在矩形ABCD中,AB=6,BC=8,点E是对角线BD上一动点(不与点B、D重合),将矩形沿过点E的直线MN折叠,使得点A、B的对应点G、F分别在直线AD与BC上,当△DEF为直角三角形时,CN的长为或.【解答】解:分两种情况:①如图所示,当∠DFE=90°时,△DEF为直角三角形,∵∠CDF+∠CFD=∠EFN+∠CFD=90°,∴∠CDF=∠EFN,由折叠可得,EF=EB,∴∠EFN=∠EBN,∴∠CDF=∠CBD,又∵∠DCF=∠BCD=90°,∴△DCF∽△BCD,∴=,即=,∴CF=,∴FN==,∴CN=CF+NF=+=;②如图所示,当∠EDF=90°时,△DEF为直角三角形,∵∠CDF+∠CDB=∠CDF+∠CBD=90°,∴∠CDF=∠CBD,又∵∠DCF=∠BCD=90°,∴△DCF∽△BCD,∴=,即=,∴CF=,∴NF==,∴CN=NF﹣CF=﹣=,综上所述,CN的长为或.故答案为:或.32.如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为2或2或2.【解答】解:当∠APB=90°时(如图1),∵AO=BO,∴PO=BO,∵∠AOC=60°,∴∠BOP=60°,∴△BOP为等边三角形,∵AB=BC=4,∴AP=AB•sin60°=4×=2;当∠ABP=90°时(如图2),∵∠AOC=∠BOP=60°,∴∠BPO=30°,∴BP===2,在直角三角形ABP中,AP==2,情况二:如图3,∵AO=BO,∠APB=90°,∴PO=AO,∵∠AOC=60°,∴△AOP为等边三角形,∴AP=AO=2,故答案为:2或2或2.33.如图,已知菱形ABCD的边长2,∠A=60°,点E、F分别在边AB、AD上,若将△AEF沿直线EF折叠,使得点A恰好落在CD边的中点G处,则EF=.【解答】解:延长CD,过点F作FM⊥CD于点M,连接GB、BD,作FH⊥AE 交于点H,如图所示:∵∠A=60°,四边形ABCD是菱形,∴∠MDF=60°,∴∠MFD=30°,设MD=x,则DF=2x,FM=x,∵DG=1,∴MG=x+1,∴(x+1)2+(x)2=(2﹣2x)2,解得:x=0.3,∴DF=0.6,AF=1.4,∴AH=AF=0.7,FH=AF•sin∠A=1.4×=,∵CD=BC,∠C=60°,∴△DCB是等边三角形,∵G是CD的中点,∴BG⊥CD,∵BC=2,GC=1,∴BG=,设BE=y,则GE=2﹣y,∴()2+y2=(2﹣y)2,解得:y=0.25,∴AE=1.75,∴EH=AE﹣AH=1.75﹣0.7=1.05,∴EF===.故答案为:.34.如图,在矩形ABCD中,点E,F分别是BC,DC上的一个动点,以EF为对称轴折叠△CEF,使点C的对称点G落在AD上,若AB=3,BC=5,则CF 的取值范围为≤CF≤3.【解答】解:∵四边形ABCD是矩形,∴∠C=90°,BC=AD=5,CD=AB=3,当点D与F重合时,CF最大=3,如图1所示:当B与E重合时,CF最小,如图2所示:在Rt△ABG中,∵BG=BC=5,AB=3,∴AG==4,∴DG=AD﹣AG=1,设CF=FG=x,在Rt△DFG中,∵DF2+DG2=FG2,∴(3﹣x)2+12=x2,∴x=,∴≤CF≤3.故答案为≤CF≤3.35.如图,在平行四边形ABCD中,AB=6,BC=4,∠B=60°,点E是边AB上的一点,点F是边CD上一点,将平行四边形ABCD沿EF折叠,得到四边形EFGC,点A的对应点为点C,点D的对应点为点G,则△CEF的面积.【解答】解:如图1,作CK⊥AB于K,过E点作EP⊥BC于P.∵∠B=60°,∴CK=BC•sin60°=4×=2 ,∵C到AB的距离和E到CD的距离都是平行线AB、CD间的距离,∴点E到CD的距离是2 ,∵四边形ABCD是平行四边形,∴AD=BC,∠D=∠B,∠A=∠BCD,由折叠可知,AD=CG,∠D=∠G,∠A=∠ECG,∴BC=GC,∠B=∠G,∠BCD=∠ECG,∴∠BCE=∠GCF,在△BCE和△GCF中,,∴△BCE≌△GCF(ASA);∴CE=CF,∵∠B=60°,∠EPB=90°,∴∠BEP=30°,∴BE=2BP,设BP=m,则BE=2m,∴EP=BE•sin60°=2m×=m,由折叠可知,AE=CE,∵AB=6,∴AE=CE=6﹣2m,∵BC=4,∴PC=4﹣m,在Rt△ECP中,由勾股定理得(4﹣m)2+(﹣m)2=(6﹣2m)2,解得m=,∴EC=6﹣2m=6﹣2×=,∴CF=EC=,=××2 =,∴S△CEF故答案为.36.