中考数学压轴题 (含答案)

合集下载

(完整)中考数学压轴题精选含答案

(完整)中考数学压轴题精选含答案

一、解答题1.综合与探究.如图,抛物线y=ax2+bx+1与x轴交于A,C两点,点A(﹣1,0),C (3,0),与y轴交于点B,抛物线的顶点为D,直线l经过B,C两点.(1)求抛物线的函数解析式;(2)若P为抛物线上一点,横坐标为m,过点P作PM⊥y轴于点M,交线段BC于点N,当N是线段BC的黄金分割点时,求点P到x轴的距离;(3)若将抛物线向上平移个单位长度,点D的对应点为D′,坐标轴上是否存在点Q,使∠BD′Q=30°?若存在,请直接写出点Q的坐标;若不存在,请说明理由.2.矩形OABC中,OA=8,OC=10,将矩形OABC放在平面直角坐标系中,顶点O为原点,顶点C、A分别在x轴和y轴上.在OA边上选取适当的点E,连接CE,将△EOC沿CE折叠.(1)i:如图①,当点O落在AB边上的点D处时,点E的坐标为;ii:如图②,将矩形OABC变为正方形,OC=10,当点E为AO中点时,点O落在正方形OABC内部的点D处,延长CD交AB于点T,求此时AT的长度.(2)如图③,当点O落在矩形OABC内部的点D处时,过点E作EG∥x轴交CD于点H,交BC于点G,设H(t,s),用含s的代数式表示t.3.【基础巩固】(1)如图1,点A ,F ,B 在同一直线上,若∠A =∠B =∠EFC ,求证:△AFE ∼△BCF ;【尝试应用】(2)如图2,AB 是半圆⊙O 的直径,弦长AC =BC =42,E ,F 分别是AC ,AB 上的一点,∠CFE =45°,若设AE =y ,BF =x ,求出y 与x 的函数关系及y 的最大值. 【拓展提高】(3)已知D 是等边△ABC 边AB 上的一点,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E ,F 分别在AC 和BC 上.如图3,如果AD :BD =1:2,求CE :CF 的值.4.给出定义:有两个内角分别是它们对角的两倍的四边形叫做倍对角四边形.(1)如图1,在倍对角四边形ABCD 中,∠D =2∠B ,∠A =2∠C ,求∠B 与∠C 的度数之和;(2)如图2,锐角△ABC 内接于⊙O ,若边AB 上存在一点D ,使得BD =BO ,∠OBA 的平分线交OA 于点E ,连结DE 并延长交AC 于点F ,∠AFE =2∠EAF .求证:四边形DBCF 是倍对角四边形;(3)如图3,在(2)的条件下,过点D 作DG ⊥OB 于点H ,交BC 于点G .当4DH =3BG 时,求△BGH 与△ABC 的面积之比.5.抛物线212y x mx n =-++与x 轴交于A ,B 两点,与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,已知(1,0)A -,(0,2)C .(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P ,使PCD 是以CD 为腰的等腰三角形?如果存在,求出P 点的坐标;如果不存在,请说明理由;(3)点E 是线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,当四边形CDBF 的面积最大时,求点E 的坐标.6.如图,抛物线2:C y ax bx c =++的对称轴为直线1x =-,且抛物线经过(1,0),(0,3)M D 两点,与x 轴交于点N .(1)点N 的坐标为_______.(2)已知抛物线1C 与抛物线C 关于y 轴对称,且抛物线1C 与x 轴交于点1,A B (点A 在点1B 的左边).①抛物线1C 的解析式为_________;②当抛物线1C 和抛物线C 上y 都随x 的增大而增大时,请直接写出此时x 的取值范围. (3)若抛物线n C 的解析式为(1)(2)(1,2,3)y x x n n =-+--=,抛物线n C 的顶点为n P ,与x 轴的交点为,n A B (点A 在点n B 的左边).①求123100AB AB AB AB ++++的值;②判断抛物线的顶点123,,,,n P P P P 是否在一条直线上,若在,请直接写出该直线的解析式;若不在,请说明理由.7.在平面直角坐标系xOy 中,规定:抛物线y =a (x ﹣h )2+k 的“伴随直线”为y =a (x ﹣h )+k .例如:抛物线y =2(x +1)2﹣3的“伴随直线”为y =2(x +1)﹣3,即y =2x ﹣1.(1)在上面规定下,抛物线y =(x +1)2﹣5的顶点坐标为_____,“伴随直线”为_____. (2)如图,顶点在第一象限的抛物线y =a (x ﹣1)2﹣4a (a ≠0)与其“伴随直线”相交于点A ,B (点A 在点B 的左侧),与x 轴交于点C ,D . ①若△ABC 为等腰三角形时,求a 的值;②如果点P (x ,y )是直线BC 上方抛物线上的一个动点,△PBC 的面积记为S ,当S 取得最大值274时,求a 的值.8.如图1,四边形ABCD 和四边形CEFG 都是菱形,其中点E 在BC 的延长线上,点G 在DC的延长线上,点H在BC边上,连结AC,AH,HF.已知AB=2,∠ABC=60°,CE=BH.(1)求证:△ABH≌△HEF;(2)如图2,当H为BC中点时,连结DF,求DF的长;(3)如图3,将菱形CEFG绕点C逆时针旋转120°,使点E在AC上,点F在CD上,点G在BC的延长线上,连结EH,BF.若EH⊥BC,请求出BF的长.9.如图,对称轴x=1的抛物线y=ax2+bx+c与x轴交于A(﹣2,0),B两点,与y轴交于点C(0,2),(1)求抛物线和直线BC的函数表达式;(2)若点Q是直线BC上方的抛物线上的动点,求△BQC的面积的最大值;(3)点P为抛物线上的一个动点,过点P作过点P作PD⊥x轴于点D,交直线BC于点E.若点P在第四象限内,当OD=4PE时,△PBE的面积;(4)在(3)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在,直接写出点N的坐标;若不存在,请说明理由.10.将矩形ABCD绕着点C按顺时针方向旋转得到矩形FECG,其中点E与点B,点G与点D分别是对应点,连接BG.(1)如图,若点A ,E ,D 第一次在同一直线上,BG 与CE 交于点H ,连接BE . ①求证:BE 平分∠AEC .②取BC 的中点P ,连接PH ,求证:PH ∥CG . ③若BC =2AB =2,求BG 的长.(2)若点A ,E ,D 第二次在同一直线上,BC =2AB =4,直接写出点D 到BG 的距离. 11.在平面直角坐标系中,三角形ABC 为等腰直角三角形,AC BC =,BC 交x 轴于点D .(1)若()4,0A -,()0,2C ,直接写出点B 的坐标 ;(2)如图,三角形OAB 与ACD △均为等腰直角三角形,连OD ,求AOD ∠的度数;(3)如图,若AD 平分BAC ∠,()4,0A -,(),0D m ,B 的纵坐标为n ,求2n m +的值.12.已知抛物线y=x2﹣3x﹣4与x轴交于A、B(A在B的左侧),与y轴交于点C,点D 是直线BC下方抛物线上的动点.(1)求直线BC的解析式;(2)如图1,过D作DE∥y轴交BC于E,点P是BC下方抛物线上的动点(P在D的右侧),过点P作PQ∥y轴交BC于Q,若四边形EDPQ为平行四边形.且周长最大.求点P的坐标;(3)如图2,当D点横坐标为1时,过A且平行于BD的直线交抛物线于另一点E,若M在x轴上,是否存在这样点的M,使得以M、B、D为顶点的三角形与△AEB相似?若存在,求出所有符合条件的点M的坐标;若不存在,说明理由.13.如图,在平面直角坐标系中,四边形AOBC是矩形,OB=4,OA=3,F是BC边上一个动点(不与B、C重合),过点F的反比例函数y=kx(k>0)的图象与边AC交于点E.(1)当BF=13BC时,求点E的坐标;(2)连接EF,求∠EFC的正切值;(3)将△EFC沿EF折叠,得到△EFG,当点G恰好落在矩形AOBC的对角线上时,求k的值.14.在平面直角坐标系中,抛物线:与x轴交于点A,B(点B 在点A的右侧).抛物线顶点为C点,△ABC为等腰直角三角形.(1)求此抛物线解析式.(2)若直线与抛物线有两个交点,且这两个交点与抛物线的顶点所围成的三角形面积等于6,求k的值.(3)若点,且点E,D关于点C对称,过点D作直线2l交抛物线于点M,N,过点E作直线轴,过点N作于点F,求证:点M,C,F三点共线.15.如图,矩形ABCD中,对角线AC、BD相交于点O,∠AOB=60°,AB=2,将一张和△ABC一样大的纸片和△ABC重叠放置,点E是边BC上一点(不含点B、C),将△OCE 沿着OE翻折,点C落在点P处.(1)直接写出∠OBC、∠OCB的数量关系是.(2)连接DE,设△OPE的面积为S1,△ODE的面积为S2,在点E取边BC上每一点(除点B、C)的过程中,S1+S2的值是否变化?如果变化,请求出它的取值范围;如果不变,请求出S1+S2的值;(3)分别连接PD、PC,当点P与点B重合时,易知PO•PC=PE•PD,当点P不与点B重合时,PO•PC=PE•PD是否成立?请在图3、图4中选一种情况进行证明.16.如图,ABD△内接于O中,弦BC交AD于点E,连接CD,BG CD⊥交CD的延长线于点G,BG交O于点H,2∠=∠.ABC GBD(1)如图1,求证:DB平分GDE∠;(2)如图2,CN AB⊥于点N,CN=CG,求证:AN=HG;(3)如图3.在(2)的条件下,点F在AE上,连接BF、CF,且BF CF⊥,∠=∠,BC=5.求AE的长.BCN CBF217.【问题提出】如图①,在△ABC中,若AB=8,AC=4,求BC边上的中线AD的取值范围.【问题解决】解决此问题可以用如下方法:延长AD到点E,使DE=AD,再连结BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.由此得出中线AD的取值范围是__________【应用】如图②,如图,在△ABC中,D为边BC的中点、已知AB=10,AC=6,AD=4,求BC的长.【拓展】如图③,在△ABC中,∠A=90°,点D是边BC的中点,点E在边AB上,过点D作D F⊥DE交边AC于点F,连结EF.已知BE=5,CF=6,则EF的长为__________.18.如图,点P是矩形ABCD的边AB的其中一个四等分点(点P靠近点A),8AB ,将直角三角尺的顶点放在P处,直角尺的两边分别交AD、DC于点E,F,(如图1).(1)当点E与点D重合时,点F恰好与点C重合(如图2),求AD的长;(2)探究:将直尺从图2中的位置开始,绕点P逆时针旋转,当点E和点A重合时停止,在这个过程中,请你观察、猜想,并解答:①∠PEF的大小是否发生变化?请说明理由;②求出从点E与D重合开始,到点E与点A重合结束,线段EF的中点经过的路线的长度.19.如图,在Rt△ABC中,∠B=90°,AE平分∠BAC,交BC于点E,点D在AC上,以AD为直径的⊙O经过点E,点F在⊙O上,且EF平分∠AED,交AC于点G,连接DF.(1)求证:△DEF ∽△GDF : (2)求证: BC 是⊙O 的切线: (3)若cos∠CAE =32,DF =102,求线段GF 的长. 20.如图,抛物线y =-212x +32x +2与x 轴负半轴交于点A ,与y 轴交于点B .(1)求A ,B 两点的坐标;(2)如图1,点C 在y 轴右侧的抛物线上,且AC =BC ,求点C 的坐标;(3)如图2,将△ABO 绕平面内点P 顺时针旋转90°后,得到△DEF (点A ,B ,O 的对应点分别是点D ,E ,F ),D ,E 两点刚好在抛物线上. ①求点F 的坐标; ②直接写出点P 的坐标.【参考答案】参考答案**科目模拟测试一、解答题 1.(1) 51或(3)存在,点Q的坐标为(﹣2﹣3,0)或(0,)或(1,0)【解析】【分析】(1)用待定系数法即可求解;(2)MP∥CO,则,进而求解;(3)当点Q在BD′的右侧时,连接BD′,过点D′分别作x轴、y轴的垂线,垂足分别为F (1,0)、E,tan∠EBD′=,故∠EBD′=30°=∠BD′F,故点Q与点F重合时,∠BD′F=∠BD′Q=30°;当点Q在BD′的左侧时,设点Q′D′交x轴和y轴分别为点Q′、Q″,求出直线D′Q′的表达式,即可求解.(1)解:将点A、C的坐标代入抛物线表达式得:,解得,故抛物线的表达式为:;(2)∵MP∥CO,则,∵N是线段BC的黄金分割点,∴或,即或,而OB=1,故MO=512-或,即点P到x轴的距离为:512-或;(3)存在,理由:由抛物线的表达式知,点D(1,43),则将抛物线向上平移个单位长度,点D的对应点为D′的坐标为(1,3+1),①当点Q在BD′的右侧时,连接BD′,过点D′分别作x轴、y轴的垂线,垂足分别为F(1,0)、E,则BE3﹣13ED′=1,∴tan∠EBD′=,故∠EBD′=30°=∠BD′F,故点Q与点F重合时,∠BD′F=∠BD′Q=30°,即点Q的坐标为(1,0);②当点Q在BD′的左侧时,设点Q′D′交x轴和y轴分别为点Q′、Q″,则∠BD′Q′=30°,故∠Q′Q″O=30°+30°=60°,则∠D′Q′O=90°﹣60°=30°,故设直线Q′D′的表达式为y 3+t,将点D′的坐标代入上式得:3t,解得t=,故直线D′Q′的表达式为y=33x+,对于y=33x+,令y=33x+=0,解得x=﹣2﹣3,令x=0,则y=,故点Q′、Q″的坐标分别为(﹣2﹣3,0)、(0,),综上,点Q的坐标为(﹣2﹣3,0)或(0,)或(1,0).【点睛】本题是二次函数综合题,主要考查了一次函数的性质、三角形相似、解直角三角形等,其中(3),要注意分类求解,避免遗漏.2.(1)i:(0,5);ii:AT=52;(2)t=120s2+5.【解析】【分析】(1)i:如图①中,根据翻折变换的性质以及勾股定理得出BD的长,进而得出AE,EO的长即可得出答案.ii:如图②中,连接ET.证明△CET是直角三角形,由勾股定理得2222ED TD TC EC+=-,代入数据计算即可求出AT.(2)根据H点坐标得出各边长度,进而利用勾股定理求出t与s的关系即可.【详解】解:(1)i:如图①中,∵OA=8,OC=10,根据折叠的性质,∴OC=DC=10,∵BC=OA=8,∴BD2222108CD BC--,∴AD=10-6=4,设AE =x ,则EO =8-x ,∴x 2+42=(8-x )2,解得:x =3,∴AE =3,则EO =8-3=5,∴点E 的坐标为:(0,5);故答案为:(0,5); ii :如图②中,连接ET .∵点E 是AO 的中点,∴EA =EO ,∵OE =ED ,EC =EC ,∠EOC =∠EDC =90°,∴Rt △ECD ≌Rt △ECO (HL ),∴∠CEO =∠CED ,同法可证,Rt △ETA ≌Rt △ETD (HL ),∴∠AET =∠DET ,∴∠DET +∠CED =90°,即∠CET =90°,由折叠的性质得:ED =EO =12OA =5,OC =CD =10,AT =TD , 222125EC EO OC =+=, 设AT =x ,则TD =x ,∵2222ED TD TC EC +=-,即()222510125x x +=+-, 解得:52x =∴AT =52; (2)如图③中,过点H 作HW ⊥OC 于点W ,根据折叠的性质得:∠1=∠2,∵EG∥OC,∴∠1=∠3,∴∠2=∠3,∴EH=HC,设H(t,s),∴EH=HC=t,WC=10-t,HW=s,∴HW2+WC2=HC2,∴s2+(10-t)2=t2,∴t与s之间的关系式为:t=120s2+5.【点睛】本题属于四边形综合题,主要考查了翻折变换的性质以及勾股定理和全等三角形的判定与性质等知识,熟练构建直角三角形利用勾股定理得出相关线段长度是解题关键.3.(1)见解析;(2)y2x22(0≤x≤8),23)4:5【解析】【分析】(1)利用已知得出∠E=∠CFB,进而利用相似三角形的判定方法得出即可;(2)利用(1)得出△AFE∽△BCF,由相似三角形的性质:对应边的比值相等即可得到y 和x的数量关系,进而求出y与x的函数关系式;(3)首先证明△ADE∽△BFD,表示出ED,DF,EA,DB,AD,BF,再利用相似三角形的性质解决问题即可.【详解】(1)证明:∵∠A=∠EFC,∴∠E+∠EFA=∠EFA+∠CFB,∴∠E=∠CFB,∵∠A=∠B,∴△AFE∽△BCF;(2)解:∵AB是⊙O的直径,∴∠ACB=90°,∴AB=22AC BC+=8,∵AC=BC,∴∠A=∠B=45°,∴∠A=∠B=∠CFE=45°,由(1)可得△AFE∽△BCF,∴AE AFBF BC=,即842y xx-=,∴y=﹣28x2+2x(0≤x≤8),∴当x=4时,y最大=22;(3)解:连接DE,DF,∵△EFC与△EFD关于EF对称,∴∠EDF=∠ECF=60°,EC=ED,FC=FD,∵∠BDF+∠EDF=∠BDE=∠A+∠DEA,∵∠EDF=∠A=60°,∴∠BDF=∠DEA,∴△ADE∽△BFD,设AD=x,CE=DE=a,CF=DF=b,∵AD:BD=1:2,∴DB=2x,∴AB=3x=AC=BC,∴AE=3x﹣a,BF=3x﹣b,∵△ADE∽△BFD,∴DE EA AD DF DB BF==,∴323a x a xb x x b-==-,由前两项得,2ax=b(3x﹣a),由后两项得,(3x﹣a)(3x﹣b)=2x2,即:3x(3x﹣a)﹣b(3x﹣a)=2x2,∴3x(3x﹣a)﹣2ax=2x2,∴a =75x , ∴3425a x ab x -==, ∴CE :CF =4:5.【点睛】本题是圆的综合题,考查了相似三角形的判定与性质,圆的有关知识,勾股定理以及二次函数最值等知识,解题的关键是学会利用参数解决问题.4.(1)120°;(2)见解析;(3)215 【解析】【分析】(1)根据四边形内角和为360°,即可得出答案;(2)利用SAS 证明△BED ≌△BEO ,得∠BDE =∠BEO ,连接OC ,设∠EAF =α,则∠AFE =2α,则∠EFC =180°−∠AFE =180°−2α,可证∠EFC =∠AOC =2∠ABC 即可;(3)过点O 作OM ⊥BC 于M ,由(1)知∠BAC =60°,再证明△DBG ∽△CBA ,得2ΔΔ()DBG ABC S BD S BC =,再根据4DH =3BG ,BG =2HG ,得DG =52GH ,则ΔΔBHG BDG S S =HG DG =25,从而解决问题.【详解】(1)解:在倍对角四边形ABCD 中,∠D =2∠B ,∠A =2∠C ,∵∠A +∠B +∠C +∠D =360°,∴3∠B +∠3∠C =360°,∴∠B +∠C =120°,∴∠B 与∠C 的度数之和为120°;(2)证明:在△BED 与△BEO 中,BD BO EBD EBO BE BE =⎧⎪∠=∠⎨⎪=⎩, ∴△BED ≌△BEO (SAS ),∴∠BDE =∠BEO ,∵∠BOE =2∠BCF ,∴∠BDE =2∠BCF连接OC ,设∠EAF =α,则∠AFE =2α,∴∠EFC =180°﹣∠AFE =180°﹣2α,∵OA =OC ,∴∠OAC =∠OCA =α,∴∠AOC =180°﹣∠OAC ﹣∠OCA =180°﹣2α,∴∠EFC =∠AOC =2∠ABC ,∴四边形DBCF 是倍对角四边形;(3)解:过点O 作OM ⊥BC 于M ,∵四边形DBCF 是倍对角四边形,∴∠ABC +∠ACB =120°,∴∠BAC =60°,∴∠BOC =2∠BAC =120°,∵OB =OC ,∴∠OBC =∠OCB =30°,∴BC =2BM 33,∵DG ⊥OB ,∴∠HGB =∠BAC =60°,∵∠DBG =∠CBA ,∴△DBG ∽△CBA , ∴2ΔΔ()DBG ABC S BD S BC =13, ∵4DH =3BG ,BG =2HG , ∴DG =52GH ,∴ΔΔBHG BDG S S =25HG DG =, ∵ΔΔ15315DBG ABC S S == ∴ΔΔBHG ABC S S =215. 【点睛】本题是新定义题,主要考查了圆的性质,相似三角形的判定与性质,全等三角形的判定与性质,含30°角的直角三角形的性质等知识,读懂题意,利用前面探索的结论解决新的问题是解题的关键.5.(1)213222y x x =-++;(2)存在,13(,4)2P ,235(,)22P ,335(,)22P -;(3)点()2,1E【解析】【分析】(1)把()1,0A -,()0,2C 代入抛物线的解析式,利用待定系数法求解即可;(2)先求解抛物线的对称轴3,2x = 再求解CD 的长,由CDP 是以CD 为腰的等腰三角形,可得123CP DP DP CD ===.再作CH ⊥对称轴于点H ,从而可得答案;(3)先求解()4,0B .再求解直线BC 的解析式为122y x =-+.过点C 作CM EF ⊥于M ,设1,22E a a ⎛⎫-+ ⎪⎝⎭,213,222F a a a ⎛⎫-++ ⎪⎝⎭,根据BCD CEF BEF CDBF S S S S =++四边形111222BD OC EF CM EF BN =⋅+⋅+⋅列函数关系式,从而可得答案.【详解】解:(1)∵抛物线212y x mx n =-++经过()1,0A -,()0,2C , ∴10,22,m n n ⎧--+=⎪⎨⎪=⎩解得3,22.m n ⎧=⎪⎨⎪=⎩ ∴抛物线的解析式为213222y x x =-++. (2)∵22131325222228y x x x ⎛⎫=-++=--+ ⎪⎝⎭, ∴抛物线的对称轴是直线32x =.∴32OD =. ∵()0,2C ,∴2OC =.在Rt OCD △中,由勾股定理,得2235222CD ⎛⎫=+= ⎪⎝⎭. ∵CDP 是以CD 为腰的等腰三角形,∴123CP DP DP CD ===.作CH ⊥对称轴于点H ,∴12HP HD ==.∴14DP =.∴13(,4)2P ,235(,)22P ,335(,)22P -. (3)当0y =时,由2132022x x -++=,解得11x =-,24x =, ∴()4,0B .设直线BC 的解析式为y kx b =+,得2,40,b k b =⎧⎨+=⎩解得1,22.k b ⎧=-⎪⎨⎪=⎩ ∴直线BC 的解析式为122y x =-+. 过点C 作CM EF ⊥于M ,设1,22E a a ⎛⎫-+ ⎪⎝⎭,213,222F a a a ⎛⎫-++ ⎪⎝⎭,∴2213112222222EF a a a a a ⎛⎫=-++--+=-+ ⎪⎝⎭. ∵BCD CEF BEF CDBF S S S S =++四边形111222BD OC EF CM EF BN =⋅+⋅+⋅ 2215111122(4)2222222a a a a a a ⎛⎫⎛⎫=⨯⨯+-++--+ ⎪ ⎪⎝⎭⎝⎭225134(2)22a a a =-++=--+. ∴根据题意04a ≤≤,∴当2a =时,CDBF S 四边形的最大值为132,此时点()2,1E . 【点睛】本题考查的是利用待定系数法求解抛物线的解析式,二次函数与等腰三角形,图形面积的最值问题,灵活运用二次函数的图象与性质解决问题是解题的关键.6.(1)(3,0)-;(2)①2(1)4y x =--+;②1x <-;(3)①5350;②不在,理由见解析【解析】【分析】(1)由题意可得,点N 和点M 关于1x =-轴对称,求解即可;(2)①先求得抛物线C 的解析式,再根据关于y 轴对称,求得抛物线1C 即可;②根据二次函数的性质,求解即可;(3)①由抛物线解析式可得抛物线n C 与x 轴交点的坐标为(1,0)A -,(2,0)n B n +,求得线段1AB 、2AB 、……、100AB 的值,即可求解;②求得顶点1P 、2P 、3P ,求得13P P 的解析式,然后验证2P 是否在直线上.