2019中考数学压轴题精选(二十二)
【中考数学几何模型】第二十二节:二次函数特殊平行四边形存在性问题

中考数学几何模型第二十二节:二次函数特殊平行四边形存在性问题422.二次函数正方形存在性问题(初三)在平面直角坐标系中,抛物线y =―13x 2+bx +c 交x 轴于A(―3,0),B(4,0)两点,交y 轴于点C .(1)求抛物线的表达式,(2)如图,直线y =34x +94与抛物线交于A,D 两点,与直线BC 交于点E .若M(m,0)是线段AB 上的动点,过点M 作x 轴的垂线,交抛物线于点F ,交直线AD 于点G ,交直线BC 于点H .①当点F 在直线AD 上方的抛物线上,且S △EFG =59S △OFG 时,求m 的值;②在平面内是否存在点P ,使四边形EFHP 为正方形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.423.二次函数面积最大值矩形存在性问题(初三)如图,在平面直角坐标系中,抛物线y =ax 2+2x +c(a ≠0)与x 轴交于点A 、B ,与y 轴交于点C ,连接BC,OA =1,对称轴为直线x =2,点D 为此拋物线的顶点.(1)求抛物线的解析式(2)抛物线上C 、D 两点之间的距离是_______(3)点E 是第一象限内抛物线上的动点,连接BE 和CE ,求△BCE 面积的最大值;(4)点P 在抛物线对称轴上,平面内存在点Q ,使以点B 、C 、P 、Q 为顶点的四边形为矩形,请直接写出点Q 的坐标.424.二次函数线段最大值相等角矩形存在性问题(初三)如图,抛物线y=ax2+bx+c与x轴交于点A(―1,0),点B(―3,0),且0O=OC.(1)求抛物线的解析式(2)点P在抛物线上,且∠POB=∠ACB,求点P的坐标;(3)抛物线上两点M,N,点M的横坐标为m,点N的横坐标为m+4.点D是抛物线上M,N之间的动点,过点D作y轴的平行线交MN于点E.①求DE的最大值②点D关于点E的对称点为F,当m为何值时,四边形MDNF为矩形.425.二次函数菱形存在性三角形相似存在性问题(初三)如图,已知直线y=―2x+4分别交x轴、y轴于点A、B,抛物线过A,B两点,点P是线段AB上一动点,过点P作PC⊥x 轴于点C,交抛物线于点D.(1)若抛物线的解析式为y=―2x2+2x+4,设其顶点为M,其对称轴交AB于点N.①求点M、N的坐标;②是否存在点P,使四边形MNPD为菱形?并说明理由(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形与△AOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.426.二次函数菱形存在性问题(初三)如图,抛物线y=x2+2x―8与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.(1)求A,B,C三点的坐标(2)连接AC,直线x=m(―4<m<0)与该抛物线交于点E,与AC交于点D,连接OD.当OD⊥AC时,求线段DE的长;(3)点M在y轴上,点N在直线AC上,点P为拋物线对称轴上一点,是否存在点M,使得以C、M、N、P为顶点的四边形是菱形?若存在,请直接写出点M的坐标;若不存在,请说明理由.427.二次函数菱形存在性问题三角形面积相等问题(初三)x2+2x―6与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.如图,抛物线y=12(1)求A、B,C三点的坐标并直接写出直线AC,BC的函数表达式.(2)点P是直线AC下方抛物线上的一个动点,过点P作BC的平行线1,交线段AC于点D.①试探究:在直线1上是否存在点E,使得以点D,C,B,E为顶点的四边形为菱形,若存在,求出点E的坐标,若不存在,请说明理由;②设抛物线的对称轴与直线1交于点M,与直线AC交于点N.当S△DWN=S△AOC时,请直接写出DM的长.428.二次函数三角形面积最大值菱形存在性问题(初三)如图,在平面直角坐标系中,Rt△ABC的边BC在x轴上,∠ABC=90∘,以A为顶点的抛物线y=―x2+bx+c经过点C(3,0),交y轴于点E(0,3),动点P在对称轴上.(1)求抛物线解析式;(2)若点P从A点出发,沿A→B方向以1个单位/秒的速度匀速运动到点B停止,设运动时间为t秒,过点P作PD⊥AB 交AC于点D,过点D平行于y轴的直线1交抛物线于点Q,连接AQ,CQ,当t为何值时,△ACQ的面积最大?最大值是多少?(3)若点M是平面内的任意一点,在x轴上方是否存在点P,使得以点P,M,EC为顶点的四边形是菱形,若存在,请直接写出符合条件的M点坐标;若不存在,请说明理由.429.二次函数菱形存在性问题(初三)已知抛物线F:y=x2+bx+c的图象经过坐标原点0,且与x轴另一交点为(―33,0).(1)求抛物线F的解析式.x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x2,y2)(点A在第二象限),求y2―y1的(2)如图1,直线1:y=33值(用含m的式子表示);,设点A′是点A关于原点0的对称点,如图2.(3)在(2)中,若m=43①判断△AA′B的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.430.二次函数线段最大值菱形存在性问题(初三)如图,二次函数y =x 2+bx +c 的图象交x 轴于点A(―3,0),B(1,0),交y 轴于点C .点P(m,0)是x 轴上的一动点,PM ⊥x 轴,交直线AC 于点M ,交抛物线于点N .(1)求这个二次函数的表达式:(2)①若点P 仅在线段A0上运动,如图,求线段MN 的最大值;②若点P 在x 轴上运动,则在y 轴上是否存在点Q ,使以M,N,C,Q 为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q 的坐标;若不存在,请说明理由.431.二次函数菱形存在性问题(初三)如图,一次函数y =33x ―3图象与坐标轴交于点A 、B ,二次函数y =33x 2+bx +c 图象过A 、B 两点.(1)求二次函数解析式(2)点B 关于抛物线对称轴的对称点为点C ,点P 是对称轴上一动点,在抛物线上是否存在点Q ,使得以B 、C 、P 、Q 为顶点的四边形是菱形?若存在,求出Q 点坐标;若不存在,请说明理由.答案422【解】(1)∵抛物线y =―13x 2+bx +c 交x 轴于A(―3,0),B(4,0)两点,∴y =―13(x +3)(x ―4)=―13x 2+13x +4;(2)①如图1,∵B(4,0),C(0,4),∴设BC 的解析式为:y =kx +n,则{4k +n =0n =4,解得{k =―1n =4∴BC 的解析式为:y =―x +4,∴―x +4=34x +94,解得:x =1,∴E(1,3),∵M(m,0),且MH ⊥x 轴,∴G (m,34m +94),F (m,―13m 2+13m +4),∴FG =―13m 2+13m +4―(34m +94)=―13m 2―512m +74∵S △EFG =59S △OEG ,△EFG 和△OEG 的水平宽度相同,∴FG =59ON,∴―13m 2―512m +74=59×94解得:m 1=34,m 2=―2;②存在,由①知:E(1,3),且∠CBM =45∘∴过点E 作AB 的平行线,与抛物线的交点就是正方形EFHP 的顶点F.∴FH =EF,∠EFH =∠FHP =∠HPE =90∘,∵M(m,0),且MH ⊥x 轴,∴H(m,―m +4),F (m,―13m 2+13m +4),分两种情况:第一种情况:当―3⩽m <1时,如图1,点F 在EP 的左侧∴FH =(―m +4)―(―13m 2+13m +4)=13m 2―43m,∴13m 2―43m =1―m,解得:m 1=1+132(舍),m 2=1―132,∴H(1―132,7+132),∴P (1,7+132),第二种情况:当1<m <4时,点F 在PE 的右边,如图2,同理得―13m 2+43m =m ―1,解得:m 1=1+132,m 2=1―132(舍),同理得P (1,7―132);综上,点P 的坐标为:(1,7+132)或(1,7―132).423【解】(1)∵OA =1,∴A(―1,0),又∵对称轴为x =2,∴B(5,0),将A,B 代入解析式得:{0=a ―2+c0=25a +10+c ,解得{a =―12c =52,∴y =―12x 2+2x +52(2)由(1)得:C (0,52),D (2,92),∴由两点距离公式可得:CD =22,故答案为22;(3)∵B(5,0),C (0,52),∴直线BC 的解析式为:y =―12x +52,设E (x,―12x 2+2x +52),且0<x <5,如图,作EF ⊥x 轴交BC 于点F,则F (x,―12x +52),∴EF =―12x 2+2x +52―(―12x +52)=―12x 2+52x,S △BCE =12×EF ×BO =12×(―12x 2+52x )×5=―54(x ―52)2+12516当x =52时,S △BCE 有最大值为12516;(4).设P(2,y),Q(m,n),由(1)知B(5,0),C (0,52),分三种情况讨论:①若BC 为矩形的对角线,由中点坐标公式得:{5+0=2+m 0+52=y +n ,解得:{m =3n =52―y ,又∵∠BPC =90∘,∴PC 2+PB 2=BC 2,即:22+(52―y )2+32+y 2=52+(52)2,解得y =4或y =―32,∴n =―32或n =4,∴Q (3,―32)或Q(3,4),②若BP 为矩形的对角线,由中点坐标公式得{5+2=0+m 0+y =52+n ,解得:{m =7n =y ―52,又∵∠BCP =90∘,BC 2+CP 2=BP 2即:52+(52)2+22+(52―y )2=32+y 2,解得y =132,∴Q(7,4),③若BQ 为矩形的对角线,由中点坐标公式得:{5+m =2+00+n =y +52,解得:{m =―3n =y +52,又∵∠BCQ =90∘,∴BC 2+CQ 2=BQ 2,即:52+(52)2+m 2+(52―n )2=(5―m)2+n 2,解得n =―72,∴Q (―3,―72),综上,点Q 的坐标为(3,―32)或(3,4),或(7,4)或(―3,―72).解法二,也可以构造利用一线三等角三角形相似来解决。
2019中考数学压轴题专项训练题二(附答案)

2019中考数学压轴题专项训练题二1.如图1,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.(1)在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标;(2)如图2,若AE上有一动点P(不与A,E重合)自A点沿AE方向E点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t秒(0<t<5),过P 点作ED的平行线交AD于点M,过点M作AE平行线交DE于点N.求四边形PMNE 的面积S与时间t之间的函数关系式;当t取何值时,s有最大值,最大值是多少?(3)在(2)的条件下,当t为何值时,以A,M,E为顶点的三角形为等腰三角形,并求出相应的时刻点M的坐标?2.(1)问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:AD•BC=AP•BP.(2)探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.(3)应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=12,AD=BD=10.点P以每秒1个单位长度的速度,由点A 出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当以D为圆心,以DC为半径的圆与AB相切,求t的值.3.如图,在平面直角坐标系中,矩形OABC的边OA在x轴的负半轴上,边OC在y轴的正半轴上,且OA=1,tan∠ACB=2,将矩形OABC绕点O按顺时针方向旋转90°后得到矩形ODEF.点A的对应点为点D,点B的对应点为点E,点C的对应点为点F,抛物线y=ax2+bx+2的图象过点A,C,F.(1)求抛物线所对应函数的表达式;(2)在边DE上是否存在一点M,使得以O,D,M为顶点的三角形与△ODE相似,若存在,求出经过M点的反比例函数的表达式,若不存在,请说明理由;(3)在x轴的上方是否存在点P,Q,使以O,F,P,Q为顶点的平行四边形的面积是矩形OABC面积的2倍,且点P在抛物线上,若存在,请求出P,Q两点的坐标;若不能存在,请说明理由;(4)在抛物线的对称轴上是否存在一点H,使得HA﹣HC的值最大,若存在,直接写出点H的坐标;若不存在,请说明理由.4.如图,在直角坐标系中,Rt△OAB的直角顶点A在x轴上,OA=4,AB=3.动点M从点A出发,以每秒1个单位长度的速度,沿AO向终点O移动;同时点N从点O出发,以每秒1.25个单位长度的速度,沿OB向终点B移动.当两个动点运动了x秒(0<x<4)时,解答下列问题:(1)求点N的坐标(用含x的代数式表示);(2)设△OMN的面积是S,求S与x之间的函数表达式;当x为何值时,S有最大值?最大值是多少?(3)在两个动点运动过程中,是否存在某一时刻,使△OMN是直角三角形?若存在,求出x的值;若不存在,请说明理由.5.如图所示,已知抛物线y=x2﹣1与x轴交于A、B两点,与y轴交于点C.(1)求A、B、C三点的坐标;(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积;(3)在x轴上方的抛物线上是否存在一点M,过M作MG⊥x轴于点G,使以A、M、G 三点为顶点的三角形与△PCA相似?若存在,请求出M点的坐标;否则,请说明理由.答案:1.解:(1)依题意可知,折痕AD是四边形OAED的对称轴,∴在Rt△ABE中,AE=AO=5,AB=4.BE==3.∴CE=2.∴E点坐标为(2,4).在Rt△DCE中,DC2+CE2=DE2,又∵DE=OD.∴(4﹣OD)2+22=OD2.解得:OD=2.5.∴D点坐标为(0,2.5).(2)如图②∵PM∥ED,∴△APM∽△AED.