如图1,在矩形纸片ABCD中,AB=8,AD=10,点E是CD中点,将这张纸片依次折叠两次;第一次折叠纸片使点A与点E重合,如图2,折痕为MN,连接ME、NE;第二次折叠纸片使点N与点E重合,如图3,点B落到B′处,折痕为HG,连接HE,则tan∠EHG=.【解答】解:如图2中,作NF⊥CD于F.设DM=x,则AM=EM=10﹣x,∵DE=EC,AB=CD=8,∴DE=CD=4,在RT△DEM中,∵DM2+DE2=EM2,∴(4)2+x2=(10﹣x)2,解得x=2.6,∴DM=2.6,AM=EM=7.4,∵∠DEM+∠NEF=90°,∠NEF+∠ENF=90°,∴∠DEM=∠ENF,∵∠D=∠EFN=90°,∴△DME∽△FEN,∴=,∴=,∴EN=,。

江苏省连云港市,2020~2021年中考数学压轴题精选解析

江苏省连云港市,2020~2021年中考数学压轴题精选解析

江苏省连云港市,2020~2021年中考数学压轴题精选解析江苏省连云港市中考数学压轴题精选~~第1题~~(2020连云港.中考真卷)(1)如图1,点P为矩形对角线上一点,过点P作,分别交、于点E、F.若,,的面积为,的面积为,则 ________;(2)如图2,点为内一点(点不在上),点、、、分别为各边的中点.设四边形的面积为,四边形的面积为(其中),求的面积(用含、的代数式表示);(3)如图3,点为内一点(点不在上)过点作,,与各边分别相交于点、、、 .设四边形的面积为,四边形的面积为(其中),求的面积(用含、的代数式表示);(4)如图4,点、、、把四等分.请你在圆内选一点(点不在、上),设、、围成的封闭图形的面积为,、、围成的封闭图形的面积为,的面积为,的面积为 .根据你选的点的位置,直接写出一个含有、、、的等式(写出一种情况即可).~~第2题~~(2020灌南.中考模拟) 如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.②推断:的值为,则样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.c=4 时,AD=3 ,AD,BC∥AD,EDG.相似时,的值是(1)问题情境:如图1,在正方形ABCD中,E为边BC上一点(不与点B、C重合),垂直于AE的一条直线MN分别交AB、AE、CD于点M、P、N.判断线段DN、MB、EC之间的数量关系,并说明理由.(2)问题探究:在“问题情境”的基础上,如图2,若垂足P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F.求∠AEF的度数;(3)如图3,当垂足P在正方形ABCD的对角线BD上时,连接AN,将△APN沿着AN翻折,点P落在点P'处.若正方形ABCD的边长为4 ,AD的中点为S,求P'S的最小值.(4)问题拓展:如图4,在边长为4的正方形ABCD中,点M、N分别为边AB、CD上的点,将正方形ABCD沿着MN翻折,使得BC的对应边B'C'恰好经过点A,C'N交AD于点F.分别过点A、F作AG⊥MN,FH⊥MN,垂足分别为G、H.若AG=,请直接写出FH的长.~~第6题~~(2019灌南.中考模拟) 正方形ABCD的边长为1,点O是BC边上的一个动点(与B,C不重合),以O为顶点在BC所在直线的上方作∠MON=90°(1)当OM经过点A时,①请直接填空:ON(可能,不可能)过D点:(图1仅供分析)②如图2,在ON上截取OE=OA,过E点作EF垂直于直线BC,垂足为点F,作EH⊥CD于H,求证:四边形EFCH为正方形;③如图2,将②中的已知与结论互换,即在ON 上取点E (E 点在正方形ABCD 外部),过E 点作EF 垂直于直线BC ,垂足为点F ,作EH ⊥CD 于H ,若四边形EFCH 为正方形,那么OE 与OA 是否相等?请说明理由;(2) 当点O 在射线BC 上且OM 不过点A 时,设OM 交边AB 于G ,且OG=2.在ON 上存在点P ,过P 点作PK 垂直于直线B C ,垂足为点K ,使得S △= S ,连接GP ,则当BO 为何值时,四边形PKBG 的面积最大?最大面积为多少?~~第7题~~(2019海州.中考模拟) 如图,D 为直角△ABC 中斜边AC 上一点,且AB =AD ,以AB 为直径的⊙O 交AD 于点F ,交BD 于点E ,连接BF ,BF.