磁控溅射系统介绍perfect
磁控溅射原理详细介绍课件

氮气(N2)
常与氩气混合使用,用于增加 薄膜的硬度和抗氧化性。
氧气(O2)
用于形成氧化物薄膜,如TiO2 和Al2O3。
选择原则
根据被溅射材料和所需薄膜性 质选择合适的工作气体。
溅射功率与控制
01
02
03
溅射功率
指用于产生溅射的功率, 通常以辉光放电的形式提 供。
控制方法
通过调节辉光放电的电流 或电压来控制溅射功率。
03
放电的物理过程
放电过程中,气体分子在电场中被电离,产生带电粒子,这些带电粒子
在电场中加速运动,与气体分子发生碰撞,使气体分子激发和电离,形
成电子和离子的雪崩效应。
粒子运动与碰撞
带电粒子的运动
在电场中,带电粒子受到电场力 的作用,沿着电场线方向加速运
动。
粒子的碰撞
带电粒子在运动过程中与气体分 子发生碰撞,将动能传递给气体 分子,使气体分子获得足够的能 量以克服束缚力,从原子或分子
磁控溅射原理详细介绍课件
目录
• 磁控溅射原理概述 • 磁控溅射装置与工作原理 • 磁控溅射的物理基础 • 磁控溅射技术参数与控制 • 磁控溅射沉积薄膜性能优化 • 磁控溅射研究前沿与展望
01
磁控溅射原理概述
定义与特性
定义
磁控溅射是一种物理气相沉积技术,通过在真空环境下利用磁场控制电子运动 ,实现高速离子轰击靶材表面,将靶材原子溅射出来并沉积在基材表面形成薄 膜。
工作气体
选择适当的工作气体,如氩气、氮气等,以 获得所需的薄膜性能。
薄膜结构与性能表征
成分分析
通过光谱分析技术确定薄膜的元素组 成。
晶体结构
采用X射线衍射技术分析薄膜的晶体 结构。
磁控溅射镀膜技术综合介绍

一.磁控溅射电镀上世纪80年代开始, 磁控溅射技术得到迅猛的发展, 其应用领域得到了极大的推广。
现在磁控溅射技术已经在镀膜领域占有举足轻重的地位, 在工业生产和科学领域发挥着极大的作用。
正是近来市场上各方面对高质量薄膜日益增长的需要使磁控溅射不断的发展。
在许多方面, 磁控溅射薄膜的表现都比物理蒸发沉积制成的要好;并且在同样的功能下采用磁控溅射技术制得的可以比采用其他技术制得的要厚。
因此, 磁控溅射技术在许多应用领域涉及制造硬的、抗磨损的、低摩擦的、抗腐蚀的、装潢的以及光电学薄膜等方面具有重要是影响。
磁控溅射技术得以广泛的应用,是由该技术有别于其它镀膜方法的特点所决定的。
其特点可归纳为:可制备成靶材的各种材料均可作为薄膜材料,涉及各种金属、半导体、铁磁材料,以及绝缘的氧化物、陶瓷等物质,特别适合高熔点和低蒸汽压的材料沉积镀膜在适当条件下多元靶材共溅射方式,可沉积所需组分的混合物、化合物薄膜;在溅射的放电气中加入氧、氮或其它活性气体,可沉积形成靶材物质与气体分子的化合物薄膜;控制真空室中的气压、溅射功率,基本上可获得稳定的沉积速率,通过精确地控制溅射镀膜时间,容易获得均匀的高精度的膜厚,且反复性好;溅射粒子几乎不受重力影响,靶材与基片位置可自由安排;基片与膜的附着强度是一般蒸镀膜的10倍以上,且由于溅射粒子带有高能量,在成膜面会继续表面扩散而得到硬且致密的薄膜,同时高能量使基片只要较低的温度即可得到结晶膜;薄膜形成初期成核密度高,故可生产厚度10nm以下的极薄连续膜。
1.磁控溅射工作原理:磁控溅射属于辉光放电范畴, 运用阴极溅射原理进行镀膜。
膜层粒子来源于辉光放电中, 氩离子对阴极靶材产生的阴极溅射作用。
氩离子将靶材原子溅射下来后,沉积到元件表面形成所需膜层。
磁控原理就是采用正交电磁场的特殊分布控制电场中的电子运动轨迹, 使得电子在正交电磁场中变成了摆线运动, 因而大大增长了与气体分子碰撞的几率。
用高能粒子(大多数是由电场加速的气体正离子)撞击固体表面(靶), 使固体原子(分子)从表面射出的现象称为溅射。