【详解】解:(1)由题意可得,点N 和点M 关于1x =-轴对称∵(1,0)M∴点(3,0)N -故答案为(3,0)-(2)①由(1)得,抛物线C 过点(1,0)M 、(3,0)N -、(0,3)D抛物线C 的解析式为31y a x x =+-()(),将点(0,3)D 代入解析式得:(03)(01)3a +-=解得1a =-∴22(3)(1)(23)(1)4y x x x x x =-+-=-+-=-++,顶点坐标为(1,4)-∵抛物线C 与抛物线1C 关于y 轴对称∴抛物线1C 的顶点为(1,4),开口与抛物线C 相同∴抛物线1C 解析式为2(1)4y x =--+②抛物线C 的解析式为2(1)4y x =-++,由二次函数的性质可得,当1x <-时,y 随x 的增大而增大,抛物线1C 解析式为2(1)4y x =--+,由二次函数的性质可得,当1x <时,y 随x 的增大而增大, ∴当1x <-时,抛物线C 和抛物线1C 上y 都随x 的增大而增大, (3)①抛物线n C 的解析式为(1)(2)(1,2,3)y x x n n =-+--=可得抛物线n C 与x 轴交点的坐标为(1,0)A -,(2,0)n B n +,即1(3,0)B ,2(4,0)B ,……,100(102,0)B∴14AB =,25AB =,……,100103AB = ∴123100103455350AB AB AB AB =+++++=++②当1n =时,抛物线1C 的解析式为2(1)(3)(1)4y x x x =-+-=--+,1(1,4)P 当2n =时,抛物线2C 的解析式为2325(1)(4)()24y x x x =-+-=--+,2325(,)24P当3n =时,抛物线3C 的解析式为2(1)(5)(2)9y x x x =-+-=--+,3(2,9)P 设直线13P P 的解析式为y kx b =+,将点1(1,4)P ,3(2,9)P 代入得429k b k b +=⎧⎨+=⎩,解得51k b =⎧⎨=-⎩,即51y x =- 当32x =时,3132551224y =⨯-=≠ ∴点2325(,)24P 不在直线13P P 上∴抛物线的顶点123,,,,n P P P P 不在一条直线上【点睛】此题考查了二次函数的图像与性质,涉及了待定系数法求解二次函数和一次函数解析式,解题的关键是熟练掌握二次函数的有关性质.7.(1)(﹣1,﹣5),y =x ﹣4;(2)①a 的值为a =﹣2. 【解析】 【分析】(1)由“伴随直线”的定义即可求解;(2)①先求y =a (x −1)2−4a 的伴随直线为y =ax −5a ,再联立方程组2(1)45y a x ay ax a ⎧=--⎨=-⎩,求出A (1,−4a ),B (2,−3a ),C (−1,0),D (3,0),由于当△ABC 为等腰三角形时,只存在一种可能为AC =BC ,即可求a 的值;②先求直线BC 解析式为y =−ax −a ,过P 作x 轴的垂线交BC 于点Q ,设点P 的横坐标为x ,则P [x ,a (x −1)2−4a ],Q (x ,−ax −a ),23127()228PBC S a x a ∆=--,即可求面积的最大值,进而求a 的值. 【详解】(1)∵抛物线y =(x +1)2﹣5,∴顶点坐标为(﹣1,﹣5),“伴随直线”为y =x ﹣4, 故答案为:(﹣1,﹣5),y =x ﹣4;(2)①由“伴随直线”定义可得:y =a (x ﹣1)2﹣4a 的伴随直线为y =ax ﹣5a ,联立2(1)45y a x a y ax a ⎧=--⎨=-⎩,解得14x y a =⎧⎨=-⎩或23x y a=⎧⎨=-⎩,∴A (1,﹣4a ),B (2,﹣3a ),在y =a (x ﹣1)2﹣4a 中,令y =0可解得x =﹣1或x =3, ∴C (﹣1,0),D (3,0), ∴AC 2=4+16a 2,BC 2=9+9a 2,∵当△ABC 为等腰三角形时,只存在一种可能为AC =BC ,∴AC 2=BC 2,即4+16a 2=9+9a 2,解得=a ∵抛物线开口向下,∴a =∴若△ABC 为等腰三角形时,a 的值为 ②设直线BC 的解析式为y =kx +b , ∵B (2,﹣3a ),C (﹣1,0),∴200k b k b +=⎧⎨-+=⎩,解得k a b a =-⎧⎨=-⎩, ∴直线BC 解析式为y =﹣ax ﹣a ,如图,过P 作x 轴的垂线交BC 于点Q ,设点P 的横坐标为x , ∴P [x ,a (x ﹣1)2﹣4a ],Q (x ,﹣ax ﹣a ), ∵P 是直线BC 上方抛物线上的一个动点,∴22219(1)4(2)()24PQ a x a ax a a x x a x ⎡⎤=--++=--=--⎢⎥⎣⎦,∴23127()228PBC S a x a ∆=--, ∴当12x =时,△PBC 的面积有最大值278-a , ∴S 取得最大值274时,即272784-=a ,解得a =﹣2.【点睛】本题考查二次函数的综合应用,熟练掌握二次函数的图象及性质,理解新定义,将所求问题转化为直线与抛物线的知识是解题的关键.8.(1)见解析;(2)7;(3)2193.【解析】【分析】(1)根据两个菱形中,点E在BC的延长线上,点G在DC的延长线上这一特殊的位置关系和CE=BH可证明相应的边和角分别相等,从而证明结论;(2)由AB=BC,∠ABC=60 ,可证明△ABC是等边三角形,从而证明∠AHB=90°,再由△ABH≌△HEF,得∠HFE=∠AHB=90°,再得∠DPF=180°﹣∠HFE=90°,在Rt△DPF 中用勾股定理求出DF的长;(3)作FM⊥BG于点M,当EH⊥BC时,可证明CH=CM=12CG=12BH,从而求出BM、FM的长,再由勾股定理求出BF的长.【详解】解:(1)证明:如图1,∵四边形ABCD和四边形CEFG都是菱形,∴AB=BC,CE=EF,∵CE=BH,∴BH=EF,∵BH+CH=CE+CH,∴BC=HE,∴AB=HE;∵点E 在BC 的延长线上,点G 在DC 的延长线上, ∴AB ∥DG ∥EF , ∴∠B =∠E , 在△ABH 和△HEF 中, BH EF B E AB HE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABH ≌△HEF (SAS ).(2)如图2,设FH 交CG 于点P ,连结CF ,∵AB =BC ,∠ABC =60°, ∴△ABC 是等边三角形, ∵BH =CH , ∴AH ⊥BC , ∴∠AHB =90°,由(1)得,△ABH ≌△HEF , ∴∠HFE =∠AHB =90°, ∵DG ∥EF ,∴∠DPF =180°﹣∠HFE =90°, ∴PF ⊥CG ,∵CG =FG ,∠G =∠E =∠B =60°, ∴△GFC 是等边三角形, ∴PC =PG =12CG ;∵BC =AB =2, ∴CG =EF =BH =12BC =1,∴PC =12;∵CD =AB =2, ∴PD =12+2=52, ∵CF =CG =1,∴PF 2=CF 2﹣PC 2=12﹣(12)2=34, ∴22253()724DF PD PF =+=+=.(3)如图3,作FM ⊥BG 于点M ,则∠BMF =90°,∵EH ⊥BC ,即EH ⊥BG , ∴EH ∥FM ,∵∠CEF =∠ACB =60°, ∴EF ∥MH ,∴四边形EHMF 是平行四边形, ∵∠EHM =90°, ∴四边形EHMF 是矩形, ∴EH =FM ;∵EF =EC ,∠CEF =60°, ∴△CEF 是等边三角形, ∴CE =CF ,∵∠EHC =∠FMC =90°, ∴Rt △EHC ≌Rt △FMC (HL ), ∴CH =CM =12CG ;∵CG =CE =BH , ∴CH =12BH ,∴CM =CH =13BC =13×2=23,∴CF =CG =2CM =2×23=43, ∴2FM =(43)2﹣(23)2=43,∵BM =2+23=83,∴2224876219()339BF FM BM =++==. 【点睛】本题主要考查了几何综合,其中涉及到了菱形的性质,全等三角形的判定及性质,等边三角形的判定及性质,勾股定理,矩形的判定及性质等,熟悉掌握几何图形的性质和合理做出辅助线是解题的关键.9.(1)抛物线表达式为211242y x x =-++;直线表达式为122y x =-+;(2)△BQC的面积的最大值为2(3)△PBE 的面积为58(4)点N的坐标为(5(5235,45-)或(92,14). 【解析】 【分析】(1)首先根据二次函数的对称性求出点B 的坐标,然后利用待定系数法把点的坐标代入表达式求解即可;(2)过Q 点作QH 垂直x 轴交BC 于点H ,连接CQ ,BQ ,由二次函数表达式设点Q 的坐标为(x ,211242x x -++),表示出△BQC 的面积,根据二次函数的性质即可求出△BQC的面积的最大值;(3)根据题意设出点P 坐标为(m ,211m m 242-++),E 点坐标为(m ,122m -+),D 点坐标为(m ,0),表示出OD 和PE 的长度,根据OD =4PE 列出方程求出m 的值,即可求出PE 和BD 的长度,然后根据三角形面积公式求解即可;(4)当BD 是菱形的边和对角线时两种情况分别讨论,设出点M 和点N 的坐标,根据菱形的性质列出方程求解即可. 【详解】解:(1)∵抛物线的对称轴为x =1,A (﹣2,0), ∴B 点坐标为(4,0),∴将A (﹣2,0),B (4,0),C (0,2),代入y =ax 2+bx +c 得,42016402a b c a b c c -+=⎧⎪++=⎨⎪=⎩解得:14122a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,∴抛物线的表达式为211242y x x =-++;设直线BC 的函数表达式为y kx b =+,∴将B (4,0),C (0,2),代入y kx b =+得,4002k b b +=⎧⎨+=⎩,解得:122k b ⎧=-⎪⎨⎪=⎩,∴直线BC 的函数表达式为122y x =-+. (2)如图所示,过Q 点作QH 垂直x 轴交BC 于点H ,交x 轴于点M ,连接CQ ,BQ ,设点Q 的坐标为(x ,211242x x -++),点H 的坐标为(x ,122x -+),∴HQ =221111224224x x x x x ⎛⎫-++--+=-+ ⎪⎝⎭,∴()221111111422222242QBC QHC QHB S S S QH OM QH BM QH OM BM QH OB x x x x ⎛⎫=+=+=+==⨯-+⨯=-+ ⎪⎝⎭△△△, ∴当221222bx a=-=-=⎛⎫⨯- ⎪⎝⎭时,2122222S =-⨯+⨯=, ∴△BQC 的面积的最大值为2;(3)设点P 坐标为(m ,211m m 242-++),E 点坐标为(m ,122m -+),D 点坐标为(m ,0),∴221111222424PE m m m m m ⎛⎫=-+--++=- ⎪⎝⎭,OD m =,∵OD =4PE ,∴21=44m m m ⎛⎫⨯- ⎪⎝⎭,整理得:250m m -=,解得:10m =(舍去),25m =,∴2211555444PE m m =-=⨯-=,D 点坐标为(5,0), ∴BD =1,∴115512248PBE S PE BD ==⨯⨯=△; (4)如图所示,当BD 是菱形的边时,BM 是菱形的边时,∵四边形BDNM 是菱形, ∴BD =BM =MN ,∴设M 点坐标为(a ,122a -+),N 点坐标为(a +1,122a -+),又∵B 点坐标为(4,0),D 点坐标为(5,0), ∴BD =1,()221422BM a a ⎛⎫=-+-+ ⎪⎝⎭, ∵BD =BM , ∴BD 2=BM 2, ∴()2214212a a ⎛⎫-+-+= ⎪⎝⎭, 整理得:2540760a a -+=, 解得:1225254455a a =+=-,, ∴N 点坐标为(2555+,55-)或(2555-,55), 当BD 是菱形的边时,DM 是菱形的边时,∵四边形BDMN 是菱形,B 点坐标为(4,0),D 点坐标为(5,0), ∴BD =MN =DM =1,∴设M 点坐标为(b ,122b -+),N 点坐标为(b -1,122b -+), ∴DM2=()221522b b ⎛⎫-+-+ ⎪⎝⎭, ∵BD =DM , ∴BD 2=DM 2,∴()2215212b b ⎛⎫-+-+= ⎪⎝⎭, 整理得:25481120b b -+=, 解得:122845b b ==,(舍去), ∴N 点坐标为(235,45-);当BD 是菱形的对角线时,∵四边形BMDN 是菱形,B 点坐标为(4,0),D 点坐标为(5,0), ∴M 点横坐标为45922+=, 将92x =代入122y x =-+得:y =14-, ∴M 点的坐标为(92,14-),又∵点M 和点N 关于x 轴对称, ∴点N 的坐标为(92,14).综上所述,点N 的坐标为(25552555235,45-)或(92,14). 【点睛】此题考查了一次函数和二次函数表达式的求法,二次函数的性质,二次函数中三角形最大面积问题,菱形存在性问题等知识,解题的关键是根据题意设出点的坐标,表示出三角形面积,根据菱形的性质列出方程求解.10.(1)①见解析;②见解析;③7 (2)57221+77【解析】 【分析】(1)①根据旋转的性质得到CB CE =,求得EBC BEC ∠=∠,根据平行线的性质得到EBC BEA ∠=∠,于是得到结论;②如图1,过点B 作CE 的垂线BQ ,根据角平分线的性质得到AB BQ =,求得=CG BQ ,根据全等三角形的性质得到BH GH =,根据三角形的中位线定理即可得到结论; ③如图2,过点G 作BC 的垂线GM ,解直角三角形即可得到结论.(2)如图3,连接DB ,DG ,过G 作GP BC ⊥交BC 的延长线于P ,GN DC ⊥交DC 的延长线于N ,根据旋转的性质得到4==CE BC ,2CD AB ==,解直角三角形得到1NG =,3PG =,根据三角形的面积公式即可得到结论.(1)解:①证明:矩形ABCD 绕着点C 按顺时针方向旋转得到矩形FECG ,CB CE ∴=,EBC BEC ∴∠=∠,又//AD BC ,EBC BEA ∴∠=∠, BEA BEC ∴∠=∠,BE ∴平分AEC ∠;②证明:如图1,过点B 作CE 的垂线BQ ,BE 平分AEC ∠,BA AE ⊥,BQ CE ⊥,AB BQ ∴=,CG BQ ∴=,90BQH GCH ∠=∠=︒,BQ AB CG ==,BHQ GHC ∠=∠, ()BHQ GHC AAS ∴∆≅∆,即点H 是BG 中点, 又点P 是BC 中点,//PH CG ∴;③解:如图2,过点G 作BC 的垂线GM ,22BC AB ==,1BQ ∴=,30BCQ ∴∠=︒,90ECG ∠=︒, 60GCM ∴∠=︒, 1CG AB CD ===,32GM ∴=,12CM =, 222253()()722BG BM MG ∴=+=+=;(2)解:如图3,连接DB ,DG ,过G 作GP BC ⊥交BC 的延长线于P ,GN DC ⊥交DC 的延长线于N ,24BC AB ==,2AB ∴=,将矩形ABCD 绕着点C 按顺时针方向旋转得到矩形FECG ,4CE BC ∴==,2CD AB ==,点A ,E ,D 第二次在同一直线上,90CDE,12CD CE ∴=,60DCE ∴∠=︒,30NCG ∴∠=︒,2CG =, 1NG ∴=,3PG =,523DBG DBC DCG BCG S S S S ∆∆∆∆∴=++=+,2227BG BP PG =+=,25722177DBG S DM BG ∆∴==+. 【点睛】本题考查了旋转的性质,全等三角形的判定和性质,矩形的性质,三角形的中位线定理,勾股定理,解直角三角形,解题的关键是正确地作出辅助线.11.(1)(2,2)-;(2)90°;(3)4- 【解析】 【分析】(1)如图1中,作BH y ⊥轴于H .只要证明()ACO CBH AAS △≌△即可解决问题; (2)过C 作CK x ⊥轴交OA 的延长线于K ,求证ACK DCO △≌△即可求出AOD ∠的度数可求;(3)作BE x ⊥轴于点E ,并延长交AC 的延长线于点F ,证明()ABE AFE ASA △≌△,由全等三角形的性质得出BE FE =,证明()ACD CBF ASA △≌△,得出BF AD =,则可得出答案. 【详解】解:(1)如图1中,作BH y ⊥轴于H .(4,0)-A ,(0,2)C ,4∴=OA ,2OC =,90AOC ACB BHC ∠=∠=∠=︒,90ACO BCH ∴∠+∠=︒,90CAO ACO ∠+∠=︒,CAO BCH ∴∠=∠,在ACO △与CBH 中,AOC BHCCAO BCH AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()ACO CBH AAS ∴△≌△,4CH OA ∴==,2BH OC ==, 2OH CH OC ∴=-=,(2,2)C ∴-,故答案为:(2,2)-;(2)如图所示,过C 作CK x ⊥轴交OA 的延长线于K ,则90OCK ∠=︒,∵AOB 为等腰直角三角形, ∴45AOB ∠=︒, 又∵90OCK ∠=︒,∴9045K AOB AOB ∠=︒-∠=︒=∠, ∴OC CK =,ACD 为等腰直角三角形, 90ACD ∴∠=︒,AC DC =,90ACO OCD ∴∠+∠=︒,又∵90OCK ∠=︒,90ACO ACK ∴∠+∠=︒, ACK OCD ∴∠=∠,在ACK 与DCO 中,CK OC ACK OCD AC DC =⎧⎪∠=∠⎨⎪=⎩()ACK DCO SAS ∴△≌△,45DOC K ∴∠=∠=︒, 90AOD AOB DOC ∴∠=∠+∠=︒;(3)如图2中,作BE x ⊥轴于点E ,并延长交AC 的延长线于点F ,(4,0)-A ,(,0)D m ,4AD m ∴=+,AD 平分BAC ∠, BAE FAE ∴∠=∠,∵BE x ⊥轴于点E ,90AEB AEF ∴∠=∠=︒,在ABE △和AFE △中, AEB AEF AE AEBAE FAE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ABE AFE ASA ∴△≌△,BE FE ∴=,∵B 的纵坐标为n ,且点B 在第四象限,BE FE n ∴==-, 2BF BE FE n ∴=+=-, 90ACB AEB ∠=∠=︒,90CAD CDA CBF BDE ∴∠+∠=∠+∠=︒,又∵CDA BDE ∠=∠,CAD CBF ∴∠=∠,在ACD △和BCF △中,ACD BCF AC BCCAD CBF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ACD CBF ASA ∴△≌△,AD BF ∴=,42m n ∴+=-,即:24m n +=-, ∴2n m +的值为4-. 【点睛】本题是三角形综合题,考查了等腰直角三角形的性质,全等三角形的性质和判定,角平分线的定义,坐标与图形性质,熟练掌握全等三角形的判定与性质是解题的关键.12.(1)y=x﹣4(2)P(4)(3)存在,M(,0)或(﹣17,0)【解析】【分析】(1)先分别求出A、B、C三点的坐标,即可利用待定系数法求出直线BC的解析式;(2)设E(x1,x1﹣4),Q(x2,x2﹣4),则D(x1,x12﹣3x1﹣4),P(x2,x22﹣3x2﹣4),由平行四边形的性质得到ED=QP,即(x1﹣4)﹣(x12﹣3x1﹣4)=(x2﹣4)﹣(x22﹣3x2﹣4),从而推出x1+x2=4,再由四边形EDPQ的周长(0<x<4),即可利用二次函数的性质得到答案;(3)分△AEB∽△BDM和△AEB∽△BM′D,利用相似三角形的性质求解即可.(1)解:∵抛物线y=x2﹣3x﹣4与x轴交于A、B(A在B的左侧),与y轴交于点C,∴令x=0,则y=4,令y=0,则x2﹣3x﹣4=0,解得:x1=﹣1,x2=4,∴C(0,﹣4),A(﹣1,0),B(4,0),设直线BC的解析式为:y=kx+b(k≠0),∴把B、C坐标代入上式得:,解得:,∴直线BC的解析式为:y=x﹣4;(2)解:如图1,过D作轴交BC于E,点P是BC下方抛物线上动点(P在D的右∥轴交BC于Q,侧),过点P作PQ y又∵抛物线的解析式为:y=x2﹣3x﹣4,直线BC的解析式为:y=x﹣4,∴设E(x1,x1﹣4),Q(x2,x2﹣4),则D(x1,x12﹣3x1﹣4),P(x2,x22﹣3x2﹣4),若四边形EDPQ为平行四边形,则ED=QP,即(x1﹣4)﹣(x12﹣3x1﹣4)=(x2﹣4)﹣(x22﹣3x2﹣4),∴,∴解得:x1=x2(不合题意,应舍去),x1+x2=4,∵,ED=4x1﹣x12,又∵四边形EDPQ的周长把x2=4﹣x1代入上式得:四边形EDPQ的周长(0<x<4),∵﹣2<0,∴当时,四边形EDPQ的周长有最大值12,此时,∴P(,);(3)解:如图2,若DM∥EB,则∠DMB=∠EBM,∵AE∥DB,∴∠EAB=∠DBM,∴△AEB∽△BDM,∴,∵xD=1,∴yD=1﹣3﹣4=﹣6,∴D(1,﹣6),∵B(4,0),D(1,﹣6),∴yBD=2x﹣8,∵AE∥BD,∴设yAE=2x+n并把A(﹣1,0)代入得:yAE=2x+2,联立,解得:(与A重合,应舍去)或,∴,,∴,∴,∴,∴M(,0),②如图3,若∠DM′B=∠BEA且∠EAB=∠DBM′,∴△AEB∽△BM′D,∴,∴,∴BM′=21,∴OM′=BM′﹣BO=21﹣4=17,∴M′(﹣17,0),综上所述,M(,0)或(﹣17,0).【点睛】本题主要考查了二次函数的综合,二次函数与平行四边形,二次函数与相似三角形,一次函数与二次函数综合等等,解题的关键在于能够熟练掌握相关知识.13.(1)E(43,3)(2)4 3(3)k=6【解析】【分析】(1)由OB=4、OA=3,求出点A、B、C的坐标分别为:(0,3)、(4,0)、(4,3),由BF=13BC得到点F(4,1),进而求解;(2)F点的横坐标为4,则F(4,),E的纵坐标为3,则E(,3),进而求解;(3)当点G落在对角线AB上时,得到EF∥AB,则MF是△CGB的中位线,则点F是BC 的中点,即可求解;当点G落在OC上时,由①知,CG⊥AB,如果G落在OC上,则OC⊥AB,由题意得AB和OC不垂直,故该情况不存在.(1)解:∵OB=4,OA=3,∴点A、B的坐标分别为:(0,3)、(4,0)∵四边形OACB为矩形,则点C(4,3),当BF=13BC时,点F(4,1),将点F的坐标代入y=kx并解得:k=4,故反比例函数的表达式为:y=4x,当y=3时,x=43,故E(43,3);(2)解:∵F点的横坐标为4,点F在反比例函数上,∴F(4,),∴CF=BC-BF=3-=,∵E的纵坐标为3,∴E(,3),∴CE=AC-AE=4-13k=,在Rt△CEF中,tan∠EFC==43;(3)①当点G落在对角线AB上时,在Rt△ABC中,tan∠ABC=ACBC=43=tan∠EFC,故EF∥AB,连接CG交EF于点M,则MG=MC,即点M是CG的中点,而EF∥AB,故MF是CGB的中位线,则点F是BC的中点,故点F的坐标为(4,32),将点F的坐标代入反比例函数表达式得:k=4×32=6;②当点G落在OC上时,由①知,CG⊥AB,如果G落在OC上,则OC⊥AB,由题意得AB和OC不垂直,故点G不会落在OC上;综上,k=6.【点睛】。