(1) 求证:BE =FE ;(2) 求证:∠AFE =∠BDC ;(3) 已知:sin ∠BAE = ,AB =6,求BC 的长.~~第8题~~(2018连云港.中考真卷) 在数学兴趣小组活动中,小亮进行数学探究活动,△ABC 是边长为2的等边三角形,E 是AC 上一点,小亮以BE 为边向BE 的右侧作等边三角形BEF ,连接CF .(1)如图1,当点E 在线段AC 上时,EF 、BC 相交于点D ,小亮发现有两个三角形全等,请你找出来,并证明;(2) 当点E 在线段AC 上运动时,点F 也随着运动,若四边形ABFC 的面积为 ,求AE 的长;(3) 如图2,当点E 在AC的延长线上运动时,CF 、BE 相交于点D ,请你探求△ECD 的面积S 与△DBF 的面积S 之间的数量关系,并说明理由;(4) 如图2,当△ECD 的面积S =时,求AE 的长.~~第9题~~(2018灌云.中考模拟) 如图(1) 如图 ,正方形AEGH 的顶点E 、H 在正方形ABCD 的边上,直接写出HD :GC :EB 的结果;(2)将图中的正方形AEGH 绕点A 旋转一定角度,如图,求HD:GC :EB ;(3) 把图 中的正方形都换成矩形,如图 ,且已知DA : : ,求此时HD :GC :EB 的值 简要写出过程 .~~第10题~~PKO △OBG 121(2018灌南.中考模拟) △ABC中,AB=AC=10,BC=12,矩形DEFG中,EF=4,FG>12.(1)如图①,点A是FG的中点,FG∥BC,将矩形DEFG向下平移,直到DE与BC重合为止.要研究矩形DEFG与△ABC重叠部分的面积,就要进行分类讨论,你认为如何进行分类,写出你的分类方法(无需求重叠部分的面积).(2)如图②,点B与F重合,E、B、C在同一直线上,将矩形DEFG向右平移,直到点E与C重合为止.设矩形DEFG 与△ABC重叠部分的面积为y,平移的距离为x.①求y与x的函数关系式,并写出自变量的取值范围;②在给定的平面直角坐标系中画出y与x的大致图象,并在图象上标注出关键点坐标.江苏省连云港市中考数学压轴题答案解析~~第1题~~答案:解析:~~第2题~~答案:解析:答案:解析:答案:解析:答案:解析:答案:解析:答案:解析:~~第8题~~答案:解析:~~第9题~~答案:解析:答案:解析:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年中考数学压轴题精析精练2一、选择题1.如图,在平面直角坐标系xOy中,已知△ABC,∠ABC=90°,顶点A在第一象限,B,C在x轴的正半轴上(C在B的右侧),BC=2,AB=2,△ADC与△ABC关于AC所在的直线对称.若点A和点D在同一个反比例函数y=的图象上,则OB的长是()A.2 B.3 C.2D.32.在平面直角坐标系中,已知平行四边形ABCD的点A(0,﹣2)、点B(3m,4m+1)(m ≠﹣1),点C(6,2),则对角线BD的最小值是()A.3B.2C.5 D.63.如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE的最小值为()A.B.2﹣2 C.2﹣2 D.44.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k=()A.B.C.D.125.如图,矩形ABCD中,AB=3,BC=8,点P为矩形内一动点,且满足∠PBC=∠PCD,则线段PD的最小值为()A.5 B.1 C.2 D.36.如图,平行四边形ABCO的顶点B在双曲线y=上,顶点C在双曲线y=上,BC中点P恰好落在y轴上,已知S▱OABC=10,则k的值为()A.﹣8 B.﹣6 C.﹣4 D.﹣2二、填空题1.如图,正方形ABCD中,E为AB边上一点,过点E作EF⊥AB交对角线BD于点F.连接EC交BD于点G.取DF的中点H,并连接AH.若AH=,EG=,则四边形AEFH 的面积为.第1题第2题2.在△ABC中,AB=5,AC=8,BC=7,点D是BC上一动点,DE⊥AB于E,DF⊥AC 于F,线段EF的最小值为.3.如图,在平行四边形ABCD中,M、N分别是BC、DC的中点,AM=4,AN=3,且∠MAN=60°,则AB的长是.4.如图,已知正方形ABCD的边长为2,以点A为圆心,1为半径作圆,E是⊙A上的任意一点,将点E绕点D按逆时针方向旋转90°得到点F,则线段AF的长的最小值.5.