广东+五邑大学+唐秀凤磁 控溅射原理原理

3磁控溅射具体应用和相关
1,化学气象沉积(CVD) 2,光学镀膜 3,透明导电膜
3 磁控溅射具体应用和相关
N
磁场线
N S
N N S N S N N N N
N
刻蚀区 电子轨迹 靶材 N S 磁 轭 N
3磁控溅射具体应用和相关
磁 场 均 匀 性 不 好
谢谢大家
磁控溅射制薄膜原理
磁控溅射原理基础知识介绍
1 磁控溅射定义
2 磁控溅射的物理原理 3 磁控溅射具体应用
1磁控溅射定义
1.1 磁控溅射制备薄膜原理 在真空环境下,通过电压和磁场的共同作 用,以被离化的惰性气体离子对靶材进行轰击, 致使靶材以离子、原子或分子的形式被弹出并 沉积在基件上形成薄膜。根据使用的电离电源 的不同,导体和非导体材料均可作为靶材被溅 射。
1磁控溅射定义
类似于打保龄球
1磁控溅射定义
1磁控溅射定义
2磁控溅射的物理原理
2.1 示意图
2磁控溅射的物理原理
形成条件: 1,适当的真空条件 2,适量的工艺气体 3,一定的电势差 4,一定的磁场强度
思考题:如果电磁和磁场是平
行而非正交会发生什么样的情况?
磁 控 溅 射 简 介

溅射示意图
溅射后的现象
二次电子 基本离子 背散射颗粒 气体解吸
溅射颗粒
非晶层
化合物形成 冲撞链 震动波 点缺陷 热链 1kev的离子能量下,溅射出的中性粒子,二次电子和二次离子之比约为1000:10: 1kev的离子能量下,溅射出的中性粒子,二次电子和二次离子之比约为1000:10:1 的离子能量下 1000 注入原子
磁控溅射简介
许 健
引言
1842年格洛夫(Grove) 1842年格洛夫(Grove)在实验室中发现了阴 年格洛夫 极溅射现象。迄后70年中, 70年中 极溅射现象。迄后70年中,由于实验条件的 限制, 限制,对溅射机理的认同长期处于模糊不清 状态。1970年后出现了磁控溅射技术 年后出现了磁控溅射技术。 状态。1970年后出现了磁控溅射技术。最近 15年来 进一步发展了一系列新的溅射技术, 年来, 15年来,进一步发展了一系列新的溅射技术, 使得磁控溅射技术从实验室应用技术真正地 进入工业化大量生产的应用领域。 进入工业化大量生产的应用领域。
磁控溅射靶表面的磁场和电子运动的轨迹
磁控溅射-工作示意图
基体 镀 层 从目标中喷出的表面原 子 电场
磁场 向目标运动的加速氩离 子 磁控溅射阴极 靶 磁极
磁控溅射-工作示意图
磁控溅射装置实物图
磁控溅射装置实物图
磁控溅射装置示意图
真空控制系统 溅射系统 --真空控制系统
气体流出阀
plug-in boards valve 机械泵 分子泵 充气阀
磁控溅射靶表面的磁场和电子运动的轨迹基体电场磁场磁极磁控溅射阴极磁控溅射工作示意图磁控溅射工作示意图真空控制系统真空控制系统机械泵机械泵分子泵分子泵气体流出阀气体流出阀pluginboardsvalve充气阀充气阀混合真空计混合真空计真空腔内压强真空腔内压强物质流量控制计物质流量控制计气体溅射流量气体溅射流量基板温度基板温度最大电压最大电压温度温度电流电流电压电压cds9999直径为76mm厚度为32mm
磁控溅射原理详细介绍

图1 溅射率与Ar气压强的关系
5
第一部分 真空镀膜基础
1.3 €è•þˆ?ŒÊƒ6