∴,又知AP=t,ED=2.5,AE=5,PM=0.5t×2.5=0.5t,又∵PE=5﹣t.而显然四边形PMNE为矩形.S矩形PMNE =PM•PE=0.5t×(5﹣t)=﹣0.5t2+2.5t;∴S四边形PMNE=﹣0.5(t﹣2.5)2+,又∵0<2.5<5.∴当t=2.5时,S矩形PMNE有最大值.(3)(i)若以AE为等腰三角形的底,则ME=MA(如图①)在Rt△AED中,ME=MA,∵PM⊥AE,∴P为AE的中点,∴t=AP=0.5AE=2.5.又∵PM∥ED,∴M为AD的中点.过点M作MF⊥OA,垂足为F,则MF是△OAD的中位线,∴MF=0.5OD=1.25,OF=0.5OA=2.5,∴当t=2.5时,(0<2.5<5),△AME为等腰三角形.此时M点坐标为(2.5,1.25).(ii)若以AE为等腰三角形的腰,则AM=AE=5(如图②)在Rt△AOD中,AD===.过点M作MF⊥OA,垂足为F.∵PM∥ED,∴△APM∽△AED.∴.∴t=AP===2,∴PM=t=.∴MF=MP=,OF=OA﹣AF=OA﹣AP=5﹣2,∴当t=2时,(0<2<5),此时M点坐标为(5﹣2,).综合(i)(ii)可知,t=2.5或t=2时,以A,M,E为顶点的三角形为等腰三角形,相应M点的坐标为(2.5,1.25)或(5﹣2,).2.(1)证明:如图1,∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠APD=∠BPC,∴△ADP∽△BPC,∴,∴AD•BC=AP•BP;(2)结论AD•BC=AP•BP仍成立;理由:证明:如图2,∵∠BPD=∠DPC+∠BPC,又∵∠BPD=∠A+∠APD,∴∠DPC+∠BPC=∠A+∠APD,∵∠DPC=∠A=θ,∴∠BPC=∠APD,又∵∠A=∠B=θ,∴△ADP∽△BPC,∴,∴AD•BC=AP•BP;(3)解:如下图,过点D作DE⊥AB于点E,∵AD=BD=10,AB=12,∴AE=BE=6∴DE==8,∵以D为圆心,以DC为半径的圆与AB相切,∴DC=DE=8,∴BC=10﹣8=2,∵AD=BD,∴∠A=∠B,又∵∠DPC=∠A,∴∠DPC=∠A=∠B,由(1)(2)的经验得AD•BC=AP•BP,又∵AP=t,BP=12﹣t,∴t(12﹣t)=10×2,∴t=2或t=10,∴t的值为2秒或10秒.3.解:(1)∵矩形OABC,∴BC=OA=1,OC=AB,∠B=90°,∵tan∠ACB=2,∴AB:BC=2∴OC:OA=2,则OC=2,∵将矩形OABC绕点O按顺时针方向旋转90°后得到矩形ODEF,∴OF=2,则有A(﹣1,0)C(0,2)F(2,0)∵抛物线y=ax2+bx+2的图象过点A,C,F,把点A、C、F坐标代入得a-b+c=0,4a+2b+c=0,c=2∴解得a=-1,b=1,c=2∴函数表达式为y=﹣x2+x+2,(2)存在,当∠DOM=∠DEO时,△DOM∽△DEO∴此时有DM:DO=DO:DE.∴DM2=0.5,∴点M坐标为(0.5,1),设经过点M的反比例函数表达式为y=kx-1,把点M代入解得k=0.5∴经过M点的反比例函数的表达式为y=0.5x-1,(3)存在符合条件的点P,Q.∵S矩形ABCD=2×1=2,∴以O,F,P,Q为顶点平行四边形的面积为4,∵OF=2,∴以O,F,P,Q为顶点平行四边形的高为2,∵点P在抛物线上,设点P坐标为(m,2),∴﹣m2+m+2=2,解得m1=0,m2=1,∴点P坐标为P1(0,2),P2(1,2)∵以O,F,P,Q为顶点的四边形为平行四边形,∴PQ∥OF,PQ=OF=2.∴当点P坐标为P1(0,1)时,点Q的坐标分别为Q1(2,2),Q2(﹣2,2);当点P坐标为P2(1,2)时,点Q的坐标分别为Q3(3,2),Q4(﹣1,2);(4)若使得HA﹣HC的值最大,则此时点A、C、H应在同一直线上,设直线AC的函数解析式为y=kx+b,把点A(﹣1,0),点C(0,2)代入得-k+b=0,b=2解得k=2,b=2∴直线AC的函数解析式为y=2x+2,∵抛物线函数表达式为y=﹣x2+x+2,∴对称轴为x=0.5∴把x=0.5代入y=2x+2 解得y=3∴点H的坐标为(0.5,3)4.解:(1)根据题意得:MA=x,ON=1.25x,在Rt△OAB中,由勾股定理得:OB===5,作NP⊥OA于P,如图1所示:则NP∥AB,∴△OPN∽△OAB,∴,即,解得:OP=x,PN=,∴点N的坐标是(x,);(2)在△OMN中,OM=4﹣x,OM边上的高PN=,∴S=0.5OM•PN=0.5(4﹣x)•=﹣x2+1.x,∴S与x之间的函数表达式为S=﹣x2+1.x(0<x<4),配方得:S=﹣(x﹣2)2+1.5,∵﹣<0,∴S有最大值,当x=2时,S有最大值,最大值是1.5;(3)存在某一时刻,使△OMN是直角三角形,理由如下:分两种情况:①若∠OMN=90°,如图2所示:则MN∥AB,此时OM=4﹣x,ON=1.25x,∵MN∥AB,∴△OMN∽△OAB,∴,即,解得:x=2;②若∠ONM=90°,如图3所示:则∠ONM=∠OAB,此时OM=4﹣x,ON=1.25x,∵∠ONM=∠OAB,∠MON=∠BOA,∴△OMN∽△OBA,∴,即,解得:x=;综上所述:x的值是2秒或秒.5.。
2019中考数学压轴题精编(含参考答案与试题解析共300页)

2019中考数学压轴题精编(含参考答案与试题解析共300页)中考数学压轴题精选(共120题,共两部分:前一部分为试题+参考答案与试题解析,后一部分为纯试题汇编)第一部分1.(2014•黔南州)如图,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l 与⊙C有怎样的位置关系,并给出证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.考点:二次函数综合题.专题:压轴题.分析:(1)已知抛物线的顶点坐标,可用顶点式设抛物线的解析式,然后将A点坐标代入其中,即可求出此二次函数的解析式;(2)根据抛物线的解析式,易求得对称轴l的解析式及B、C的坐标,分别求出直线AB、BD、CE的解析式,再求出CE的长,与到抛物线的对称轴的距离相比较即可;(3)过P作y轴的平行线,交AC于Q;易求得直线AC的解析式,可设出P点的坐标,进而可表示出P、Q的纵坐标,也就得出了PQ的长;然后根据三角形面积的计算方法,可得出关于△PAC的面积与P点横坐标的函数关系式,根据所得函数的性质即可求出△PAC的最大面积及对应的P点坐标.解答:解:(1)设抛物线为y=a(x﹣4)2﹣1,∵抛物线经过点A(0,3),∴3=a(0﹣4)2﹣1,;∴抛物线为;(3分)(2)相交.证明:连接CE,则CE⊥BD,当时,x1=2,x2=6.A(0,3),B(2,0),C(6,0),对称轴x=4,∴OB=2,AB==,BC=4,∵AB⊥BD,∴∠OAB+∠OBA=90°,∠OBA+∠EBC=90°,∴△AOB∽△BEC,∴=,即=,解得CE=,∵>2,∴抛物线的对称轴l与⊙C相交.(7分)(3)如图,过点P作平行于y轴的直线交AC于点Q;可求出AC的解析式为;(8分)设P点的坐标为(m,),则Q点的坐标为(m,);∴PQ=﹣m+3﹣(m2﹣2m+3)=﹣m2+m.∵S△PAC=S△PAQ+S△PCQ=×(﹣m2+m)×6=﹣(m﹣3)2+;∴当m=3时,△PAC的面积最大为;此时,P点的坐标为(3,).(10分)点评:此题考查了二次函数解析式的确定、相似三角形的判定和性质、直线与圆的位置关系、图形面积的求法等知识.2.(2014•巴中)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣4与x轴交于点A(﹣2,0)和点B,与y 轴交于点C,直线x=1是该抛物线的对称轴.(1)求抛物线的解析式;(2)若两动点M,H分别从点A,B以每秒1个单位长度的速度沿x轴同时出发相向而行,当点M到达原点时,点H立刻掉头并以每秒个单位长度的速度向点B方向移动,当点M到达抛物线的对称轴时,两点停止运动,经过点M的直线l⊥x轴,交AC或BC于点P,设点M的运动时间为t秒(t>0).求点M的运动时间t与△APH的面积S的函数关系式,并求出S的最大值.考点:二次函数综合题.分析:(1)根据抛物线y=ax2+bx﹣4与x轴交于点A(﹣2,0),直线x=1是该抛物线的对称轴,得到方程组,解方程组即可求出抛物线的解析式;(2)由于点M到达抛物线的对称轴时需要3秒,所以t≤3,又当点M到达原点时需要2秒,且此时点H 立刻掉头,所以可分两种情况进行讨论:①当0<t≤2时,由△AMP∽△AOC,得出比例式,求出PM,AH,根据三角形的面积公式求出即可;②当2<t≤3时,过点P作PM⊥x轴于M,PF⊥y轴于点F,表示出三角形APH的面积,利用配方法求出最值即可.解答:解:(1)∵抛物线y=ax2+bx﹣4与x轴交于点A(﹣2,0),直线x=1是该抛物线的对称轴,∴,解得:,∴抛物线的解析式是:y=x2﹣x﹣4,(2)分两种情况:①当0<t≤2时,∵PM∥OC,∴△AMP∽△AOC,∴=,即=,∴PM=2t.解方程x2﹣x﹣4=0,得x1=﹣2,x2=4,∵A(﹣2,0),∴B(4,0),∴AB=4﹣(﹣2)=6.∵AH=AB﹣BH=6﹣t,∴S=PM•AH=×2t(6﹣t)=﹣t2+6t=﹣(t﹣3)2+9,当t=2时S的最大值为8;②当2<t≤3时,过点P作PM⊥x轴于M,作PF⊥y轴于点F,则△COB∽△CFP,又∵CO=OB,∴FP=FC=t﹣2,PM=4﹣(t﹣2)=6﹣t,AH=4+(t﹣2)=t+1,∴S=PM•AH=(6﹣t)(t+1)=﹣t2+4t+3=﹣(t﹣)2+,当t=时,S最大值为.综上所述,点M的运动时间t与△APQ面积S的函数关系式是S=,S的最大值为.点评:本题是二次函数的综合题型,其中涉及到运用待定系数法求二次函数的解析式,三角形的面积,二次函数的最值等知识,综合性较强,难度适中.运用数形结合、分类讨论及方程思想是解题的关键..3.(2014•潍坊)如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标.考点:二次函数综合题.分析:(1)先把C(0,4)代入y=ax2+bx+c,得出c=4①,再由抛物线的对称轴x=﹣=1,得到b=﹣2a②,抛物线过点A(﹣2,0),得到0=4a﹣2b+c③,然后由①②③可解得,a=﹣,b=1,c=4,即可求出抛物线的解析式为y=﹣x2+x+4;(2)假设存在满足条件的点F,连结BF、CF、OF,过点F作FH⊥x轴于点H,FG⊥y轴于点G.设点F 的坐标为(t,﹣t2+t+4),则FH=﹣t2+t+4,FG=t,先根据三角形的面积公式求出S△OBF=OB•FH=﹣t2+2t+8,S△OFC=OC•FG=2t,再由S四边形ABFC=S△AOC+S△OBF+S△OFC,得到S四边形ABFC=﹣t2+4t+12.令﹣t2+4t+12=17,即t2﹣4t+5=0,由△=(﹣4)2﹣4×5=﹣4<0,得出方程t2﹣4t+5=0无解,即不存在满足条件的点F;(3)先运用待定系数法求出直线BC的解析式为y=﹣x+4,再求出抛物线y=﹣x2+x+4的顶点D(1,),由点E在直线BC上,得到点E(1,3),于是DE=﹣3=.若以D、E、P、Q为顶点的四边形是平行四边形,因为DE∥PQ,只须DE=PQ,设点P的坐标是(m,﹣m+4),则点Q的坐标是(m,﹣m2+m+4).分两种情况进行讨论:①当0<m<4时,PQ=(﹣m2+m+4)﹣(﹣m+4)=﹣m2+2m,解方程﹣m2+2m=,求出m的值,得到P1(3,1);②当m<0或m>4时,PQ=(﹣m+4)﹣(﹣m2+m+4)=m2﹣2m,解方程m2﹣2m=,求出m的值,得到P2(2+,2﹣),P3(2﹣,2+).解答:解:(1)∵抛物线y=ax2+bx+c(a≠0)过点C(0,4),∴c=4 ①.∵对称轴x=﹣=1,∴b=﹣2a ②.∵抛物线过点A(﹣2,0),∴0=4a﹣2b+c ③,由①②③解得,a=﹣,b=1,c=4,∴抛物线的解析式为y=﹣x2+x+4;(2)假设存在满足条件的点F,如图所示,连结BF、CF、OF,过点F作FH⊥x轴于点H,FG⊥y轴于点G.设点F的坐标为(t,﹣t2+t+4),其中0<t<4,则FH=﹣t2+t+4,FG=t,∴S△OBF=OB•FH=×4×(﹣t2+t+4)=﹣t2+2t+8,S△OFC=OC•FG=×4×t=2t,∴S四边形ABFC=S△AOC+S△OBF+S△OFC=4﹣t2+2t+8+2t=﹣t2+4t+12.令﹣t2+4t+12=17,即t2﹣4t+5=0,则△=(﹣4)2﹣4×5=﹣4<0,∴方程t2﹣4t+5=0无解,故不存在满足条件的点F;(3)设直线BC的解析式为y=kx+n(k≠0),∵B(4,0),C(0,4),∴,解得,∴直线BC的解析式为y=﹣x+4.由y=﹣x2+x+4=﹣(x﹣1)2+,∴顶点D(1,),又点E在直线BC上,则点E(1,3),于是DE=﹣3=.若以D、E、P、Q为顶点的四边形是平行四边形,因为DE∥PQ,只须DE=PQ,设点P的坐标是(m,﹣m+4),则点Q的坐标是(m,﹣m2+m+4).①当0<m<4时,PQ=(﹣m2+m+4)﹣(﹣m+4)=﹣m2+2m,由﹣m2+2m=,解得:m=1或3.当m=1时,线段PQ与DE重合,m=1舍去,∴m=3,P1(3,1).②当m<0或m>4时,PQ=(﹣m+4)﹣(﹣m2+m+4)=m2﹣2m,由m2﹣2m=,解得m=2±,经检验适合题意,此时P2(2+,2﹣),P3(2﹣,2+).综上所述,满足题意的点P有三个,分别是P1(3,1),P2(2+,2﹣),P3(2﹣,2+).点评:本题是二次函数的综合题型,其中涉及到运用待定系数法求二次函数、一次函数的解析式,四边形的面积,平行四边形的判定等知识,综合性较强,难度适中.运用数形结合、分类讨论及方程思想是解题的关键.4.(2014•重庆)如图,已知抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,连接BC.(1)求A,B,C三点的坐标;(2)若点P为线段BC上一点(不与B,C重合),PM∥y轴,且PM交抛物线于点M,交x轴于点N,当△BCM 的面积最大时,求△BPN的周长;(3)在(2)的条件下,当△BCM的面积最大时,在抛物线的对称轴上存在一点Q,使得△CNQ为直角三角形,求点Q的坐标.考点:二次函数综合题.