如图,在矩形ABMN中,AN=1,点C是MN的中点,分别连接AC,BC,且BC=2,点D为AC的中点,点E为边AB上一个动点,连接DE,点A关于直线DE的对称点为点F,分别连接DF,EF.当EF⊥AC时,AE的长为.第5题第6题6.如图,在⊙O中,半径OC=6,D是半径OC上一点,且OD=4.A,B是⊙O上的两个动点,∠ADB=90°,F是AB的中点,则OF的长的最大值等于.三、解答题1.如图,P(m,n)是函数y=(x>0)的图象上的一个动点,过点P分别作P A⊥x轴于A、PB⊥y轴于B,P A、PB分别与函数y=(x>0)的图象交于点C、D,连接AB、CD.(1)求证:AB∥CD;(2)在点P移动的过程中,△OCD的面积S是否会发生改变?若不改变,求出S的值;若改变,求出S与m之间的函数表达式.2.如图①已知抛物线y=ax2﹣3ax﹣4a(a<0)的图象与x轴交于A、B两点(A在B的左侧),与y的正半轴交于点C,连结BC,二次函数的对称轴与x轴的交点E.(1)抛物线的对称轴与x轴的交点E坐标为,点A的坐标为;(2)若以E为圆心的圆与y轴和直线BC都相切,试求出抛物线的解析式;(3)在(2)的条件下,如图②Q(m,0)是x的正半轴上一点,过点Q作y轴的平行线,与直线BC交于点M,与抛物线交于点N,连结CN,将△CMN沿CN翻折,M的对应点为M′.在图②中探究:是否存在点Q,使得M′恰好落在y轴上?若存在,请求出Q的坐标;若不存在,请说明理由.3.如图,点A、B分别在y轴和x轴上,BC⊥AB(点C和点O在直线AB的两侧),点C 的坐标为(4,n)过点C的反比例函数y=(x>0)的图象交边AC于点D(n+,3).(1)求反比例函数的表达式;(2)求点B的坐标.4.如图,已知抛物线y=ax2+3ax﹣4a与x轴负半轴相交于点A,与y轴正半轴相交于点B,OB=OA,直线l过A、B两点,点D为线段AB上一动点,过点D作CD⊥x轴于点C,交抛物线于点E.(1)求抛物线的解析式;(2)若抛物线与x轴正半轴交于点F,设点D的横坐标为x,四边形F AEB的面积为S,请写出S与x的函数关系式,并判断S是否存在最大值,如果存在,求出这个最大值;并写出此时点E的坐标;如果不存在,请说明理由.(3)连接BE,是否存在点D,使得△DBE和△DAC相似?若存在,求出点D的坐标;若不存在,说明理由.5.如图,反比例函数y=(x>0,k是常数)的图象经过A(1,3),B(m,n),其中m >1.过点B作y轴的垂线,垂足为C.连接AB,AC,△ABC的面积为.(1)求k的值和直线AB的函数表达式:(2)过线段AB上的一点P作PD⊥x轴于点D,与反比例函数y=(x>0,k是常数)的图象交于点E,连接OP,OE,若△POE的面积为1,求点P的坐标.6.探究:已知二次函数y=ax2﹣2x+3经过点A(﹣3,0).(1)求该函数的表达式;(2)如图所示,点P是抛物线上在第二象限内的一个动点,且点P的横坐标为t,连接AC,P A,PC.①求△ACP的面积S关于t的函数关系式;②求△ACP的面积的最大值,并求出此时点P的坐标.拓展:在平面直角坐标系中,点M的坐标为(﹣1,3),N的坐标为(3,1),若抛物线y=ax2﹣2x+3(a<0)与线段MN有两个不同的交点,请直接写出a的取值范围.【答案与解析】一、选择题1.【分析】作DE⊥x轴于E,根据三角函数值求得∠ACD=∠ACB=60°,即可求得∠DCE =60°,根据轴对称的性质得出CD=BC=2,解直角三角形求得CE=1,DE=,设A(m,2),则D(m+3,),根据系数k的几何意义得出k=2m=(m+3),求得m=3,即可得到结论.【解答】解:作DE⊥x轴于E,∵Rt△ABC中,∠ABC=90°,BC=2,AB=2,∴tan∠ACB==,∴∠ACB=60°,∴∠ACD=∠ACB=60°,∴∠DCE=180°﹣60°﹣60°=60°,∵CD=BC=2,∴CE=CD=1,DE=CD=,设A(m,2),则D(m+3,),∵k=2m=(m+3),解得m=3,∴OB=3,故选:B.2.【分析】方法1:先根据B(3m,4m+1),可知B在直线y=x+1上,所以当BD⊥直线y=x+1时,BD最小,找一等量关系列关于m的方程,作辅助线:过B作BH⊥x轴于H,则BH=4m+1,利用三角形相似得BH2=EH•FH,列等式求m的值,得BD的长即可.方法2:先根据B(3m,4m+1),可知B在直线y=x+1上,所以当BD⊥直线y=x+1时,BD最小,因为平行四边形对角线交于一点,且AC的中点一定在x轴上,可得F是AC的中点,F(3,0),设直线BF的解析式为y=﹣x+b,根据待定系数法可求BF的解析式,进一步得到B点坐标,根据两点间的距离公式可求BF,进一步得到对角线BD 的最小值.