(2)沉积薄膜的纯度 (2)沉积薄膜的纯度 为了提高沉积薄膜的纯度,必须尽量减少沉积到基片上的杂质的量。这里所说的杂质主要是指真空 室的残余气体。因为通常有约百分之几的溅射气体分子注入沉积薄膜中,特别是在基片加偏压时。欲降 低残余气体压力,提高薄膜的纯度,可采取提高本底真空度和增加送氢量这两项有效措施。 (3)沉积过程中的污染 (3)沉积过程中的污染 众所周知,在通入溅射气体之前,把真空室内的压强降低到高真空区内是很有必要的,因此原有 工作气体的分压极低。即便如此,仍可存在许多污染源: (a)真空室壁和真空室中的其他零件可能会有吸附气体,如水蒸气和二氧化碳等。由于辉光放电中 电子和离子的轰击作用,这些气体可能重新释出。因此,可能接触辉光的一切表面都必须在沉积过程中 适当冷却,以便使其在沉积的最初几分钟内达到热平衡。 (b)在溅射气压下,扩散泵抽气效力很低,扩散泵油的回流现象十分严重。由于阻尼器各板间的距 离相当于此压强下平均自由程的若干倍,故仅靠阻尼器将不足以阻止这些气体进入真空室。因此,通常 需要在放电区与阻尼器之间进行某种形式的气体调节,例如在系统中利用高真空阀门作为节气阀,即可 轻易地解决这一问题。另外,如果将阻尼器与涡轮分子泵结合起来,代替扩散泵,将会消除这种污染。 (C)基片表面的颗粒物质将会使薄膜产生针孔和形成沉积污染,因此,沉积前应对基片进行彻底清 洗,尽可能保证基片不受污染或不携带微粒状污染物。
9
第二部分 溅射及辉光放电
2.2 辉光放电
使真空容器中Ar气的压力保持为,并逐渐提高两个电极 之间的电压。在开始时,电极之间几乎没有电流通过,因为 这时气体原子大多仍处于中性状态,只有极少量的电离粒子 在电场的作用下做定向运动,形成极为微弱的电流,即图2(b) 中曲线的开始阶段所示的那样。 随着电压逐渐地升高,电离粒子的运动速度也随之加快, 即电流随电压上升而增加。当这部分电离粒子的速度达到饱 和时,电流不再随电压升高而增加。此时,电流达到了一个 饱和值(对应于图曲线的第一个垂直段)。 当电压继续升高时,离子与阴极之间以及电子与气体分子 之间的碰撞变得重要起来。在碰撞趋于频繁的同时,外电路 转移给电子与离子的能量也在逐渐增加。一方面,离子对于 阴极的碰撞将使其产生二次电子的发射,而电子能量也增加 到足够高的水平,它们与气体分子的碰撞开始导致后者发生 电离,如图2(a)所示。这些过程均产生新的离子和电子,即 碰撞过程使得离子和电子的数目迅速增加。这时,随着放电 电流的迅速增加,电压的变化却不大。这一放电阶段称为汤 汤 生放电。 生放电 在汤生放电阶段的后期,放电开始进入电晕放电阶段。这 时,在电场强度较高的电极尖端部位开始出现一些跳跃的电 晕光斑。因此,这一阶段称为电晕放电 电晕放电。 电晕放电
磁控溅射

磁控溅射杨洋(湖北大学物理学与电子技术学院,武汉201210)摘要磁控溅射是为了在低气压下进行高速溅射,必须有效地提高气体的离化率。
通过在靶阴极表面引入磁场,利用磁场对带电粒子的约束来提高等离子体密度以增加溅射率的方法。
在各种溅射镀膜技术中,磁控溅射技术是最重要的技术之一,它在等离子体产生、维持以及效率方面与其他技术相比都有了很大的改进,较易获得高的沉积速率,致密性与结合力更好的薄膜,因此在机械、光学和电子行业得到了广泛的应用。
近些年来,关于磁控放电的理论得到广泛的研究,主要包括磁场结构的分析以及物理机制讨论。
在磁场放电区域,电子被限制在磁力线平行于阴极表面的位置,从而产生出高电离化的背景气体。
在这个区域产生的离子被加速运动的过程中,又会受到电子和离子的碰撞同时产生出二次电子来维持放电。
在磁控溅射系统中,由于特殊的磁场结构,靶材表面的磁场分布以及离子分布是不均匀的,从而导致刻蚀的不均匀性,这对于靶的利用率是一个极大的限制,因此针对于靶面粒子分布以及刻蚀形貌的研究具有很重要的指导意义,而最有效的方法就是通过计算机建立模型仿真。
关键词:磁控溅射,电磁场,靶1、工作原理磁控溅射的工作原理是指电子在电场E的作用下,在飞向基片过程中与氩原子发生碰撞,使其电离产生出Ar正离子和新的电子;新电子飞向基片,Ar离子在电场作用下加速飞向阴极靶,并以高能量轰击靶表面,使靶材发生溅射。
