第5讲线性代数矩阵pdf
线性代数(同济大学第五版)矩阵的特征值与特征向量讲义、例题

第五章 矩阵的特征值与特征向量§1矩阵的特征值与特征向量一、矩阵的特征值与特征向量定义1:设A 是n 阶方阵,如果有数λ和n 维非零列向量x 使得x Ax λ=,则称数λ为A 的特征值,非零向量x 称为A 的对于特征值λ的特征向量.由x Ax λ=得0)(=-x E A λ,此方程有非零解的充分必要条件是系数行列式0=-E A λ,此式称为A 的特征方程,其左端是关于λ的n 次多项式,记作)(λf ,称为方阵A 特征多项式.设n 阶方阵)(ij a A =的特征值为n λλλ,,,21 ,由特征方程的根与系数之间的关系,易知:nn n a a a i +++=+++ 221121)(λλλA ii n =λλλ 21)(例1 设3阶矩阵A 的特征值为2,3,λ.若行列式482-=A ,求λ. 解:482-=A 64823-=∴-=∴A Aλ⨯⨯=32A 又 1-=∴λ例2 设3阶矩阵A 的特征值互不相同,若行列式0=A , 求矩阵A 的秩.解:因为0=A 所以A 的特征值中有一个为0,其余的均不为零.所以A 与)0,,(21λλdiag 相似.所以A 的秩为2.定理1对应于方阵A 的特征值λ的特征向量t ξξξ,,,21 ,t ξξξ,,,21 的任意非零线性组合仍是A 对应于特征值λ的特征向量.证明 设存在一组不全为零的数t k k k ,,,21 且存在一个非零的线性组合为t t k k k ξξξ+++ 2211,因为t ξξξ,,,21 为对应于方阵A 的特征值λ的特征向量。
则有),,2,1(1t i k Ak i i i ==ξλξ所以)()(22112211t t t t k k k k k k A ξξξλξξξ+++=+++ 所以t t k k k ξξξ+++ 2211是A 对应于特征值λ的特征向量. 求n 阶方阵A 的特征值与特征向量的方法:第一步:写出矩阵A 的特征多项式,即写出行列式E A λ-.第二步:解出特征方程0=-E A λ的根n λλλ,,,21 就是矩阵A 的特征值.第三步:解齐次线性方程组0)(=-x E A i λ,它的非零解都是特征值i λ的特征向量.例3 求矩阵⎪⎪⎪⎭⎫ ⎝⎛--=201034011A 的特征值和特征向量.解 A 的特征多项式为2)1)(2(201034011λλλλλλ--=-----=-E A 所以,A 的特征值为1,2321===λλλ. 当21=λ时,解方程组0)2(=-x E A .由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=-000010001~2010340112E A ,得基础解系⎪⎪⎪⎭⎫ ⎝⎛=1001p ,所以特征值21=λ的全部特征向量为11p k ,其中1k 为任意非零数.当132==λλ时,解方程组0)(=-x E A .由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=-000210101~101024012E A ,得基础解系⎪⎪⎪⎭⎫ ⎝⎛--=1212p ,所以特征值132==λλ的全部特征向量为22p k ,其中2k 为任意非零数. 二、特征值与特征向量的性质与定理性质1 n 阶方阵A 可逆的充分必要条件是矩阵A 的所有特征值均非零. 此性质读者可利用A n =λλλ 21可证明.定理 2 若21,λλ是n 阶方阵A 的两互不相等的特征值,对应的特征向量分别为21,p p ,则21,p p 线性无关.证明 假设设有一组数21,x x 使得02211=+p x p x (1)成立. 以2λ乘等式(1)两端,得0222121=+p x p x λλ (2) 以矩阵A 左乘式(1)两端,得0222111=+p x p x λλ (3) (3)式减(2)式得0)(1211=-p x λλ 因为21,λλ不相等,01≠p ,所以01=x .因此(1)式变成022=p x . 因为02≠p ,所以只有02=x . 这就证明了21,p p 线性无关.性质2 设)(A f 是方阵A 的特征多项式,若λ是A 的特征值.对应于λ的特征向量为ξ,则)(λf 是)(A f 的特征值,而ξ是)(A f 的对应于)(λf 的特征向量,而且若O A f =)(,则A 的特征值λ满足0)(=λf ,但要注意,反过来0)(=λf 的根未必都是A 的特征值.例4 若λ是可逆方阵A 的特征值,ξ是A 的对应于特征值λ的特征向量,证明:1-λ是1-A 的特征值,ξ是1-A 对应于特征值1-λ的特征向量,证明 λ 是可逆方阵A 的特征值,ξ是A 的对应于特征值λ的特征向量λξξ=∴A ξξλ11--=∴Aξξλ11--=∴A A A ξξλ*1A A =∴-1-∴λ是1-A 的特征值,ξ是1-A 对应于特征值1-λ的特征向量, 1-λA 是*A 的特征值,ξ是*A 对应于特征值1-λA 的特征向量.例5 设3阶矩阵A 的特征值1,2,2,求E A --14.解:A 的特征值为1,2,2,,所以1-A 的特征值为1,12,12, 所以E A--14的特征值为4113⨯-=,41211⨯-=,41211⨯-=所以311341=⨯⨯=--E A .例6 若21,λλ是n 阶方阵A 的两互不相等的特征值,对应的特征向量分别为21,p p ,证明21p p +一定不是A 的特征向量.证明 假设21p p +是矩阵A 的特征向量,对应的特征值为.λ根据特征值定义可知:)()(2121p p p p A +=+λ …………………(1) 21,λλ 又是n 阶方阵A 的特征值,对应的特征向量分别为21,p p .,111p Ap λ=∴ 222p Ap λ= (2)将(2)带入(1)式整理得:0)()(2211=-+-p p λλλλ因为21,λλ是n 阶方阵A 的两互不相等的特征值,对应的特征向量分别为21,p p 线性无关.所以21λλλ==.与21,λλ是n 阶方阵A 的两互不相等的特征值矛盾. 所以假设不成立.例7 若A 为正交矩阵,则1±=A ,证明,当1-=A 时,A 必有特征值1-;当1=A 时,且A 为奇数阶时,则A 必有特征值1.证明 当1-=A 时.TT T A E A A E A AA A E A +=+=+=+)(A E A E T +-=+-=,所以 .0=+A E `所以1-是A 的一个特征值反证法:因为正交阵特征值的行列式的值为1,且复特征值成对出现,所以若1不是A 的特征值,那么A 的特征值只有-1,以及成对出现的复特征值。
第一章 第五讲 矩阵的秩