2023届中考数学压轴题含答案解析

2023届中考数学压轴题含答案解析

2023年中考数学压轴题
1.如图,在平面直角坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),
B(0,2),二次函数y=1
2
x2+bx﹣2的图象经过C点.
(1)求二次函数的解析式;
(2)平移该二次函数图象的对称轴所在直线l,若直线l恰好将△ABC的面积分为1:2两部分,请求出此时直线l与x轴的交点坐标;
(3)将△ABC以AC所在直线为对称轴翻折180°,得到△AB′C,那么在二次函数图象上是否存在点P,使△PB′C是以B′C为直角边的直角三角形?若存在,请求出P 点坐标;若不存在,请说明理由.
解:(1)过点C作KC⊥x轴交于点K,
∵∠BAO+∠CAK=90°,∠BAO+∠CAK=90°,
∴∠CAK=∠OBA,
又∠AOB=∠AKC=90°,AB=AC,
∴△ABO≌△CAK(AAS),
∴OB=AK=2,AO=CK=1,故点C的坐标为(3,1),
将点C的坐标代入二次函数表达式得:1=1
2
×9+3b﹣2,
第1页共12页。

中考数学压轴题 (含答案) 百度文库

中考数学压轴题 (含答案) 百度文库

一、中考数学压轴题1.如图1,已知点B (0,9),点C 为x 轴上一动点,连接BC ,△ODC 和△EBC 都是等边三角形.(1)求证:DE =BO ;(2)如图2,当点D 恰好落在BC 上时.①求点E 的坐标;②在x 轴上是否存在点P ,使△PEC 为等腰三角形?若存在,写出点P 的坐标;若不存在,说明理由;③如图3,点M 是线段BC 上的动点(点B ,点C 除外),过点M 作MG ⊥BE 于点G ,MH ⊥CE 于点H ,当点M 运动时,MH +MG 的值是否发生变化?若不会变化,直接写出MH +MG 的值;若会变化,简要说明理由.2.如图所示,在平面直角坐标系中,点(),C m m 在一三象限角平分线上,点(),0B n 在x 轴上,且m=2n -+2n -+4,点A 在y 轴的正半轴上;四边形AOBC 的面积为6 (1)求点A 的坐标;(2)P 为AB 延长线上一点,//PQ OC ,交CB 延长线于Q ,探究OAP ∠、ABQ ∠、Q ∠的数量关系并说明理由;(3)作AD 平行CB 交CO 延长线于D ,BE 平分CBx ∠,BE 反向延长线交CO 延长线于,若设ADO α∠=,F β∠=,试求2αβ+的值.3.如图1,在平面直角坐标系中,抛物线2393344y x x =--与x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点C . (1)过点C 的直线5334y x =-交x 轴于点H ,若点P 是第四象限内抛物线上的一个动点,且在对称轴的右侧,过点P 作//PQ y 轴交直线CH 于点Q ,作//PN x 轴交对称轴于点N ,以PQ PN 、为邻边作矩形PQMN ,当矩形PQMN 的周长最大时,在y 轴上有一动点K ,x 轴上有一动点T ,一动点G 从线段CP 的中点R 出发以每秒1个单位的速度沿R K T →→的路径运动到点T ,再沿线段TB 以每秒2个单位的速度运动到B 点处停止运动,求动点G 运动时间的最小值:(2)如图2, 将ABC ∆绕点B 顺时针旋转至A BC ''∆的位置, 点A C 、的对应点分别为A C ''、,且点C '恰好落在抛物线的对称轴上,连接AC '.点E 是y 轴上的一个动点,连接AE C E '、, 将AC E ∆'沿直线C E '翻折为A C E ∆'', 是否存在点E , 使得BAA ∆'为等腰三角形?若存在,请求出点E 的坐标;若不存在,请说明理由.4.综合与实践4A 纸是我们学习工作最常用的纸张之一, 2,我们定义:长宽之比是2的矩形纸片称为“标准纸”.操作判断:()1如图1所示,矩形纸片2()ABCD AD AB =是一张“标准纸”,将纸片折叠一次,使点B 与D 重合,再展开,折痕EF 交AD 边于点,E 交BC 边于点F ,若1,AB =求CF 的长,()2如图2,在()1的基础上,连接,BD 折痕EF 交BD 于点O ,连接,BE 判断四边形BFDE 的形状,并说明理由.探究发现:()3如图3所示,在(1)和(2)的基础上,展开纸片后,将纸片再折叠一次,使点A 与点C 重合,再展开,痕MN 交AD 边于点M ,BC 交边于点,N 交BD 也是点O .然后将四边形ENFM 剪下,探究纸片ENFM 是否为“标准纸”,说明理由.5.如果关于x 的一元二次方程20ax bx c ++=有两个不相等的实数根,且其中一个根为另一个根的一半,则称这样的方程为“半等分根方程”.(1)①方程2280x x --= 半等分根方程(填“是”或“不是”);②若(1)()0x mx n -+=是半等分根方程,则代数式2252m mn n ++= ;(2)若点(,)p q 在反比例函数8x y =的图象上,则关于x 的方程260px x q -+=是半等分根方程吗?并说明理由; (3)如果方程20ax bx c ++=是半等分根方程,且相异两点(1,)M t s +,(4,)N t s -都在抛物线2y ax bx c =++上,试说明方程20ax bx c ++=的一个根为53. 6.如图,抛物线2y x bx c =-++与x 轴相交于A 、B 两点,与y 轴相交于点C ,且点B与点C 的坐标分别为()3,0B ,()0,3C ,点M 是抛物线的顶点.(1)求二次函数的关系式.(2)点P 为线段MB 上一个动点,过点P 作PD x ⊥轴于点D .若OD m =,PCD 的面积为S .①求S 与m 的函数关系式,写出自变量m 的取值范围.②当S 取得最值时,求点P 的坐标.(3)在MB 上是否存在点P ,使PCD 为直角三角形?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.7.如图1,抛物线23y ax bx =++与x 轴交于点(1,0)A -、点B ,与y 轴交于点C ,顶点D 的横坐标为1,对称轴交x 轴交于点E ,交BC 与点F .(1)求顶点D 的坐标;(2)如图2所示,过点C 的直线交直线BD 于点M ,交抛物线于点N .①若直线CM 将BCD ∆分成的两部分面积之比为2:1,求点M 的坐标;②若NCB DBC ∠=∠,求点N 的坐标.8.平面直角坐标系中,点A 、B 分别在x 轴正半轴、y 轴正半轴上,AO =BO ,△ABO 的面积为8.(1)求点A 的坐标;(2)点C 、D 分别在x 轴负半轴、y 轴正半轴上(D 在B 点上方),AB ⊥CD 于E ,设点D 纵坐标为t ,△BCE 的面积为S ,求S 与t 的函数关系;(3)在(2)的条件下,点F 为BE 中点,连接OF 交BC 于G ,当∠FOB +∠DAE =45°时,求点E 坐标.9.如图,在平面直角坐标系中,点(1,2)A ,(5,0)B ,抛物线22(0)y ax ax a =->交x 轴正半轴于点C ,连结AO ,AB .(1)求点C 的坐标;(2)求直线AB 的表达式;(3)设抛物线22(0)y ax ax a =->分别交边BA ,BA 延长线于点D ,E .①若2AE AO =,求抛物线表达式;②若CDB △与BOA △相似,则a 的值为 .(直接写出答案)10.如图,射线AM 上有一点B ,AB =6.点C 是射线AM 上异于B 的一点,过C 作CD ⊥AM ,且CD =43AC .过D 点作DE ⊥AD ,交射线AM 于E . 在射线CD 取点F ,使得CF =CB ,连接AF 并延长,交DE 于点G .设AC =3x .(1) 当C 在B 点右侧时,求AD 、DF 的长.(用关于x 的代数式表示)(2)当x 为何值时,△AFD 是等腰三角形.(3)若将△DFG 沿FG 翻折,恰使点D 对应点'D 落在射线AM 上,连接'FD ,'GD .此时x 的值为 (直接写出答案)11.小明研究了这样一道几何题:如图1,在ABC 中,把AB 绕点A 顺时针旋转()0180a a ︒<<︒得到AB ',把AC 绕点A 逆时针旋转β得到AC ',连接B C ''.当180a β+=︒时,请问AB C ''△边B C ''上的中线AD 与BC 的数量关系是什么?以下是他的研究过程:特例验证:(1)①如图2,当ABC 为等边三角形时,猜想AD 与BC 的数量关系为AD =_______BC ;②如图3,当90BAC ∠=︒,8BC =时,则AD 长为________. 猜想论证:(2)在图1中,当ABC 为任意三角形时,猜想AD 与BC 的数量关系,并给予证明.拓展应用:(3)如图4,在四边形ABCD ,90C ∠=︒,120A B ∠+∠=︒,3BC =6CD =,3DA =P ,使PDC △与PAB △之间满足小明探究的问题中的边角关系?若存在,请画出点P 的位置(保留作图痕迹,不需要说明)并直接写出PDC △的边DC 上的中线PQ 的长度;若不存在,说明理由.12.注意:为了使同学们更好地解答本题的第(Ⅱ)问,我们提供了一种分析问题的方法,你可以依照这个方法按要求完成本题的解答,也可以选用其他方法,按照解答题的一般要求进行解答即可.如图,将一个矩形纸片ABCD ,放置在平面直角坐标系中,()0,0A ,()4,0B ,()0,3D ,M 是边CD 上一点,将ADM 沿直线AM 折叠,得到ANM . (Ⅰ)当AN 平分MAB ∠时,求DAM ∠的度数和点M 的坐标;(Ⅱ)连接BN ,当1DM =时,求ABN 的面积;(Ⅲ)当射线BN 交线段CD 于点F 时,求DF 的最大值.(直接写出答案) 在研究第(Ⅱ)问时,师生有如下对话:师:我们可以尝试通过加辅助线,构造出直角三角形,寻找方程的思路来解决问题.小明:我是这样想的,延长MN 与x 轴交于P 点,于是出现了Rt NAP △.小雨:我和你想的不一样,我过点N 作y 轴的平行线,出现了两个Rt NAP △.13.如图,在等边△ABC 中,AB =BC =AC =6cm ,点P 从点B 出发,沿B →C 方向以1.5cm/s 的速度运动到点C 停止,同时点Q 从点A 出发,沿A →B 方向以1cm/s 的速度运动,当点P 停止运动时,点Q 也随之停止运动,连接PQ ,过点P 作BC 的垂线,过点Q 作BC 的平行线,两直线相交于点M .设点P 的运动时间为x (s ),△MPQ 与△ABC 重叠部分的面积为y (cm 2)(规定:线段是面积为0的图形).(1)当x = (s )时,PQ ⊥BC ;(2)当点M 落在AC 边上时,x = (s );(3)求y 关于x 的函数解析式,并写出自变量x 的取值范围.14.在ABC ∆中,若存在一个内角角度,是另外一个内角角度的n 倍(n 为大于1的正整数),则称ABC ∆为n 倍角三角形.例如,在ABC ∆中,80A ∠=︒,75B ∠=︒,25C ∠=︒,可知3∠=∠B C ,所以ABC ∆为3倍角三角形.(1)在ABC ∆中,55A ∠=︒,25B ∠=︒,则ABC ∆为________倍角三角形;(2)若DEF ∆是3倍角三角形,且其中一个内角的度数是另外一个内角的余角的度数的13,求DEF ∆的最小内角. (3)若MNP ∆是2倍角三角形,且90M N P ∠<∠<∠<︒,请直接写出MNP ∆的最小内角的取值范围.15.如图①,△ABC 是等腰直角三角形,在两腰AB 、AC 外侧作两个等边三角形ABD 和ACE ,AM 和AN 分别是等边三角形ABD 和ACE 的角平分线,连接CM 、BN ,CM 与AB 交于点P .(1)求证:CM=BN;(2)如图②,点F为角平分线AN上一点,且∠CPF=30°,求证:△APF∽△AMC;(3)在(2)的条件下,求PFBN的值.16.如图,四边形AOBC是正方形,点C的坐标是(82,0).(1)正方形AOBC的边长为,点A的坐标是;(2)将正方形AOBC绕点O顺时针旋转45︒,点A,B,C旋转后的对应点为A',B',C',求点A'的坐标及旋转后的正方形与原正方形的重叠部分的面积;(3)动点P从点O出发,沿折线OACB方向以1个单位/秒的速度匀速运动,同时,另一动点Q从点O出发,沿折线OBCA方向以2个单位/秒的速度匀速运动,运动时间为t 秒,当它们相遇时同时停止运动,当OPQ△为等腰三角形时,求出t的值(直接写出结果即可).17.已知四边形ABCD为矩形,对角线AC、BD相交于点O,AD=AO.点E、F为矩形边上的两个动点,且∠EOF=60°.(1)如图1,当点E、F分别位于AB、AD边上时,若∠OEB=75°,求证:DF=AE;(2)如图2,当点E、F同时位于AB边上时,若∠OFB=75°,试说明AF与BE的数量关系;(3)如图3,当点E、F同时在AB边上运动时,将△OEF沿OE所在直线翻折至△OEP,取线段CB的中点Q.连接PQ,若AD=2a(a>0),则当PQ最短时,求PF之长.18.在△ABC 中∠B=45°,∠C=30°,点D 为BC 边上任意一点,连接AD ,将线段AD 绕A 顺时针旋转90°,得到线段AE ,连接DE .(1)如图1,点E 落在BA 的延长线上时,∠EDC= (度)直接填空.(2)如图2,点D 在运动过程中,DE ⊥AC 时,AB=4 ,求DE 的值.(3)如图3,点F 为线段DE 中点,2a ,求出动点D 从B 运动到C ,点F 经过的路径长度.19.如图1,在ABC 中,BD 平分ABC ∠,CD 平分ACB ∠.(1)若80A ∠=︒,则BDC ∠的度数为______;(2)若A α∠=,直线MN 经过点D .①如图2,若//MN AB ,求NDC MDB ∠-∠的度数(用含α的代数式表示); ②如图3,若MN 绕点D 旋转,分别交线段,BC AC 于点,M N ,试问在旋转过程中NDC MDB ∠-∠的度数是否会发生改变?若不变,求出NDC MDB ∠-∠的度数(用含α的代数式表示),若改变,请说明理由:③如图4,继续旋转直线MN ,与线段AC 交于点N ,与CB 的延长线交于点M ,请直接写出NDC ∠与MDB ∠的关系(用含α的代数式表示).20.问题提出(1)如图1,已知三角形ABC ,请在BC 边上确定一点D ,使得AD 的值最小. 问题探究(2)如图2,在等腰ABC 中,AB AC =,点P 是AC 边上一动点,分别过点A ,点C 作线段BP 所在直线的垂线,垂足为点,D E ,若5,6AB BC ==,求线段BP 的取值范围,并求AD CE +的最大值.问题解决(3)如图3,正方形ABCD 是一块蔬菜种植基地,边长为3千米,四个顶点处都建有一个蔬菜采购点,根据运输需要,经过顶点A 处和BC 边的两个三等分点E F 、之间的某点P 建设一条向外运输的快速通道,其余三个采购点都修建垂直于快速通道的蔬菜输送轨道,分别为BB '、CC '、DD '.若你是此次项目设计的负责人,要使三条运输轨道的距离之和()BB CC DD '''++最小,你能不能按照要求进行规划,请通过计算说明.21.(操作发现)如图1,ABC ∆为等腰直角三角形,90ACB ∠=︒,先将三角板的90︒角与ACB ∠重合,再将三角板绕点C 按顺时针方向旋转(旋转角大于0︒且小于45︒),旋转后三角板的一直角边与AB 交于点D .在三角板另一直角边上取一点F ,使CF CD =,线段AB 上取点E ,使45DCE ∠=︒,连接AF ,EF .(1)请求出EAF ∠的度数?(2)DE 与EF 相等吗?请说明理由;(类比探究)如图2,ABC ∆为等边三角形,先将三角板中的60︒角与ACB ∠重合,再将三角板绕点C 按顺时针方向旋转(旋转角大于0︒且小于30).旋转后三角板的一直角边与AB 交于点D .在三角板斜边上取一点F ,使CF CD =,线段AB 上取点E ,使30DCE ∠=︒,连接AF ,EF .(3)直接写出EAF ∠=_________度;(4)若1AE =,2BD =,求线段DE 的长度.22.发现来源于探究.小亮进行数学探究活动,作边长为a 的正方形ABCD 和边长为b 的正方形AEFG (a>b ),开始时,点E 在AB 上,如图1.将正方形AEFG 绕点A 逆时针方向旋转.(1)如图2,小亮将正方形AEFG 绕点A 逆时针方向旋转,连接BE 、DG ,当点G 恰好落在线段BE 上时,小亮发现DG ⊥BE ,请你帮他说明理由.当a=3,b=2时,请你帮他求此时DG 的长.(2)如图3,小亮旋转正方形AEFG ,点E 在DA 的延长线上,连接BF 、DF .当FG 平分∠BFD 时,请你帮他求a :b 及∠FBG 的度数.(3)如图4,BE 的延长线与直线DG 相交于点P ,a=2b .当正方形AEFG 绕点A 从图1开始,逆时针方向旋转一周时,请你帮小亮求点P 运动的路线长(用含b 的代数式表示).23.(1)(发现)如图1,在ABC 中,//DE BC 分别交AB 于D ,交AC 于E .已知CD BE ⊥,3CD =,5BE =,求BC DE +的值.思考发现,过点E 作//EF DC ,交BC 延长线于点F ,构造BEF ,经过推理和计算能够使问题得到解决(如图2).请回答:BC DE +的值为______.(2)(应用)如图3,在四边形ABCD 中,//AB CD ,AD 与BC 不平行且AD BC =,对角线AC BD ⊥,垂足为O .若3CD =,5AB =,DAB CBA ∠=∠,求AC 的长.(3)(拓展)如图4,已知平行四边形ABCD 和矩形ABEF ,AC 与DF 交于点G ,FD FB =,且30BFD ∠=︒,60EBF ∠=︒,判断AC 与DF 的数量关系并证明.24.在菱形ABCD 中,点P 是对角线BD 上一点,点M 在CB 的延长线上,且PC PM =, 连接PA .()1如图①,求证:PA PM =;()2如图②,连接,AM PM 与AB 交于点,120O ADC ︒∠=求证 =PC AM ;()3连接AM ,当 90ADC ︒∠=时,PC 与AM 的数量关系是25.(1)如图①,在Rt ABC 中,90C ∠=︒,13AB =,5BC =,则tan A 的值是_______.(2)如图②,在正方形ABCD 中,5AB =,点E 是平面上一动点,且2BE =,连接CE ,在CE 上方作正方形EFGC ,求线段CF 的最大值.问题解决:(3)如图③,O 半径为6,在Rt ABC 中,90B ∠=︒,点, A B 在O 上,点C 在O 内,且3tan 4A =.当点A 在圆上运动时,求线段OC 的最小值.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.E解析:(1)见解析;(2)①E (39);②存在,点P 的坐标为(-3,0)或(30);③不变化,MH +MG =9【解析】【分析】(1)根据等边三角形的性质得到BC=CE ,OC=CD ,∠OCD=∠BCE=60°,求得∠OCB=∠DCE ,根据全等三角形的性质即可得到结论;(2)①由点B (0,9),得到OB=9,根据全等三角形的性质得到∠CDE=∠BOC=90°,根据等边三角形的性质得到∠DEC=30°,求得63CE =E 作EF ⊥x 轴于F ,角三角形即可得到结论;②存在,如图,当63CE CP ==CE=PE ,根据等腰三角形的性质即可得到结论;③不会变化,连接EM ,根据三角形的面积公式即可得到结论.【详解】(1)∵△ODC 和△EBC 都是等边三角形∴OC =DC ,BC =CE ,∠OCD =∠BCE =60°∴∠BCE +∠BCD =∠OCD +∠BCD即∠ECD =∠BCO∴△DEC ≌△OBC (SAS )∴DE =BO(2)①∵点B (0,9),∴OB=9,由(1)知△BCO ≌△ECD ,∴∠CDE=∠BOC=90°,∴DE ⊥BC ,∵△EBC 是等边三角形,∴∠DEC=30°,∴∠OBC=∠DEC=30°, ∴3333OC OB ==,63BC =, ∴63CE =,过E 作EF ⊥x 轴于F ,∵∠DCO=∠BCE=60°,∴∠ECF=60°,∵63CE BC ==,∴33CF =,39EF CE ==, ∵33CO = ,∴63OF =,∴E (63,9);②存在,如图,当63CE CP ==∵33OC =∴133OP =293OP =∴12333P P -(,),(9,); 当CE=PE ,∵∠ECP=60°,∴△CPE 是等边三角形,∴P 2,P 3重合,∴当△PEC 为等腰三角形时,点P 的坐标为(-33,0)或(93,0);③不会变化,如图,连接EM ,∵111•••222BCE S BC DE BE GM CE MH ==+ ∵BC=CE=BE ,∴GM+MH=DE=9,∴MH+MG 的值不会发生变化.【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定,三角形面积的计算,熟练掌握等边三角形的性质是解题的关键.2.A解析:(1)A (0,1)(2)结论:∠ABQ +∠OAB ﹣∠Q =135°.(3)α+2β=45°.【解析】【分析】(1)利用二次根式的性质求出m 、n 的值,求出B 、C 两点坐标,由S 四边形AOBC =S △OBC +S △AOC ,推出12×2×4+12×OA ×4=6,求出OA 即可; (2)如图2中,结论:∠ABQ +∠OAB ﹣∠Q =135°.根据三角形内角和定理,三角形的外角的性质即可解决问题;(3)由AD ∥BC ,推出∠ADC =∠DCB =α,由BE 平分∠CBx ,推出∠CBE =∠EBx ,由∠CBE =∠F +∠OCB =α+β,推出∠OBF =∠EBx =α+β,由OC 平分∠AOB ,可得∠COB =45°=∠F +∠OBF =α+(α+β),由此即可解决问题;【详解】解:(1)由题意2020n n -≥⎧⎨-≥⎩,,得,解得n =2, ∴m =4,B (2,0),C (4,4).如图:∵S四边形AOBC=S△OBC+S△AOC,∴12×2×4+12×OA×4=6,∴OA=1,∴A(0,1).(2)结论:∠ABQ+∠OAB﹣∠Q=135°.如图:理由如下:∵OC∥PQ,∴∠Q=∠OCB,∵∠ABQ=∠1+∠OCB=∠1+∠Q,∠1=180°﹣∠OAB﹣∠AOC=180°﹣∠OAB﹣45°=135°﹣∠OAB,∴∠ABQ=∠Q+135°﹣∠OAB,∴∠ABQ+∠OAB﹣∠Q=135°.(3)如图:∵AD ∥BC ,∴∠ADC =∠DCB =α,∵BE 平分∠CBx ,∴∠CBE =∠EBx ,∵∠CBE =∠F +∠OCB =α+β,∴∠OBF =∠EBx =α+β,∵C (4,4),∴OC 平分∠AOB ,∴∠COB =45°=∠F +∠OBF =α+(α+β),∴α+2β=45°.【点睛】本题考查平行线的判定和性质、角平分线的定义、三角形的内角和定理、三角形的外角性质等知识,解题的关键是灵活运用所学知识解决问题,属于压轴题.3.A解析:(1)min 119342t R H '==;(2)(0,30,6)或(0,3(0,12).【解析】【分析】(1)根据题意设239(33)4P m m --,5(,33)4Q m m -,以及作R 关于y 轴对称3(3,33)2R '-,并过R '点作直线3:4x l y =的垂线交于H 点R H '即为所求,从而进行分析求解即可; (2)根据题意分四种情形即①当AA''=A''B 时;②当AA''=AB 时;③当AA''=A''B 时;④当A''B=AB 时分别画出图形并进行分析求解.【详解】解:(1)设239(33)4P m m --,5(,33)4Q m m -,23932()2(3)422PQMN C QP NP m m ∴=+=-+-矩形, 302-<,开口向下, ∴当33m =时,(33,33)P -,最少时间12t RK RK TB =++, 3(3,33)2R -,作R 关于y 轴对称3(3,33)2R '--,过R '点作直线3:43x l y =-的垂线交于H 点R H '即为所求, 令y=0,解得5312x =, 12()530H ∴,, t R K K T TH =+''+'',∴过R ''作R H l ''⊥,22min 3119(33)(330)3242125t R H ∴==++'--=+. (2)①当AA''=A''B 时,如图2中,此时,A''在对称轴上对称性可知∠AC′E=∠A''C′E又∠HEC′=∠A''C′E∴∠AC′E=∠HEC′∴HE=HC'=5 3−2 3=3 3,∴OE=HE-HO=3 3−3,∴E(0,3−3 3),②当AA''=AB时,如图3中,设A″C′交y轴于J.此时AA''=AB=BC'=A''C',∴四边形A''ABC'为菱形,由对称性可知,∠AC'E=∠A''C'E=30°,∴JE= 3JC′=3,2∴OE=OJ-JE=6∴E(0,6)③当AA''=A''B时,如图4中,设AC′交y轴于M.此时,A''在对称轴上∠MC'E=75°又∠AMO=∠EMC'=30°∴∠MEC'=75°∴ME=MC'∴3∴3,∴E(0,3.④当A''B=AB时,如图5中,此时AC'=A''C'=A''B=AB∴四边形AC'A''B 为菱形由对称性可知,C'',E ,B 共线 由抛物线239334y x x =--x 轴交于A B 、两点(点A 在点B 的左侧)可知, 令x=0,解得y=−3x=0,解得:x 1=3,x 23 ∴A (−30),30),3 ∴3=12,∴E (0,12).综上满足条件的点E 坐标为(0,3)或(0,6)或(0,3)或(0,12).【点睛】本题考查二次函数综合题,解题的关键是学会构建二次函数解决最值问题,学会利用垂线段最短解决最短问题,学会用分类讨论的思想思考问题,属于中考压轴题.4.(1) CF 2 ;(2) 四边形BFDE 是菱形,理由见解析;(3) 纸片ENFM 是“标准纸",理由见解析【解析】【分析】(1)1AB =,则2AD =ABCD 是矩形,得到1,2CD AB BC AD ==-=FB FD =,设CF x =,则2FB FD x ==,在Rt DCF △中,222+=CD CF DF ,可得)22212x x +=即可求解. (2)当顶点B 与点D 重合时,折痕EF 垂直平分BD ,可得OB OD =,90BOF DOE ∠=∠=,在矩形ABCD 中,//AD BC ,得到OBF ODE ∠=∠,在BOF 和DOE △中,,OBF ODE OB OD BOF DOE ∠=∠=∠=∠,,可得BOF DOE ≅,OE OF =,再根据OB OD =,可得四边形BFDE 是平行四边形,最后根据EF BD ⊥,即可求证平行四边形BFDE 是菱形.(3)由()2可知,OE OF =,同理可知,OM ON =,可得四边形ENFM 是平行四边形,根据90DOE DAB ∠=∠=︒,得到DOE DAB ,再根据2AD AB =,可得222OE AB OD AD ===,进而得到22OE OD =,22EF BD =,同理可得,22MN AC =,根据四边形ABCD 是矩形,可得AC BD =,EF MN =,四边形ENFM 是矩形,90EMF ∠=,2MF ODtan FEM ME OE∠===,2MF ME =,即可求证纸片ENFM 是“标准纸". 【详解】 解:()11,AB =则2,2AD AB ==四边形ABCD 是矩形1,2CD AB BC AD ∴==-=由折叠得FB FD = 设CFx =,则2FB FD x ==- 在Rt DCF △中,222+=CD CF DF()22212x x +=-24x =答:CF 长为24()2四边形BFDE 是菱形.理由:当顶点B 与点D 重合时,折痕EF 垂直平分,BDOB OD ∴=,90BOF DOE ∠=∠=在矩形ABCD 中,//,AD BCOBF ODE ∴∠=∠在BOF 和DOE △中,,OBF ODE OB OD BOF DOE ∠=∠=∠=∠,BOF DOE ∴≅OE OF ∴= OB OD =∴四边形BFDE 是平行四边形EF BD ⊥平行四边形BFDE 是菱形.()3纸片ENFM 是“标准纸”理由如下:由()2可知,,OE OF =同理可知,,OM ON =∴四边形ENFM 是平行四边形90DOE DAB ∠=∠=︒ DOEDAB ∴2AD =222OE AB OD AD ∴===2OE ∴= 22EF BD ∴=同理可得,22MN AC =四边形ABCD 是矩形,AC BD ∴=, EF MN ∴=∴四边形ENFM 是矩形.90EMF ∴∠=.2,MF ODtan FEM ME OE∴∠=== 2MF ME ∴=.∴纸片ENFM 是“标准纸".【点睛】此题主要考查矩形的判定和性质、勾股定理、全等三角形的判定和性质、菱形的判定及三角函数,灵活运用判定和性质是解题关键.5.(1)①不是;②0;(2)若点(,)p q 在反比例函数8y x=的图象上,则关于x 的方程260px x q -+=是半等分根方程,理由详见解析;(3)详见解析【解析】 【分析】(1)①解方程2280x x --=,根据“半等分根方程”定义作出判断即可;②解方程(1)()0x mx n -+=得11x =,2n x m =-,所以12n m -=或2nm-=,即:n =-2m 或m =-2n ,分别代入代数式2252m mn n ++=结果均为0 (2)根据点(,)p q 在反比例函数8y x=的图象上,得到8q p =,代入260px x q -+=,得到关于x 的方程2860px x p-+=,解方程,用含p 的式子表示x ,根据“半等分根方程”定义判断即可;(3)根据两点(1,)M t s +,(4,)N t s -都在抛物线上,且纵坐标相等,可以求出对称轴为52x =,根据方程20ax bx c ++=是半等分根方程,得到两根关系,根据抛物线对称轴为 12522x x +=,即可求出两个根,问题得证. 【详解】解:(1)①解方程2280x x --=得124,2x x ==-,不符合“半等分根方程”定义, 故答案为:不是;②解方程(1)()0x mx n -+=得11x =,2n x m =-,所以12n m -=或2nm-=,即:n =-2m 或m =-2n ,当n =-2m 时,()()22225522022m mn n m m n m ++=+-+-=; 当m =-2n 时,()()22225522022m mn n n n n n ++=-+-+=;故答案为:0;(2)若点(,)p q 在反比例函数8y x=的图象上,则关于x 的方程260px x q -+=是半等分根方程理由:∵点(,)p q 在反比例函数8y x=的图象上 ∴8q p=代入方程260px x q -+=得:2860px x p-+= 解得:12x p=,24x p =∵1212x x =∴方程260px x q -+=是半等分根方程(3)∵相异两点(1,)M t s +,(4,)N t s -都在抛物线2y ax bx c =++上, ∴抛物线的对称轴为:(1)(4)522t t x ++-==又∵方程20ax bx c ++=是半等分根方程 ∴设20ax bx c ++=的两个根分别为1x 和2x 令1212x x =则有:12522x x += 所以153x =,2103x =所以方程20ax bx c ++=的一个根为53得证. 【点睛】本题为“新定义问题”,考查了学生自主学习的能力,解决此题关键是理解新定义概念,并结合所学数学知识进行解答.6.B解析:(1)2y x 2x 3=-++;(2)①23S m m =-+,13m ≤≤;②P (32,3);(3)3,32⎛⎫ ⎪⎝⎭或(3-+- 【解析】 【分析】(1)将点B 、C 的坐标代入2y x bx c =-++即可;(2)①求出顶点坐标,直线MB 的解析式等,由PD ⊥x 轴且OD=m 知P (m ,-2m+6),即可用含m 的代数式表示出S ;②在和①的情况下,将S 和m 的关系式化为顶点式,由二次函数的图象和性质即可写出点P 的坐标;(3)分情况讨论,当∠CPD=90°时,推出PD=CO=3,则点P 的纵坐标为3,即可求出点P 的坐标;当∠PCD=90°时,证∠PDC=∠OCD ,由锐角三角函数可求出m 的值,即可写出点P 的坐标;当∠PDC=90°时,不存在点P . 【详解】解:(1)将()3,0B ,()0,3C 代入2y x bx c =-++,得0=-9+3b 33c +⎧⎨=⎩,解得23b c =⎧⎨=⎩, ∴二次函数的解析式为2y x 2x 3=-++; (2)①∵()222314y x x x =-++=--+ ∴顶点M (1,4),将直线BM 的解析式设为y kx b =+, 将点()3,0B ,M (1,4)代入, 可得304k b k b +=⎧⎨+=⎩,解得26k b =-⎧⎨=⎩,∴直线BM 的解析式为26y x =-+, 如图∵PD ⊥x 轴且OD=m ,∴P (m ,-2m+6), ∴211(26)322PCDS SPD OD m m m m ==⋅=-+=-+, 即23S m m =-+,∵点P 为线段MB 上一个动点且()3,0B ,M (1,4), ∴13m ≤≤; ②22393()24S m m m =-+=--+, ∴当32m =时,S 取最大值94, ∴P (32,3);(3)存在,理由如下: 如图,当∠CPD=90°时,90COD ODP CPD,∴四边形CODP 为矩形, ∵PD=CO=3,将3y =代入直线26y x =-+, 得32x =, ∴P 3,32⎛⎫ ⎪⎝⎭;如图,当∠PCD=90°时,∵OC=3,OD=m , 22229CD OC OD m ,//PD OCPDCOCD ,cos cos PDCOCD ,DC OCPD DC∴=, 2DC PD OC ∴=⋅,293(26)m m,解得1332m (舍去),1332m =-+∴(332,1262)P -+-;当∠PDC=90°时, ∵PD ⊥x 轴, ∴不存在点P ;综上所述,点P 的坐标为3,32⎛⎫ ⎪⎝⎭或(3-+-. 【点睛】本题考查了待定系数法求函数解析式,函数的思乡曲求极值以及直角三角形的存在性与动点结合等,解题的关键是注意分类讨论思想在解题过程中的运用.7.A解析:(1)(1,4)D ;(2)158(,)33M ,274(,)33M ;(3)N 的坐标为57(,)24. 【解析】 【分析】(1)将点A 坐标代入函数关系式可得a 与b 的方程,再根据顶点D 的横坐标为1可得另一个关于a 和b 的方程,联立方程组求解即可得到a 和b 的值,进而求得抛物线的函数关系式,再将顶点D 的横坐标代入即可求得点D 坐标;(2)①如图,取DB 得三等分点12,M M ,过点12,M M 分别作x 轴,y 轴的平行线分别交DE 、x 轴于点G 、H 、P 、Q ,通过证相似三角形可得点M 的横纵坐标与点B 、D 的横纵坐标之间的数量关系,进而得解;(3)取线段BC 的中点G ,连接GM ,由中点坐标可得33(,)22G ,根据等腰三角形的三线合一可得GM ⊥BC ,在根据两条直线互相垂直可求得:GM l y x =,与:26BD l y x =-+联立方程组可求得点M 的坐标,再由(2,2),(0,3)M C 利用待定系数法可得1:32CM l y x =-+,最后将132y x =-+与2y x 2x 3=-++联立方程组即可求得点N 的坐标. 【详解】解:(1)将(1,0)A -代入23y ax bx =++可得03a b =-+①∵顶点D 的横坐标为1,∴12ba-=,即2b a =-② 联立①②解得1,2a b =-=∴2y x 2x 3=-++ 当1x =时,4y =(1,4)D ∴(2)由(1)得2y x 2x 3=-++ 当y=0时,x 1=-1,x 2=3,∴B (3,0),即BO=3,如图,取DB 的三等分点12,M M ,过点12,M M 分别作x 轴,y 轴的平行线分别交DE 、x 轴于点G 、H 、P 、Q ,则可得△DGM 1∽△DHM 2∽△DEB ,△BQM 2∽△BPM 1∽△BED ,且相似比为1:2:3, ∴12833M D y y == 115()33M D B D x x x x =+-=158(,)33M ∴同理可得:274(,)33M∴点M 的坐标为:158(,)33M ,274(,)33M(3)NCB DBC ∠=∠CM MB ∴=取线段BC 的中点G ,作直线GM ,∵点B (3,0),点C (0,3) ∴中点G 的坐标为33(,)22∵CM MB =,点G 为线段BC 的中点, ∴GM ⊥BC , ∴设直线GM 为y=x+m 将33(,)22G 代入得m=0, ∴:GM l y x =① 设直线BD 为y=kx+n将,B D 坐标代入得k=-2,n=6, ∴:26BD l y x =-+②联立①②可得22x y =⎧⎨=⎩∴(2,2)M 设直线MC 为y=k 2x+n 2将(2,2),(0,3)M C 坐标代入得k 2=12-,n 2=3, ∴1:32CM l y x =-+③联立③与2y x 2x 3=-++可得5274x y ⎧=⎪⎪⎨⎪=⎪⎩∴57(,)24N 故N 的坐标为57(,)24. 【点睛】本题考查了一次函数与二次函数的综合应用以及相似三角形的判定及性质的应用,能够根据题意做出正确的辅助线,利用数形结合思想进行转化是解决本题的关键.8.A解析:(1)A (4,0);(2)2144S t =-;(3)(4,8)E - 【解析】 【分析】(1)利用三角形的面积公式构建方程即可解决问题.(2)证明△CEA 和△COD 是等腰直角三角形,由EN ⊥AC ,推出42t CN NE NA +===,AC=4+t ,根据S=S △AEC -S △ABC 计算即可.(3)过点F 作FM ⊥AC 于点M ,由(2)求出点F 的坐标为(1,3)44t t-+,从而得到 1144t t OM =-=-,34tFM =+,由∠ABO=∠BDA+∠BAD=45°,∠FOB +∠DAE =45°,得出∠FOB=∠BDA ,进而得出∠MFO=∠ODA ,tan ∠MFO =tan ∠ODA ,故而OA OMOD MF=, 即14434t t t -=+,解出t 的值,再求点E 的坐标即可. 【详解】(1)由题意可得:211•••822AOB S OA OB OA ===,∴OA 2=16, ∵OA >0, ∴OA=OB=4,∴A (4,0),B (0,4).(2)如图,过点E 作EN ⊥AC 于点N .∵∠AOB=90°,OA=OB ,∴∠OAB=45°,∵AB ⊥CD ,∴∠CEA=90°,∴∠ECA=45°,∴△CEA 是等腰直角三角形,∵∠ECA=45°,∠COD=90°,∴∠CDO=45°,∴△CDO 是等腰直角三角形.∵点D 纵坐标为t ,∴CO=DO=t.∵OA=OB=4,∴AC=t+4. ∴42t CN NE NA +===, ∴()()2141144442224AEC ABC t S S S t t t +⎛⎫=-=⨯+⨯-⨯+⨯=- ⎪⎝⎭; ∴S 与t 的函数关系是:2144S t =-. (3)如图,过点F 作FM ⊥AC 于点M ,由(2)可知,42t CN NE +==,∴22t ON OC CN =-=-, ∴点E 的坐标为(2,2)22t t -+, ∵点B (0,4),点F 为BE 中点,∴点F 的坐标为(1,3)44t t -+, ∴1144t t OM =-=-,34t FM =+, ∵∠ABO=∠BDA+∠BAD=45°,∠FOB +∠DAE =45°,∴∠FOB=∠BDA ,∴OF ∥AD ,∵FM ⊥AC ,∴FM ∥DO ,∴∠MFO=∠ODA ,∴tan ∠MFO =tan ∠ODA , ∴OA OM OD MF=, 即14434t t t -=+, 解得t=12或4=-4(不合题意,舍去)∴点E 的坐标为(4,8)-.【点睛】本题考查三角形综合题,解题的关键是正确作出辅助线,灵活运用所学知识,利用参数构建方程解决问题.9.C解析:(1)点C 的坐标为(2,0);(2)1522y x =-+;(3)①2481515y x x =-;②1013. 【解析】【分析】(1)求得对称轴,由对称性可知C 点坐标;(2)利用待定系数法求解可得;(3)①由AE=3AO 的关系,建立K 型模型相似,求得点E 坐标代入解析式可得;②若△CDB 与△BOA 相似,则∠OAB=∠CDB=90°,由相似关系可得点D 坐标,代入解析式y=ax 2-2ax 可得a 值.【详解】解:(1)把0y =代入22y ax ax =-,得220ax ax -=,解得:0x =,或2x =.∵点C 在x 轴正半轴上,∴点C 的坐标为(2,0).(2)设直线表达式为y kx b =+,把点(1,2)A ,(5,0)B 分别代入y kx b =+,得250k b k b +=⎧⎨+=⎩,解得1252k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线AB 的表达式为:1522y x =-+. (3)①作AH x ⊥轴于点H ,EF AH ⊥于点F (如图),∵222125OA =+=,2222420AB ,22525OB ==,∴222OA AB OB +=. ∴90EAO OAB ∠=∠=︒.由EFA AHO △∽△,得2EF FA EA AH HO AO ===, ∴4EF =,2FA =,∴点E 坐标为()3,4-.把(3,4)E -代入22y ax ax =-,得964a a +=,解得:415a =. ∴2481515y x x =-. ②若△CDB 与△BOA 相似,如图,作DG ⊥BC ,∴CD BD BC AO AB BO ==,∠OAB=∠CDB=90°, 35==,∴CD =BD =, ∵523BC =-=,∴65535DG ==, ∴156225x -+=,解得:135x =, ∴点D 的坐标为:(135,65), 把点D 代入22y ax ax =-,即16913622555a a -⨯= 解得:1013a =; 故答案为:1013. 【点睛】本题是二次函数的综合问题,考查了二次函数的基本性质,数形结合与K 型模型的使用,以及相似存在性问题,内容综合较好,难度相当入门级压轴问题.10.A解析:(1)5AD x =,6DF x =+;(2)△ADF 为等腰三角形,x 的取值可以是4817,4831,12; (3)4或43 【解析】【分析】(1)由已知条件可得:CD=4x ,根据勾股定理得:AD=5x ,由AB=6且C 在B 点右侧,可以依次表示BC 、CF 、DF 的长;(2)分两种情况:①当C 在B 点的右侧时,AF=DF ,②当C 在线段AB 上时,又分两种情况:i )当CF <CD 时,如图3,ii )当CF >CD 时,如图4,由AF=DF ,作等腰三角形的高线FN ,由等腰三角形三线合一得:AN=ND=2.5x ,利用同角的三角函数列比例式可求得x 的值;(3)由翻折性质得到DG='GD ,'DGF FGD ∠=∠,从而证出'ADG AGD △≌△,从而推出∠FAC=∠DAG ,即AF 平分∠DAC ,过F 作FN ⊥AD 于N ,分两种情况:当C 在AB 的延长线上时,当C 在AB 边上时,根据35sin CDA ∠=可列出关于x 的比例式,即可求解.【详解】⑴∵CD=43AC,AC=3x,∴CD=4x,∵CD⊥AM,∴∠ACD=90°,由勾股定理得:AD=5x,∵AB=6,C在B点右侧,∴BC=AC-AB=3x-6,∵BC=FC=3x-6,∴DF=CD-FC=4x-(3x-6)=x+6;(2)分两种情况:①当C在B点的右侧时,∴AC>AB,∴F必在线段CD上,∵∠ACD=90°,∴∠AFD是钝角,若△ADF为等腰三角形,只可能AF=DF,过F作FN⊥AD于N,如图,∴AN=ND=2.5x,∴DN DC cos ADCDF AD ∠==,即2.5465x xx x +=,解得,4817x=;②当C在线段AB上时,同理可知若△ADF为等腰三角形,只可能AF=DF, i)当CF<CD时,过F作FN⊥AD于N,如图,x 的取值可以是4817,4831,12;∵AB=6,AC=3x ,∴BC=CF=6-3x ,∴DF=4x-(6-3x )=7x-6,∵DNDCcos ADC DF AD ∠==,∴ 2.54765x xx x -=,解得4831x =;ii )当CF >CD 时,如图4,BC=CF=6-3x ,∴FD=AD=6-3x-4x=6-7x ,则6-7x=5x ,x=12,综上所述,x 的取值可以是4817,4831,12;(3)∵△DFG 沿FG 翻折得到'FDG △∴DG='GD ,'DGF FGD ∠=∠又∵AG=AG,∴'ADG AGD △≌△∴∠FAC=∠DAG,即AF 平分∠DAC,如图, 当C 在AB 的延长线上时,过F 作FN⊥AD 于N ,FN=FC=3x-6,DF=x+6,。