在溅射粒子中,中性的靶原子或分子沉积在基片上形成薄膜,而产生的二次电子会受到电场和磁场作用,产生E(电场)×B(磁场)所指的方向漂移,简称E×B漂移,其运动轨迹近似于一条摆线。
若为环形磁场,则电子就以近似摆线形式在靶表面做圆周运动,它们的运动路径不仅很长,而且被束缚在靠近靶表面的等离子体区域内,并且在该区域中电离出大量的Ar 来轰击靶材,从而实现了高的沉积速率。
随着碰撞次数的增加,二次电子的能量消耗殆尽,逐渐远离靶表面,并在电场E的作用下最终沉积在基片上。
磁控溅射

磁控溅射百科名片磁控溅射是为了在低气压下进行高速溅射,必须有效地提高气体的离化率。
通过在靶阴极表面引入磁场,利用磁场对带电粒子的约束来提高等离子体密度以增加溅射率的方法。
工作原理磁控溅射的工作原理是指电子在电场E的作用下,在飞向基片过程中与氩原子发生碰撞,使其电离产生出Ar正离子和新的电子;新电子飞向基片,Ar离子在电场作用下加速飞向阴极靶,并以高能量轰击靶表面,使靶材发生溅射。
在溅射粒子中,中性的靶原子或分子沉积在基片上形成薄膜,而产生的二次电子会受到电场和磁场作用,产生E(电场)×B(磁场)所指的方向漂移,简称E×B漂移,其运动轨迹近似于一条摆线。
若为环形磁场,则电子就以近似摆线形式在靶表面做圆周运动,它们的运动路径不仅很长,而且被束缚在靠近靶表面的等离子体区域内,并且在该区域中电离出大量的Ar 来轰击靶材,从而实现了高的沉积速率。
随着碰撞次数的增加,二次电子的能量消耗殆尽,逐渐远离靶表面,并在电场E的作用下最终沉积在基片上。
由于该电子的能量很低,传递给基片的能量很小,致使基片温升较低。
磁控溅射是入射粒子和靶的碰撞过程。
入射粒子在靶中经历复杂的散射过程,和靶原子碰撞,把部分动量传给靶原子,此靶原子又和其他靶原子碰撞,形成级联过程。
在这种级联过程中某些表面附近的靶原子获得向外运动的足够动量,离开靶被溅射出来。
种类磁控溅射包括很多种类。
各有不同工作原理和应用对象。
但有一共同点:利用磁场与电场交互作用,使电子在靶表面附近成螺旋状运行,从而增大电子撞击氩气产生离子的概率。
所产生的离子在电场作用下撞向靶面从而溅射出靶材。
靶源分平衡和非平衡式,平衡式靶源镀膜均匀,非平衡式靶源镀膜膜层和基体结合力强。
平衡靶源多用于半导体光学膜,非平衡多用于磨损装饰膜。
磁控阴极按照磁场位形分布不同,大致可分为平衡态和非平衡磁控阴极。
平衡态磁控阴极内外磁钢的磁通量大致相等,两极磁力线闭合于靶面,很好地将电子/等离子体约束在靶面附近,增加碰撞几率,提高了离化效率,因而在较低的工作气压和电压下就能起辉并维持辉光放电,靶材利用率相对较高,但由于电子沿磁力线运动主要闭合于靶面,基片区域所受离子轰击较小.非平衡磁控溅射技术概念,即让磁控阴极外磁极磁通大于内磁极,两极磁力线在靶面不完全闭合,部分磁力线可沿靶的边缘延伸到基片区域,从而部分电子可以沿着磁力线扩展到基片,增加基片区域的等离子体密度和气体电离率.不管平衡非平衡,若磁铁静止,其磁场特性决定一般靶材利用率小于30%。
吉林平衡磁控溅射原理

吉林平衡磁控溅射原理一、前言吉林平衡磁控溅射技术是一种新型的表面处理技术,其在表面涂覆、金属化、陶瓷化等方面有着广泛的应用。
本文将从吉林平衡磁控溅射原理的基本概念、设备构造、工艺流程和应用等方面进行详细介绍。
二、基本概念1. 磁控溅射磁控溅射是利用高能离子轰击靶材表面,使靶材原子或分子脱离并沉积在基板上形成薄膜的一种表面处理技术。
在磁场作用下,靶材表面被电子轰击后,释放出的原子或分子被加速并沉积在基板上。
2. 平衡磁控溅射平衡磁控溅射是指通过调节气体流量、功率密度和靶材距离等参数来实现稳定沉积速率和均匀沉积厚度的一种磁控溅射技术。