分析:(1)依据抛物线的解析式直接求得C的坐标,令y=0解方程即可求得A、B点的坐标;(2)△BCM的面积最大,则过点M作直线L∥BC,直线L应与抛物线相切,即只有一个交点,设直线L 的解析式为y=﹣x+b,则﹣x2+2x+3=﹣x+b的,△=9﹣4b+12=0求得b的值,从而求得三角形的三边长,求得周长;(3)分三种情况:①当∠CQN=90°时;②当∠CNQ=90°时;③当∠NCQ=90°时;讨论求解.解答:解:(1)由抛物线的解析式y=﹣x2+2x+3,∴C(0,3),令y=0,﹣x2+2x+3=0,解得x=3或x=﹣1;∴A(﹣1,0),B(3,0).(2)过点M作直线L∥BC,当与抛物线相切时,三角形BCM的面积最大,∵直线BC的解析式为y=﹣x+3,设直线L的解析式为y=﹣x+b,则﹣x2+2x+3=﹣x+b,只有一个解,整理得x2﹣3x+b﹣3=0,∴△=9﹣4b+12=0,解得b=,代入﹣x2+2x+3=﹣x+b,解得x=,把x=代入y=﹣x2+2x+3,M(,),代入直线BCy=﹣x+3,则P(,),N(,0),∴BN=,PN=,PB=,∴C△BCN=BN+PN+PB=3+.(3)作抛物线的对称轴x=1,设Q(1,h),①∠CQN=90°时,则CN2=CQ2+QN2,∴32+32=22+h2+12+(h﹣3)2,整理得h2﹣6h﹣2=0,解得:h=或,∴Q(1,)或Q(1,);②当∠CNQ=90°时,则Q点应在x轴的下方,∴CQ2=CN2+QN2,∴12+(3﹣h)2=22+h2+32+32,解得h=﹣2,∴Q(1,﹣2);③当∠NCQ=90°时,则Q应在x轴的上方,∴NQ2=CQ2+CN2h2+22=12+(h﹣3)2+32+32,解得h=4,∴Q(1,4).点评:此题考查了二次函数与坐标轴的交点的性质、三角形面积的确定、二次函数的应用等知识,难度较大.二次函数这部分经常利用数形结合以及分类讨论思想相结合,综合性较强注意不要漏解.5.(2014•福州)如图,抛物线y=(x﹣3)2﹣1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.考点:二次函数综合题.分析:(1)根据二次函数性质,求出点A、B、D的坐标;(2)如何证明∠AEO=∠ADC?如答图1所示,我们观察到在△EFH与△ADF中:∠EHF=90°,有一对对顶角相等;因此只需证明∠EAD=90°即可,即△ADE为直角三角形,由此我们联想到勾股定理的逆定理.分别求出△ADE三边的长度,再利用勾股定理的逆定理证明它是直角三角形,由此问题解决;(3)依题意画出图形,如答图2所示.由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小.利用二次函数性质求出EP2最小时点P的坐标,并进而求出点Q的坐标.解答:(1)解:顶点D的坐标为(3,﹣1).令y=0,得(x﹣3)2﹣1=0,解得:x1=3+,x2=3﹣,∵点A在点B的左侧,∴A(3﹣,0),B(3+,0).(2)证明:如答图1,过顶点D作DG⊥y轴于点G,则G(0,﹣1),GD=3.令x=0,得y=,∴C(0,).∴CG=OC+OG=+1=,∴tan∠DCG=.设对称轴交x轴于点M,则OM=3,DM=1,AM=3﹣(3﹣)=.由OE⊥CD,易知∠EOM=∠DCG.∴tan∠EOM=tan∠DCG==,解得EM=2,∴DE=EM+DM=3.在Rt△AEM中,AM=,EM=2,由勾股定理得:AE=;在Rt△ADM中,AM=,DM=1,由勾股定理得:AD=.∵AE2+AD2=6+3=9=DE2,∴△ADE为直角三角形,∠EAD=90°.设AE交CD于点F,∵∠AEO+∠EFH=90°,∠ADC+AFD=90°,∠EFH=∠AFD(对顶角相等),∴∠AEO=∠ADC.(3)解:依题意画出图形,如答图2所示:由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小.设点P坐标为(x,y),由勾股定理得:EP2=(x﹣3)2+(y﹣2)2.∵y=(x﹣3)2﹣1,∴(x﹣3)2=2y+2.∴EP2=2y+2+(y﹣2)2=(y﹣1)2+5当y=1时,EP2有最小值,最小值为5.将y=1代入y=(x﹣3)2﹣1,得(x﹣3)2﹣1=1,解得:x1=1,x2=5.又∵点P在对称轴右侧的抛物线上,∴x1=1舍去.∴P(5,1).此时点Q坐标为(3,1)或(,).点评:本题是二次函数压轴题,涉及考点众多,难度较大.第(2)问中,注意观察图形,将问题转化为证明△ADE 为直角三角形的问题,综合运用勾股定理及其逆定理、三角函数(或相似形)求解;第(3)问中,解题关键是将最值问题转化为求EP2最小值的问题,注意解答中求EP2最小值的具体方法.6.(2014•济宁)如图,抛物线y=x2+bx+c与x轴交于A(5,0)、B(﹣1,0)两点,过点A作直线AC⊥x轴,交直线y=2x于点C;(1)求该抛物线的解析式;(2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由;(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点M,是否存在这样的点P,使四边形PACM 是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)利用待定系数法求出抛物线的解析式;(2)首先求出对称点A′的坐标,然后代入抛物线解析式,即可判定点A′是否在抛物线上.本问关键在于求出A′的坐标.如答图所示,作辅助线,构造一对相似三角形Rt△A′EA∽Rt△OAC,利用相似关系、对称性质、勾股定理,求出对称点A′的坐标;(3)本问为存在型问题.解题要点是利用平行四边形的定义,列出代数关系式求解.如答图所示,平行四边形的对边平行且相等,因此PM=AC=10;利用含未知数的代数式表示出PM的长度,然后列方程求解.解答:解:(1)∵y=x2+bx+c与x轴交于A(5,0)、B(﹣1,0)两点,∴,解得.∴抛物线的解析式为y=x2﹣x﹣.(2)如答图所示,过点A′作A′E⊥x轴于E,AA′与OC交于点D,∵点C在直线y=2x上,∴C(5,10)∵点A和A′关于直线y=2x对称,∴OC⊥AA′,A′D=AD.∵OA=5,AC=10,∴OC===.∵S△OAC=OC•AD=OA•AC,∴AD=.∴AA′=,在Rt△A′EA和Rt△OAC中,∵∠A′AE+∠A′AC=90°,∠ACD+∠A′AC=90°,∴∠A′AE=∠ACD.又∵∠A′EA=∠OAC=90°,∴Rt△A′EA∽Rt△OAC.∴,即.∴A′E=4,AE=8.∴OE=AE﹣OA=3.∴点A′的坐标为(﹣3,4),当x=﹣3时,y=×(﹣3)2+3﹣=4.所以,点A′在该抛物线上.(3)存在.理由:设直线CA′的解析式为y=kx+b,则,解得∴直线CA′的解析式为y=x+…(9分)设点P的坐标为(x,x2﹣x﹣),则点M为(x,x+).∵PM∥AC,∴要使四边形PACM是平行四边形,只需PM=AC.又点M在点P的上方,∴(x+)﹣(x2﹣x﹣)=10.解得x1=2,x2=5(不合题意,舍去)当x=2时,y=﹣.∴当点P运动到(2,﹣)时,四边形PACM是平行四边形.点评:本题是二次函数的综合题型,考查了二次函数的图象及性质、待定系数法、相似、平行四边形、勾股定理、对称等知识点,涉及考点较多,有一定的难度.第(2)问的要点是求对称点A′的坐标,第(3)问的要点是利用平行四边形的定义列方程求解.7.(2014•泰安)二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.考点:二次函数综合题.分析:(1)首先求得A、B的坐标,然后利用待定系数法即可求得二次函数的解析式;(2)设M的横坐标是x,则根据M和N所在函数的解析式,即可利用x表示出M、N的坐标,利用x表示出MN的长,利用二次函数的性质求解;(3)BM与NC互相垂直平分,即四边形BCMN是菱形,则BC=MC,据此即可列方程,求得x的值,从而得到N的坐标.解答:解:(1)由题设可知A(0,1),B(﹣3,),根据题意得:,解得:,则二次函数的解析式是:y=﹣﹣x+1;(2)设N(x,﹣x2﹣x+1),则M、P点的坐标分别是(x,﹣x+1),(x,0).∴MN=PN﹣PM=﹣x2﹣x+1﹣(﹣x+1)=﹣x2﹣x=﹣(x+)2+,则当x=﹣时,MN的最大值为;(3)连接MN、BN、BM与NC互相垂直平分,即四边形BCMN是菱形,由于BC∥MN,即MN=BC,且BC=MC,即﹣x2﹣x=,且(﹣x+1)2+(x+3)2=,解得:x=﹣1,故当N(﹣1,4)时,MN和NC互相垂直平分.点评:本题是待定系数法求二次函数的解析式,以及二次函数的性质、菱形的判定的综合应用,利用二次函数的性质可以解决实际问题中求最大值或最小值问题.8.(2014•泸州)如图,已知一次函数y1=x+b的图象l与二次函数y2=﹣x2+mx+b的图象C′都经过点B(0,1)和点C,且图象C′过点A(2﹣,0).(1)求二次函数的最大值;(2)设使y2>y1成立的x取值的所有整数和为s,若s是关于x的方程=0的根,求a的值;(3)若点F、G在图象C′上,长度为的线段DE在线段BC上移动,EF与DG始终平行于y轴,当四边形DEFG 的面积最大时,在x轴上求点P,使PD+PE最小,求出点P的坐标.考点:二次函数综合题.分析:(1)首先利用待定系数法求出二次函数解析式,然后求出其最大值;(2)联立y1与y2得,求出点C的坐标为C(,),因此使y2>y1成立的x的取值范围为0<x<,得s=1+2+3=6;将s的值代入分式方程,求出a的值;(3)第1步:首先确定何时四边形DEFG的面积最大.如答图1,四边形DEFG是一个梯形,将其面积用含有未知数的代数式表示出来,这个代数式是一个二次函数,根据其最值求出未知数的值,进而得到面积最大时点D、E的坐标;第2步:利用几何性质确定PD+PE最小的条件,并求出点P的坐标.如答图2,作点D关于x轴的对称点D′,连接D′E,与x轴交于点P.根据轴对称及两点之间线段最短可知,此时PD+PE最小.利用待定系数法求出直线D′E的解析式,进而求出点P的坐标.解答:解:(1)∵二次函数y2=﹣x2+mx+b经过点B(0,1)与A(2﹣,0),∴,解得∴l:y1=x+1;C′:y2=﹣x2+4x+1.y2=﹣x2+4x+1=﹣(x﹣2)2+5,∴y max=5;(2)联立y1与y2得:x+1=﹣x2+4x+1,解得x=0或x=,当x=时,y1=×+1=,∴C(,).使y2>y1成立的x的取值范围为0<x<,∴s=1+2+3=6.代入方程得解得a=;(3)∵点D、E在直线l:y1=x+1上,∴设D(p,p+1),E(q,q+1),其中q>p>0.如答图1,过点E作EH⊥DG于点H,则EH=q﹣p,DH=(q﹣p).在Rt△DEH中,由勾股定理得:DE2+DH2=DE2,即(q﹣p)2+[(q﹣p)]2=()2,解得q﹣p=2,即q=p+2.∴EH=2,E(p+2,p+2).当x=p时,y2=﹣p2+4p+1,∴G(p,﹣p2+4p+1),∴DG=(﹣p2+4p+1)﹣(p+1)=﹣p2+p;当x=p+2时,y2=﹣(p+2)2+4(p+2)+1=﹣p2+5,∴F(p+2,﹣p2+5)∴EF=(﹣p2+5)﹣(p+2)=﹣p2﹣p+3.S四边形DEFG=(DG+EF)•EH=[(﹣p2+p)+(﹣p2﹣p+3)]×2=﹣2p2+3p+3∴当p=时,四边形DEFG的面积取得最大值,∴D(,)、E(,).如答图2所示,过点D关于x轴的对称点D′,则D′(,﹣);连接D′E,交x轴于点P,PD+PE=PD′+PE=D′E,由两点之间线段最短可知,此时PD+PE最小.设直线D′E的解析式为:y=kx+b,则有,解得∴直线D′E的解析式为:y=x﹣.令y=0,得x=,∴P(,0).点评:本题是二次函数压轴题,综合考查了二次函数与一次函数的图象与性质、待定系数法、函数最值、分式方程的解、勾股定理、轴对称﹣最短路线等知识点,涉及考点众多,难度较大.本题难点在于第(3)问,涉及两个最值问题,第1个最值问题利用二次函数解决,第2个最值问题利用几何性质解决.9.(2014•益阳)如图,直线y=﹣3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x﹣2)2+k经过点A、B,并与X轴交于另一点C,其顶点为P.(1)求a,k的值;(2)抛物线的对称轴上有一点Q,使△ABQ是以AB为底边的等腰三角形,求Q点的坐标;(3)在抛物线及其对称轴上分别取点M、N,使以A,C,M,N为顶点的四边形为正方形,求此正方形的边长.考点:二次函数综合题.分析:(1)先求出直线y=﹣3x+3与x轴交点A,与y轴交点B的坐标,再将A、B两点坐标代入y=a(x﹣2)2+k,得到关于a,k的二元一次方程组,解方程组即可求解;(2)设Q点的坐标为(2,m),对称轴x=2交x轴于点F,过点B作BE垂直于直线x=2于点E.在Rt△AQF 与Rt△BQE中,用勾股定理分别表示出AQ2=AF2+QF2=1+m2,BQ2=BE2+EQ2=4+(3﹣m)2,由AQ=BQ,得到方程1+m2=4+(3﹣m)2,解方程求出m=2,即可求得Q点的坐标;(3)当点N在对称轴上时,由NC与AC不垂直,得出AC为正方形的对角线,根据抛物线的对称性及正方形的性质,得到M点与顶点P(2,﹣1)重合,N点为点P关于x轴的对称点,此时,MF=NF=AF=CF=1,且AC⊥MN,则四边形AMCN为正方形,在Rt△AFN中根据勾股定理即可求出正方形的边长.解答:解:(1)∵直线y=﹣3x+3与x轴、y轴分别交于点A、B,∴A(1,0),B(0,3).又∵抛物线抛物线y=a(x﹣2)2+k经过点A(1,0),B(0,3),∴,解得,故a,k的值分别为1,﹣1;(2)设Q点的坐标为(2,m),对称轴x=2交x轴于点F,过点B作BE垂直于直线x=2于点E.在Rt△AQF中,AQ2=AF2+QF2=1+m2,在Rt△BQE中,BQ2=BE2+EQ2=4+(3﹣m)2,∵AQ=BQ,∴1+m2=4+(3﹣m)2,∴m=2,∴Q点的坐标为(2,2);(3)当点N在对称轴上时,NC与AC不垂直,所以AC应为正方形的对角线.又∵对称轴x=2是AC的中垂线,∴M点与顶点P(2,﹣1)重合,N点为点P关于x轴的对称点,其坐标为(2,1).此时,MF=NF=AF=CF=1,且AC⊥MN,∴四边形AMCN为正方形.