【最新】江苏省中考数学压轴试题(含答案)

【最新】江苏省中考数学压轴试题(含答案)

最新江苏省中考数学压轴试题(含答案)一.(10分)(中考压轴题)已知BC是⊙O的直径,BF是弦,AD过圆心O,AD⊥BF,AE⊥BC于E,连接FC.(1)如图1,若OE=2,求CF;(2)如图2,连接DE,并延长交FC的延长线于G,连接AG,请你判断直线AG与⊙O的位置关系,并说明理由.二.(中考压轴题)(10分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)50 60 70 销售量y(千克)100 80 60 (1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),则当售价x定为多少元时,厂商每天能获得最大利润?最大利润是多少?(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.三.(中考压轴题)(10分)如图,C地在A地的正东方向,因有大山阻隔,由A地到C地需要绕行B地,已知B地位于A地北偏东67°方向,距离A地520km,C地位于B地南偏东30°方向,若打通穿山隧道,建成两地直达高铁,求A地到C地之间高铁线路的长(结果保留整数)(参考数据:sin67°≈0.92;cos67°≈0.38;≈1.73)四.(中考压轴题)(12分)我们定义:如图1、图2、图3,在△ABC 中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′,当α+β=180°时,我们称△AB'C′是△ABC的“旋补三角形”,△AB′C′边B'C′上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.图1、图2、图3中的△AB′C′均是△ABC的“旋补三角形”.(1)①如图2,当△ABC为等边三角形时,“旋补中线”AD与BC的数量关系为:AD= BC;②如图3,当∠BAC=90°,BC=8时,则“旋补中线”AD长为.(2)在图1中,当△ABC为任意三角形时,猜想“旋补中线”AD与BC的数量关系,并给予证明.五.(中考压轴题)(14分)如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.六.(中考压轴题)(8分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.七.(中考压轴题)(13分)如图,将一三角板放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于Q.探究:设A、P两点间的距离为x.(1)当点Q在边CD上时,线段PQ与PB之间有怎样的数量关系?试证明你的猜想;(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数关系,并写出函数自变量x的取值范围;(3)当点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置.并求出相应的x值,如果不可能,试说明理由.八.(中考压轴题)(14分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H 关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.九.(中考压轴题)如图,已知二次函数y=﹣x2+bx+c(c>0)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.(1)求二次函数的解析式;(2)点P为线段BM上的一个动点,过点P作x轴的垂线PQ,垂足为Q,若OQ=m,四边形ACPQ的面积为S,求S关于m的函数解析式,并写出m的取值范围;(3)探索:线段BM上是否存在点N,使△NMC为等腰三角形?如果存在,求出点N的坐标;如果不存在,请说明理由.答案一.解:(1)∵BC是⊙O的直径,AD过圆心O,AD⊥BF,AE⊥BC于E,∴∠AEO=∠BDO=90°,OA=OB,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OE=OD=2,∵BC是⊙O的直径,∴∠CFB=90°,即CF⊥BF,∴OD∥CF,∵O为BC的中点,∴OD为△BFC的中位线,∴CF=2OD=4;(2)直线AG与⊙O相切,理由如下:连接AB,如图所示:∵OA=OB,OE=OD,∴△OAB与△ODE为等腰三角形,∵∠AOB=∠DOE,∴∠ADG=∠OED=∠BAD=∠ABO,∵∠GDF+∠ADG=90°=∠BAD+∠ABD,∴∠GDF=∠ABD,∵OD为△BFC的中位线,[来源:Z。

【最新】河北省中考数学历年压轴题(含答案)

【最新】河北省中考数学历年压轴题(含答案)