相比传统的磁控溅射技术,平衡磁控溅射技术具有更高的沉积速率和更好的膜层均匀性。
三、设备构造吉林平衡磁控溅射设备主要由真空室、气体供给系统、靶材支架、基板支架、磁控系统和电源等组成。
1. 真空室真空室是吉林平衡磁控溅射设备的核心部分,其主要作用是提供一个高度真空的环境,以保证沉积过程中的稳定性。
真空室一般采用不锈钢材料制作,内部表面光洁度高,以避免对沉积膜层产生影响。
2. 气体供给系统气体供给系统主要提供工艺所需的气体,并通过调节气体流量来实现沉积速率和膜层均匀性的控制。
气体供给系统一般包括气源、流量计和阀门等组件。
3. 靶材支架靶材支架是将靶材固定在真空室内并与电源相连的装置。
靶材支架一般采用铜或铝制作,其表面必须保持光洁度,以保证沉积膜层的质量。
4. 基板支架基板支架是将待处理的基板固定在真空室内的装置。
基板支架一般采用不锈钢材料制作,其表面必须保持光洁度,以避免对沉积膜层产生影响。
5. 磁控系统磁控系统主要是通过调节磁场强度和方向来控制离子轰击靶材表面的能量和方向。
磁控系统一般由永磁体和电磁体组成,其结构复杂,需要精确调节。
6. 电源电源主要是为靶材提供高频或直流电能,并通过调节功率密度来控制沉积速率和膜层均匀性。
电源一般采用高频或直流电源,其输出功率可达数千瓦。
四、工艺流程吉林平衡磁控溅射工艺流程包括预处理、真空抽气、气体灌注、沉积、退火和后处理等步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、设备介绍
磁控溅射一般包括直流溅射和射频溅射,其优点
是溅射速率高、均匀性好以及良好的台阶覆盖性。目
前已经成为最常用的一种薄膜制备方法源自适用于多种金属及非金属的薄膜沉积。
应用领域: 1 )所有类型的金属及介质膜的沉积
(晶片、陶瓷片、玻璃板以及磁头);2)光学薄膜
及磁性薄膜沉积; 3)脉冲直流电源硬质薄膜沉积以 及等离子放电反应性溅射等。
课题意义
• 磁控溅射是制备薄膜材料的重要的方法,其优点 是靶材的溅射速率高、薄膜的均匀性好以及良好 的台阶覆盖性。目前已经成为实验室和工业上普 遍采用的薄膜制备方法,适用于多种金属及非金 属的薄膜沉积。 • 磁控溅射镀膜是材料科学研究人员及学生应该掌 握的基本技能。但受实验条件、实验成本的限制, 材料物理专业的学生不可能人人亲自动手操作磁 控溅射仪进行薄膜制备实验,因此我们制作了这 套《磁控溅射仪的使用》音像教材,向大家简要 介绍磁控溅射仪的原理,演示实验操作过程,并 说明操作中的注意事项。本教材可供培训、观摩 之用,希望有助于大家实验技能的培养和提高。
基 片
薄膜 物质 输运 能量 输运
块状材料 (靶材)
磁场对溅射的影响
二次电子在加速飞向基片的过程中 受到磁场洛仑茨力的影响,被束缚 在靠近靶面的等离子体区域内,该 区域内等离子体密度很高,二次电 子在磁场的作用下围绕靶面作圆周 运动,在运动过程中不断的与氩原 子发生碰撞电离出大量的氩离子轰 击靶材,经过多次碰撞后电子的能 量逐渐降低,摆脱磁力线的束缚, 远离靶材,最终沉积在基片或真空 室内壁及靶源阳极上。 磁控溅射的 特殊之处就是以磁场束缚并延长了 电子的运动路径,从而大大提高了 工作气体的电离率并有效利用了电 子的能量。
磁控溅射音像教材
真空室
观察窗
左操作箱 右操作箱
真空室内靶材 及衬底位置 溅射靶材
靶
起辉
起辉
二、工作原理简绍
磁控溅射装置示意图
溅射原理 :
高能电子与气体原 子发生碰撞,电离出大 量的正离子和电子,电 子飞向衬底,正离子在 电场的作用下加速轰击 靶材,溅射出大量的靶 材原子,呈中性的靶原 子沉积在衬底上成膜。 能量