在Rt△AFN中,AN==,即正方形的边长为.点评:本题是二次函数的综合题型,其中涉及到的知识点有二元一次方程组的解法,等腰三角形的性质,勾股定理,二次函数的性质,正方形的判定与性质,综合性较强,难度适中.10.(2014•兰州)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.考点:二次函数综合题.分析:(1)由待定系数法建立二元一次方程组求出求出m、n的值即可;(2)由(1)的解析式求出顶点坐标,再由勾股定理求出CD的值,再以点C为圆心,CD为半径作弧交对称轴于P1,以点D为圆心CD为半径作圆交对称轴于点P2,P3,作CE垂直于对称轴与点E,由等腰三角形的性质及勾股定理就可以求出结论;(3)先求出BC的解析式,设出E点的坐标为(a,﹣a+2),就可以表示出F的坐标,由四边形CDBF 的面积=S△BCD+S△CEF+S△BEF求出S与a的关系式,由二次函数的性质就可以求出结论.解答:解:(1)∵抛物线y=﹣x2+mx+n经过A(﹣1,0),C(0,2).解得:,∴抛物线的解析式为:y=﹣x2+x+2;(2)∵y=﹣x2+x+2,∴y=﹣(x﹣)2+,∴抛物线的对称轴是x=.∴OD=.∵C(0,2),∴OC=2.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD为腰的等腰三角形,∴CP1=CP2=CP3=CD.作CH⊥x轴于H,∴HP1=HD=2,∴DP1=4.∴P1(,4),P2(,),P3(,﹣);(3)当y=0时,0=﹣x2+x+2∴x1=﹣1,x2=4,∴B(4,0).设直线BC的解析式为y=kx+b,由图象,得,解得:,∴直线BC的解析式为:y=﹣x+2.如图2,过点C作CM⊥EF于M,设E(a,﹣a+2),F(a,﹣a2+a+2),∴EF=﹣a2+a+2﹣(﹣a+2)=﹣a2+2a(0≤x≤4).∵S四边形CDBF=S△BCD+S△CEF+S△BEF=BD•OC+EF•CM+EF•BN,=+a(﹣a2+2a)+(4﹣a)(﹣a2+2a),=﹣a2+4a+(0≤x≤4).=﹣(a﹣2)2+∴a=2时,S四边形CDBF的面积最大=,∴E(2,1).点评:本题考查了待定系数法求一次函数的解析式的运用,二次函数的解析式的运用,勾股定理的运用,等腰三角形的性质的运用,四边形的面积的运用,解答时求出函数的解析式是关键.11.(2014•钦州)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.(1)求该抛物线的解析式;(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.考点:二次函数综合题.分析:(1)将A(1,0),B(0,4)代入y=﹣x2+bx+c,运用待定系数法即可求出抛物线的解析式;(2)由E(m,0),B(0,4),得出P(m,﹣m2﹣m+4),G(m,4),则PG=﹣m2﹣m+4﹣4=﹣m2﹣m;(3)先由抛物线的解析式求出D(﹣3,0),则当点P在直线BC上方时,﹣3<m<0.再运用待定系数法求出直线BD的解析式为y=x+4,于是得出H(m,m+4).当以P、B、G为顶点的三角形与△DEH相似时,由于∠PGB=∠DEH=90°,所以分两种情况进行讨论:①△BGP∽△DEH;②△PGB∽△DEH.都可以根据相似三角形对应边成比例列出比例关系式,进而求出m的值.解答:解:(1)∵抛物线y=﹣x2+bx+c与x轴交于点A(1,0),与y轴交于点B(0,4),∴,解得,∴抛物线的解析式为y=﹣x2﹣x+4;(2)∵E(m,0),B(0,4),PE⊥x轴交抛物线于点P,交BC于点G,∴P(m,﹣m2﹣m+4),G(m,4),∴PG=﹣m2﹣m+4﹣4=﹣m2﹣m;(3)在(2)的条件下,存在点P,使得以P、B、G为顶点的三角形与△DEH相似.∵y=﹣x2﹣x+4,∴当y=0时,﹣x2﹣x+4=0,解得x=1或﹣3,∴D(﹣3,0).当点P在直线BC上方时,﹣3<m<0.设直线BD的解析式为y=kx+4,将D(﹣3,0)代入,得﹣3k+4=0,解得k=,∴直线BD的解析式为y=x+4,∴H(m,m+4).分两种情况:①如果△BGP∽△DEH,那么=,即=,由﹣3<m<0,解得m=﹣1;②如果△PGB∽△DEH,那么=,即=,由﹣3<m<0,解得m=﹣.综上所述,在(2)的条件下,存在点P,使得以P、B、G为顶点的三角形与△DEH相似,此时m的值为﹣1或﹣.点评:本题是二次函数的综合题型,其中涉及到运用待定系数法求二次函数、一次函数的解析式,线段的表示,相似三角形的性质等知识,综合性较强,难度适中.运用数形结合、方程思想及分类讨论是解题的关键.12.(2014•贵港)如图,抛物线y=ax2+bx﹣3a(a≠0)与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,2),连接BC.(1)求该抛物线的解析式和对称轴,并写出线段BC的中点坐标;(2)将线段BC先向左平移2个单位长度,在向下平移m个单位长度,使点C的对应点C1恰好落在该抛物线上,求此时点C1的坐标和m的值;(3)若点P是该抛物线上的动点,点Q是该抛物线对称轴上的动点,当以P,Q,B,C四点为顶点的四边形是平行四边形时,求此时点P的坐标.考点:二次函数综合题.分析:(1)把点A(﹣1,0)和点C(0,2)的坐标代入所给抛物线可得a、b的值,进而得到该抛物线的解析式和对称轴,再求出点B的坐标,根据中点坐标公式求出线段BC的中点坐标即可;(2)根据平移的性质可知,点C的对应点C1的横坐标为﹣2,再代入抛物线可求点C1的坐标,进一步得到m的值;(3)B、C为定点,可分BC为平行四边形的一边及对角线两种情况探讨得到点P的坐标.解答:解:(1)∵抛物线y=ax2+bx﹣3a(a≠0)与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,2),∴,解得.∴抛物线的解析式为y=﹣x2+x+2=﹣(x﹣1)2+2,∴对称轴是x=1,∵1+(1+1)=3,∴B点坐标为(3,0),∴BC的中点坐标为(1.5,1);(2)∵线段BC先向左平移2个单位长度,再向下平移m个单位长度,使点C的对应点C1恰好落在该抛物线上,∴点C1的横坐标为﹣2,当x=﹣2时,y=﹣×(﹣2)2+×(﹣2)+2=﹣,∴点C1的坐标为(﹣2,﹣),m=2﹣(﹣)=5;(3)①若BC为平行四边形的一边,∵BC的横坐标的差为3,∵点Q的横坐标为1,∴P的横坐标为4或﹣2,∵P在抛物线上,∴P的纵坐标为﹣3,∴P1(4,﹣3),P2(﹣2,﹣3);②若BC为平行四边形的对角线,则BC与PQ互相平分,∵点Q的横坐标为1,BC的中点坐标为(1.5,1),∴P点的横坐标为1.5+(1.5﹣1)=2,∴P的纵坐标为﹣×22+×2+2=2,∴P3(2,2).综上所述,点P的坐标为:P1(4,﹣3),P2(﹣2,﹣3),P3(2,2).点评:考查了二次函数综合题,涉及待定系数法求函数解析式,抛物线的对称轴,中点坐标公式,平移的性质,平行四边形的性质,注意分BC为平行四边形的一边或为对角线两种情况进行探讨.13.(2014•厦门)如图,已知c<0,抛物线y=x2+bx+c与x轴交于A(x1,0),B(x2,0)两点(x2>x1),与y 轴交于点C.(1)若x2=1,BC=,求函数y=x2+bx+c的最小值;(2)过点A作AP⊥BC,垂足为P(点P在线段BC上),AP交y轴于点M.若=2,求抛物线y=x2+bx+c顶点的纵坐标随横坐标变化的函数解析式,并直接写出自变量的取值范围.考点:二次函数综合题.分析:(1)根据勾股定理求得C点的坐标,把B、C点坐标代入y=x2+bx+c即可求得解析式,转化成顶点式即可.(2)根据△AOM∽△COB,得到OC=2OB,即:﹣c=2x2;利用x22+bx2+c=0,求得c=2b﹣4;将此关系式代入抛物线的顶点坐标,即可求得所求之关系式.解答:解:(1)∵x2=1,BC=,∴OC==2,∴C(0,﹣2),把B(1,0),C(0,﹣2)代入y=x2+bx+c,得:0=1+b﹣2,解得:b=1,∴抛物线的解析式为:y=x2+x+﹣2.转化为y=(x+)2﹣;∴函数y=x2+bx+c的最小值为﹣.(2)∵∠OAM+∠OBC=90°,∠OCB+∠OBC=90°,∴∠OAM=∠OCB,又∵∠AOM=∠BOC=90°,∴△AOM∽△COB,∴,∴OC=•OB=2OB,∴﹣c=2x2,即x2=﹣.∵x22+bx2+c=0,将x2=﹣代入化简得:c=2b﹣4.抛物线的解析式为:y=x2+bx+c,其顶点坐标为(﹣,).令x=﹣,则b=﹣2x.y==c﹣=2b﹣4﹣=﹣4x﹣4﹣x2,∴顶点的纵坐标随横坐标变化的函数解析式为:y=﹣x2﹣4x﹣4(x>﹣).点评:本题考查了勾股定理、待定系数法求解析式、三角形相似的判定及性质以及抛物线的顶点坐标的求法等.14.(2014•重庆)如图,抛物线y=﹣x2﹣2x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PQMN的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC 交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.考点:二次函数综合题.分析:(1)通过解析式即可得出C点坐标,令y=0,解方程得出方程的解,即可求得A、B的坐标.(2)设M点横坐标为m,则PM=﹣m2﹣2m+3,MN=(﹣m﹣1)×2=﹣2m﹣2,矩形PMNQ的周长d=﹣2m2﹣8m+2,将﹣2m2﹣8m+2配方,根据二次函数的性质,即可得出m的值,然后求得直线AC的解析式,把x=m代入可以求得三角形的边长,从而求得三角形的面积.(3)设F(n,﹣n2﹣2n+3),根据已知若FG=2DQ,即可求得.解答:解:(1)由抛物线y=﹣x2﹣2x+3可知,C(0,3),令y=0,则0=﹣x2﹣2x+3,解得x=﹣3或x=1,∴A(﹣3,0),B(1,0).(2)由抛物线y=﹣x2﹣2x+3可知,对称轴为x=﹣1,设M点的横坐标为m,则PM=﹣m2﹣2m+3,MN=(﹣m﹣1)×2=﹣2m﹣2,∴矩形PMNQ的周长=2(PM+MN)=(﹣m2﹣2m+3﹣2m﹣2)×2=﹣2m2﹣8m+2=﹣2(m+2)2+10,∴当m=﹣2时矩形的周长最大.∵A(﹣3,0),C(0,3),设直线AC解析式为;y=kx+b,解得k=1,b=3,∴解析式y=x+3,当x=﹣2时,则E(﹣2,1),∴EM=1,AM=1,∴S=•AM•EM=.(3)∵M点的横坐标为﹣2,抛物线的对称轴为x=﹣1,∴N应与原点重合,Q点与C点重合,∴DQ=DC,把x=﹣1代入y=﹣x2﹣2x+3,解得y=4,∴D(﹣1,4)∴DQ=DC=,∵FC=2DQ,∴FG=4,设F(n,﹣n2﹣2n+3),则G(n,n+3),∵点G在点F的上方,∴(n+3)﹣(﹣n2﹣2n+3)=4,解得:n=﹣4或n=1.∴F(﹣4,﹣5)或(1,0).点评:本题考查了二次函数与坐标轴的交点的求法,矩形的性质,一元二次方程的解法,二次函数最值的求法,综合性较强,难度适中.运用数形结合、方程思想是解题的关键.15.(2014•德州)如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.。
中考数学专题二十二:梯形(含详细参考答案)

中考数学专题复习第二十二讲梯形【基础知识回顾】一、 梯形的定义、分类、和面积:1、定义:一组对边平行,而另一组对边的四边形,叫做梯形。
其中,平行的两边叫做两底间的距离叫做梯形的2、分类:梯形3、梯形的面积:梯形= (上底+下底) X 高【赵老师提醒:要判定一个四边形是梯形,除了要注明它有一组对边外,还需注明另一组对边不平行或的这组对边不相等】二、等腰梯形的性质和判定:1、性质:⑴等腰梯形的两腰相等,相等⑵等腰梯形的对角线⑶等腰梯形是对称图形一般梯形特殊梯形等腰梯形:两腰 的梯形叫做等腰梯形直角梯形:一腰与底 的梯形叫做直角梯形2、判定:⑴用定义:先证明四边形是梯形,再证明其两腰相等⑵同一底上两个角的梯形是等腰梯形⑶对角线的梯形是等腰梯形【赵老师提醒:1、梯形的性质和判定中同一底上的两个角相等“不被成”两底角相等2、等腰梯形所有的判定方法都必须先证它是梯形3、解决梯形问题的基本思路是通过做辅助线将梯形转化为形式常见的辅助线作法有要注意根据题目的特点灵活选用辅助线】【重点考点例析】考点一:梯形的基本概念和性质例1 (2012•内江)如图,四边形ABCD是梯形,BD=AC且BD⊥AC,若AB=2,CD=4,则S梯形ABCD= 9.思路分析:过点B作BE∥AC交DC的延长线于点E,过点B 作BF⊥DC于点F,判断出△BDE是等腰直角三角形,求出BF,继而利用梯形的面积公式即可求解.解答:解:过点B作BE∥AC交DC的延长线于点E,过点B 作BF⊥DC于点F,则AC=BE,DE=DC+CE=DC+AB=6,又∵BD=AC 且BD⊥AC,∴△BDE是等腰直角三角形,∴BF=DE=3,故可得梯形ABCD的面积为(AB+CD)×BF=9.故答案为:9.点评:此题考查了梯形的知识,平移一条对角线是经常用到的一种辅助线的作法,同学们要注意掌握,解答本题也要熟练等腰直角三角形的性质,难度一般.对应训练1.(2012•无锡)如图,梯形ABCD中,AD∥BC,AD=3,AB=5,BC=9,CD的垂直平分线交BC于E,连接DE,则四边形ABED 的周长等于()A.17B.18C.19D.201.考点:;.分析:由CD的垂直平分线交BC于E,根据线段垂直平分线的性质,即可得DE=CE,即可得四边形ABED的周长为AB+BC+AD,继而求得答案.解答:解:∵CD的垂直平分线交BC于E,∴DE=CE,∵AD=3,AB=5,BC=9,∴四边形ABED的周长为:AB+BE+DE+AD=AB+BE+EC+AD=AB+BC+AD=5+9+3=17.故选A.点评:此题考查了线段垂直平分线的性质.此题比较简单,注意掌握数形结合思想与转化思想的应用是解此题的关键.考点二:等腰梯形的性质例2 (2012•呼和浩特)已知:在等腰梯形ABCD中,AD∥BC,AC⊥BD,AD=3,BC=7,则梯形的面积是()A.25B.50C.25 D.思路分析:过点D作DE∥AC交BC的延长线于点E,作DF⊥BC 于F,证平行四边形ADEC,推出AC=DE=BD,∠BDE=90°,根据等腰三角形性质推出BF=DF=EF= BE,求出DF,根据梯形的面积公式求出即可.