【最新】河北省中考数学压轴题精选(含答案)一.(中考压轴题)(10分)如图1,在菱形ABCD中,AC=2,BD=2,AC、BD相交于点O.(1)AB的长为;(2)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD 的顶点A处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF与AC相交于点G.①求证:△ABE≌△ACF;②判断△AEF是哪一种特殊三角形,并说明理由.二.(中考压轴题)(12分)如图,在平面直角坐标系中,已知点A (5,3),点B(﹣3,3),过点A的直线y=x+m(m为常数)与直线x=1交于点P,与x轴交于点C,直线BP与x轴交于点D.(1)求点P的坐标;(2)求直线BP的解析式,并直接写出△PCD与△PAB的面积比;(3)若反比例函数y=(k为常数且k≠0)的图象与线段BD有公共点时,请直接写出k的最大值或最小值.三.(中考压轴题)(12分)如图1,点O在线段AB上,(不与端点A、B重合),以点O为圆心,OA的长为半径画弧,线段BP与这条弧相切与点P,直线CD垂直平分PB,交PB于点C,交AB于点D,在射线DC上截取DE,使DE=DB,已知AB=6,设OA=r.(1)求证:OP∥ED;(2)当∠ABP=30°时,求扇形AOP的面积,并证明四边形PDBE是菱形;(3)过点O作OF⊥DE于点F,如图2所示,线段EF的长度是否随r 的变化而变化?若不变,直接写出EF的值;若变化,直接写出EF与r的关系.四.(中考压轴题)(12分)大学生自主创业,集资5万元开品牌专卖店,已知该品牌商品成本为每件a元,市场调查发现日销售量y(件)与销售价x(元/件)之间存在一次函数关系如表:销售价x(元/…110 115 120 125 130 …件)销售量y(件)…50 45 40 35 30 …若该店某天的销售价定为110元/件,雇有3名员工,则当天正好收支平衡(其中支出=商品成本+员工工资+应支付其它费用):已知员工的工资为每人每天100元,每天还应支付其它费用为200元(不包括集资款).(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)该店现有2名员工,试求每件服装的销售价定为多少元时,该服装店每天的毛利润最大:(毛利润═销售收入一商品成本一员工工资一应支付其他费用)(3)在(2)的条件下,若每天毛利润全部积累用于一次性还款,而集资款每天应按其万分之二的利率支付利息,则该店最少需要多少天(取整数)才能还清集资款?五.(中考压轴题)(9分)已知如图:点(1,3)在函数y=(x>0)的图象上,矩形ABCD的边BC在x轴上,E是对角线BD的中点,函数y=(x>0)的图象又经过A、E两点,点E的横坐标为m,解答下列问题:(1)求k的值;(2)求点A的坐标;(用含m代数式表示)(3)当∠ABD=45°时,求m的值.六.(中考压轴题)(10分)某学校为改善办学条件,计划采购A、B 两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?七.(中考压轴题)(10分)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.(1)概念理解:如图1,在△ABC中,AC=6,BC=3,∠ACB=30°,试判断△ABC是否是”等高底”三角形,请说明理由.(2)问题探究:如图2,△ABC是“等高底”三角形,BC是”等底”,作△ABC关于BC所在直线的对称图形得到△A'BC,连结AA′交直线BC于点D.若点B是△AA′C的重心,求的值.(3)应用拓展:如图3,已知l1∥l2,l1与l2之间的距离为2.“等高底”△ABC的“等底”BC在直线l1上,点A在直线l2上,有一边的长是BC的倍.将△ABC绕点C按顺时针方向旋转45°得到△A'B'C,A′C所在直线交l2于点D.求CD的值.八.(中考压轴题)如图,抛物线y=ax2+bx+c经过A(1,0)、B(4,0)、C(0,3)三点.(1)求抛物线的解析式;(2)如图①,在抛物线的对称轴上是否存在点P,使得四边形PAOC 的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由.(3)如图②,点Q是线段OB上一动点,连接BC,在线段BC上是否存在这样的点M,使△CQM为等腰三角形且△BQM为直角三角形?若存在,求点M的坐标;若不存在,请说明理由.答案一.(9分)如图1,在菱形ABCD中,AC=2,BD=2,AC、BD相交于点O.(1)AB的长为 2 ;(2)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD 的顶点A处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF与AC相交于点G.①求证:△ABE≌△ACF;②判断△AEF是哪一种特殊三角形,并说明理由.【解答】解:(1)∵在菱形ABCD中,AC=2,BD=2,∴∠AOB=90°,OA=AC=1,BO=BD=,在Rt△AOB中,由勾股定理得:AB==2;故答案为:2;(2)①∵由(1)知,菱形ABCD的边长是2,AC=2,∴△ABC和△ACD是等边三角形,∴∠BAC=∠BAE+∠CAE=60°,∵∠EAF=∠CAF+∠CAE=60°,∴∠BAE=∠CAF,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),②△AEF是等边三角形,理由是:∵△ABE≌△ACF,∴AE=AF,∵∠EAF=60°,∴△AEF是等边三角形.二.(10分)如图,在平面直角坐标系中,已知点A(5,3),点B(﹣3,3),过点A的直线y=x+m(m为常数)与直线x=1交于点P,与x轴交于点C,直线BP与x轴交于点D.(1)求点P的坐标;(2)求直线BP的解析式,并直接写出△PCD与△PAB的面积比;(3)若反比例函数y=(k为常数且k≠0)的图象与线段BD有公共点时,请直接写出k的最大值或最小值.【解答】解:(1)∵过点A(5,3),∴3=×5+m,解得m=,∴直线为y=x+,当x=1时,∴∴P(1,1);(2)设直线BP的解析式为y=ax+b根据题意,得∴直线BP的解析式为y=﹣x+,∵p(1,1),A(5,3),B(﹣3,3),∴=()2=;(3)当k<0时,反比例函数在第二象限,函数图象经过B点时,k 的值最小,此时k=﹣9;当k>0时,反比例函数在第一象限,k的值最大,联立得:,消去y得:﹣x+=,整理得:x2﹣3x+2k=0,∵反比例函数与线段BD有公共点,∴△=32﹣4×1×2k≥0,解得:k≤,故当k<0时,最小值为﹣9;当k>0时,最大值为;三.(11分)如图1,点O在线段AB上,(不与端点A、B重合),以点O为圆心,OA的长为半径画弧,线段BP与这条弧相切与点P,直线CD垂直平分PB,交PB于点C,交AB于点D,在射线DC上截取DE,使DE=DB,已知AB=6,设OA=r.(1)求证:OP∥ED;(2)当∠ABP=30°时,求扇形AOP的面积,并证明四边形PDBE是菱形;(3)过点O作OF⊥DE于点F,如图2所示,线段EF的长度是否随r 的变化而变化?若不变,直接写出EF的值;若变化,直接写出EF与r的关系.【解答】解:(1)∵BP为⊙O的切线,∴OP⊥BP,∵CD⊥BP,∴∠OPB=∠DCB=90°,∴OP∥ED;(2)在Rt△OBP中,∠OPB=90°,∠ABP=30°,∴∠POB=60°,∴∠AOP=120°.在Rt△OBP中,OP=OB,即r=(6﹣r),解得:r=2,S扇形AOP=.∵CD⊥PB,∠ABP=30°,∴∠EDB=60°,∵DE=BD,∴△EDB是等边三角形,∴BD=BE.又∵CD⊥PB,∴CD=CE.∴DE与PB互相垂直平分,∴四边形PDBE是菱形.(3)EF的长度不随r的变化而变化,且EF=3,∵AO=r、AB=6,∴BO=AB﹣AO=6﹣r,∵BP为⊙O的切线,∴∠BPO=90°,∵直线CD垂直平分PB,∴∠DCB=∠OPB=90°,且BC=PC,∵∠DBC=∠OBP,∴△DBC∽△OBP,∴===,则CD=OP=r、BD=OB=(6﹣r)=3﹣,∵DB=DE=3﹣,∴CE=DE﹣CD=3﹣r,∵OF⊥EF,∴∠OFC=∠FCP=∠CPO=90°,∴四边形OFCP为矩形,∴CF=OP=r,则EF=CF+CE=r+3﹣r=3,即EF的长度为定值,EF=3.四.(12分)大学生自主创业,集资5万元开品牌专卖店,已知该品牌商品成本为每件a元,市场调查发现日销售量y(件)与销售价x (元/件)之间存在一次函数关系如表:销售价x(元/…110 115 120 125 130 …件)销售量y(件)…50 45 40 35 30 …若该店某天的销售价定为110元/件,雇有3名员工,则当天正好收支平衡(其中支出=商品成本+员工工资+应支付其它费用):已知员工的工资为每人每天100元,每天还应支付其它费用为200元(不包括集资款).(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)该店现有2名员工,试求每件服装的销售价定为多少元时,该服装店每天的毛利润最大:(毛利润═销售收入一商品成本一员工工资一应支付其他费用)(3)在(2)的条件下,若每天毛利润全部积累用于一次性还款,而集资款每天应按其万分之二的利率支付利息,则该店最少需要多少天(取整数)才能还清集资款?【解答】解:(1)由表可知,y是关于x的一次函数,设y=kx+b,将x=110、y=50,x=115、y=45代入,得:,解得:,∴y=﹣x+160;(2)由已知可得:50×110=50a+3×100+200,解得:a=100,设每天的毛利润为W,则W=(x﹣100)y﹣2×100﹣200=(x﹣100)(﹣x+160)﹣2×100﹣200=﹣x2+260x﹣16400=﹣(x﹣130)2+500,∴当x=130时,W取得最大值,最大值为500,答:每件服装的销售价定为130元时,该服装店每天的毛利润最大,最大利润为500元;(3)设需t天能还清借款,则500t≥50000+0.0002×50000t解得:t≥102,∵t为整数,∴t的最小值为103,答:该店最少需要103天才能还清集资款.五.【解答】解:(1)由函数y=1,3),则把点(1,3)坐标代入y=中,得:k=3,y=;(2)连接AC,则AC过E,过E作EG⊥BC交BC于G点∵点E的横坐标为m,E在双曲线y=∴E的纵坐标是y=,∵E为BD中点,∴由平行四边形性质得出E为AC中点,∴BG=GC=BC,∴AB=2EG=,即A点的纵坐标是,代入双曲线y=得:A的横坐标是m,∴A(m,);(3)当∠ABD=45°时,AB=AD,则有=m,即m2=6,解得:m1=,m2=﹣(舍去),∴m=.六.【解答】解:(1)设A型空调和B型空调每台各需x元、y元,,解得,,[来源:学|科|网Z|X|X|K]答:A型空调和B型空调每台各需9000元、6000元;(2)设购买A型空调a台,则购买B型空调(30﹣a)台,,解得,10≤a≤12,∴a=10、11、12,共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,方案三:采购A型空调12台,B型空调18台;(3)设总费用为w元,w=9000a+6000(30﹣a)=3000a+180000,∴当a=10时,w取得最小值,此时w=210000,即采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.七.【解答】解:(1)△ABC是“等高底”三角形;理由:如图1,过A作AD⊥BC于D,则△ADC是直角三角形,∠ADC=90°,∵∠ACB=30°,AC=6,∴AD=AC=3,∴AD=BC=3,即△ABC是“等高底”三角形;(2)如图2,∵△ABC是“等高底”三角形,BC是“等底”,∴AD=BC,∵△ABC关于BC所在直线的对称图形是△A'BC,∴∠ADC=90°,∵点B是△AA′C的重心,∴BC=2BD,设BD=x,则AD=BC=2x,CD=3x,由勾股定理得AC=x,∴==(3)①当AB=BC时,Ⅰ.如图3,作AE⊥BC于E,DF⊥AC于F,∵“等高底”△ABC的“等底”为BC,l1∥l2,l1与l2之间的距离为2,AB=BC,∴BC=AE=2,AB=2,∴BE=2,即EC=4,∵△ABC绕点C按顺时针方向旋转45°得到△A'B'C,∴∠DCF=45°,设DF=CF=x,∵l1∥l2,∴∠ACE=∠DAF,∴==,即AF=2x,∴AC=3x=2,∴x=,CD=x=.Ⅱ.如图4,此时△ABC等腰直角三角形,∵△ABC绕点C按顺时针方向旋转45°得到△A'B'C,∴△ACD是等腰直角三角形,∴CD=AC=2.②当AC=BC时,Ⅰ.如图5,此时△ABC是等腰直角三角形,∵△ABC绕点C按顺时针方向旋转45°得到△A'B'C,∴CD=AB=BC=2;Ⅱ.如图6,作AE⊥BC于E,则AE=BC,∴AC=BC=AE,∴∠ACE=45°,∴△ABC绕点C按顺时针方向旋转45°,得到△A'B'C时,点A'在直线l1上,∴A'C∥l2,即直线A'C与l2无交点,综上所述,CD的值为,2,2.八.【解答】解:(1)根据题意设抛物线的解析式为y=a(x﹣1)(x﹣4),代入C(0,3)得3=4a,解得a=,y=(x﹣1)(x﹣4)=x2﹣,所以,抛物线的解析式为y=x2﹣x+3.(2)∵A、B关于对称轴对称,如图1,连接BC,∴BC与对称轴的交点即为所求的点P,此时PA+PC=BC,∴四边形PAOC的周长最小值为:OC+OA+BC,∵A(1,0)、B(4,0)、C(0,3),∴OA=1,OC=3,BC==5,∴OC+OA+BC=1+3+5=9;∴在抛物线的对称轴上存在点P,使得四边形PAOC的周长最小,四边形PAOC周长的最小值为9.(3)∵B(4,0)、C(0,3),∴直线BC的解析式为y=﹣,①当∠BQM=90°时,如图2,设M(a,b),∵∠CMQ>90°,∴只能CM=MQ=b,∵MQ∥y轴,[来源:学|科|网]∴△MQB∽△COB,∴=,即=,解得b=,代入y=﹣x+3得, =﹣a+3,解得a=,∴M(,);②当∠QMB=90°时,如图3,[来源:学。