【解答】解:方法1:如图,∵点B(3m,4m+1),∴令,∴y=x+1,∴B在直线y=x+1上,∴当BD⊥直线y=x+1时,BD最小,过B作BH⊥x轴于H,则BH=4m+1,∵BE在直线y=x+1上,且点E在x轴上,∴E(﹣,0),G(0,1),∵平行四边形对角线交于一点,且AC的中点一定在x轴上,∴F是AC的中点,∵A(0,﹣2),点C(6,2),∴F(3,0).在Rt△BEF中,∵BH2=EH•FH,∴(4m+1)2=(3m+)(3﹣3m),解得:m1=﹣(舍),m2=,∴B(,),∴BD=2BF=2×=6,则对角线BD的最小值是6;方法2:如图,∵点B(3m,4m+1),∴令,∴y=x+1,∴B在直线y=x+1上,∴当BD⊥直线y=x+1时,BD最小,∵平行四边形对角线交于一点,且AC的中点一定在x轴上,∴F是AC的中点,∵A(0,﹣2),点C(6,2),∴F(3,0).设直线BF的解析式为y=﹣x+b,则﹣×3+b=0,解得b=,则直线BF的解析式为y=﹣x+,∴4m+1=﹣×3m+,解得m=,∴B(,),∴BF==3,∴BD=2BF=6,则对角线BD的最小值是6.故选:D.3.【分析】由AE⊥BE知点E在以AB为直径的半⊙O上,连接CO交⊙O于点E′,当点E位于点E′位置时,线段CE取得最小值,利用勾股定理可得答案.【解答】解:如图,∵AE⊥BE,∴点E在以AB为直径的半⊙O上,连接CO交⊙O于点E′,∴当点E位于点E′位置时,线段CE取得最小值,∵AB=4,∴OA=OB=OE′=2,∵BC=6,∴OC===2,则CE′=OC﹣OE′=2﹣2,故选:B.4.【分析】所给的三角形面积等于长方形面积减去三个直角三角形的面积,然后即可求出B 的横纵坐标的积即是反比例函数的比例系数.【解答】解:∵四边形OCBA是矩形,∴AB=OC,OA=BC,设B点的坐标为(a,b),∵BD=3AD,∴D(,b),∵点D,E在反比例函数的图象上,∴=k,∴E(a,),∵S△ODE=S矩形OCBA﹣S△AOD﹣S△OCE﹣S△BDE=ab﹣﹣k﹣•(b﹣)=9,∴k=,故选:C.5.【分析】先证明∠BPC=90°,则利用圆周角定理可判断点P在以BC为直径的⊙O上,连接OD交⊙O于P′,连接OP、PD,如图,由于PD≥OD﹣OP(当且仅当O、P、D 共线时,取等号),然后求出DP′即可.【解答】解:∵四边形ABCD为矩形,∴∠BCD=90°,∵∠PBC=∠PCD,∴∠PBC+∠PCB=90°,∴∠BPC=90°,∴点P在以BC为直径的⊙O上,连接OD交⊙O于P′,连接OP、PD,如图,∵PD≥OD﹣OP(当且仅当O、P、D共线时,取等号),即P点运动到P′位置时,PD的值最小,最小值为DP′,在Rt△OCD中,OC=BC=4,CD=AB=3,∴OD==5,∴DP′=OD﹣OP′=5﹣4=1,∴线段PD的最小值为1.故选:B.6.【分析】连接BO,过B点和C点分别作y轴的垂线段BE和CD,证明△BEP≌△CDP (AAS),则△BEP面积=△CDP面积;易知△BOE面积=×6=3,△COD面积=|k|.由此可得△BOC面积=△BPO面积+△CPD面积+△COD面积=3+|k|=10,解k即可,注意k<0.【解答】解:连接BO,过B点和C点分别作y轴的垂线段BE和CD,∴∠BEP=∠CDP,又∠BPE=∠CPD,BP=CP,∴△BEP≌△CDP(AAS).∴△BEP面积=△CDP面积.∵点B在B在双曲线y=上,所以△BOE面积=×6=3.∵点C在双曲线y=上,且从图象得出k<0,∴△COD面积=|k|.∴△BOC面积=△BPO面积+△CPD面积+△COD面积=3+|k|.∵四边形ABCO是平行四边形,∴平行四边形ABCO面积=2×△BOC面积=2(3+|k|),∴2(3+|k|)=10,解得k=±4,因为k<0,所以k=﹣4.故选:C.二、填空题1.【分析】如图,连接HE,HC,作HM⊥AB于M.,延长MH交CD于N.首先证明△EHC 是等腰直角三角形,推出EC=2,由EF∥BC,推出==,设EF=BE=4a,则BC=AB=10a,AE=6a,AM=ME=3a,由EF∥HM,推出=,推出=,推出HM=7a,可得S四边形AEFH=S△AMH+S梯形EFHM=×3a×7a+(4a+7a)×3a=27a2,在Rt△BEC中,根据BE2+BC2=EC2,构建方程求出a2即可解决问题;【解答】解:如图,连接HE,HC,作HM⊥AB于M.,延长MH交CD于N.