解答:解:过点D作DE∥AC交BC的延长线于点E,∵AD∥BC (已知),即AD∥CE,∴四边形ACED是平行四边形,∴AD=CE=3,AC=DE,在等腰梯形ABCD中,AC=DB,∴DB=DE (等量代换),∵AC⊥BD,AC∥DE,∴DB⊥DE,∴△BDE是等腰直角三角形,作DF⊥BC于F,则DF=BE=5,S梯形ABCD=(AD+BC)•DF=(3+7)×5=25,故选A.点评:本题主要考查对等腰三角形性质,平行四边形的性质和判定,等腰梯形的性质,等腰直角三角形等知识点的理解和掌握,能求出高DF的长是解此题的关键.对应训练2.(2012•厦门)如图,在等腰梯形ABCD中,AD∥BC,对角线AC与BD相交于点O,若OB=3,则OC= 3.2.3考点:.分析:先根据梯形是等腰梯形可知,AB=CD,∠BCD=∠ABC,再由全等三角形的判定定理得出△ABC≌△DCB,由全等三角形的对应角相等即可得出∠DBC=∠ACB,由等角对等边即可得出OB=OC=3.解答:解:∵梯形ABCD是等腰梯形,∴AB=CD,∠BCD=∠ABC,在△ABC与△DCB中,∵,∴△ABC≌△DCB,∴∠DBC=∠ACB,∴OB=OC=3.故答案为:3.点评:本题考查的是等腰梯形的性质及全等三角形的判定与性质,熟知在三角形中,等角对等边是解答此题的关键.考点三:等腰梯形的判定例3 (2012•襄阳)如图,在梯形ABCD中,AD∥BC,E为BC的中点,BC=2AD,EA=ED=2,AC与ED相交于点F.(1)求证:梯形ABCD是等腰梯形;(2)当AB与AC具有什么位置关系时,四边形AECD是菱形?请说明理由,并求出此时菱形AECD的面积.考点:;;.分析:(1)由AD∥BC,由平行线的性质,可证得∠DEC=∠EDA,∠BEA=∠EAD,又由EA=ED,由等腰三角形的性质,可得∠EAD=∠EDA,则可得∠DEC=∠AEB,继而证得△DEC≌△AEB,即可得梯形ABCD是等腰梯形;(2)由AD∥BC,BE=EC=AD,可得四边形ABED和四边形AECD均为平行四边形,又由AB⊥AC,AE=BE=EC,易证得四边形AECD是菱形;过A作AG⊥BE 于点G,易得△ABE是等边三角形,即可求得答案AG的长,继而求得菱形AECD的面积.解答:(1)证明:∵AD∥BC,∴∠DEC=∠EDA,∠BEA=∠EAD,又∵EA=ED,∴∠EAD=∠EDA,∴∠DEC=∠AEB,又∵EB=EC,∴△DEC≌△AEB,∴AB=CD,∴梯形ABCD是等腰梯形.(2)当AB⊥AC时,四边形AECD是菱形.证明:∵AD∥BC,BE=EC=AD,∴四边形ABED和四边形AECD均为平行四边形.∴AB=ED,∵AB⊥AC,∴AE=BE=EC,∴四边形AECD是菱形.过A作AG⊥BE于点G,∵AE=BE=AB=2,∴△ABE是等边三角形,∴∠AEB=60°,∴AG=,∴S菱形AECD=EC•AG=2×=2。
中考数学压轴题100题及答案

中考数学压轴题100题精选【001】如图,已知抛物线2(1)y a x =-+a ≠0)经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.【C=90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB-BC-CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成 为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接写出t 的值.【003】如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0)、D (8,8).抛物线y=ax2+bx 过A 、C 两点. (1)直接写出点A 的坐标,并求出抛物线的解析式;A P 图16(2)动点P 从点A 出发.沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD 向终点D 运动.速度均为每秒1个单位长度,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E ,①过点E 作EF ⊥AD 于点F ,交抛物线于点G .当t 为何值时,线段EG 最长? ②连接EQ .在点P 、Q 运动的过程中,判断有几个时刻使得△CEQ 是等腰三角形? 请直接写出相应的t 值。
2019年中考数学压轴题70题精选

2019年中考数学压轴题70题精选注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!【001】如图,抛物线2(1)y a x =-+a ≠0〕经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥、过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC 、〔1〕求该抛物线的解析式;〔2〕假设动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s 、问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? 〔3〕假设OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动、设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长、【002】如图,在平面直角坐标系中,矩形ABCD 的三个顶点B 〔4,0〕、C 〔8,0〕、D 〔8,8〕.抛物线y=ax 2+bx 过A 、C 两点.(1)直接写出点A 的坐标,并求出抛物线的解析式;(2)动点P 从点A 出发、沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD向终点D 运动、速度均为每秒1个单位长度,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E ,①过点E 作EF ⊥AD 于点F ,交抛物线于点G.当t 为何值时,线段EG 最长?②连接EQ 、在点P 、Q 运动的过程中,判断有几个时刻使得△CEQ 是等腰三角形? 请直接写出相应的t 值。
【003】如图13,二次函数)0(2<++=p q px x y 的图象与x 轴交于A 、B 两点,与y 轴交于点C 〔0,-1〕,ΔABC 的面积为45。
〔1〕求该二次函数的关系式;〔2〕过y 轴上的一点M 〔0,m 〕作y 轴的垂线,假设该垂线与ΔABC 的外接圆有公共点,求m 的取值范围;〔3〕在该二次函数的图象上是否存在点D ,使四边形ABCD 为直角梯形?假设存在,求出点D 的坐标;假设不存在,请说明理由。
九年级数学第二十二章第1节《二次函数的图象和性质》解答题专题 (10)含解析

第二十二章第1节《二次函数的图象和性质》解答题专题 (10)1.已知关于x 的方程2(41)40kx k x -++=. (1)当k 取何值时,方程有两个实数根;(2)若二次函数2(41)4y kx k x =-++的图象与x 轴两个交点的横坐标均为整数,且k 为正整数,求k 值并用配方法求出抛物线的顶点坐标.2.抛物线2y x bx c =-++(b ,c 为常数)与x 轴交于点()1,0x 和()2,0x ,与y 轴交于点A ,点E 为抛物线顶点.(Ⅰ)当121,3x x =-=时,求点A ,点E 的坐标;(Ⅱ)若顶点E 在直线y x =上,当点A 位置最高时,求抛物线的解析式; (Ⅲ)若11,0x b =->,当(1,0)P 满足PA PE +值最小时,求b 的值.3.已知抛物线2y x bx c =++与x 轴交于()1,0A x ,()2,0B x 两点,且12xx <,若222133x x k +=(k 为正整数),我们把该抛物线称为“B 系抛物线”.特例感知(1)当2b =,15c =-时,请判断抛物线2y x bx c =++是否是“B 系抛物线”,并说明理由. 推广验证 (2)若234c b =-,且b 为负整数,请判断抛物线2y x bx c =++是否是“B 系抛物线”,并说明理由. 拓展应用(3)在(2)的条件下,若M 为该抛物线的顶点,且ABM ∆为等腰直角三角形,求该抛物线的解析式.4.已知:如图抛物线26y ax bx =++与x 轴交于点()6,0B ()2,0C -与y 轴交于点A .(1)求抛物线的解析式;(2)如图点P 是线段AB 上方抛物线上的一个动点连结PA 、PB .设PAB △的面积为S .点P 的横坐标为m .①试求S 关于m 的函数关系式;②请说明当点P 运动到什么位置时PAB △的面积有最大值?③过点P 作x 轴的垂线交线段AB 于点D 再过点P 做//PE x 轴交抛物线于点E 连结DE 请问是否存在点P 使PDE △为等腰直角三角形?若存在请直接写出点P 的坐标;若不存在请说明理由.5.在平面直角坐标系xOy 中抛物线()2420y axax a a =-+≠的顶点为P 且与y 轴交于点A 与直线y a =-交于点BC (点B 在点C 的左侧).(1)求抛物线()2420y axax a a =-+≠的顶点P 的坐标(用含a 的代数式表示);(2)横、纵坐标都是整数的点叫做整点记抛物线与线段AC 围成的封闭区域(不含边界)为“W 区域”.①当2a =时请直接写出“W 区域”内的整点个数;②当“W 区域”内恰有2个整点时结合函数图象直接写出a 的取值范围.6.在平面直角坐标系xOy 中,已知,点A (3,0)、B (-2,5)、C (0,-3).求经过点A 、B 、C 的抛物线的表达式.7.在平面直角坐标系xOy 中,抛物线25y ax bx a =+-与y 轴交于点A ,将点A 向左平移4个单位长度,得到点B ,点B 在抛物线上. (1)求点B 的坐标(用含a 的式子表示); (2)求抛物线的对称轴;(3)已知点()1,2P a --,()4,2Q -.若抛物线与线段PQ 恰有一个公共点,结合函数图象,求a 的取值范围.8.如图1在平面直角坐标系xOy 中抛物线y=-(x-a )(x-4)(a <0)与x 轴交于A 、B 两点(点A 在点B 的左侧)与y 轴交于点C 点D 为抛物线的顶点.(1)若D 点坐标为(32524,)求抛物线的解析式和点C 的坐标;(2)若点M 为抛物线对称轴上一点且点M 的纵坐标为a 点N 为抛物线在x 轴上方一点若以C 、B 、M 、N 为顶点的四边形为平行四边形时求a 的值;(3)直线y=2x+b 与(1)中的抛物线交于点D 、E (如图2)将(1)中的抛物线沿着该直线方向进行平移平移后抛物线的顶点为D′与直线的另一个交点为E′与x 轴的交点为B′在平移的过程中求D′E′的长度;当∠E′D′B′=90°时求点B′的坐标.9.二次函数y=ax 2+bx+c (a≠0)的图象向左平移4个单位,再向上平移3个单位,得到二次函数y=x 2﹣2x+1,求:b ,c 的值. 10.在平面直角坐标系中,抛物线y 14=x 2沿x 轴正方向平移后经过点A (x 1,y 2),B (x 2,y 2),其中x 1,x 2是方程x 2﹣2x =0的两根,且x 1>x 2, (1)如图.求A ,B 两点的坐标及平移后抛物线的解析式; (2)平移直线AB 交抛物线于M ,交x 轴于N ,且14AB MN =,求△MNO 的面积; (3)如图,点C 为抛物线对称轴上顶点下方的一点,过点C 作直线交抛物线于E 、F ,交x 轴于点D ,探究CD CDCE CF+的值是否为定值?如果是,求出其值;如果不是,请说明理由.11.已知:关于x 的二次函数2y x ax =-+(a >0),点A (n ,y 1)、B (n+1,y 2)、C (n+2,y 3)都在这个二次函数的图象上,其中n 为正整数.(1)y 1=y 2,请说明a 必为奇数;(2)设a=11,求使y 1≤y 2≤y 3成立的所有n 的值;(3)对于给定的正实数a ,是否存在n ,使△ABC 是以AC 为底边的等腰三角形?如果存在,求n 的值(用含a 的代数式表示);如果不存在,请说明理由.12.如图①定义:直线:(0,0)l y mx n m n =+<>与x 、y 轴分别相交于A 、B 两点将AOB ∆绕着点O 逆时针旋转90°得到COD ∆过点A 、B 、D 的抛物线P 叫做直线l 的“纠缠抛物线”反之直线l 叫做P 的“纠缠直线"两线“互为纠缠线”.(1)若:22l y x =-+则纠缠物线P 的函数解析式是____________. (2)判断并说明22y x k =-+与212y x x k k=--+是否“互为纠缠线”. (3)如图②若纠缠直线:24l y x =-+纠缠抛物线P 的对称轴与CD 相交于点E 点F 在l 上点Q 在P 的对称轴上当以点C 、E 、Q 、F 为顶点的四边形是以CE 为一边的平行四边形时求点Q 的坐标.13.已知二次函数y =ax 2(a ≠0)的图象经过点(﹣2,3) (1)求a 的值,并写出这个二次函数的解析式; (2)求出此抛物线上纵坐标为3的点的坐标. 14.关于x 的二次函数y 1=x 2+kx+k ﹣1(k 为常数) (1)对任意实数k ,函数图象与x 轴都有交点(2)若当x≥75时,函数y 的值都随x 的增大而增大,求满足条件的最小整数k 的值 (3)K 取不同的值时,函数抛物线的顶点位置也会变化,但会在某一函数图象上,求该函数图象的解析式(4)若当自变量x 满足0≤x≤3时,与其对应的函数值y 的最小值为10,求此时k 的值. 15.如图,在平面直角坐标系中,抛物线2y ax bx =+经过(2,4)A --,(2,0)B . (1)求抛物线2y ax bx =+的解析式.(2)若点M是该抛物线对称轴上的一点,求AM OM的最小值.16.在同一个直角坐标系中作出y=12x2,y=12x2-1的图象.(1)分别指出它们的开口方向、对称轴以及顶点坐标;(2)抛物线y=12x2-1与抛物线y=12x2有什么关系?17.如图:已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3)与x轴交于C、D两点,点P是x轴上的一个动点.(1)求抛物线的解析式;(2)当PA+PB的值是最小时,求点P的坐标.18.