(完整)中考数学压轴题精选含答案

(完整)中考数学压轴题精选含答案

一、解答题1.如图,ABC 为O 的内接三角形,AB 为O 的直径,过点A 作O 的切线交BC 的延长线干点D .(1)求证:ABC ∽;(2)若E 为AD 上一点,使得,连接OE ,求证:OE 平分;(3)若点F 为直径AB 下方半圆的中点,连接CF 交AB 于点G ,且,2AB =,求CG的长.2.如图,在Rt △AOD 中,∠AOD =90°,以点O 为圆心、OA 为半径作⊙O .延长AD 、OD ,分别交⊙O 于点C 、E ,点B 是OD 延长线上一点,且有BC =BD .(1)求证:BC 是⊙O 的切线;(2)若∠OAD =30°,CD =3,求弧CE 长. (3)若OD =3,DE =1,求BE .3.如图①,直线:24l y x =-+分别交x 轴和y 轴于点A 和点B ,将AOB 绕点O 逆时针旋转90︒得到COD △.抛物线2:4h y ax bx =++经过A 、B 、D 三点.(1)求抛物线h的表达式;(2)若与y轴平行的直线m以1秒钟一个单位长的速度从y轴向左平移,交线段CD于点M、交抛物线h于点N,求线段MN的最大值;(3)如图②,点E为抛物线h的顶点,点P是抛物线h在第二象限的上一动点(不与点D、B重合),连接PE,以PE为边作图示一侧的正方形PEFG.随着点P的运动,正方形的大小、位置也随之改变,当顶点G恰好落在y轴的负半轴时,试求出此时点P的坐标.4.已知有理数a,b,c在数轴上对应的点分别为A,B,C,其中b是最小的正整数,a,c满足()2a c++-=.250a______,b=______,c=______;(1)填空:=(2)点A,B,C分别以每秒4个单位长度,1个单位长度,1个单位长度的速度在数轴上同时向右运动,设运动时间为t秒.①当AC长为6时,求t的值;②当点A在点C左侧时(不考虑点A与B,C重合的情况),是否存在一个常数m使得+⋅的值在某段运动过程中不随t的改变而改变?若存在,求出m的值;若不存2AC m AB在,请说明理由.5.如图,抛物线2=-++与x轴相交于A B、两点,与y轴交于点C,顶点为D,抛y x2x3物线的对称轴与BC相交于点E,与x轴相交于点F.(1)求线段DE的长.(2)联结OE,若点G在抛物线的对称轴上,且BEG与COE相似,请直接写出点G的坐标.(3)设点P为x轴上的一点,且tan4,时,求点P的坐∠+∠=∠=DAO DPOαα标.6.已知抛物线经过()30A -,,()1,0B ,52,2C ⎛⎫⎪⎝⎭三点,其对称轴交x 轴于点H ,一次函数()0y kx b k =+≠的图象经过点C ,与抛物线交于另一点D (点D 在点C 的左边),与抛物线的对称轴交于点E . (1)求抛物线的解析式;(2)在抛物线上是否存在点F ,使得点A 、B 、E 、F 构成的四边形是平行四边形,如果存在,求出点F 的坐标,若不存在请说明理由(3)设∠CEH=α,∠EAH =β,当αβ>时,直接写出k 的取值范围7.已知二次函数y =﹣x 2+2x +m +1. (1)当m =2时. ①求函数顶点坐标;②当n ≤x ≤n +1时,该函数的最大值为3,求n 的值.(2)当x ≤2时,函数图象上有且只有2个点到x 轴的距离为2,求m 的取值范围. (3)已知点P 为二次函数上一点,点P 的横坐标为﹣3m +2,点M 的坐标为(2m ,m ),以PM 为对角线构造矩形PQMN ,矩形的各边与坐标轴垂直,当抛物线在矩形PQMN 内部的函数部分y 随着x 的增大而增大时,直接写出m 的取值范围.8.如图,在△ABC 中,∠ACB =90°,AC =3,BC =4.点P 从点A 出发,在线段AB 上以每秒1个单位长度的速度向终点B 运动,连接CP .设点P 运动的时间为t 秒. (1)填空:AB = ;(2)当t 为何值时,CP 平分∠ACB ; (3)当t 为何值时,△BCP 为等腰三角形.9.在平面直角坐标系中,二次函数22y ax bx =++的图象与x 轴交于()()3,0,1,0A B -两点,与y 轴交于点C .(1)求二次函数的解析式;(2)点P 是直线AC 上方的抛物线上一动点,当ACP △面积最大时,求出点P 的坐标; (3)点M 为抛物线上一动点,在x 轴上是否存在点Q ,使以A C M Q 、、、为顶点的四边形是平行四边形?若存在,直接写出点Q 的坐标;若不存在,说明理由.10.在平面直角坐标系xOy 中,已知抛物线y =x 2﹣2x ﹣3与x 轴交于A 、B 两点,与y 轴交于C 点,D 为抛物线顶点.(1)连接AD ,交y 轴于点E ,P 是抛物线上的一个动点.①如图一,点P 是第一象限的抛物线上的一点,连接PD 交x 轴于F ,连接,若,求点P 的坐标.②如图二,点P 在第四象限的抛物线上,连接AP 、BE 交于点G ,若,则w 有最大值还是最小值?w 的最值是多少?(2)如图三,点P 是第四象限抛物线上的一点,过A 、B 、P 三点作圆N ,过点P 作PM x ⊥轴,垂足为I ,交圆N 于点M ,点P 在运动过程中,线段是否变化?若有变化,求出MI 的取值范围;若不变,求出其定值.(3)点Q 是抛物线对称轴上一动点,连接OQ 、AQ ,设AOQ 外接圆圆心为H ,当的值最大时,请直接写出点H 的坐标.11.已知,E 为正方形ABCD 中CD 边上一点,连接BE ,过点C 作CF ⊥BE 交AD 于F ,垂足为G .(1)如图1,求证:CE =DF ;(2)如图2,连接AG 、BF ,交于点H ,求证:∠ABF =∠AGF ; (3)如图3,在(2)的条件下,若AG =AB =11,求线段GH 的长.12.如图1,在平面直角坐标系中,直线4y x =+与x 轴、y 轴分别交于A 、B 两点,抛物线2y x bx c =-++经过A 、B 两点,并且与x 轴交于另一点C (点C 在点A 的右侧),点P 是抛物线上一动点.(1)求抛物线的解析式;(2)若点P 是第二象限内抛物线上的一个动点,过点P 作PD ∥y 轴交AB 于点D ,点E 为线段DB 上一点,且DE =,过点E 作EF ∥PD 交抛物线于点F ,当点P 运动到什么位置时,四边形PDEF 的面积最大?并求出此时点P 的坐标;(3)如图2,点F 为AO 的中点,连接BF ,点G 为y 轴负半轴上一点,且GO =2,沿x 轴向右平移直线AG ,记平移过程的直线为,直线交x 轴于点M ,交直线AB 于点N .是否存在点M ,使得△FMN 为等腰三角形,若存在,直接写出....平移后点M 的坐标;若不存在,请说明理由.13.如图,在正方形OABC 中,AB =4,点E 是线段OA (不含端点)边上一动点,作△ABE 的外接圆交AC 于点D .抛物线y =ax 2﹣x +c 过点O ,E .(1)求证:∠BDE =90°;(2)如图1,若抛物线恰好经过点B ,求此时点D 的坐标; (3)如图2,AC 与BE 交于点F .①请问点E 在运动的过程中,CF ⋅AD 是定值吗?如果是,请求出这个值,如果不是,请说明理由; ②若,求点E 坐标及a 的值.14.(1)[感知]如图1,在正△ABC 的外角∠CAH 内引射线AM ,作点C 关于AM 的对称点E (点E 在∠CAH 内),连接BE ,BE 、CE 分别交AM 于点F 、G .求∠FEG 的度数.(2)[探究]把(1)中的“正△ABC ”改为“正方形ABDC ,其余条件不变,如图2,类比探究,可得: ①∠FEG = °;②猜想线段BF 、AF 、FG 之间的数量关系,并说明理由.(3)[拓展]如图3,点A 在射线BH 上,AB =AC ,∠BAC =α(0°<α<180°),在∠CAH 内引射线AM ,作点C 关于AM 的对称点E (点E 在∠CAH 内),连接BE ,BE 、CE 分别交AM 于点F .G .则线段BF 、AF 、GF 之间的数量关系为 .15.定义:在平面直角坐标系中,对于任意两点()11,A x y ,()22,B x y ,如果点(),M x y 满足122x x x -=,122y y y -=,那么称点M 是点A 、B 的“双减点”. 例如:()4,5A -,()6,1B -、当点(),T x y 满足4652x --==-,()5132y --==,则称点()5,3M -是点A 、B 的“双减点”.(1)写出点()1,3A -,()1,4B -的“双减点”C 的坐标;(2)点()6,4E -,点4,43F m m --⎛⎫⎪⎝⎭,点(),M x y 是点E 、F 的“双减点”.求y 与x 之间的函数关系式;(3)在(2)的条件下,y 与x 之间的函数图象与y 轴、x 轴分别交于点A 、C 两点,B 点坐标为3,0,若点E 在平面直角坐标系内,在直线AC 上是否存在点F ,使以A 、B 、E 、F 为顶点的四边形为菱形?若存在,请求出F 点的坐标;若不存在,请说明理由. 16.如图,在平面直角坐标系中,已知AOB CDA △△≌,且1OA =,()0,2B ,抛物线24y ax ax a =+-经过点C .(1)求抛物线的解析式.(2)在抛物线(对称轴的右侧)上是否存在一点P ,使△ABP 是以AB 为直角边的等腰直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.(3)若x 轴上有一点E 的横坐标为2a ,过点E 作y 轴的平行线交抛物线于点F ,抛物线对称轴与x 轴交于点G ,Q 为抛物线(对称轴的左侧)上一动点,是否存在点Q 使GF 为EFQ ∠的平分线?若存在,求出点Q 的坐标;若不存在,请说明理由.17.已知抛物线y =﹣x 2+bx +c 与x 轴交于点A (m ﹣2,0)和B (2m +1,0)(点A 在点B 的左侧),与y 轴相交于点C ,顶点为P ,对称轴为l :x =1.(1)求抛物线解析式;(2)直线y =kx +2(k ≠0)与抛物线相交于两点M (x 1,y 1),N (x 2,y 2)(x 1<x 2),当|x 1﹣x 2|最小时,求抛物线与直线的交点M 和N 的坐标;(3)首尾顺次连接点O 、B 、P 、C 构成多边形的周长为L ,若线段OB 在x 轴上移动,求L 最小值时点O 、B 移动后的坐标及L 的最小值.18.已知AB 、CD 为O 的两条弦,//AB CD .(1)如图1,求证弧AC =弧BD ;(2)如图2,连接AC 、BC 、OA 、BD ,弦BC 与半径OA 相交于点G ,延长AO 交CD 于点E ,连接BE ,使BE BD =,若OA BC ⊥,求证:四边形ABEC 为菱形;(3)在(2)的条件下,CH 与O 相切于点C ,连接CO 并延长交BE 于点F ,延长BE 交CH 于点H ,11OF =,24sin 25BDC ∠=,求CH 长. 19.如图,圆心M (3,0),半径为5的⊙M 交x 轴于A 、B 两点,交y 轴于C 点,抛物线2y ax bx c =++经过A 、B 、C 三点.(1)求抛物线的解析式.(2)求圆M 上一动点P 到该抛物线的顶点Q 的距离的最小值?并求出此时P 点的坐标. (3)若OC 的中点为F ,请问抛物线上是否存在一点G ,使得∠FBG =45°,若存在,求出点G 的坐标,若不存在,请说明理由.20.如图1,在平面直角坐标系中,已知抛物线y =ax 2+bx -4(a ≠0)经过点A (-2,0)和点B (4,0).(1)求这条抛物线所对应的函数表达式;(2)点P为抛物线上第一象限内一点,若S△ABC=2S△PBC,求点P的坐标;(3)如图2,点D是第二象限内抛物线上一点,过点D作DF⊥x轴,垂足为F,△ABD的外接圆与DF相交于点E.试问:线段EF的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.【参考答案】**科目模拟测试一、解答题1.(1)见解析(2)见解析(3)【解析】【分析】(1)由圆周角定理和切线的性质可知,又因为,即可证明;(2)连接OE交圆于点H,连接OC,由,利用等腰三角形的性质和判定可证,从而得出OE是AC的垂直平分线,从而解决问题;(3)过点G作于K,由点F在半圆的中点,得,得,,得,可求出,从而解决问题.(1)解:证明:为O的直径,,过点A作O的切线交BC的延长线于点D,,,又,;(2)证明:如图,连接OE交圆于点H,连接OC,,,,,,,OC是O的半径,,垂直平分AC,∴,平分;(3)如图,在中,,2AB=,,过点G作于K,,,点F为直径AB下方半圆的中点,,,,,在Rt ABC∆中,,,由勾股定理得,,,,,,,在中,,.【点睛】本题是圆的综合题,主要考查了圆的切线的性质,圆周角定理,相似三角形的判定与性质,勾股定理,三角函数等知识,根据得出线段之间的数量关系是解题的关键.2.(1)见详解;(2)12π;(3)16【解析】【分析】(1)连接CO,先证∠BCD=∠ADO,由∠A+∠ADO=90°,可得∠OCA+∠BCD=90°,进而即可得到结论;(2)先证BCD△是等边三角形,∠BOC=30°,求出OC=3,利用弧长公式即可求解;(3)过点O作ON⊥AD,过点B作BM⊥CD,利用勾股定理和面积法求出ON=125,AN=165,结合垂径定理和等腰三角形的性质得DM=710,最后利用锐角三家函数即可求解.【详解】解:(1)连接CO,∵BC=BD,∴∠BDC=∠BCD,∵∠BDC=∠ADO,∴∠BCD=∠ADO,∵OA=OC,∴∠A=∠OCA,∵∠AOD=90°,∴∠A+∠ADO=90°,∴∠OCA+∠BCD=90°,即OC⊥BC,∴BC是⊙O的切线;(2)∵∠OAD=30°,∴∠OCA=∠OAD=30°,∠AOC=180°-30°-30°=120°,∠ADO=∠BDC=90°-30°=60°,∴∠BOC=120°-90°=30°,又∵BC=BD,∴BCD△是等边三角形,∴CB=CD=3,∵OC⊥BC,∴OC=3×3=3,∴30311802CEππ⨯==;(3)过点O作ON⊥AD,过点B作BM⊥CD,∵OD=3,DE=1,∴AO=EO=3+1=4,∴AD22345+=,∴ON=125 OD OAAD⨯=,∴AN221216455⎛⎫-=⎪⎝⎭,∴AC=2AN=325,∴CD=325-5=75,∵BD=BC,∴DM=75÷2=710,∵∠BDM=∠ADO,∴cos∠BDM=cos∠ADO,即:35 DM ODBD AB==,∴BD =53DM =710×53=76,∴BE =76-1=16. 【点睛】本题主要考查圆和三角形的综合,掌握勾股定理,切线的判定定理,垂径定理,锐角三角函数的定义是解题的关键.3.(1)2142y x x =--+;(2)258;(3)P 点的坐标为552222⎛-- ⎝ 【解析】 【分析】(1)先由直线l 的解析式得出A 、B 的坐标,再根据旋转的性质得出D 点坐标,然后用待定系数法求出抛物线解析式;(2)设出N 点横坐标,纵坐标用横坐示表示,同时表示出M 点坐标,而MN 的长度为N 点与M 点的纵坐标之差,得出MN 的长度是N 点横坐标的二次函数,利用配方法求出最值;(3)作PH y ⊥轴于H ,交抛物线对称轴于K ,可得到PKE GHP △≌△,从而得到PK GH =,EK PH =,利用配方法可得到顶点91,2E ⎛⎫- ⎪⎝⎭,然后设21,42P m m m ⎛⎫--+ ⎪⎝⎭,则有21122EK m m =++,PH m =-,可得到关于m 的方程,解出即可.【详解】解:(1)直线:24l y x =-+交x 轴于点A 、交y 轴于点B , (2,0)A ∴,(0,4)B ,将AOB 绕点O 逆时针旋转90︒得到COD △, (4,0)D ∴-,(0,2)C ,设过点A ,B ,D 的抛物线h 的解析式为:(4)(2)y a x x =+-,将B 点坐标代入可得:4(04)(02)a =+-,解得12a =-∴抛物线h 的解析式为2142y x x =--+;(2)由(4,0)D -,(0,2)C , 则直线CD 的解析式为122y x =+, 设N 点坐标为21,42n n n ⎛⎫--+ ⎪⎝⎭,则M 点坐标为1,22n n ⎛⎫+ ⎪⎝⎭,222111313254222222228MN n n n n n n ⎛⎫⎛⎫∴=--+-+=--+=-++ ⎪ ⎪⎝⎭⎝⎭,∴当32n =-时,MN 最大,最大值为258; (3)若G 点在y 轴上,如图,作PH y ⊥轴于H ,交抛物线对称轴于K ,正方形,PEFG90,EPK GPH GPH PGH,EPKPGH同理:,PEK GPH在PKE △和GHP △中,EPKPGHPE GP PEK GPH,PKE GHP ∴△≌△, PK GH ∴=,EK PH =对2142y x x =--+,配方得219(1)22y x =-++,则顶点91,2E ⎛⎫- ⎪⎝⎭,设21,42P m m m ⎛⎫--+ ⎪⎝⎭,则有22911142222EK m m m m =++-=++,PH m =-, 21122m m m ∴-=++,解得23m =-P ∴点的坐标为5523,323,322⎛-- ⎝. 【点睛】本题是二次函数综合题,主要考查了一次函数图象上坐标点的特征,待定系数法求二次函数解析式,利用纵坐标之差表示竖直方向线段的长度,利用配方法求二次函数最值,正方形的性质、全等三角形的判定与性质、解一元二次方程等众多知识点,综合性强,难度较大.对于(3)问,根据正方形的性质巧妙构造出全等三角形,从而得出线段相等而列出方程是解答的关键和要点.4.(1)2,1,5-;(2)①13或133;②存在,m 的值为2-或2.【解析】 【分析】(1)根据正整数的定义、绝对值的非负性、偶次方的非负性分别可求出,,b a c 的值; (2)①先求出运动t 秒后,点,A C 所表示的数,再分点A 在点C 左侧和点A 在点C 右侧两种情况,然后根据数轴的定义建立方程,解方程即可得;②先求出运动t 秒后,点,,A B C 所表示的数,从而可得AC 的长,再分点A 在点B 左侧和点A 在点B 右侧两种情况,分别求出AB 的值,代入化简,然后根据整式的无关型问题求解即可得. 【详解】解:(1)b 是最小的正整数,1b ∴=,()2250a c ++-=, 20,50a c ∴+=-=,解得2,5a c =-=, 故答案为:2,1,5-;(2)①由题意,运动t 后,点A 所表示的数是42t -,点C 所表示的数是5t +, 当点A 在点C 左侧时,5(42)6AC t t =+--=,解得13t =, 当点A 在点C 右侧时,42(5)6AC t t =--+=,解得133t =, 综上,t 的值为13或133;②由题意,运动t 后,点A 所表示的数是42t -,点B 所表示的数是1t +,点C 所表示的数是5t +,当421t t -=+时,13t =, 当425t t -=+时,73t =, 因为点A 在点C 左侧, 所以5(42)73AC t t t =+--=-,当点A 在点B 左侧,即01t <<时,1(42)33AB t t t =+--=-, 则22(73)(33)314(36)AC m AB t m t m m t +⋅=-+-=+-+, 由360m +=得:2m =-,即在01t <<运动时间内,当2m =-时,2AC m AB +⋅的值不随t 的改变而改变; 当点A 在点B 右侧,即713t <<时,42(1)33AB t t t =--+=-,则22(73)(33)143(36)AC m AB t m t m m t +⋅=-+-=-+-, 由360m -=得:2m =, 即在713t <<运动时间内,当2m =时,2AC m AB +⋅的值不随t 的改变而改变; 综上,存在一个常数m 使得2AC m AB +⋅的值在某段运动过程中不随t 的改变而改变,m 的值为2-或2. 【点睛】本题考查了数轴、一元一次方程的应用、绝对值和偶次方的非负性、整式等知识点,较难的是题(2)②,正确分两种情况讨论是解题关键.5.(1)2;(2)(1,4)-或21,3⎛⎫⎪⎝⎭;(3)(19,0)或(17,0)-【解析】 【分析】(1)根据抛物线的解析式可求得与坐标轴的坐标及顶点坐标,从而易得OB =OC ,由EF ⊥OB 即可求得EF 的长,从而求得DE 的长;(2)设点G 的坐标为(1,x ),分两种情况考虑:△COE ∽△EGB 和△COE ∽△EBG ,根据相似三角形的性质即可求得x 的值,从而可求得点G 的坐标;(3)分两种情况考虑:点P 在点A 的右侧和点P 在点A 的左侧;当点P 在点A 的右侧时,由D (1,4),则tan 4DOF ∠=,得出∠α =∠DOF ,然后根据三角形外角的性质可求得∠DPO =∠ADO ,进而可得△ADP ∽△AOD ,由相似三角形的性质可求得OP 的长,从而求得P 点的坐标;当点P 在点A 的左侧时, 作点P 关于抛物线对称轴的对称点P ',则点P '也满足题意. 【详解】(1)当2y x x =-++23=0时,解方程得:1213x x =-=, ∴抛物线2y x x =-++23与x 轴的交点坐标分别为A (-1,0)、B (3,0) ∴OB =3∵在2y x x =-++23中,当x =0时,3y = ∴抛物线与y 轴的交点C 的坐标为(0,3) ∴OC =3∵2223(1)4y x x x =-++=--+ ∴抛物线的顶点坐标为D (1,4) ∴DF =4,OF =1 ∵OB =OC =3,OC ⊥OB ∴∠OCB =∠OBC =45° ∵EF ⊥OB∴∠FEB =∠OBC =45° ∴EF =BF =OB -OF =3-1=2∴DE =DF -EF =4-2=2 (2)设点G 的坐标为(1,x )在Rt △OBC 及Rt △FBE 中,由勾股定理得:BC =BE ===∴CE BE BE =-==①若△COE ∽△EGB 则有OC EGCE BE=,∠GEB =∠OCE =45° 即OC ∙BE =CE ∙EG ∴点G 只能在点E 下方∵由(1)可得点E 的坐标为(1,2) ∴EG =2-x∴3)x ⨯=- 解得:x =-4即点G 的坐标为(1,-4) ②若△COE ∽△EBG 则有OC BECE EG=,∠BEG =∠OCE =45° 即OC ∙EG =CE ∙BE ∴点G 只能在点E 下方 ∴EG =2-x∴3(2)x ⨯-=解得:23x =即点G 的坐标为21,3⎛⎫⎪⎝⎭综上所述,满足条件的点G 的坐标为(1,4)-或21,3⎛⎫⎪⎝⎭(3)①如图,当点P 在点A 的左侧时,连接DP 、DA 、DO ∵tan 4DFDOF OF∠==,tan 4α= ∴∠DOF =∠α=∠DAO +∠DPO ,∠DOF =∠PDO +∠DPO ∴∠DAO =∠PDO ∴△OAD ∽△ODP ∴OA ODOD OP=,即2OD OA OP = ∵22211617OD OF DF =+=+= ∵OA =1 ∴OP =17∴点P 的坐标为(-17,0)②当点P 在点A 的右侧时,作点P (-17,0)关于抛物线的对称轴的对称点P ',则DP O DPO '∠=∠∴DAO DP O α'∠+∠=∠此时点P '满足题意,且其坐标为(19,0)综上所述,满足条件的点P 的坐标为(19,0)或(17,0)- 【点睛】本题考查了求二次函数与x 轴的交点、顶点坐标,相似三角形的判定与性质,勾股定理等知识,求得三角形相似是关键.注意分类讨论.6.(1)y =12x 2+x −32;(2)(3,6)或(-5,6)或(−1,-2);(3)−12<k <56且k ≠0或56<k <43【解析】 【分析】(1)把A (−3,0),B (1,0),52,2C ⎛⎫ ⎪⎝⎭代入y =ax 2+bx +c ,解方程组即可;(2)把C 点坐标代入直线CD ,得2k +b =52,分两种情况:①若AB 为平行四边形的边时,②若AB 为平行四边形的对角线时,得关于k 、b 的方程组,解方程组即可求解; (3)分两种情况:①当E 点在x 轴上方时,②E 点在x 轴下方时,根据当α=β时,列方程,可求出k 的值,进而求出k 的取值范围. 【详解】解:(1)设抛物线的解析式为y =ax 2+bx +c , ∵抛物线经过A (−3,0),B (1,0),C (2,52)三点, ∴93005422a b c a b c a b c ⎧⎪-+=⎪++=⎨⎪⎪++=⎩,∴12132a b c ⎧⎪⎪⎨⎪⎪-⎩===, ∴抛物线的解析式为y =12x 2+x −32; (2)如图1所示,将C 点坐标代入直线CD ,得2k +b =52, 当x =−1时,y =−k +b ,即E (−1,−k +b ).①若AB 为平行四边形的边时,则F (-1+4,−k +b )或F (-1-4,−k +b ),即:F (3,−k +b )或F (-5,−k +b ), 把F (3,−k +b )代入y =12x 2+x −32,得−k +b =6, 把F (-5,−k +b ),代入y =12x 2+x −32,得−k +b =6, 又∵2k +b =52, ∴k =76-,b =296∴F (3,6)或(-5,6);②若AB 为平行四边形的对角线时,则F 和E 关于x 轴对称, ∴F (−1,k -b ), ∴k -b =-2, 又∵2k +b =52, ∴k =16,b =136,∴F (−1,-2),综上所述:F 的坐标为(3,6)或(-5,6)或(−1,-2); (3)如图2所示,①当E点在x轴上方时,如图2所示,当α=β时,∵∠EHA=90°,∴∠AEC=90°,∴∠AEH=∠EGH,∵∠AHF=∠FHG=90°,∴AHF FHG∽,∴AE AH EG EH=,∵A (−3,0),E(−1,−k+b),G(bk-,0),∴()()2222221k bk bbk bk+-+=-+⎛⎫-++-+⎪⎝⎭,∴k2−bk−2=0,联立方程220522k bkk b⎧--=⎪⎨+=⎪⎩,解得k=−12(k=43舍去),随着E点向下移动,∠CEH的度数越来越大,∠EAH的度数越来越小,当E点和H点重合时(如图3所示),α和β均等于0,此时联立方程522k bk b⎧+⎪⎨⎪-+⎩==,解得5656kb⎧=⎪⎪⎨⎪=⎪⎩,因此当−12<k <56且k ≠0时,α>β;②E 点在x 轴下方时,如图4所示,当α=β时, ∵∠EHA =90°, ∴∠AEC =90°, 根据①可得此时k =43(k =−12舍去),随着E 点向下移动,∠CEH 的度数越来越小,∠EAH 的度数越来越大,因此当56<k <43时,α>β.综上所述可得,当α>β时,k 取值范围为−12<k <56且k ≠0或56<k <43.【点睛】本题考查的是一次函数、二次函数和相似三角形的判定和性质的综合应用,掌握待定系数法求函数解析式和数形结合思想方法是解题的关键.7.(1)①()1,4;②2n =或1n =-;(2)1m 或0m =或43m -<≤-;(3)12m ≤ 【解析】 【分析】(1)①根据顶点坐标的计算公式计算即可;②分两种情况讨论,根据二次函数的图象性质计算即可;(2)分三种情况讨论,再根据当x ≤2时,函数图象上有且只有2个点到x 轴的距离为2,列不等式组即可;(3)根据点P 和点M 横坐标的位置及二次函数的图象性质列不等式组即可; 【详解】(1)当m =2时,函数解析式为2y x 2x 3=-++, ①2122b xa ,24124444ac b y a ---===-,∴顶点坐标是()1,4;②∵2y x 2x 3=-++,10a =-<, ∴开口方向向下,对称轴为:1,x =当1n >时,则x n =时,2233y n n =-++=,此时函数值最大,220,n n ∴-=解得:2n =(0n =舍去), 当11n +<,即0n <时, ∴1x n =+时,3y =最大, ∴()()212133n n -++++=, 解得:1n =-(1n =舍去) 综上:2n =或1n =-; (2)221,y x x m =-+++()()2241148,m m ∴=-⨯-⨯+=+ 当480m +>即2m >-时, 如图,当2x =时,1,y m =+根据当x ≤2时,函数图象上有且只有2个点到x 轴的距离为2可知,12,m +> 1,m ∴>m ∴的范围是 1.m >当1x =时,22,y m =+= 此时符合题意, 则0,m =当当480m +<即2m <-时,如图,根据当x ≤2时,函数图象上有且只有2个点到x 轴的距离为2可知,同理可得:2212m m +>-⎧⎨+≤-⎩解得:43,m -<≤-所以m 的范围是:4 3.m -<≤- 综上:1m 或0m =或4 3.m -<≤- (3)2221(1)2y x x m x m =-+++=--++∴抛物线的顶点坐标为(1,2m +),对称轴为直线1x = ∵点P 的横坐标为﹣3m +2,∴点P 的坐标为(﹣3m +2,2971m m -++)∵以PM 为对角线构造矩形PQMN ,矩形的各边与坐标轴垂直,抛物线在矩形PQMN 内部的函数部分y 随着x 的增大而增大, ∴矩形中抛物线为对称轴左侧的部分,即1x ≤ 又点M 的坐标为(2m ,m ),∴2971121m m m m ⎧-++≥+⎨≤⎩ ∴102m ≤< ∵点P 在二次函数的图象上, 当点M 点在点P 的左侧时 ∴232m m <-+ ∴25m <∴232m m <-+∴25 m<∴25 m<当点M点在点P的右侧时∴232m m-+>∴25 m>∴21 52m≤<故当抛物线在矩形PQMN内部的函数部分y随着x的增大而增大时,12 m≤【点睛】本题主要考查了二次函数综合应用,二次函数的图象与性质,不等式组的解法,清晰的分类讨论是解题的关键.8.(1)5;(2)157t=;(3)1t=或52t=【解析】【分析】(1)直接运用勾股定理求解即可;(2)当CP平分∠ACB时,作PM⊥BC于M点,PN⊥AC于N点,作CQ⊥AB于Q点,利用等面积法分别表示△APC和△BPC,进而得出AP ACBP BC=,从而建立分式方程求解并检验即可;(3)根据等腰三角形的性质进行分类讨论,结合勾股定理求解即可.【详解】解:(1)由勾股定理:2222AB AC BC345++=,故答案为:4;(2)当CP平分∠ACB时,如图所示,作PM⊥BC于M点,PN⊥AC于N点,作CQ⊥AB于Q点,则由角平分线的性质得:PM=PN,∵1122APCS AP CQ AC PN==,1122BPCS BP CQ BC PM==,∴11221122APCBPCAP CQ AC PNSS BP CQ BC PM==,即:AP AC BP BC=,由题意,AP t=,则5BP AB AP t=-=-,∴3 54tt=-,解得:157t=,经检验,157t=是上述分式方程的解,∴当157t=时,CP平分∠ACB;(3)①若BC=BP,如图所示,此时,BP=BC=4,AP=AB-BP=1,∴t=1;②若CP=BP,如图所示,此时,作CT⊥AB于T点,∵1122ABCS AC BC AB CT==,∴125 CT=,在Rt△CBT中,2216 5BT BC CT-,∵AP t=,∴5BP t=-,5CP t=-,∴()169555PT BT BP t t =-=--=-, 在Rt △CPT 中,222CP CT PT =+, 即:()222129555t t ⎛⎫⎛⎫-=+- ⎪ ⎪⎝⎭⎝⎭, 解得:52t =;③若CP =CB ,由于P 在线段AB 上运动,则CP =CB 的情况不成立,故舍去; 综上,当1t =或52t =时,满足△BCP 为等腰三角形. 【点睛】本题考查了勾股定理和等腰三角形的性质,解决本题的关键是正确理解题意,熟练掌握勾股定理,能够根据等腰三角形的性质进行分类讨论解决.9.(1)224233y x x =--+;(2)35(,)22P -(3)存在,12(1,0),(5,0)Q Q --,34(27,0),(27,0)Q Q .【解析】 【分析】(1)根据待定系数法求抛物线解析式;(2)设224(,)33P t t --根据(1)的结论求得C 的坐标,进而求得AC 的解析式,过P 作PD ⊥x 轴交AC 于点D ,进而求得PD 的长,根据12APC C A S PD x x =⋅⋅-△求得APCS的表达式,进而根据二次函数的性质求得取得最大值时,t 的值,进而求得P 点的坐标; (3)分情况讨论,①//CM AQ ,②//AC MQ ,根据抛物线的性质以及平行四边形的性质先求得M 的坐标进而求得Q 点的坐标. 【详解】(1)二次函数22y ax bx =++的图象与x 轴交于()()3,0,1,0A B -两点,则093202a b a b =-+⎧⎨=++⎩解得2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩∴抛物线解析式为224233y x x =--+(2)抛物线224233y x x =--+与y 轴交于点C ,令0x =,则2y =(0,2)C ∴设直线AC 的解析式为y kx b =+,由(3,0)A -,(0,2)C ,则302k b b -+=⎧⎨=⎩解得232k b ⎧=⎪⎨⎪=⎩∴直线AC 的解析式为223y x =+, 如图,过P 作PD ⊥x 轴交AC 于点D ,设224(,)33P t t --,则2(,2)3D t t +,2224222223333PD t t t t t ⎛⎫∴=--+-+=-- ⎪⎝⎭∴12APCC A S PD x x =⋅⋅-△212(2)323t t =⨯--⨯2239324t t t ⎛⎫=--=-++ ⎪⎝⎭ ∴当32t =-时,APCS取得最大值,此时222423435223332322t t ⎛⎫⎛⎫--+=-⨯--⨯-+= ⎪ ⎪⎝⎭⎝⎭ ∴35(,)22P -(3)存在,理由如下抛物线解析式为224233y x x =--+()228133x =-++∴抛物线的对称轴为直线1x =①如图,当//CM AQ 时,Q 点在x 轴上,//CM x 轴∴,M C 关于抛物线的对称轴直线1x =对称,(0,2)C(2,2)M ∴-2CM ∴=122AQ AQ ∴==(3,0)A -12(1,0),(5,0)Q Q ∴--②当//AC MQ 时,如图,设M 的纵坐标为n ,四边形ACQM 是平行四边形,点A ,Q 在x 轴上,则,AQ MC 的交点也在x 轴上, 202n +∴=解得2n =- 设(,2)M m -, 2242233x x ∴-=--+解得1x =-(12)M ∴--A 点到C 点是横坐标加3,纵坐标加2∴M 点到Q 点也是横坐标加3,纵坐标加2即(13,0)Q -±34(2(2Q Q ∴综上所述,存在点Q ,使得以A C M Q 、、、为顶点的四边形是平行四边形,Q 点的坐标为12(1,0),(5,0)Q Q --,34(2(2Q Q .【点睛】本题考查了二次函数综合,待定系数法,二次函数最值,二次函数的图象与性质,平行四边形的性质,综合运用以上知识是解题的关键.10.(1)①,②w 有最小值,w 的最值是(2)不变,(3)或【解析】 【分析】(1)①根据题意先求得各点的坐标,求得AD 的解析式,进而求得点E 的坐标,通过计算可得,进而可得,由可得出,依题意,设,解方程求解即可;②根据已知条件设,求得直线AP 的解析式,直线BE 的解析式,联立即可求得点G 的坐标,根据,令,根据二次函数的性质求得的最大值,即可求得的最小值;(2)根据题意过点N 作,依题意,点N 为ABP △的外心,N 为AB 垂直平分线上的点则点N 在抛物线的对称轴1x =上,设,,()1,0A -,()3,0B ,根据建立方程,解得,进而求得,即可求得;(3)作的外心H ,作轴,则,进而可得H 在AO 的垂直平分线上运动,根据题意当最大转为求当取得最小值时,最大,进而根据点到直线的距离,垂线段最短,即可求得,求得,勾股定理求得,即可求得点H 的坐标,根据对称性求得另一个坐标. (1)抛物线y =x 2﹣2x ﹣3与x 轴交于A 、B 两点,与y 轴交于C 点,D 为抛物线顶点. 令0x =,解得3y =-,则()0,3C - 令0y =,则,解得121,3x x =-=则,则①设直线AD 的解析式为y kx b =+ 则 解得令0x =,则,,依题意,设解得(舍)②点P 在第四象限的抛物线上,AP 、BE 交于点G ,如图,设,()1,0A -设直线AP 的解析式为则解得∴设直线AP 的解析式为设直线BE 的解析式为11y k x b =+∴直线BE 的解析式为联立解得∴=令存在最大值,则存在最小值当时,存在最大值,最大值为则的最小值为∴ w 有最小值,w 的最值是(2) 不变,,理由如下,如图,过点N 作,依题意,点N 为ABP △的外心N 为AB 垂直平分线上的点,即点N 在抛物线的对称轴1x =上, PM x ⊥,,轴,∴设,,()1,0A -,()3,0B ,N 为ABP △的外心,,则即解得即(3) 如图,作的外心H ,作轴,则H在AO的垂直平分线上运动依题意,当最大时,即最大时,是的外心,,即当最大,最大则当取得最小值时,最大,即当HQ⊥直线x=1时,取得最小值时,此时∴在中,.根据对称性,则存在.综上所述,或.【点睛】本题考查了三角形的外心,垂径定理,抛物线与三角形面积计算,二次函数的性质求最值问题,抛物线与圆综合,运用转化思想是解题的关键.11.(1)证明见解析,(2)证明见解析,(3)6 【解析】 【分析】(1)证明△BCE ≌△CDF 即可;(2)取BF 中点O ,连接OA 、OG ,证明A 、B 、G 、F 四点共圆即可;(3)作AK ⊥BG 于K ,HN ⊥AB 于N ,GM ⊥AB 于M ,根据等腰三角形的性质得出12BK AK ,进而得出∠BAG 的正切值,求出AH 长即可. 【详解】(1)证明∵四边形ABCD 是正方形, ∴CB =CD ,∠BCD =90°, ∵CF ⊥BE , ∴∠BGC =90°,∴∠CBE +∠GCB =90°,∠GCB +∠DCF =90°, ∴∠CBE =∠DCF , ∴△CBE ≌△DCF (AAS ), ∴CE =DF ;(2)取BF 中点O ,连接OA 、OG , ∵∠BAF =90°, ∴OA =OF =OB , 同理,OG =OF =OB ,∴A 、B 、G 、F 四点在以O 为圆心,OA 为半径的圆上,如图所示, ∴∠ABF =∠AGF ;(3)作AK ⊥BG 于K ,HN ⊥AB 于N ,GM ⊥AB 于M , ∵四边形ABCD 是正方形, ∴AB =CB ,∠ABC =90°, ∵AK ⊥BG , ∴∠AKB =90°,∴∠BAK +∠ABK =90°,∠ABK +∠CBG =90°, ∴∠BAK =∠CBG , ∴△BAK ≌△CBG (AAS ), ∴AK =BG ; ∵AG =AB =11, ∴1122BK BG AK ==, ∴1tan tan 2BAK CBG ∠=∠=, ∴BC =2EC ,由(1)得,DC =2DF , ∴1tan 2ABF ∠=, ∴12NH BN = ∵MG ∥CB , ∴∠MGB =∠CBG , ∴MG =2MB ,AM =11-MB , 222(11)(2)11MB MB -+=,解得,1225MB =,20MB =(舍去), 335AM =,445MG =, ∴4tan 3MAG ∠=,∴43NH AN =, ∵12NH BN =, ∴32114BN AN NH NH +=+=, 解得,4NH =,则3AN =,225AH AN NH =+=,GH =11-5=6.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的性质,解直角三角形,圆周角定理等知识,解题关键是恰当的作辅助线,熟练运用相关性质进行推理证明.12.(1)(2)点P 的坐标为(−3,4) (3)存在,点M 的坐标为:,,【解析】 【分析】(1)由直线方程可求得A 、B 两点的坐标,代入抛物线解析式可求得b 、c 的值,可求得抛物线解析式,再令y =0可求得C 点坐标;(2)过E 作EH ⊥PD 于H ,可求得EH ,设出P 点坐标,则可表示出D 、E 、F 的坐标,从而可表示出PD 和EF ,利用梯形面积公式可表示出四边形PDEF 的面积,根据二次函数的最值,可求得P 点坐标;(3)可求得直线AG 和A ′G ′的方程,从而可表示出M 、N 点的坐标,从而可表示出MN 、FM 、FN 的长,分MN =FM 、MN =FN 和FM =FN 三种情况分别求解即可.(1)∵直线4y x =+与x 轴、y 轴分别交于A 、B 两点,∴A (−4,0),B (0,4). ∵抛物线2y x bx c =-++经过A 、B 两点,∴.解得.∴抛物线的解析式为.(2)如图,过点E作EH⊥PD于点H,则EH∥OA.∵OA=OB=4,∴∠OAB=45°.∴∠HDE=45°,且DE=.∴HE=HD=2.设点P的坐标为(a,--3a+4),则点D为(a,a+4),点E为(a+2,a+6),点F为(a+2,--7a-6).∴|PD|=-−3a+4-(a+4)=--4a,|EF|=--7a-6-(a+6)=--8a-12.∴S四边形PDEF=HE×(PD+EF)= ×2(--4a--8a-12)=-2-12a-12=-2(a+3)2+6.∴当a=-3时,S四边形PDEF有最大值6.此时点P的坐标为(−3,4).(3)满足条件的点M的坐标为:,,.理由如下:∵OG=2,∴点G的坐标为(0,-2),且A(-4,0).=+,把A、G坐标代入可得,解得.设直线AG的方程为y kx n。