∵四边形ABCD是正方形,∴DA=DC,∠ADH=∠CDH=45°,∵DH=DH,∴△ADH≌△CDH(SAS),∴AH=CH=,∵EF⊥AB,HM⊥AB,DA⊥AB∴EF∥HM∥AD,∵HF=HD,∴AM=EM,∴HA=HE=HC,∵∠AMN=∠∠ADN=90°,∴四边形AMND是矩形,∴AM=DN,∵DN=HN,AM=EM,∴EM=HN,∴Rt△HME≌Rt△CNH(HL),∴∠MHE=∠HCN,∵∠HCN+∠CHN=90°,∴∠MHE+∠CHN=90°,∴∠EHC=90°,∴EC=HE=2,∵EG=,∴GC=2﹣=,∵EF∥BC,∴==,设EF=BE=4a,则BC=AB=10a,AE=6a,AM=ME=3a,∵EF∥HM,∴=,∴=,∴HM=7a,∴S四边形AEFH=S△AMH+S梯形EFHM=×3a×7a+(4a+7a)×3a=27a2,在Rt△BEC中,∵BE2+BC2=EC2,∴16a2+100a2=4,∴a2=,∴S四边形AEFH=.故答案为.2.【分析】如图,作CM⊥AB于M,AN⊥BC于N.连接AD,OE,OF.设AM=x,则BM =5﹣x.根据CM2=AC2﹣AM2=BC2﹣BM2,可得82﹣x2=72﹣(5﹣x)2,解得x=4,推出∠EAF=60°,由A,E,D,F四点共圆,推出当⊙O的直径最小时,EF的长最小,根据垂线段最短可知:当AD与AN重合时,AD的值最小,由此即可解决问题.【解答】解:如图,作CM⊥AB于M,AN⊥BC于N.连接AD,OE,OF.设AM=x,则BM=5﹣x.∵CM2=AC2﹣AM2=BC2﹣BM2,∴82﹣x2=72﹣(5﹣x)2,解得x=4,∴AM=4,AC=2AM,∴∠ACM=30°,∠CAM=60°,CM=AM=4,∵S△ABC=•BC•AN=•AB•CM,∴AN==,∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°,∴A,E,D,F四点共圆,∴当⊙O的直径最小时,EF的长最小,根据垂线段最短可知:当AD与AN重合时,AD的值最小,AD的最小值为,此时OE=OF=,EF=2•OE•cos30°=,∴EF的最小值为,故答案为.3.【分析】首先延长DC和AM交于E,过点E作EH⊥AN于点H,易证得△ABM≌△ECM,即可得AB=NE,然后由AM=4,AN=3,且∠MAN=60°,求得AH,NH与EH的长,继而求得EN的长,则可求得答案.【解答】解:延长DC和AM交于E,过点E作EH⊥AN于点H,如图.∵四边形ABCD为平行四边形,∴AB∥CE,∴∠BAM=∠CEM,∠B=∠ECM.∵M为BC的中点,∴BM=CM.在△ABM和△ECM中,,∴△ABM≌△ECM(AAS),∴AB=CD=CE,AM=EM=4,∵N为边DC的中点,∴NE=3NC=AB,即AB=NE,∵AN=3,AE=2AM=8,且∠MAN=60°,∴∠AEH=30°,∴AH=AE=4,∴EH==4,∴NH=AH﹣AN=4﹣3=1,∴EN==7,∴AB=×7=.故答案为.4.【分析】根据题意先证明△ADE≌△CDF,则CF=AE=1,根据三角形三边关系得:AF ≤AC﹣CF,可知:当F在AC上时,AF最小,所以由勾股定理可得AC的长,可求得AF的最小值.【解答】解:如图,连接FC,AC,AE.∵ED⊥DF,∴∠EDF=∠EDA+∠ADF=90°,∵四边形ABCD是正方形,∴AD=CD,∠ADC=90°,∴∠ADF+∠CDF=90°,∴∠EDA=∠CDF,在△ADE和△CDF中∵,∴△ADE≌△CDF(SAS),∴CF=AE=1,∵正方形ABCD的边长为2,∴AC=2,∵AF≥AC﹣CF,∴AF≥2﹣1∴AF的最小值是2﹣1;故答案为:2﹣1.5.【分析】首先证明∠CAB=∠CBA=30°.分两种情形画出图形分别求解即可.【解答】解:∵四边形ABMN是矩形,∴AN=BM=1,∠M=∠N=90°,∵CM=CN,∴△BMC≌△ANC(SAS),∴BC=AC=2,∴AC=2AN,∴∠ACN=30°,∵AB∥MN,∴∠CAB=∠CBA=30°,①如图1中,当DF⊥AB时,∠ADF=60°,∵DA=DF,∴△ADF是等边三角形,∴∠AFD=60°,∵∠DFE=∠DAE=30°,∴EF平分∠AFD,∴EF⊥AD,此时AE=.②如图2中,当△AEF是等边三角形时,EF⊥AC,此时EF=.