在平面直角坐标系中xOy中,抛物线y=x2﹣4x+m+2的顶点在x轴上.(1)求抛物线的表达式;(2)点Q是x轴上一点,①若在抛物线上存在点P,使得∠POQ=45°,求点P的坐标.②抛物线与直线y=1交于点E,F(点E在点F的左侧),将此抛物线在点E,F(包含点E和点F)之间的部分沿x轴向左平移n个单位后得到的图象记为G,若在图象G上存在点P,使得∠POQ=45°,求n的取值范围.19.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.20.如图抛物线y=-x2+bx+c与x轴交于A、B两点交y轴正半轴于C点D为抛物线的顶点A (-10)B(30).(1)求出二次函数的表达式.(2)点P在x轴上且∠PCB=∠CBD求点P的坐标.(3)在x轴上方抛物线上是否存在一点Q使得以QCBO为顶点的四边形被对角线分成面积相等的两部分?如果存在请直接写出点Q的坐标;如果不存在请说明理由.【答案与解析】1.(1)0k ≠;(2)k=1,(52,94-).(1)要使方程有两个实数根,必须满足两个条件:[]2(41)440k k k ⎧∆=-+-⨯≥⎨≠⎩从而可求出k 的取值范围;(2)令y=0,得到一个一元二次方程,用含有k 的代数式表示方程的解,根据题意求出k 的值.(1)依题意得[]2(41)4400k k k ⎧∆=-+-⨯≥⎨≠⎩,整理得24k-100k ⎧∆=≥⎨≠⎩()∵当k 取任何值时,2(41)0k -≥, ∴0k ≠∴当0k ≠时,方程总有两个实数根.(2)解方程2(41)40kx k x -++=,得14x =,21x k=. ∵12x x 和均为整数且k 为正整数,∴取k=1. ∴254y x x =-+222555()()422x x =-+-+ 259()24x =--∴抛物线的顶点坐标为(52,94-).【点睛】本题考查二次函数综合题,解题的关键是掌握根的判别式和抛物线的顶点坐标的求法.2.(Ⅰ)()0,3A ,(1,4)E ;(Ⅱ)214y x x =-++;(Ⅲ)3b = (Ⅰ)将(-1,0),(3,0)代入抛物线的解析式求得b 、c 的值,确定解析式,从而求出抛物线与y 轴交于点A 的坐标,运用配方求出顶点E 的坐标即可;(Ⅱ)先运用配方求出顶点E 的坐标,再根据顶点E 在直线y x =上得出吧b 与c 的关系,利用二次函数的性质得出当b=1时,点A 位置最高,从而确定抛物线的解析式;(Ⅲ)根据抛物线经过(-1,0)得出c=b+1,再根据(Ⅱ)中顶点E 的坐标得出E 点关于x 轴的对称点E '的坐标,然后根据A 、P 两点坐标求出直线AP 的解析式,再根据点在直线AP 上,此时PA PE +值最小,从而求出b 的值.解:(Ⅰ)把点(-1,0)和(3,0)代入函数2y x bx c =-++,有10930b c b c --+=⎧⎨-++=⎩.解得2,3b c == 2223(1)4y x x x ∴=-++=--+(0,3),(1,4)A E ∴(Ⅱ)由222424b c b y x bx c x +⎛⎫=-++=--+ ⎪⎝⎭,得24,24b c b E ⎛⎫+ ⎪⎝⎭∵点E 在直线y x =上,2424b c b+∴=221111(1)4244c b b b ∴=-+=--+2110,(1)44A b ⎛⎫∴--+ ⎪⎝⎭ 当1b =时,点A 是最高点此时,214y x x =-++(Ⅲ):抛物线经过点(1,0)-,有10b c --+=1c b ∴=+24,,(0,)24b c b E A c ⎛⎫+ ⎪⎝⎭ 2(2),,(0,1)24b b E A b ⎛⎫+∴+ ⎪⎝⎭∴E 关于x 轴的对称点E '为2(2),24b b ⎛⎫+- ⎪⎝⎭设过点A ,P 的直线为y kx t =+.把(0,1),(1,0)A b P +代入y kx t =+,得(1)(1)y b x =-+-把点2(2),24b b E '⎛⎫+- ⎪⎝⎭代入(1)(1)y b x =-+-.得2(2)(1)142b b b +⎛⎫=-+- ⎪⎝⎭,即2680b b --=解得,3b =0,3b b >∴=舍去.317b ∴=+ 【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次的解析式、最短距离,数形结合思想及待定系数法的应用是解题的关键,属于中考压轴题.3.(1)是;理由见解析;(2)是;理由见解析;(3)23y 4x x =--. (1)根据“B 系抛物线”代入2b =,15c =-,然后计算与x 轴交点坐标,然后判断22213x x +的值判断即可;(2)将234c b =-代入表达式后计算与x 轴交点坐标,然后判断22213x x +的值判断即可; (3)过M 作MH ⊥AB ,然后根据(2)得到AB 长度和M 的横坐标,然后计算即可.解:(1)当2b =,15c =-时,代入2y x bx c =++即2215y x x =+-令y =0,即20215x x +=-∴(3)(x 5)0x -+= ∴125,3x x =-=∴22213x x +=2233?(-5)3k +=即28k=∴是“B 系抛物线” (2)∵234c b =-∴2234y x bx b =+-令y =0,即22304x bx b =+-∴13()()022x b x b -+= ∵b 为非负数 ∴1213,22x b x b ==- ∴2231()3?()322b b k -+=即233b k =此时2k b = ∴是“B 系抛物线”;(3)如图,当△ABM 为等腰直角三角形时,过M 作MH ⊥AB ,其中AB=2b ,点M 横坐标为2b - 将2b x =-代入2234y x bx b =+-即2223()()224b b y b b b =-+--= ∴MH=-2b∵△ABM 为等腰直角三角形 ∴MH=12AB ∴21×22b b -=解的120(),1b b ==-舍去∴抛物线的解析式234y x x =--【点睛】本题主要考查二次函数性质,理解“B 系抛物线”是解题的关键. 4.(1)2162y x bx =-++;(2)①()2327322S m =--+②当m=3时S 有最大值③点P 的坐标为(4,6)或(55-).(1)由()2(6)(2)412y a x x a x x =-+=-- 则-12a=6求得a 即可; (2)①过点P 作x 轴的垂线交AB 于点D 先求出AB 的表达式y=-x+6设点21,262P m m m ⎛⎫-++ ⎪⎝⎭则点D (m-m+6)然后再表示()222113327332669322222S PD OB PD m m m m m m ⎛⎫=⨯⨯==-+++-=-+=--+ ⎪⎝⎭即可;②由在()2327322S m =--+中32-<0故S 有最大值;③△PDE 为等腰直角三角形则PE=PD 然后再确定函数的对称轴、E 点的横坐标进一步可得|PE|=2m-4即21266242m m m m -+++-=-求得m 即可确定P 的坐标. 解:(1)由抛物线的表达式可化为()22(6)6=(2)412y a x x a x ax bx x =+-++-=- 则-12a=6解得:a=12-故抛物线的表达式为:2162y x bx =-++; (2)①过点P 作x 轴的垂线交AB 于点D由点A(0,6)、B 的坐标可得直线AB 的表达式为:y=-x+6 设点21,262P m m m ⎛⎫-++ ⎪⎝⎭则点D (m-m+6) ∴()222113327332669=322222S PD OB PD m m m m m m ⎛⎫=⨯⨯==-+++-=-+--+ ⎪⎝⎭; ②∵()2327322S m =--+32-<0 ∴当m=3时S 有最大值; ③∵△PDE 为等腰直角三角形 ∴PE=PD ∵点21,262P m m m ⎛⎫-++ ⎪⎝⎭函数的对称轴为:x=2则点E 的横坐标为:4-m 则|PE|=2m-4 即21266242m m m m -+++-=- 解得:m=4或-2或517+517-2和517 当m=4时21262m m -++=6; 当m=517-21262m m -++=3175. 故点P 的坐标为(4,6)或(5173175). 【点睛】本题属于二次函数综合应用题主要考查了一次函数、等腰三角形的性质、图形的面积计算等知识点掌握并灵活应用所学知识是解答本题的关键. 5.(1)顶点P 的坐标为()2,2a -;(2)① 6个;② 112a <≤112a -≤<-. (1)由抛物线解析式直接可求;(2)①由已知可知A (02)C (2+2 -2)画出函数图象观察图象可得;②分两种情况求:当a >0时抛物线定点经过(2-2)时a=1抛物线定点经过(2-1)时a=12则12<a≤1;当a <0时抛物线定点经过(22)时a=-1抛物线定点经过(21)时a=-12则-1≤a<-12. 解:(1)∵y=ax 2-4ax+2a=a (x-2)2-2a ∴顶点为(2-2a );(2)如图①∵a=2∴y=2x 2-8x+2y=-2 ∴A (02)C (2-2) ∴有6个整数点;②当a >0时抛物线定点经过(2-2)时a=1 抛物线定点经过(2-1)时12a =; ∴112a <≤. 当0a <时抛物线顶点经过点(22)时1a =-; 抛物线顶点经过点(21)时12a =-; ∴ 112a -≤<-. ∴综上所述:112a <≤112a -≤<-. 【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质是解题的关键.6.223y x x =--设抛物线的解析式为y=ax 2+bx+c ,再把三个已知点的坐标代入得到关于a 、b 、c 的方程组,解方程组即可得到二次函数的解析式.解:设经过点A 、B 、C 的抛物线的表达式为2(0)y ax bx c a =++≠.则9304253a b c a b c c ++=⎧⎪-+=⎨⎪=-⎩,解得:123a b c =⎧⎪=-⎨⎪=-⎩. ∴经过点A 、B 、C 的抛物线的表达式为223y x x =--. 【点睛】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解. 7.(1)()4,5B a --;(2)2x =-;(3)205a -≤< (1)根据解析式得到点A 的坐标,利用平移即可得到带你B 的坐标; (2)根据点A 、B 的对称性即可求出对称轴;(3)分两种情况:a>0或a<0时,分别确定点P 、Q 的位置,根据抛物线与线段PQ 恰有一个公共点求出答案.(1)∵抛物线25y ax bx a =+-与y 轴交于点A ,∴点A(0,-5a),∵将点A 向左平移4个单位长度,得到点B , ∴B(-4,-5a); (2)对称轴是x=0422-=-; (3)如图:当a<0时,∵A(0,-5a), ()1,2P a --,且-5a>-2a , ∴点P 在抛物线下方,∵()4,2Q -,抛物线与线段PQ 恰有一个公共点,B(-4,-5a), ∴点Q 在抛物线上方或是在抛物线上,即25a ≥-, 解得25a ≥-, ∴205a -≤<时抛物线与线段PQ 恰有一个公共点;当a>0时,∵A(0,-5a), ()1,2P a --,且-5a<-2a<0, ∴点P 在抛物线上方,在x 轴下方, ∵()4,2Q -,B(-4,-5a), ∴点Q 在抛物线上方,∴此时抛物线与线段PQ 没有公共点;综上,205a -≤<时抛物线与线段PQ 恰有一个公共点. 【点睛】此题考查抛物线的性质,利用解析式求点坐标,点平移的规律,抛物线对称轴,抛物线与线段交点问题.8.(1)y=-x 2+3x+4C (04);(2)a 11326221-;(3)D ′E ′5B′(-10).(1)将点D 的坐标代入函数解析式求得a 的值;利用抛物线解析式来求点C 的值. (2)需要分类讨论:BC 为边和BC 为对角线两种情况根据“平行四边形的对边平行且相等平行四边形的对角线相互平分”的性质列出方程组利用方程思想解答.(3)根据平移规律得到D ′E ′的长度、平移后抛物线的解析式然后由函数图象上点的坐标特征求得点B ′的坐标. (1)依题意得:254=-(32-a )(32-4). 解得a=-1.∴抛物线解析式为:y=-(x+1)(x-4)或y=-x 2+3x+4. ∴C (04).(2)由题意知:A (a0)B (40)C (0-4a ). 对称轴为直线x=42a +则M (42a +a ). ①MN ∥BC 且MN=BC 根据点的平移特征可知N (42a --3a ). 则-3a=-(42a --a )(42a --4). 解得:②当BC 为对角线时设N (xy ).根据平行四边形的对角线互相平分可得:4424a x a y a +⎧+=⎪⎨⎪+=-⎩.解得425a x y a-⎧=⎪⎨⎪=-⎩.则-5a=-(42a --a )(42a --4). 解得a=63±.(舍去正值) ∴a 12=63-. (3)把D (32524,)代入y=2x+b 得到:2×32+b=254.则b=134. 故直线解析式为:y=2x+134. 联立2132434y x y x x ⎧=+⎪⎨⎪=-++⎩.解得1132254x y ⎧=⎪⎪⎨⎪=⎪⎩(舍去)221294x y ⎧=-⎪⎪⎨⎪=⎪⎩.∴E (-1294)∴.根据抛物线的平移规律则平移后线段D′E′始终等于 设平移后的D′(m2m+134)则E′(m-22m-34). 平移后抛物线的解析式为:y=-(x-m )2+2m+134. 则D′B′:y=-12x+n 过点(m2m+134) ∴y=-12x+52m+134则B′(5m+1320). ∴-12(5m+132)+52m+134=0. 解得m 1=-32m 2=-138. ∴B ′1(-10)B′2(-1380)(与D′重合舍去). 综上所述B′(-10). 【点睛】本题主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来利用点的坐标的意义表示线段的长度从而求出线段之间的关系. 9.b=﹣10,c=22.此题实际上是将抛物线y=x 2﹣2x+1向下平移3个单位,向右平移4个单位得到抛物线y=ax 2+bx+c (a≠0),由此求得b ,c 的值.解:将y=x 2﹣2x+1向下平移3个单位,向右平移4个单位, 得:y=(x ﹣1﹣4)2﹣3=(x ﹣5)2﹣3=x 2﹣10x+22. 故:b=﹣10,c=22. 【点睛】本题考查了二次函数图象的平移,熟练掌握平移的规律:左加右减,上加下减,并用规律求函数解析式是关键.10.