中考数学《压轴题》专题训练含答案解析

中考数学《压轴题》专题训练含答案解析

压轴题1、已知,在平行四边形OABC 中,OA=5,AB=4,∠OCA=90°,动点P 从O 点出发沿射线OA 方向以每秒2个单位的速度移动,同时动点Q 从A 点出发沿射线AB 方向以每秒1个单位的速度移动.设移动的时间为t 秒. (1)求直线AC 的解析式;(2)试求出当t 为何值时,△OAC 与△PAQ 相似; (3)若⊙P 的半径为58,⊙Q 的半径为23;当⊙P 与对角线AC 相切时,判断⊙Q 与直线AC 、BC 的位置关系,并求出Q 点坐标。

解:(1)42033y x =-+ (2)①当0≤t≤2.5时,P 在OA 上,若∠OAQ=90°时, 故此时△OAC 与△PAQ 不可能相似.当t>2.5时,①若∠APQ=90°,则△APQ ∽△OCA ,∵t>2.5,∴符合条件.②若∠AQP=90°,则△APQ ∽△∠OAC ,∵t>2.5,∴符合条件.综上可知,当时,△OAC 与△APQ 相似.(3)⊙Q 与直线AC 、BC 均相切,Q 点坐标为(109,531)。

2、如图,以矩形OABC 的顶点O 为原点,OA 所在的直线为x 轴,OC 所在的直线为y 轴,建立平面直角坐标系.已知OA =3,OC =2,点E 是AB 的中点,在OA 上取一点D ,将△BDA 沿BD 翻折,使点A 落在BC 边上的点F 处. (1)直接写出点E 、F 的坐标;(2)设顶点为F 的抛物线交y 轴正半轴...于点P ,且以点E 、F 、P 为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x 轴、y 轴上是否分别存在点M 、N ,使得四边形MNFE 的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.解:(1)(31)E ,;(12)F ,.(2)在Rt EBF △中,90B ∠=, 2222125EF EB BF ∴=+=+=.设点P 的坐标为(0)n ,,其中0n >,顶点(12)F ,, ∴设抛物线解析式为2(1)2(0)y a x a =-+≠.①如图①,当EF PF =时,22EF PF =,221(2)5n ∴+-=.解得10n =(舍去);24n =.(04)P ∴,.24(01)2a ∴=-+.解得2a =. ∴抛物线的解析式为22(1)2y x =-+(第2题)②如图②,当EP FP =时,22EP FP =,22(2)1(1)9n n ∴-+=-+. 解得52n =-(舍去).③当EF EP =时,53EP =<,这种情况不存在. 综上所述,符合条件的抛物线解析式是22(1)2y x =-+. (3)存在点M N ,,使得四边形MNFE 的周长最小. 如图③,作点E 关于x 轴的对称点E ',作点F 关于y 轴的对称点F ',连接E F '',分别与x 轴、y 轴交于点M N ,,则点M N ,就是所求点.(31)E '∴-,,(12)F NF NF ME ME '''-==,,,.43BF BE ''∴==,.FN NM ME F N NM ME F E ''''∴++=++=22345+=.又5EF =,∴55FN NM ME EF +++=+,此时四边形MNFE 的周长最小值是553、如图,在边长为2的等边△ABC 中,A D ⊥BC,点P 为边AB 上一个动点,过P 点作PF//AC 交线段BD 于点F,作PG ⊥AB 交AD 于点E,交线段CD 于点G,设BP=x . (1)①试判断BG 与2BP 的大小关系,并说明理由;②用x 的代数式表示线段DG 的长,并写出自变量x 的取值范围;(2)记△DEF 的面积为S,求S 与x 之间的函数关系式,并求出S 的最大值;(3)以P 、E 、F 为顶点的三角形与△EDG 是否可能相似?如果能相似,请求出BP 的长,如果不能,请说明理由。