综上所述,满足条件的EF的值为或.6.【分析】当点F与点D运动至共线时,OF长度最大,因为此时F是AB的中点,则OF ⊥AB,此时A、B关于OC对称,解直角三角形即可求得OF的长度.【解答】解:∵当点F与点D运动至共线时,OF长度最大,如图,∵F是AB的中点,∴OC⊥AB,设OF为x,则DF=x﹣4,∵△ABD是等腰直角三角形,∴DF=AB=BF=x﹣4,在Rt△BOF中,OB2=OF2+BF2,∵OB=OC=6,∴36=x2+(x﹣4)2,解得x=2+或2﹣(舍去)∴OF的长的最大值等于2+,故答案为2+.三、解答题1.【分析】(1)首先用m表示出A、C、B、D的坐标,再证明△PCD∽△P AB,得出对应角相等,即可得出结论;(2)S=S矩形OAPB﹣S△OAC﹣S△OBD﹣S△PCD,即可得出结果.【解答】(1)证明:根据题意得:四边形OAPB是矩形,∵P(m,n)在函数y=(x>0)的图象上,∴n=,∴P(m,),∴A(m,0),C(m,),B(0,),D(,),∴P A=,PC=,PB=m,PD=m,∴==,==,∴,∵∠CPD=∠APB,∴△PCD∽△P AB,∴∠PCD=∠P AB,∴AB∥CD;(2)解:△OCD的面积不变;理由如下:根据题意得:S=S矩形OAPB﹣S△OAC﹣S△OBD﹣S△PCD=m•﹣•m•﹣••﹣••=6﹣1﹣1﹣=.2.【分析】(1)根据对称轴公式可以求出点E坐标,设y=0,解方程即可求出点A坐标.(2)如图①中,设⊙E与直线BC相切于点D,连接DE,则DE⊥BC,由tan∠OBC==,列出方程即可解决.(3)分两种情形①当N在直线BC上方,②当N在直线BC下方,分别列出方程即可解决.【解答】解:(1)∵对称轴x=﹣=,∴点E坐标(,0),令y=0,则有ax2﹣3ax﹣4a=0,∴x=﹣1或4,∴点A坐标(﹣1,0).故答案分别为(,0),(﹣1,0).(2)如图①中,设⊙E与直线BC相切于点D,连接DE,则DE⊥BC,∵DE=OE=,EB=,OC=﹣4a,∴DB===2,∵tan∠OBC==,∴=,∴a=﹣,∴抛物线解析式为y=﹣x2+x+3.(3)如图②中,由题意∠M′CN=∠NCB,∵MN∥OM′,∴∠M′CN=∠CNM,∴MN=CM,∵直线BC解析式为y=﹣x+3,∴M(m,﹣m+3),N(m,﹣m2+m+3),作MF⊥OC于F,∵sin∠BCO==,∴=,∴CM=m,①当N在直线BC上方时,﹣x2+x+3﹣(﹣x+3)=m,解得:m=或0(舍弃),∴Q1(,0).②当N在直线BC下方时,(﹣m+3)﹣(﹣m2+m+3)=m,解得m=或0(舍弃),∴Q2(,0),综上所述:点Q坐标为(,0)或(,0).3.【分析】(1)依据反比例函数图象上点的坐标特征,即可得到n的值,进而得出反比例函数的表达式;(2)利用待定系数法即可得到直线CD的解析式为y=﹣x+4,进而得到点A的坐标,再根据△ABO∽△BCE,即可得到点B的坐标.【解答】解:(1)∵反比例函数y=(x>0)的图象经过点C(4,n)和点D(n+,3).∴m=4n=3(n+),解得n=1,∴m=4×1=4,∴反比例函数的表达式为y=;(2)如图,过C作CE⊥x轴于E,设直线CD的解析式为y=kx+b,把点C(4,1),点D(,3)代入,可得,解得,∴直线CD的解析式为y=﹣x+4,令x=0,则y=4,∴A(0,4),即AO=4,设BO=x,则BE=4﹣x,∵∠ABC=90°=∠AOB=∠BEC,∴∠BAO+∠ABO=90°=∠CBE+∠ABO,∴∠BAO=∠CBE,∴△ABO∽△BCE,∴,即,解得x=2,∴B(2,0).4.【分析】(1)利用二次函数图象上点的坐标特征可得出点A、B的坐标,结合OA=OB即可得出关于a的一元一次方程,解之即可得出结论;(2)由点A、B的坐标可得出直线AB的解析式(待定系数法),由点D的横坐标可得出点D、E的坐标,进而可得出DE的长度,利用三角形的面积公式结合∴S=S△ABE+S△ABF 即可得出S关于x的函数关系式,再利用二次函数的性质即可解决最值问题;(3)由∠ADC=∠BDE、∠ACD=90°,利用相似三角形的判定定理可得出:若要△DBE 和△DAC相似,只需∠DEB=90°或∠DBE=90°,设点D的坐标为(m,m+4),则点E的坐标为(m,﹣m2﹣3m+4),进而可得出DE、BD的长度.①当∠DBE=90°时,利用等腰直角三角形的性质可得出DE=BD,进而可得出关于m的一元二次方程,解之取其非零值即可得出结论;②当∠BED=90°时,由点B的纵坐标可得出点E的纵坐标为4,结合点E的坐标即可得出关于m的一元二次方程,解之取其非零值即可得出结论.