(1)点A 坐标为(2,0),点B 坐标为(0,1),21(2)4y x =-;(2)12或28;(3)CD CDCE CF+为定值,定值为1. (1)解方程x 2﹣2x =0得x 1=2,x 2=0.即可求得点A 坐标为(2,0),抛物线解析式为()2124y x =- ,把x =0代入抛物线解析式得y =1,即可得点B 坐标为(0,1);(2)如图,过M 作MH ⊥x 轴,垂足为H ,由AB ∥MN ,即可得△ABO ∽△MHN ,根据相似三角形的性质可得14BO HN AB MH AO MN ===,由此求得MH =4,HN =8,将y =4代入抛物线()2124y x =-求得x 1=﹣2,x 2=6,所以M 1(﹣2,4),N 1(6,0),M 2(6,4),N 2(14,0),由此求得△MNO 的面积即可;(3)设C (2,m ),求得CD 解析式为y =kx +m ﹣2k ,令y =0得kx +m ﹣2k =0,由此求得点D 为(2k mk-,0);把CD 的解析式与抛物线的解析式联立221(2)4y kx m ky x =+-⎧⎪⎨=-⎪⎩,消去y 得,kx +m ﹣2k =14(x ﹣2)2.化简得x 2﹣4(k +1)x +4﹣4m +8k =0,由根与系数关系得,x 1+x 2=4k +4,x 1•x 2=4﹣4m +8k .过E 、F 分别作EP ⊥CA 于P ,FQ ⊥CA 于Q ,由AD ∥EP ,AD ∥FQ ,可得CD CDCE CF+=AD AD EP FQ AD EP FQ EP FQ ++=⋅⋅ =(2k mk -﹣2)×()()121212424x x x x x x +-⋅-++=()()()4444482444k m k m k k +--⋅-+-++=1,由此可得CD CD CE CF+为定值,定值为1. (1)解方程x 2﹣2x =0得x 1=2,x 2=0. ∴点A 坐标为(2,0),抛物线解析式为()2124y x =- . 把x =0代入抛物线解析式得y =1. ∴点B 坐标为(0,1).(2)如图,过M 作MH ⊥x 轴,垂足为H ∵AB ∥MN ∴△ABO ∽△MHN∴14BO HN AB MH AO MN === ∴MH =4,HN =8将y =4代入抛物线()2124y x =- 可得x 1=﹣2,x 2=6∴M 1(﹣2,4),N 1(6,0),M 2(6,4),N 2(14,0), ∴11164122M N O S ∆=⨯⨯= 221144282M N O S ∆=⨯⨯=(3)设C (2,m ),设直线CD 为y =kx +b 将C (2,m )代入上式,m =2k +b ,即b =m ﹣2k . ∴CD 解析式为y =kx +m ﹣2k , 令y =0得kx +m ﹣2k =0, ∴点D 为(2k mk-,0) 联立221(2)4y kx m k y x =+-⎧⎪⎨=-⎪⎩, 消去y 得,kx +m ﹣2k =14(x ﹣2)2. 化简得,x 2﹣4(k +1)x +4﹣4m +8k =0由根与系数关系得,x 1+x 2=4k +4,x 1•x 2=4﹣4m +8k .过E 、F 分别作EP ⊥CA 于P ,FQ ⊥CA 于Q , ∴AD ∥EP ,AD ∥FQ , ∴CD CD CE CF+=AD ADEP FQ AD EP FQ EP FQ ++=⋅⋅ =(2k mk-﹣2)×()()121212424x x x x x x +-⋅-++=()()()4444482444k mk m k k +--⋅-+-++ =1∴CD CDCE CF +为定值,定值为1. 【点睛】本题是二次函数综合题,考查了一次函数与二次函数图象的交点问题,解决第(3)问的关键是确定CD CD CE CF+=AD ADEP FQ AD EP FQ EP FQ ++=⋅⋅,再利用根与系数的关系解决. 11.解:(1)∵点A (n ,y 1)、B (n+1,y 2)都在二次函数2y x ax =-+(a >0)的图象上,∴()()2212y n an y n 1a n 1=-+=-+++,. ∵y 1=y 2,∴()()22n an n 1a n 1-+=-+++,整理得:a=2n+1. ∵n 为正整数,∴a 必为奇数. (2)当a=11时,∵y 1<y 2<y 3,∴()()()()222n 11n n 111n 1n 211n 2-+≤-+++≤-+++. 化简得:0102n 184n ≤-≤-.解得:n 4≤. ∵n 为正整数,∴n=1、2、3、4. (3)存在. 假设存在,则AB=AC ,如图所示,过点B 作BN ⊥x 轴于点N ,过点A 作AD ⊥BN 于点D ,CE ⊥BN 于点E ,∵x A =n ,x B =n+1,x C =n+2,∴AD=CE=1. 在Rt △ABD 与Rt △CBE 中,AB=BC ,AD=CE , ∴Rt △ABD ≌Rt △CBE (HL ).∴∠BAD=∠CBE ,即BN 为顶角的平分线. 由等腰三角形性质可知,点A 、C 关于BN 对称. ∴BN 为抛物线的对称轴,点B 为抛物线的顶点, ∴()a an 1212+=-=⨯-.∴a n 12=-.∴存在n ,使△ABC 是以AC 为底边的等腰三角形,an 12=-. (1)将点A 和点B 的坐标代入二次函数的解析式,利用y 1=y 2得到用n 表示a 的式子,即可得到答案;(2)将a=11代入解析式后,由题意列出不等式组,求得此不等式组的正整数解. (3)本问为存在型问题,如图所示,可以由三角形全等及等腰三角形的性质,判定点B为抛物线的顶点,点A 、C 关于对称轴对称,于是得到()a a n 1212+=-=⨯-,从而可以求出a n 12=-. 12.答案见解析.(1)若l :y=-2x+2则点A 、B 、C 、D 的坐标分别为:(10)、(02)、(01)、(-20)则抛物线的表达式为:y=a (x+2)(x-1)即可求解;(2)同理:点A 、B 、C 、D 的坐标分别为:(k0)、(02k )、(0k )、(-2k0)则抛物线的表达式为:y=a (x+2k )(x-k )即可求解;(3)以点C 、E 、Q 、F 为顶点的四边形是以CE 为一边的平行四边形时由题意得:|x Q -x F |=1即:m+1=±1即可求解.解:(1)若l :y=-2x+2则点A 、B 、C 、D 的坐标分别为:(10)、(02)、(01)、(-20)则抛物线的表达式为:y=a (x+2)(x-1)将点B 的坐标代入上式得:2=a (0+2)(0-1)解得:a=-1故答案为:y=-x 2-x+2;(2)同理:点A 、B 、C 、D 的坐标分别为:(k0)、(02k )、(0k )、(-2k0) 则抛物线的表达式为:y=a (x+2k )(x-k )将点B 的坐标代入上式并解得:a=1-k 故抛物线的表达式为:y=211-(2)()2x k x k x x k k k +-=--+ 故y=-2x+2k 与y =212x x k k--+“互为纠缠线”; 点A 、B 、C 、D 的坐标分别为:(20)、(04)、(02)、(-40) 同理可得:抛物线的表达式为:y=21--42x x + 抛物线的对称轴为:x=-1设点F (m-2m+4)点Q (-1n )将点C 、D 的坐标代入一次函数表达式并求得:直线CD 的表达式为:y=12x+2 点CE 横坐标差为1故纵坐标差为12以点C 、E 、Q 、F 为顶点的四边形是以CE 为一边的平行四边形时由题意得:|x Q -x F |=1即:m+1=±1解得:m=0或-2当m=0时点F (04)则点Q (-192);同理当m=-2时点Q (-1172); 综上点Q 坐标为:Q (-192)或Q (-1172). 【点睛】 本题考查的是二次函数综合运用涉及到一次函数、平行四边形性质等其中(3)要注意分类求解避免遗漏.13.(1)34,234y x = (2)(﹣2,3),(2,3) (1)根据二次函数图象上点的坐标满足其解析式,把点(-2,3)代入解析式得到关于a 的方程,然后解方程即可;(2)把y=3代入解析式求出x 的值即可.解:(1)∵抛物线y =ax 2经过点(﹣2,3),∴4a =3,∴a=34, ∴二次函数的解析式为234y x =; (2)∵抛物线上点的纵坐标为3, ∴3=34x 2, 解得x =±2, ∴此抛物线上纵坐标为3的点的坐标为(﹣2,3),(2,3).【点睛】考查了待定系数法求解析式,二次函数图象上点的坐标特征,函数解析式与图象上的点之间的关系,点在图象上,则满足解析式;反之,满足解析式则在函数图象上.14.(1)见解析;(2)﹣150;(3)y =﹣x 2﹣2x ﹣1;(4)11.(1)计算△,根据△的值进行判断;(2)根据二次函数的增减性即可判断;(3)得到抛物线的顶点,写成方程组,消去k 得y =-x 2-2x -1,即可判断;(4)函数配方后得y =x 2+kx +k -1=22124k k x k ⎛⎫+-+- ⎪⎝⎭,根据对称轴的位置分三种情况进行讨论可得结论.解:(1)∵△=k 2﹣4(k ﹣1)=k 2﹣4k+4=(k ﹣2)2≥0,∴对任意实数k ,函数图象与x 轴都有交点;(2)∵a=1>0,抛物线的对称轴x b k 2a 2=-=-, ∴在对称轴的右侧函数y 的值都随x 的增大而增大,即当x k 2->时,函数y 的值都随x 的增大而增大, ∵x≥75时,函数y 的值都随x 的增大而增大, ∴k 2-≤75,k≥﹣150, ∴k 的最小整数是﹣150, ∴满足条件的最小整数k 的值是﹣150;(3)∵y=x 2+kx+k ﹣1=(x k 2+)22k 4-+k ﹣1, ∴抛物线的顶点为(k 2-,2k 4-+k ﹣1), ∴2k x 2k y k 14⎧=-⎪⎪⎨⎪=-+-⎪⎩, 消去k 得,y =﹣x 2﹣2x ﹣1,由此可见,不论k 取任何实数,抛物线的顶点都满足函数y =﹣x 2﹣2x ﹣1,即抛物线的顶点在二次函数y =﹣x 2﹣2x ﹣1的图象上; (4)∵y=x 2+kx+k ﹣1=(x k 2+)22k 4-+k ﹣1, ∴抛物线的顶点为(k 2-,2k 4-+k ﹣1), 又∵0≤x≤3时,与其对应的函数值y 的最小值为10, ①当k 2-≤0时,即k≤0, 此时x =0时,y 取得最小值是10,则有10=k ﹣1,k =11. ②当k 2-≥3时,即k≤﹣6, 此时x =3时,y 取得最小值是10,则有10=32+3k+k ﹣1, k 12=,不符合题意; ③当0k 2-<<3时,即﹣6<k <0, 此时x k 2=-时,y 取得最小值是10,即2k 4-+k ﹣1=10, 此方程无实根,综上所述,k 的值是11.【点睛】本题主要考查了二次函数的性质,解决本题的关键是要熟悉函数关系式和方程的关系、函数的性质.15.(1)抛物线的解析式为212y x x =-+;(2)AM OM +的最小值为42. (1)利用待定系数法可求出该抛物线的解析式; (2)根据O 、B 两点正好关于抛物线的对称轴对称,那么只需连接A 、B ,直线AB 和抛物线对称轴的交点即为符合要求的M 点,而AM +OM 的最小值正好是AB 的长,过点A 作AN ⊥x 轴于点N .在Rt △ABN 中,根据勾股定理即可得出结论.(1)把A (﹣2,﹣4),B (2,0)两点的坐标代入y =ax 2+bx 中,得:424420a b a b -=-⎧⎨+=⎩,解方程组,得:a 12=-,b =1,∴解析式为y 12=-x 2+x . (2)由y 12=-x 2+x 12=-(x ﹣1)212+,可得抛物线的对称轴为直线x =1,并且对称轴垂直平分线段OB ,∴OM =BM ,∴OM +AM =BM +AM .连接AB 交直线x =1于M 点,则此时OM +AM 最小.过点A 作AN ⊥x 轴于点N .在Rt △ABN 中,AB 222244AN BN =+=+=42,因此OM +AM 最小值为42.【点睛】本题是二次函数的综合题,难点在于点M 位置的确定,正确理解二次函数的轴对称性以及两点之间线段最短是解题的关键.16.见解析试题分析:观察图像结合函数表达式可以得到两个函数开口向上,对称轴也都是y 轴,顶点坐标分别是(0,0),(0,-1);根据二次函数的性质及图像知道抛物线y=12x2-1与抛物线y=12x2形状相同,对称轴相同,但是位置不同,开口方向也相同,所以可以得到抛物线y=12x2-1可由抛物线y=12x2向下平移1个单位长度得到的.解:如图所示:(1)抛物线y=12x2开口向上,对称轴为y轴,顶点坐标(0,0);抛物线y=12x2-1开口向上,对称轴为y轴,顶点坐标(0,-1).(2)抛物线y=12x2-1可由抛物线y=12x2向下平移1个单位长度得到.17.(1)y=﹣(x﹣1)2+4;(2)当PA+PB的值是最小时,点P的坐标是(37,0).试题分析:(1)由题意可设抛物线解析式为“顶点式”,再代入点B的坐标可求得解析式;(2)由题意作出点B关于x轴的对称轴点E,连接AE交x轴于点P,P为所求的点,由A、E的坐标可求得直线AE的解析式,再由AE的解析式就可求得点P的坐标.试题解析:(1)∵抛物线的顶点A的坐标为(1,4),∴设抛物线的表达式为y=a(x-1)2+4.∵抛物线过点B(0,3),∴3=a(0-1)2+4.解得a=-1.∴二次函数的表达式为y=-(x-1)2+4,即y=-x2+2x+3.(2)作点B关于x轴的对称点E(0,-3),连接AE交x轴于点P,点P即为所求点.设AE所在直线的表达式为y=kx+b,分别代入A,E坐标,得43k bb+=⎧⎨=-⎩,解得73kb=⎧⎨=-⎩,∴y=7x-3.当y=0时,x=3 7 .∴点P 的坐标为(37,0). 18.(1)y =x 2﹣4x +4;(2)①点P 的坐标为(1,1)或(4,4);②在图象G 上存在点P ,使得∠POQ =45°,n 的取值范围为0≤n ≤4.(1)根据抛物线顶点在x 轴上,列式计算可得m 的值;(2)由∠POQ =45°,作直线y =x ,交抛物线y =x 2﹣4x +4于点P ,联立解析式求出P 点坐标即可;(3)分两种情况考虑:当点P ,Q 在y 轴右侧时与点P ,Q 在y 轴左侧时,列出不等式求解即可.解:(1)∵抛物线y =x 2﹣4x +m +2的顶点在x 轴上,∴()()2412441m ⨯⨯+--⨯=0,解得:m =2, ∴抛物线的表达式为y =x 2﹣4x +4.(2)①作直线y =x ,交抛物线y =x 2﹣4x +4于点P ,如图1所示.