中考数学压轴题100题及答案

中考数学压轴题100题及答案

中考数学压轴题100题精选【001】如图,已知抛物线2(1)y a x =-+a ≠0)经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.【C=90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB-BC-CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成 为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接写出t 的值.【003】如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0)、D (8,8).抛物线y=ax2+bx 过A 、C 两点. (1)直接写出点A 的坐标,并求出抛物线的解析式;A P 图16(2)动点P 从点A 出发.沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD 向终点D 运动.速度均为每秒1个单位长度,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E ,①过点E 作EF ⊥AD 于点F ,交抛物线于点G .当t 为何值时,线段EG 最长? ②连接EQ .在点P 、Q 运动的过程中,判断有几个时刻使得△CEQ 是等腰三角形? 请直接写出相应的t 值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、中考数学压轴题1.已知:如图,在平面直角坐标系中,点 A 的坐标为(6,0),AB=62,点 P 从点 O出发沿线段 OA 向终点 A 运动,点 P 的运动速度是每秒 2 个单位长度,点 D 是线段 OA 的中点.(1)求点B 的坐标;(2)设点P 的运动时间为点t 秒,△BDP 的面积为S,求S 与t 的函数关系式;(3)当点P 与点D 重合时,连接BP,点E 在线段AB 上,连接PE,当∠BPE=2∠OBP 时,求点E 的坐标.2.在学习了轴对称知识之后,数学兴趣小组的同学们对课本习题进行了深入研究,请你跟随兴趣小组的同学,一起完成下列问题.(1)(课本习题)如图①,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD.求证:DB=DE(2)(尝试变式)如图②,△ABC是等边三角形,D是AC边上任意一点,延长BC至E,使CE=AD.求证:DB=DE.(3)(拓展延伸)如图③,△ABC是等边三角形,D是AC延长线上任意一点,延长BC至E ,使CE=AD 请问DB 与DE 是否相等? 并证明你的结论.3.如图,在平面直角坐标系中,直线6y x =+与x 轴交于点A ,与y 轴交于点B ,点C 在x 轴正半轴上,2ABC ACB ∠=∠.(1)求直线BC 的解析式;(2)点D 是射线BC 上一点,连接AD ,设点D 的横坐标为t ,ACD ∆的面积为S ()0S ≠,求S 与t 的函数解析式,并直接写出自变量t 的取值范围;(3)在(2)的条件下,AD 与y 轴交于点E ,连接CE ,过点B 作AD 的垂线,垂足为点H ,直线BH 交x 轴于点F ,交线段CE 于点M ,直线DM 交x 轴于点N ,当:7:12NF FC =时,求直线DM 的解析式.4.定义:如果一个三角形一条边上的高与这条边的比值是3:5,那么称这个三角形为“准黄金”三角形,这条边就叫做这个三角形的“金底”.(概念感知)(1)如图1,在ABC 中,12AC =,10BC =,30ACB ∠=︒,试判断ABC 是否是“准黄金”三角形,请说明理由.(问题探究)(2)如图2,ABC 是“准黄金”三角形,BC 是“金底”,把ABC 沿BC 翻折得到DBC △,连AB 接AD 交BC 的延长线于点E ,若点C 恰好是ABD △的重心,求AB BC的值.(拓展提升)(3)如图3,12l l //,且直线1l 与2l 之间的距离为3,“准黄金”ABC 的“金底”BC 在直线2l 上,点A 在直线1l 上.105AB BC =,若ABC ∠是钝角,将ABC ∠绕点C 按顺时针方向旋转()090αα︒<<︒得到A B C '',线段A C '交1l 于点D .①当30α=︒时,则CD =_________;②如图4,当点B 落在直线1l 上时,求AD CD 的值.5.如图,矩形ABCD 中,AB =8,BC =12,E 是BC 边的中点,点P 在线段AD 上,过P 作PF ⊥AE 于F ,设PA =x .(1)求证:△PFA ∽△ABE ;(2)当点P 在线段AD 上运动时,是否存在实数x ,使得以点P ,F ,E 为顶点的三角形也与△ABE 相似?若存在,请求出x 的值;若不存在,请说明理由;(3)探究:当以D 为圆心,DP 为半径的⊙D 与线段AE 只有一个公共点时,请直接写出DP 满足的条件: .6.如图①,四边形ABCD 中,//,90AB CD ADC ∠=︒.(1)动点M 从A 出发,以每秒1个单位的速度沿路线A B C D →→→运动到点D 停止,设运动时间为a ,AMD ∆的面积为,S S 关于a 的函数图象如图②所示,求AD CD 、的长.(2)如图③动点P 从点A 出发,以每秒2个单位的速度沿路线A D C →→运动到点C 停止,同时,动点Q 从点C 出发,以每秒5个单位的速度沿路线C D A →→运动到点A 停止,设运动时间为t ,当Q 点运动到AD 边上时,连接CP CQ PQ 、、,当CPQ ∆的面积为8时,求t 的值.7.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c的图象与x轴交于A(﹣3,0)、B(2,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式;(2)点E(m,2)是直线AC上方的抛物线上一点,连接EA、EB、EC,EB与y轴交于D.①点F是x轴上一动点,连接EF,当以A、E、F为顶点的三角形与△BOD相似时,求出线段EF的长;②点G为y轴左侧抛物线上一点,过点G作直线CE的垂线,垂足为H,若∠GCH=∠EBA,请直接写出点H的坐标.8.如图,在正方形ABCD中,DC=8,现将四边形BEGC沿折痕EG(G,E分别在DC,AB边上)折叠,其顶点B,C分别落在边AD上和边DC的上部,其对应点设为F,N点,且FN交DC于M.特例体验:(1)当FD=AF时,△FDM的周长是多少?类比探究:(2)当FD≠AF≠0时,△FDM的周长会发生变化吗?请证明你的猜想.拓展延伸:(3)同样在FD≠AF≠0的条件下,设AF为x,被折起部分(即:四边形FEGN)的面积为S,试用含x的代数式表示S,并问:当x为何值时,S=26?9.如图,在平面直角坐标系中,点(1,2)A ,(5,0)B ,抛物线22(0)y ax ax a =->交x 轴正半轴于点C ,连结AO ,AB .(1)求点C 的坐标;(2)求直线AB 的表达式;(3)设抛物线22(0)y ax ax a =->分别交边BA ,BA 延长线于点D ,E .①若2AE AO =,求抛物线表达式;②若CDB △与BOA △相似,则a 的值为 .(直接写出答案)10.附加题:在平面直角坐标系中,抛物线21y ax a =-与y 轴交于点A ,点A 关于x 轴的对称点为点B ,(1)求抛物线的对称轴;(2)求点B 坐标(用含a 的式子表示);(3)已知点11,P a ⎛⎫ ⎪⎝⎭,(3,0)Q ,若抛物线与线段PQ 恰有一个公共点,结合函数图像,求a 的取值范围.11.对于平面内的点M 和点N ,给出如下定义:点P 为平面内的一点,若点P 使得PMN 是以M ∠为顶角且M ∠小于90°的等腰三角形,则称点P 是点M 关于点N 的锐角等腰点P .如图,点P 是点M 关于点N 的锐角等腰点.在平面直角坐标系xOy 中,点O 是坐标原点.(1)已知点(2,0)A ,在点123(0,2),(13),(13)P P P -,4(2,2)P -中,是点O 关于点A 的锐角等腰点的是___________.(2)已知点(3,0)A ,点C 在直线2y x b =+上,若点C 是点O 关于点A 的锐角等腰点,求实数b 的取值范围.(3)点D 是x 轴上的动点,(,0),(2,0)D t E t -,点(,)F m n 是以D 为圆心,2为半径的圆上一个动点,且满足0n ≥.直线24y x =-+与x 轴和y 轴分别交于点H K ,,若线段HK 上存在点E 关于点F 的锐角等腰点,请直接写出t 的取值范围.12.注意:为了使同学们更好地解答本题的第(Ⅱ)问,我们提供了一种分析问题的方法,你可以依照这个方法按要求完成本题的解答,也可以选用其他方法,按照解答题的一般要求进行解答即可.如图,将一个矩形纸片ABCD ,放置在平面直角坐标系中,()0,0A ,()4,0B ,()0,3D ,M 是边CD 上一点,将ADM 沿直线AM 折叠,得到ANM .(Ⅰ)当AN 平分MAB ∠时,求DAM ∠的度数和点M 的坐标;(Ⅱ)连接BN ,当1DM =时,求ABN 的面积;(Ⅲ)当射线BN 交线段CD 于点F 时,求DF 的最大值.(直接写出答案) 在研究第(Ⅱ)问时,师生有如下对话:师:我们可以尝试通过加辅助线,构造出直角三角形,寻找方程的思路来解决问题. 小明:我是这样想的,延长MN 与x 轴交于P 点,于是出现了Rt NAP △.小雨:我和你想的不一样,我过点N 作y 轴的平行线,出现了两个Rt NAP △.13.已知:如图,四边形ABCD ,AB DC ,CB AB ⊥,16AB cm =,6BC cm =,8CD cm =,动点Q 从点D 开始沿DA 边匀速运动,运动速度为1/cm s ,动点P 从点A 开始沿AB 边匀速运动,运动速度为2/cm s .点P 和点Q 同时出发,O 为四边形ABCD 的对角线的交点,连接 PO 并延长交CD 于M ,连接QM .设运动的时间为()t s ,08t <<.(1)当t 为何值时,PQ BD ?(2)设五边形QPBCM 的面积为()2S cm ,求S 与t 之间的函数关系式;(3)在运动过程中,是否存在某一时刻t ,使PQM 的面积等于五边形面积的1115?若存在,求出t 的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t ,使点Q 在MP 的垂直平分线上?若存在,求出t 的值;若不存在,请说明理由.14.(问题探究)课堂上老师提出了这样的问题:“如图①,在ABC 中,108BAC ∠=︒,点D 是BC 边上的一点,7224BAD BD CD AD ∠=︒==,,,求AC 的长”.某同学做了如下的思考:如图②,过点C 作CE AB ∥,交AD 的延长线于点E ,进而求解,请回答下列问题:(1)ACE ∠=___________度;(2)求AC 的长.(拓展应用)如图③,在四边形ABCD 中,12075BAD ADC ∠=︒∠=︒,,对角线AC BD 、相交于点E ,且AC AB ⊥,22EB ED AE ==,,则BC 的长为_____________.15.如图,等腰△ABC ,AB =CB ,边AC 落在x 轴上,点B 落在y 轴上,将△ABC 沿y 轴翻折,得到△ADC(1)直接写出四边形ABCD 的形状:______;(2)在x 轴上取一点E ,使OE =OB ,连结BE ,作AF ⊥BC 交BE 于点F .①直接写出AF 与AD 的关系:____(如果后面的问题需要,可以直接使用,不需要再证明);②取BF 的中点G ,连接OG ,判断OG 与AD 的数量关系,并说明理由;(3)若四边形ABCD 的周长为8,直接写出GE 2+GF 2=____.16.(1)如图1,A 是⊙O 上一动点,P 是⊙O 外一点,在图中作出PA 最小时的点A . (2)如图2,Rt △ABC 中,∠C =90°,AC =8,BC =6,以点C 为圆心的⊙C 的半径是3.6,Q 是⊙C 上一动点,在线段AB 上确定点P 的位置,使PQ 的长最小,并求出其最小值.(3)如图3,矩形ABCD中,AB=6,BC=9,以D为圆心,3为半径作⊙D,E为⊙D上一动点,连接AE,以AE为直角边作Rt△AEF,∠EAF=90°,tan∠AEF=13,试探究四边形ADCF的面积是否有最大或最小值,如果有,请求出最大或最小值,否则,请说明理由.17.已知:矩形ABCD内接于⊙O,连接 BD,点E在⊙O上,连接 BE交 AD于点F,∠BDC+45°=∠BFD,连接ED.(1)如图 1,求证:∠EBD=∠EDB;(2)如图2,点G是 AB上一点,过点G作 AB的垂线分别交BE和 BD于点H和点K,若HK=BG+AF,求证:AB=KG;(3)如图 3,在(2)的条件下,⊙O上有一点N,连接 CN分别交BD和 AD于10点 M 和点 P,连接 OP,∠APO=∠CPO,若 MD=8,MC= 3,求线段 GB的长.18.如图,在平面直角坐标系中,点O为坐标原点,直线y=-x+ m交 y轴的正半轴于点A,交x轴的正半轴于点B,过点A的直线AF交x轴的负半轴于点F,∠AFO=45°.(1)求∠FAB的度数;(2)点 P是线段OB上一点,过点P作 PQ⊥OB交直线 FA于点Q,连接 BQ,取 BQ的中点C,连接AP、AC、CP,过点C作 CR⊥AP于点R,设 BQ的长为d,CR的长为h,求d与h的函数关系式(不要求写出自变量h的取值范围);(3)在(2)的条件下,过点 C 作 CE⊥OB于点E,CE交 AB于点D,连接 AE,∠AEC=2∠DAP,EP=2,作线段 CD 关于直线AB的对称线段DS,求直线PS与直线 AF的交点K的坐标.19.将一个直角三角形纸片ABO ,放置在平面直角坐标系中,点0(3)A ,,点()0, 3B ,点(0,0)O(I)过边OB 上的动点D (点D 不与点B ,O 重合)作DE OB ⊥交AB 于点E ,沿着DE 折叠该纸片,点B 落在射线BO 上的点F 处.①如图,当D 为OB 中点时,求E 点的坐标;②连接AF ,当AEF ∆为直角三角形时,求E 点坐标:(Ⅱ) P 是AB 边上的动点(点 P 不与点B 重合),将AOP ∆沿OP 所在的直线折叠,得到'A OP ∆,连接'BA ,当'BA 取得最小值时,求P 点坐标(直接写出结果即可).20.阅读材料:等腰三角形具有性质“等边对等角”.事实上,不等边三角形也具有类似性质“大边对大角”:如图1.在△ABC 中,如果AB >AC ,那么∠ACB >∠ABC .证明如下:将AB 沿△ABC 的角平分线AD 翻折(如图2),因为AB >AC ,所以点B 落在AC 的延长线上的点B '处.于是,由∠ACB >∠B ',∠ABC =∠B ',可得∠ACB >∠ABC .(1)灵活运用:从上面的证法可以看出,折纸常常能为证明一个命题提供思路和方法.由此小明想到可用类似方法证明“大角对大边”:如图3.在△ABC 中,如果∠ACB >∠ABC ,那么AB >AC .小明的思路是:沿BC 的垂直平分线翻折……请你帮助小明完成后面的证明过程.(2)拓展延伸:请运用上述方法或结论解决如下问题:如图4,已知M 为正方形ABCD 的边CD 上一点(不含端点),连接AM 并延长,交BC 的延长线于点N .求证:AM +AN >2BD .21.如图1,Rt △ABC 中,点D ,E 分别为直角边AC ,BC 上的点,若满足AD 2+BE 2=DE 2,则称DE 为R △ABC 的“完美分割线”.显然,当DE 为△ABC 的中位线时,DE 是△ABC 的一条完美分割线.(1)如图1,AB =10,cos A =45,AD =3,若DE 为完美分割线,则BE 的长是 . (2)如图2,对AC 边上的点D ,在Rt △ABC 中的斜边AB 上取点P ,使得DP =DA ,过点P 画PE ⊥PD 交BC 于点E ,连结DE ,求证:DE 是直角△ABC 的完美分割线.(3)如图3,在Rt △ABC 中,AC =10,BC =5,DE 是其完美分割线,点P 是斜边AB 的中点,连结PD 、PE ,求cos ∠PDE 的值.22.如图1,在ABC 中,BD 平分ABC ∠,CD 平分ACB ∠.(1)若80A ∠=︒,则BDC ∠的度数为______;(2)若A α∠=,直线MN 经过点D .①如图2,若//MN AB ,求NDC MDB ∠-∠的度数(用含α的代数式表示);②如图3,若MN 绕点D 旋转,分别交线段,BC AC 于点,M N ,试问在旋转过程中NDC MDB ∠-∠的度数是否会发生改变?若不变,求出NDC MDB ∠-∠的度数(用含α的代数式表示),若改变,请说明理由:③如图4,继续旋转直线MN ,与线段AC 交于点N ,与CB 的延长线交于点M ,请直接写出NDC ∠与MDB ∠的关系(用含α的代数式表示).23.问题提出(1)如图1,已知三角形ABC ,请在BC 边上确定一点D ,使得AD 的值最小. 问题探究(2)如图2,在等腰ABC 中,AB AC =,点P 是AC 边上一动点,分别过点A ,点C 作线段BP 所在直线的垂线,垂足为点,D E ,若5,6AB BC ==,求线段BP 的取值范围,并求AD CE +的最大值.问题解决(3)如图3,正方形ABCD 是一块蔬菜种植基地,边长为3千米,四个顶点处都建有一个蔬菜采购点,根据运输需要,经过顶点A 处和BC 边的两个三等分点E F 、之间的某点P 建设一条向外运输的快速通道,其余三个采购点都修建垂直于快速通道的蔬菜输送轨道,分别为BB '、CC '、DD '.若你是此次项目设计的负责人,要使三条运输轨道的距离之和()BB CC DD '''++最小,你能不能按照要求进行规划,请通过计算说明.24.问题一:如图①,已知AC =160km ,甲,乙两人分别从相距30km 的A ,B 两地同时出发到C 地.若甲的速度为80km /h ,乙的速度为60km /h ,设乙行驶时间为x (h ),两车之间距离为y (km ).(1)当甲追上乙时,x = .(2)请用x 的代数式表示y .问题二:如图②,若将上述线段AC 弯曲后视作钟表外围的一部分,线段AB 正好对应钟表上的弧AB (1小时的间隔),易知∠AOB =30°.(3)分针OD 指向圆周上的点的速度为每分钟转动 km ,时针OE 指向圆周上的点的速度为每分钟转动 °;(4)若从2:00起计时,求几分钟后分针与时针第一次重合?25.如图,一张半径为3cm 的圆形纸片,点O 为圆心,将该圆形纸片沿直线l 折叠,直线l 交O 于AB 、两点.(1)若折叠后的圆弧恰好经过点O ,利用直尺和圆规在图中作出满足条件的一条直线l (不写作法,保留作图痕迹),并求此时线段AB 的长度.(2)已知M 是O 一点,1cm OM =.①若折叠后的圆弧经过点M ,则线段AB 长度的取值范围是________.②若折叠后的圆弧与直线OM 相切于点M ,则线段AB 的长度为_________cm .【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.B解析:(1)B(0,6);(2)S=3 960236932t tt t⎧-<≤⎪⎪⎨⎪-<≤⎪⎩,,;(3)E(4,2)【解析】【分析】(1)在Rt△AOB中,利用勾股定理可求得OB的长,从而得到点B的坐标;(2)存在2种情况,一种是点P在点D的左侧,一种是在右侧,求△PBD的面积,高始终是OB不变,仅需表示出PD的长即可;(3)如下图,作∠BPE的角平分线PF,根据角之间的关系,可得到PF∥OB,从而推导出△PEG∽△PBO,最后利用相似比的关系求得线段的长度,从而得到E的坐标.【详解】(1)∵A(6,0),AB=62,△AOB是直角三角形∴在Rt△AOB中,OB=()226266-=∴B(0,6)(2)情况一:如下图,点P在点D的左侧,即32t<≤时在△BPD中,以PD为底,则BO是△BOD的高∴高=BO=6,底=3-2t∴S=()1632962t t-=-情况二:如下图,点P在点D的右侧,即332t<≤时在△BPD 中,以PD 为底,则BO 是△BOD 的高∴高=BO=6,底=2t -3∴S=()1623692t t -=-综上得:S=3960236932t t t t ⎧-<≤⎪⎪⎨⎪-<≤⎪⎩,, (3)如下图,PF 是∠PBE 的角平分线,交AB 于点F ,过点E 作x 轴的垂线,交x 轴于点G∵OA=6,OB=6,2∴△OBA 是等腰直角三角形,∠A=45°∴△GEA 是等腰直角三角形设PG=x ,则AG=3-x ∴EG=AG=3-x∵PF 是∠BPE 的角平分线,∴∠BPF=∠FPE∵∠BPE =2∠OBP∴∠OBP=∠BPF=∠FPE∴PF ∥OB ,∴PF ⊥OA∴∠FPE+∠EPG=90°∵∠OBP+∠BPO=90°,∴∠EPG=∠BPO∵∠EGP=∠BOP∴△PEG ∽△PBO∴EG OB PG OP =,即363x x -=,解得:x=1 ∴PG=1,GE=2∴E(4,2)【点睛】本题考查了勾股定理,平面直角坐标系和相似,解题关键是作二倍角的角平分线,构造出相似图形.2.D解析:(1)见详解;(2)见详解;(3)DB=DE成立,证明见详解【解析】【分析】(1)由等边三角形的性质,得到∠CBD=30°,∠ACB=60°,由CD=CE,则∠E=∠CDE=30°,得到∠E=∠CBD=30°,即可得到DB=DE;(2)过点D作DG∥AB,交BC于点G,证明△BDC≌△EDG,根据全等三角形的性质证明结论;(3)过点D作DF∥AB交BE于F,由“SAS”可证△BCD≌△EFD,可得DB=DE.【详解】证明:(1)∵△ABC是等边三角形∴∠ABC=∠BCA=60°,∵点D为线段AC的中点,∴BD平分∠ABC,AD=CD,∴∠CBD=30°,∵CD=CE,∴∠CDE=∠CED,又∵∠CDE+∠CED=∠BCD,∴2∠CED=60°,∴∠CED=30°=∠CBD,∴DB=DE;(2)过点D作DG∥AB,交BC于点G,如图,∴∠DGC=∠ABC=60°,又∠DCG=60°,∴△DGC为等边三角形,∴DG=GC=CD,∴BC-GC=AC-CD,即AD=BG,∵AD=CE,∴BG=CE,∴BC=GE,在△BDC和△EDG中,60DC DG BCD EGD BC EG =⎧⎪∠=∠=︒⎨⎪=⎩,∴△BDC ≌△EDG (SAS )∴BD=DE ;(3)DB=DE 成立,理由如下:过点D 作DF ∥AB 交BE 于F ,∴∠CDF=∠A ,∠CFD=∠ABC ,∵△ABC 是等边三角形∴∠ABC=∠BCA=∠A=60°,BC=AC=AB ,∴∠CDF=∠CFD=60°=∠ACB=∠DCF ,∴△CDF 为等边三角形∴CD=DF=CF ,又AD=CE ,∴AD-CD=CE-CF ,∴BC=AC=EF ,∵∠BCD=∠CFD+∠CDF=120°,∠DFE=∠FCD+∠FDC=120°,∴∠BCD=∠DFE ,且BC=EF ,CD=DF ,∴△BCD ≌△EFD (SAS )∴DB=DE .【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,以及平行线的性质,正确添加恰当辅助线构造全等三角形是本题的关键.3.A解析:(1)6y x =-+;(2)636S t =-,()6t >;(3)5599y x =+ 【解析】【分析】(1)求出点A 、B 的坐标,从而得出△ABO 是等腰直角三角形,再根据2ABC ACB ∠=∠可得△OCB 也是等腰直角三角形,从而可求得点C 的坐标,将点B 、C 代入可求得解析式;(2)存在2种情况,一种是点D 在线段BC 上,另一种是点D 在线段BC 的延长线上,分别利用三角形的面积公式可求得;(3)如下图,先证ACR CAD ∆≅∆,从而推导出//RD AC ,进而得到CF RG =,同理还可得NF DG =,RD CN =,然后利用:7:12NF FC =可得到N 、D 的坐标,代入即可求得.【详解】解:(1)直线6y x =+与x 轴交于点A ,与y 轴交于点B ,(6,0)A ∴-,(0,6)B .6OA OB ∴==.45BAO ∴∠=︒,180BAO ABC BCO ∠+∠+∠=︒,2ABC ACB ∠=∠,45BCO ∴∠=︒6OC OB ∴==,()6,0C ∴.设直线BC 的解析式为y kx b =+,将B 、C 两点坐标代得606k b b +=⎧⎨=⎩解得16k b =-⎧⎨=⎩ ∴直线BC 的解析式为6y x =-+.(2)点D 是射线BC 上一点,点D 的横坐标为t ,(,6)D t t ∴-+,6(6)12AC =--=.如下图,过点D 作DK AC ⊥于点K ,当点D 在线段BC 上时,6DK t =-+, 16362S AC DK t ∴=⋅=-+()06t ≤<; 如下图,当点D 在线段BC 的延长线上时,6DK t =-,636S t ∴=-()6t >.(3)如图,延长CE 交AB 于点R ,连接DR 交BF 于点G ,交y 轴于点P .45BAO BCO ∠=∠=︒,BA BC ∴=.AO CO =,BO AC ⊥EA EC ∴=,EAC ECA ∴∠=∠.ACR CAD ∴∆≅∆.BAD BCR ∴∠=∠.AR CD ∴=.BR BD ∴=.//RD AC ∴.BH AD ⊥,HBD BAD BCR ∴∠=∠=∠.MB MC ∴=,∠MRB MRB MBR ∠=∠MR MB ∴=.CM MR ∴=.//RD AC ,::1:1CF RG CM RM ∴==.CF RG ∴=.同理NF DG =.RD CN =.∵:7:12NF FC =.:7:12DG RG ∴=.RP PD BP ==,5tan 19PG OF OBF BP OB∴==∠= 6OB ∴=,3019OF ∴=,6OC =,8419CF ∴=. 7RD GN ∴==.1ON ∴=,72PD =.52OP OB BP ∴=-=. (1,0)N ∴-,75,22D ⎛⎫ ⎪⎝⎭. 设直线 DN 的解析式为y ax c =+,将N 、D 两点代入, 07522a c a c -+=⎧⎪⎨+=⎪⎩ 解得5959a c ⎧=⎪⎪⎨⎪=⎪⎩∴直线DM 的解析式为5599y x =+. 【点睛】本题考查了一次函数与图形的综合,需要用到全等、三角函数和平面直角坐标系的知识,解题关键是想办法确定函数图像上点的坐标. 4.A解析:(1)ABC 是“准黄金”三角形,理由见解析;(2)32910AB BC =;(3)①125615-;②35AD CD =. 【解析】【分析】 (1)过点A 作AD BC ⊥于点D ,先求出AD 的长度,然后得到61035AD BC ==,即可得到结论; (2)根据题意,由“金底”的定义得:3:5AE BC =,设3AE k =,5BC k =,由勾股定理求出AB 的长度,根据比值即可求出AB BC的值; (3)①作AE ⊥BC 于E ,DF ⊥AC 于F ,先求出AC 的长度,由相似三角形的性质,得到AF=2DF ,由解直角三角形,得到3CF DF =,则(23)35AC x =+=,即可求出DF 的长度,然后得到CD 的长度;②由①可知,得到CE 和AC 的长度,分别过点B ',D 作B G BC '⊥,DF AC ⊥,垂足分别为点G ,F ,然后根据相似三角形的判定和性质,得到DF AF AE EC=,然后求出CD 和AD 的长度,即可得到答案.【详解】解:(1)ABC 是“准黄金”三角形.理由:如图,过点A 作AD BC ⊥于点D ,∵12AC =,30ACB ∠=︒, ∴162AD AC ==. ∴:6:103:5AD BC ==.∴ABC 是“准黄金”三角形.(2)∵点A ,D 关于BC 对称,∴BE AD ⊥,AE ED =.∵ABC 是“准黄金”三角形,BC 是“金底”,∴:3:5AE BC =.不防设3AE k =,5BC k =,∵点C 为ABD △的重心,∴:2:1BC CE =. ∴52k CE =,152k BE =. ∴2215329(3)22k AB k k ⎛⎫=+= ⎪⎝⎭. ∴329329:5AB k k BC ==. (3)①作AE ⊥BC 于E ,DF ⊥AC 于F ,如图:由题意得AE=3,∵35AE BC =, ∴BC=5, ∵105AB BC =, ∴10AB ,在Rt △ABE 中,由勾股定理得:22(10)31BE =-=,∴156EC =+=,∴223635AC =+=∵∠AEC=∠DFA=90°,∠ACE=∠DAF ,∴△ACE ∽△DAF , ∴3126AE E D C F AF ===, 设DF x =,则2AF x =,∵∠ACD=30°, ∴3CF x =, ∴(23)35AC x ==解得:65315DF x ==∴2125615CD DF ==②如图,过点A 作AE BC ⊥于点E ,则3AE =.∵ABC是“准黄金”三角形,BC是“金底”,∴:3:5AE BC=.∴5BC=.∵10 ABBC=,∴10AB.∴221BE AB AE=-=.∴6CE BE BC=+=,2236935AC CE AE=+=+=.分别过点B',D作B G BC'⊥,DF AC⊥,垂足分别为点G,F,∴90B GC DFC'∠=∠=︒,3B G'=,5C BB C'==,则CG4=.∵GCB FCDα'∠=∠=,∴AEC DFA∽△△.∴::::3:4:5DF FC CD B G GC CB''==.∴设3DF k=,4FC k=,5CD k=.∵12l l//,∴ACE CAD∠=∠,且90AEC AFD∠=∠=︒.∴AEC DFA∽△△.∴DF AFAE EC=.∴33543k k-=,解得35k=∴355CD k==2222959595102AF DFAD⎛⎫⎛⎫+=+=⎪ ⎪⎪ ⎪⎝⎭⎝⎭=.∴935253552ADCD===.【点睛】本题属于相似形综合题,主要考查了重心的性质,等腰直角三角形的性质,勾股定理,解直角三角形,旋转的性质以及勾股定理的综合运用,解决问题的关键是依据题意画出图形,根据数形结合的思想进行解答.5.D解析:(1)见解析;(2)存在,满足条件的x的值为6或253;(3)DP=485或10<DP≤12【解析】【分析】(1)根据矩形的性质,结合已知条件可以证明两个角对应相等,从而证明三角形相似;(2)由于对应关系不确定,所以应针对不同的对应关系分情况考虑:①当∠PEF=∠EAB 时,则得到四边形ABEP为矩形,从而求得x的值;②当∠PEF=∠AEB时,再结合(1)中的结论,得到等腰△APE.再根据等腰三角形的三线合一得到F是AE的中点,运用勾股定理和相似三角形的性质进行求解.(3)首先计算圆D与线段相切时,x的值,在画出圆D过E时,半径r的值,确定x的值,半径比这时大时符合题意,根据图形确定x的取值范围,从而得出DP的范围.【详解】(1)证明:∵矩形ABCD,∴∠ABE=90°,AD∥BC,∴∠PAF=∠AEB,又∵PF⊥AE,∴∠PFA=90°=∠ABE,∴△PFA∽△ABE.(2)解:分二种情况:①若△EFP∽△ABE,如图1,则∠PEF=∠EAB,∴PE∥AB,∴四边形ABEP为矩形,∴PA=EB=6,即x=6.②如图2,若△PFE∽△ABE,则∠PEF =∠AEB ,∵AD ∥BC∴∠PAF =∠AEB ,∴∠PEF =∠PAF .∴PE =PA .∵PF ⊥AE ,∴点F 为AE 的中点,Rt △ABE 中,AB =8,BE =6,∴AE =22AB BE +=2286+=10,∴EF =152AE =, ∵△PFE ∽△ABE ,∴PE EF AE BE=, ∴5106x =, ∴PE =253, ∴满足条件的x 的值为6或253. (3)如图3,当⊙D 与AE 相切时,设切点为G ,连接DG ,∵AP =x ,∴PD ═DG =12﹣x ,∵∠DAG =∠AEB ,∠AGD =∠B =90°,∴△AGD ∽△EBA , ∴AD DG AE AB =, ∴1212108x -=, ∴x =125, ∴12481255DP =-=, 当⊙D 过点E 时,如图4,⊙D 与线段有两个公共点,连接DE ,此时PD =DE =10,故答案为:DP =485或10<DP ≤12. 【点睛】本题考查动点问题,动点在不同地方时,得到的图形是不同的,解题关键是确定动点运动过程中,有几种对应的图形,然后再根据图形性质分析求解. 6.C解析:(1)12,16AD CD ==;(2)277和297. 【解析】【分析】(1)根据题意由函数图象可知动点M 从A 出发,以每秒1个单位的速度从C 到D 耗时16秒求出CD ,再利用三角形面积公式求得AD 即可;(2)由题意可知只能有P 和Q 点都在AD 边上,此时分当P 在Q 上方时以及当P 在Q 下方时两种情况运用数形结合思维进行分析得出答案.【详解】解:(1)由函数图象可知动点M 从A 出发,以每秒1个单位的速度从C 到D 耗时36-20=16秒,即CD=16,而此时AMD ∆的面积为96,又因为90ADC ∠=︒,即有11169622CD AD AD =⨯=,解得12AD =. 所以12,16AD CD ==. (2)由题意可知Q 运动到点A 停止的时间为285,而P 运动到点D 停止的时间为6, 所以只能有P 和Q 点都在AD 边上,此时以PQ 为底边,CD 为高,设运动时间为t ,则AP=2t ,QD=5t-16,(162855t ≤<), ①当P 在Q 上方时,则有PQ=AD-AP-QD= 122516287t t t --+=-, 可知CPQ ∆的面积为8时即11(287)16822PQ CD t =⨯-⨯=,解得277t =(满足条件);②当P 在Q 下方时,则有PQ=QD-(AD-AP )= 516(122)728t t t ---=-,可知CPQ ∆的面积为8时即11(728)16822PQ CD t =⨯-⨯=,解得297t =(满足条件). 所以当CPQ ∆的面积为8时,t 的值为277和297. 【点睛】本题考查四边形动点问题和一次函数结合,熟练掌握四边形动点问题的解决办法和一次函数图象的相关性质,运用数形结合思维分析是解题的关键.7.E解析:(1)y =﹣21122x -x+3;(2)①EF 的长为2;②点H 的坐标为(﹣45,135)或(﹣445,99). 【解析】【分析】(1)用待定系数法求出函数解析式即可;(2)①得出EAB ODB ∠=∠,当时,当时,可求出的长;②(Ⅰ)求出直线CE 的解析式为132y x =+,得出APE EBA ∠=∠,则GCH APE EBA CHN MGH ∠=∠=∠=∠=∠,得出//GC PB ,由1tan tan tan 2AE EBA CHN MGH BE ∠=∠=∠==,设CN MG m ==,则2HN m =,12MH m =,则1212MH HN m m +=+=,解得,25m =,可求出H 点的坐标; (Ⅱ)过点H 作MN PB ⊥,过点C 作CN MH ⊥于点N ,过点G 作GM HM ⊥于点M ,证得GCH EBA HCN MHG ∠=∠=∠=∠,由(Ⅰ)知:1tan 2EBA ∠=,则1tan tan 2GM HG MHG GCH HM CH ∠==∠==,设MG a =,则2MH a =,证明HMG CNH ∆∆∽,则2NH a =,4CN a =,又(0,3)C ,得出(3,34)G a a --,代入211322y x x =--+中,得449CN =,可求出H 点坐标. 【详解】解:(1)将A (﹣3,0)、B (2,0)、C (0,3)代入y =ax2+bx+c 得,0930423a b c a b c c =-+⎧⎪=++⎨⎪=⎩,解得:12123a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩, ∴抛物线的解析式为:y =﹣21122x -x+3; (2)①将E (m ,2)代入y =﹣21122x -x+3中, 得﹣21122m -m+3=0,解得m =﹣2或1(舍去), ∴E (﹣2,2),∵A (﹣3,0)、B (2,0),∴AB =5,AE =5,BE =25,∴AB2=AE2+BE2,∴∠AEB =∠DOB =90°,∴∠EAB+∠EBA =∠ODB+∠EBA =90°,∴∠EAB =∠ODB ,(Ⅰ)当△FEA ∽△BOD 时,∴∠AEF =∠DOB =90°,∴F 与B 点重合,(Ⅱ)当△EFA∽△BOD时,∴∠AFE=∠DOB=90°,∵E(﹣2,2),∴EF=2,故:EF的长为25或2;②点H的坐标为4(5-,13)5或44(9-,5)9,(Ⅰ)过点H作HN⊥CO于点N,过点G作GM⊥HN于点M,∴∠GMN=∠CNH=90°,又∠GHC=90°,∴∠CHN+∠GHM=∠MGH+∠GHM=90°,∴∠CHN=∠MGH,∵HN⊥CO,∠COP=90°,∴HN∥AB,∴∠CHN=∠APE=∠MGH,∵E(﹣2,2),C(0,3),∴直线CE的解析式为y=12x+3,∴P(﹣6,0),∴∠APE =∠EBA , ∵∠GCH =∠EBA ,∴∠GCH =∠APE =∠EBA =∠CHN =∠MGH ,∴GC ∥PB ,又C (0,3),∴G 点的纵坐标为3,代入y =﹣21122x -x+3中,得:x =﹣1或0(舍去), ∴MN =1,∵∠AEB =90°,AE =5,BE =25,∴tan ∠EBA =tan ∠CHN =tan ∠MGH =12AE BE =, 设CN =MG =m ,则HN =2m ,MH =12m , ∴MH+HN =2m+12m =1, 解得,m =25, ∴H 点的橫坐标为﹣45,代入y =12x+3,得:y =135, ∴点H 的坐标为(﹣45,135). (Ⅱ)过点H 作MN ⊥PB ,过点C 作CN ⊥MH 于点N ,过点G 作GM ⊥HM 于点M ,∴CN ∥PB ,∴∠NCH =∠APE ,由(Ⅰ)知:∠APE =∠EBA ,则∠NCH =∠EBA ,∵∠GMN =∠CNH =90°,又∠GHC =90°,∴∠HCN+∠NHC =∠MHG+∠NHC =90°,∴∠HCN =∠MHG ,∵∠GCH =∠EBA ,∴∠GCH =∠EBA =∠HCN =∠MHG ,由(Ⅰ)知:APE EBA ∠=∠,则NCH EBA ∠=∠,90GMN CNH ∠=∠=︒,又90GHC ∠=︒,90HCN NHC MHG NHC ∴∠+∠=∠+∠=︒,HCN MHG ∴∠=∠,GCH EBA ∠=∠,GCH EBA HCN MHG ∴∠=∠=∠=∠,由(Ⅰ)知:1tan 2EBA ∠=, 则1tan tan 2GM HG MHG GCH HM CH ∠==∠==, 设MG a =,则2MH a =,NCH MHG ∠=∠,N M ∠=∠,HMG CNH ∴∆∆∽, ∴12MH MG HG CN NH CH ===, 2NH a ∴=,4CN a =,又(0,3)C ,(3,34)G a a ∴--,代入211322y x x =--+中,得,119a =或0(舍去), 449CN ∴=, H ∴点的橫坐标为449-,代入132y x =+,得,59y =. ∴点H 的坐标为445(,)99-. 综合以上可得点H 的坐标为4(5-,13)5或445(,)99-. 【点睛】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、两点间的距离公式、锐角三角函数、相似三角形的判定与性质及分类讨论思想的运用.8.F解析:(1)16;(2)不变,证明见解析;(3)214322S x x =-+,当x=2或6时,四边形FEGN 的面积为26.【解析】【分析】(1)如图1中,在△AEF 中,设AE=x ,则EF=8-x ,AF=4,∠A=90°,理由勾股定理构建方程求出x,再根据△AEF∽△DFM,可得3124FDM AEDF C∆==,由此即可解决问题;(2)△FDM的周长与(1)中结论相同.证明方法与(1)类似;(3)作GK⊥AB于K.连接BF交GE于P.由△AFB≌△KEG,可得FB=GE,由(2)可知:AE=21416x-,设AF=EK=x,AK=AE+EK=AF+AE=21416x x-+,根据S=82AE DG+⨯,构建二次函数即可解决问题;【详解】解:(1)在△AEF中,设AE=x,则EF=8-x,AF=4,∠A=90°,由勾股定理,得:42﹢x2=(8-x)2,∴x=3,∴AE=3,EF=5.∴△AEF的周长为12,如图,∵∠MFE=90°,∴∠DFM+∠AFE=90°又∵∠A=∠D=90,∠AFE=∠DMF,∴△AEF∽△DFM,∴AEDF=34=12FDMC,∴△FDM的周长为16;(2)△FDM的周长不会发生变化;理由:如下图,设AF=x,EF=8-AE,x2+AE2=(8-AE)2,∴AE=21416x-, ∵△AEF ∽△DFM ,∴8FDMAE x DF C ∆+=, ∴△FMD 的周长:2(8)(8)161416FDM x x C x ∆-+==-. (3)如图,作GK ⊥AB 于K .连接BF 交GE 于P .∵B 、F 关于GE 对称,∴BF ⊥EG ,∴∠FBE=∠KGE ,在正方形ABCD 中,GK=BC=AB ,∠A=∠EKG=90°,∴△AFB ≌△KEG ,∴FB=GE ,由(2)可知:AE=21416x -, ∴AF=EK=x ,AK=AE+EK=AF+AE=21416x x -+, ∴梯形AEGD 的面积为:22211184(44)432216162AE DG x x x x x +⨯=⨯-+-+=-++, ∴221188(432)43222S x x x x =⨯--++=-+, 当S=26时,有 21432262x x -+=, 解得:x=2或x=6,∴当x=2或6时,四边形FEGN 的面积为26.【点睛】本题考查四边形综合题、正方形的性质、相似三角形的判定和性质、全等三角形的判定和性质、勾股定理、二次函数的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会构建二次函数,理由方程解决问题,属于中考压轴题.9.C解析:(1)点C的坐标为(2,0);(2)1522 y x=-+;(3)①2481515y x x=-;②1013.【解析】【分析】(1)求得对称轴,由对称性可知C点坐标;(2)利用待定系数法求解可得;(3)①由AE=3AO的关系,建立K型模型相似,求得点E坐标代入解析式可得;②若△CDB与△BOA相似,则∠OAB=∠CDB=90°,由相似关系可得点D坐标,代入解析式y=ax2-2ax可得a值.【详解】解:(1)把0y=代入22y ax ax=-,得220ax ax-=,解得:0x=,或2x=.∵点C在x轴正半轴上,∴点C的坐标为(2,0).(2)设直线表达式为y kx b=+,把点(1,2)A,(5,0)B分别代入y kx b=+,得250k bk b+=⎧⎨+=⎩,解得1252kb⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AB的表达式为:1522y x=-+.(3)①作AH x⊥轴于点H,EF AH⊥于点F(如图),∵222125OA=+=,2222420AB,22525OB==,∴222OA AB OB+=.∴90EAO OAB∠=∠=︒.由EFA AHO△∽△,得2EF FA EAAH HO AO===,∴4EF=,2FA=,∴点E 坐标为()3,4-.把(3,4)E -代入22y ax ax =-,得964a a +=, 解得:415a =. ∴2481515y x x =-. ②若△CDB 与△BOA 相似,如图,作DG ⊥BC ,∴CD BD BC AO AB BO==,∠OAB=∠CDB=90°, 35525==, ∴35CD =65BD =,∵523BC =-=,∴356565535DG ==, ∴156225x -+=,解得:135x =, ∴点D 的坐标为:(135,65), 把点D 代入22y ax ax =-,即16913622555a a -⨯= 解得:1013a =; 故答案为:1013. 【点睛】本题是二次函数的综合问题,考查了二次函数的基本性质,数形结合与K 型模型的使用,以及相似存在性问题,内容综合较好,难度相当入门级压轴问题.10.B解析:(1)直线x=0;(2)B (0,1a );(3)2-≤a ≤13-或13≤a 2【解析】【分析】(1)根据抛物线的表达式直接得出对称轴即可;(2)根据题意得出点A的坐标,再利用关于x轴对称的点的坐标规律得出点B坐标;(3)分a>0和a<0两种情况分别讨论,画图图像,求出a的范围.【详解】解:(1)在抛物线21y axa=-中,2a-=,∴对称轴为直线x=0,即y轴;(2)∵抛物线与y轴交于点A,∴A(0,1a -),∵点A关于x轴的对称点为点B,∴B(0,1a);(3)当a>0时,点A(0,1a-)在y轴负半轴上,当点P恰好在抛物线上时,代入得:11aa a -=,解得:2a=或2-(舍),当点Q恰好在抛物线上时,代入得:190 aa-=,解得:13a=或13-(舍),∴当13≤a≤2时,抛物线与线段PQ恰有一个公共点;当a<0时,点A(0,1a-)在y轴正半轴上,同理可知:。

相关文档
最新文档