综上即可得出结论.【解答】解:(1)当y=0时,有ax2+3ax﹣4a=0,解得:x1=﹣4,x2=1,∴点A的坐标为(﹣4,0).当x=0时,y=ax2+3ax﹣4a=﹣4a,∴点B的坐标为(0,﹣4a).∵OA=OB,∴﹣4a=4,解得:a=﹣1,∴抛物线的解析式为y=﹣x2﹣3x+4.(2)∵点A的坐标为(﹣4,0),点B的坐标为(0,4),∴直线AB的解析式为y=x+4.∵点D的横坐标为x,则点D的坐标为(x,x+4),点E的坐标为(x,﹣x2﹣3x+4),∴DE=﹣x2﹣3x+4﹣(x+4)=﹣x2﹣4x(如图1).∵点F的坐标为(1,0),点A的坐标为(﹣4,0),点B的坐标为(0,4),∴AF=5,OA=4,OB=4,∴S=S△ABE+S△ABF=OA•DE+AF•OB=﹣2x2﹣8x+10=﹣2(x+2)2+18.∵﹣2<0,∴当x=﹣2时,S取最大值,最大值为18,此时点E的坐标为(﹣2,6),∴S与x的函数关系式为S=﹣2x2﹣8x+10(﹣4≤x≤0),S存在最大值,最大值为18,此时点E的坐标为(﹣2,6).(3)∵∠ADC=∠BDE,∠ACD=90°,∴若要△DBE和△DAC相似,只需∠DEB=90°或∠DBE=90°(如图2).设点D的坐标为(m,m+4),则点E的坐标为(m,﹣m2﹣3m+4),∴DE=﹣m2﹣3m+4﹣(m+4)=﹣m2﹣4m,BD=﹣m.①当∠DBE=90°时,∵OA=OB,∴∠OAB=45°,∴∠BDE=∠ADC=45°,∴△BDE为等腰直角三角形.∴DE=BD,即﹣m2﹣4m=﹣2m,解得:m1=0(舍去),m2=﹣2,∴点D的坐标为(﹣2,2);②当∠BED=90°时,点E的纵坐标为4,∴﹣m2﹣3m+4=4,解得:m3=﹣3,m4=0(舍去),∴点D的坐标为(﹣3,1).综上所述:存在点D,使得△DBE和△DAC相似,此时点D的坐标为(﹣2,2)或(﹣3,1).5.【分析】(1)根据待定系数法即可求得k的值,得到反比例函数的解析式,把B点代入得到n=,根据三角形ABC的面积即可求得B点的坐标,然后根据待定系数法求得直线AB的解析式;(2)设P点的坐标为(x,﹣x+),则E(x,),根据△POE的面积为1得出x•(﹣x+﹣)=1,解方程即可求得.【解答】解:(1)∵反比例函数y=(x>0,k是常数)的图象经过A(1,3),∴k=1×3=3,∴反比例函数为y=,∵反比例函数y=(x>0,k是常数)的图象经过B(m,n),∴n=,∵△ABC的面积为.∴m•(3﹣)=,解得m=6,∴n==,∴B(6,),设直线AB的解析式为y=ax+b,∴,解得,∴直线AB的解析式为y=﹣x+;(2)设P点的坐标为(x,﹣x+),则E(x,),∵△POE的面积为1,∴x•(﹣x+﹣)=1,解得x=2或5,∴P(2,)或(5,1).6.【分析】探究:(1)利用待定系数法求解可得;(2)①先求出直线AC解析式为y=x+3,设P(t,﹣t2﹣2t+3),Q(t,t+3),据此得=﹣t2﹣3t,根据可得答案;②根据二次函数的性质和①中所求代数式求解可得;拓展:先求出线段MN解析式,直线和抛物线有两个交点知﹣x+=ax2﹣2x+3有两个不相等实数根,利用根的判别式求得a的范围,再根据a<0时,抛物线与直线的交点在线段MN上得,解之可确定a的最终取值范围.【解答】解:探究:(1)∵抛物线y=ax2﹣2x+3经过点A(﹣3,0),∴0=a(﹣3)2﹣2×(﹣3)+3,解得a=﹣1.∴抛物线的表达式为y=﹣x2﹣2x+3.(2)①过点P作PN⊥AO于点N,交AC于点Q.设直线AC的解析式为y=kx+b(k≠0),将A(﹣3,0)、C(0,3)代入y=kx+b,,解得:,∴直线AC的解析式为y=x+3.∵点P在抛物线y=﹣x2﹣2x+3上,点Q在直线AC上,∴点P的坐标为(t,﹣t2﹣2t+3),点Q的坐标为(t,t+3),∴=﹣t2﹣3t,∴=.②∵,∴当时,,当时,.∴△ACP的面积的最大值是,此时点P的坐标为.拓展:设直线MN的解析式为y=kx+b,将点M(﹣1,3)和N(3,1)代入,得:,解得,∴直线MN解析式为y=﹣x+,由题意知﹣x+=ax2﹣2x+3,即2ax2﹣3x+1=0有两个不相等实数根,∴△=(﹣3)2﹣4×2a×1>0,解得a<,∵a<0,∴,解得:a≤﹣2,综上,a≤﹣2.。

相关文档
最新文档