联立直线OP 及抛物线的表达式成方程组,得:244y x y x x =⎧⎨=+⎩﹣, 解得:1111x y =⎧⎨=⎩,2244x y =⎧⎨=⎩, ∴点P 的坐标为(1,1)或(4,4).②当y =1时,x 2﹣4x +4=1,解得:x 1=1,x 2=3,∴点E 的坐标为(1,1),点F 的坐标为(3,1).分两种情况考虑:(i )当点P ,Q 在y 轴右侧时,∵抛物线y =x 2﹣4x +4与直线y =x 交于点(1,1), ∴当1≤3﹣n ≤3时,图象G 上存在点P ,使得∠POQ =45°,解得:0≤n ≤2;(ii )当点P ,Q 在y 轴左侧时,同①可得出,抛物线y =x 2﹣4x +4与直线y =﹣x 交于点(﹣1,﹣1)或(﹣4,﹣4),∴当﹣1≤3﹣n ≤1时,图象G 上存在点P ,使得∠POQ =45°,解得:2≤n ≤4. 综上所述:若在图象G 上存在点P ,使得∠POQ =45°,n 的取值范围为0≤n ≤4.【点睛】本题考查二次函数的图像和性质,正确理解∠POQ=45°的意义,运用数形结合的思想解决问题是解题关键.19.(1)y=x2﹣4x+3;(2)存在,抛物线对称轴上存在点D(2,1),使△BCD的周长最小;(3)△ACE的最大面积278,此时E点坐标为(52,34).(1)利用待定系数法求二次函数解析式解答即可.(2)利用待定系数法求出直线AC的解析式,然后根据轴对称确定最短路线问题,直线AC 与对称轴的交点即为所求点D.(3)根据直线AC的解析式,设出过点E与AC平行的直线,然后与抛物线解析式联立消掉y得到关于x的一元二次方程,利用根的判别式△=0时,△ACE的面积最大,然后求出此时与AC平行的直线,然后求出点E的坐标,并求出该直线与x轴的交点F的坐标,再求出AF ,再根据直线l 与x 轴的夹角为45°求出两直线间的距离,再求出AC 间的距离,然后利用三角形的面积公式列式计算即可得解.解:(1)∵抛物线y=ax 2+bx+3经过点A (1,0),点C (4,3),∴a b 30{16a 4b 33++=++=,解得a 1{b 4==-. ∴抛物线的解析式为y=x 2﹣4x+3.(2)存在.∵点A 、B 关于对称轴对称,∴点D 为AC 与对称轴的交点时△BCD 的周长最小. ∵y=x 2﹣4x+3=(x ﹣2)2﹣1,∴抛物线的对称轴为直线x=2.设直线AC 的解析式为y=kx+b (k≠0),则k b 0{4k b 3+=+=,解得:k 1{b 1==-.∴直线AC 的解析式为y=x ﹣1.当x=2时,y=2﹣1=1.∴抛物线对称轴上存在点D (2,1),使△BCD 的周长最小.(3)如图,设过点E 与直线AC 平行线的直线为y=x+m ,联立243y x my x x =+⎧⎨=-+⎩,消掉y 得,x 2﹣5x+3﹣m=0.由△=(﹣5)2﹣4×1×(3﹣m )=0得m=134-.∴m=134-时,点E 到AC 的距离最大,△ACE 的面积最大.此时x=52,y=5133244-=-.∴点E 的坐标为(52,34-).设过点E 的直线与x 轴交点为F ,则F (134,0).∴AF=139144-=.∵直线AC 的解析式为y=x ﹣1,∴∠CAB=45°.∴点F 到AC 的距离为9292428⨯=. 又∵223(41)32AC =+-=.∴△ACE 的最大面积192273228=⨯⨯=,此时E 点坐标为(52,34-). 20.(1)y=-x 2+2x+3;(2)P (60)或P 3,02⎛⎫ ⎪⎝⎭;(3)存在点Q 113113,⎛⎫++ ⎪ ⎪⎝⎭或17,24⎛⎫- ⎪⎝⎭. (1)将点A 、B 坐标代入解析式求出b 、c 的值即可得;(2)∠PCB=∠CBD 有两种情况①P 在B 的右侧时延长BD 交y 轴于点H 由∠OCB=∠OBC=45°可证明∠HCB=∠CBP 从而△PCB ≌△HBC 由直线BD 即可求得:OH=OP=6从而得到P 点坐标;②P 在B 的左侧时此时PC ∥BD 根据一次函数解析式即可求出P ; (3)分以下两种情况分别求解①点Q 在y 轴右侧时由OB=OC 可得出OQ 是∠BOC 的平分线联立二次函数解析式与直线OQ 的解析式即可求解;②点Q 在y 轴左侧时可得这条对角线只能是BQ 过点C 作x 轴的平行线EF 过点QB 分别作EF 的垂线垂足分别为FE 延长FQ 交x 轴于点G 设点Q 的坐标为(mn)根据S △BOQ =S △CBQ =S 梯形FQBE -S △FCQ -S △BEC 可得出关于mn 的关系式再与二次函数的解析式联立即可求解.解:(1)将点A (-10)B (30)代入y=-x 2+bx+c 得10930b c b c --+=⎧⎨-++=⎩解得23b c =⎧⎨=⎩∴二次函数的表达式为y=-x 2+2x+3;(2)①当点P 在点B 右侧时延长BD 交y 轴于点H∵y=-x 2+2x+3=-(x-1)2+4∴点D 的坐标为(14)设直线BD 的解析式为y=kx+b 则304k b k b +=⎧⎨+=⎩解得26k b =-⎧⎨=⎩即直线BD 的解析式为y=-2x+6 ∴点H 的坐标为(06)∵OB=OC=3∴∠OBC=∠OCB=45°∴∠HCB=∠CBP=135°又∠PCB=∠CBDBC=BC∴△PCB ≌△HBC∴CH=PB∴OH=OB=6故此时点P 的坐标为(60);②当点P (P′)在点B 左侧时直线BD 的表达式为:y=-2x+6∵∠P′CB=∠CBD 则P′C ∥BD则直线P′C 的表达式为:y=-2x+3当y=0x=32故此时点P′的坐标为3,02⎛⎫ ⎪⎝⎭综上所述点P 的坐标为(60)或3,02⎛⎫⎪⎝⎭; (3)存在.理由如下:①当点Q 在y 轴右侧时以QCBO 为顶点的四边形被对角线分成面积相等的两部分这条对角线只能是OQS △COQ =S △BOQ 如图而OB=OC 故OQ 是∠BOC 的平分线即OQ 的函数表达式为:y=x将y=x 与y=-x 2+2x+3联立得-x 2+2x+3=x 解得113+ 故此时点Q 的坐标为(1132+1132+); ②当点Q 在y 轴左侧时以QCBO 为顶点的四边形被对角线分成面积相等的两部分这条对角线只能是BQS △BOQ =S △CBQ 如图过点C 作x 轴的平行线EF 过点QB 分别作EF 的垂线垂足分别。
中考数学压轴题100题含答案解析

中考数学压轴题100题精选【含答案】【001】如图,已知抛物线y a(x 3 3( a z 0)经过点A2 °),抛物线的顶点为D , 过O作射线OM // AD •过顶点D平行于x轴的直线交射线OM于点C , B在x轴正半轴上,连结BC •(1)求该抛物线的解析式;(2)若动点P从点0出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为t(s) •问当t为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形?(3)若0C °B,动点P和动点Q分别从点0和点B同时出发,分别以每秒1个长度单位和2 个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动•设它们的运动的时间为t (s),连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.【002】如图16,在Rt A ABC中,/ C=90 , AC = 3 , AB = 5 .点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t >0).(1) 当t = 2时,AP = ,点Q到AC的距离是:(2) 在点P从C向A运动的过程中,求△ APQ的面积S与t的函数关系式;(不必写出t的取值范围)(3) 在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值.若不能,请说明理由;(4) 当DE经过点C时,请直接写出t的值.【003】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B (4, 0)、C ( 8, 0)、D ( 8,8) •抛物线y=ax2+bx过A、C两点.(1) 直接写出点A的坐标,并求出抛物线的解析式;(2) 动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD 向终点D运动.速度均为每秒1个单位长度,运动时间为t秒•过点P作PE丄AB交AC于点E,①过点E作EF丄AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△ CEQ是等腰三角形?请直接写出相应的t值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.如图,在矩形ABCD中,点E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△ AEF∽△ CAB;② DF=DC;③ S△DCF=4S△DEF;④ tan ∠CAD=
2 . 其中正确结论的个数是()
2
A.4
B.3
C.2
D.1
16.如图,在△ ABC中,AB=AC=,6∠A=2∠BDC,BD交AC边于点E,且AE=4,则BE·DE= .
22.如图,△ ACE,△ACD均为直角三角形,∠ ACE=90°,∠
ADC=9°0 ,AE与CD 相交于点P,以CD为直径的⊙ O恰好经过点E,并与AC,AE分别交于点 B 和点 F.
(1)求证:∠ ADF=∠ EAC.
2
(2)若PC= PA,PF=1,求AF的长.
3
3
24. 如图,一次函数 y x 6的图像交 x 轴于点 A 、交 y 轴于点 B ,∠ABO 的平
4
分线交 x 轴于点 C ,过点 C 作直线 CD ⊥AB ,垂足为点 D ,交 y 轴于点 E.
( 1)求直线 CE 的解析式;
(2)在线段 AB 上有一动点 P (不与点 A ,B 重合),过点 P 分别作 PM ⊥x 轴,
PN ⊥y 轴,垂足为点 M 、N ,是否存在点 P ,使线段 MN 的长最小?若存在,请直
接写出点 P 的坐标;若不存在,请说明理由 .
25. 如图,∠ MBN=9°0 ,点 C 是∠MBN 平分线上的一点,过点 C 分别作 AC ⊥BC , CE ⊥BN ,垂足分别为点 C ,E ,AC=4 2,点 P 为线段 BE 上的一点(点 P 不与点 B 、 E 重合),连接 CP ,以 CP 为直角边,点 P 为直角顶点,作等腰直角三角形 CPD , 点 D 落在 BC 左侧.
2)连接 BD ,请你判断 AC 与 BD 的位置关系,并说明理由; 3)设 PE=x ,△PBD 的面积为 S ,求 S 与 x 之间的函数关系式
1)求证: CP CE CD CB
13
26.如图,抛物线y x2 x 2与x轴交于A、B两点(点A在点B的左
22
侧),与y 轴交于点 C.
(1)试探究△ ABC的外接圆的圆心位置,求出圆心坐标;
(2)点P是抛物线上一点(不与点A重合),且S△PBC=S△ABC,求∠ APB 的度数;
(3)在(2)的条件下,点E是x 轴上方抛物线上一点,点F是抛物线对称轴上一点,是否存在这样的点 E 和点F,使得以点B、P、E、F 为顶点的四边形是平行四边形?若存在,请直接写出点 F 的坐标;若不存在,请说明理由.
10.(2017四川省遂宁市,第10题,4 分)函数y x2bx c与函数y x的图像如图所示,有以下结论:① b2 4c>0;② b c 0;③ b<0 ;④
方程组
2
y x bx c的解为x1 1,x2 3;⑤当1<x<3时,x2(b 1)x c>0.其
y x y1 1 y2 3
中正确的是()
A.①②③B.②③④C.③④⑤D.②③⑤
1
14.( 2017四川省遂宁市,第 14题,4分)如图,直线 y 1
x 1与 x 轴,y 轴
3 分别交于 A 、B 两点,△ BOC 与△ B ′O ′C ′是以点 A 为位似中心的位似图形, 且相似比为 1:2,则点 B ′的坐标为 .
15.( 2017四川省遂宁市,第 15题,4 分)如图,正方形 ABCD 的边长为 4, 点 E 、F 分别从点 A 、点 D 以相同速度同时出发,点 E 从点 A 向点 D 运动,点 F 从点 D 向点 C 运动,点 E 运动到 D 点时, E 、F 停止运动.连接 BE 、AF 相交于 点 G ,连接 CG .有下列结论:① AF ⊥BE ;②点 G 随着点 E 、F 的运动而运动,且 点 G 的运动路径的长度为 ;③线段 DG 的最小值为 2 5 2 ;④当线段 DG 最小 时,△ BCG 的面积 S 8 8
5 . 其中正确的命题有 .(填序号)
5
22.( 2017四川省遂宁市,第 22题,10 分)关于三角函数有如下公式:
sin ( ) sin cos cos sin , sin ( ) sin cos cos sin
cos( ) cos cos sin sin , cos(
) cos cos sin sin
tan 0)
利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值.
° ° ° tan 45°tan 60° 1 3
如:tan105°tan(45°60°)= ° °2 3
1 tan 45°tan 60° 1 3
根据上面的知识,你可以选择适当的公式解决下面问题:
如图,两座建筑物AB和DC的水平距离BC为24 米,从点A测得点D的俯角α=15°,测得点C的俯角β=75°,求建筑物CD的高度.
24.(2017四川省遂宁市,第24题,10分)如图,CD是⊙ O的直径,点B在⊙O上,连接BC、BD,直线AB与CD的延长线相交于点A,AB2 ADgAC ,OE ∥ BD交直线AB于点E,OE与BC相交于点F.(1)求证:直线AE是⊙ O的切线;
4
(2)若⊙ O的半径为3,cosA=4,求OF的长.
5
25.(2017四川省遂宁市,第25题,12 分)如图,抛物线y ax2bx c(a
≠0),经过点A(-1 ,0),B(3,0),C(0,3)三点.
1)求抛物线的解析式及顶点M的坐标;
(2)连接AC、BC,N为抛物线上的点且在第四象限,当S△NBC S△ABC时,求N 点的坐标;
(3)在(2)问的条件下,过点C作直线l ∥x 轴,动点P(m,3)在直线l上,动点Q(m,0)在x 轴上,连接PM、PQ、NQ,当m为何值时,PM+PQ+Q的N和最。