第五讲 矩阵的秩矩阵的秩是线性代数中又一重要概念,它描述了矩阵的一个重要的数值特征:在判定线性方程组是否有解,向量组的线性相关性,求矩阵的特征向量以及在多项式、空间几何等多个方面都有广泛的应用。
本讲我们主要了解矩阵秩的概念及其与方程组各类型解的关系。
5.1.1 矩阵秩的定义在第二讲中,我们通过矩阵的初等行(列)变换定义了矩阵的行(列)阶梯形、矩阵的行(列)最简形以及矩阵的标准形。
其中矩阵行(列)阶梯形与矩阵行(列)最简形可以不唯一,但矩阵的标准形唯一。
因此,下面就利用矩阵标准形的唯一性来给出矩阵秩的概念。
定义5.1 对于给定的m n ⨯矩阵A ,它的标准形(-)(-)(-)(-)rr n r m r r m r n r m nE OF O O ⨯⨯⨯⨯⎛⎫=⎪⎝⎭由数r 完全确定,我们称数r 为矩阵m n A ⨯的秩(rank ),记作()R A 。
其中, r E 是r 阶单位矩阵;其余都是零矩阵。
注:(1) 零矩阵的秩为零:()0R O =;(2) 矩阵的秩就是矩阵标准形中左上角单位矩阵的阶数。
(3)对于n 阶方阵A ,当()R A n =时,称A 为满秩矩阵。
当()R A n <时,称A 为降秩矩阵.例5.1 求矩阵111610121210A ⎛⎫⎪=-- ⎪ ⎪-⎝⎭的秩。
解 先将A 通过初等变换化为标准形111610121210A ⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭2131111601280306r r r r --⎛⎫⎪−−−→ ⎪ ⎪⎝⎭323111601280026r r -⎛⎫ ⎪−−−→ ⎪ ⎪⎝⎭111601280013⎛⎫ ⎪→ ⎪ ⎪⎝⎭12312101201280013r r r ---⎛⎫ ⎪−−−→ ⎪ ⎪⎝⎭13232100101020013r r r r +-⎛⎫⎪−−−→ ⎪ ⎪⎝⎭()4142433312,3100001000010c c c c c c E O -⨯--⎛⎫ ⎪−−−−−→= ⎪ ⎪⎝⎭可看出,矩阵A 的标准形中左上角是3阶单位矩阵,所以()3R A =. 矩阵秩有如下性质 性质5.1 ()()TR A R A =; 性质5.2 }{0()min ,R A m n ≤≤;性质5.3 如果n 阶方阵A 可逆,则()R A n =;(可逆矩阵也称为满秩矩阵)性质5.4 {}()min (),()R PA R P R A ≤; 当P 可逆时,()()R PA R A =;若 P Q 、都可逆,且有PAQ B =,则()()R A R B =.性质5.5 max {}(),()(|)()+()R A R B R A B R A R B ≤≤;特别地,当B 为列矩阵时,有max {}(),()(|)()+1R A R B R A B R A ≤≤;性质5.6 ()()();()()().r A B r A r B r A B r A r B +≤+-≥-性质5.7 设A 为m n ⨯矩阵且()R A r =,则A 的任意S 行组成的矩阵B ,有().r B r s n ≥+-下面只证明性质5.3和性质5.4,其余的性质请学生自证。
线性代数矩阵及其运算 ppt课件

1 2 2 .5 8 3 1 3 0 .5 89
1 2 4 .5 9 3 6 3 .5
83
22
三、 矩阵的乘法
定义1.5 (P5)
设矩阵A=(aij)ml的列数与矩阵B=(bij)ln的行数相等, 则由元素
C
2
8
4
求AB、BA和BC
解 AB 816 1362
BA
0 0
0 0
BC
0 0
0 0
AB≠BA , BA=BC
(1) AB与BA都有意义,且同型,但AB与BA不相等 (2) 两个非零矩阵相乘可能是零矩阵 (3) BA=BC,但A≠C,可见,矩阵乘法不满足消去率
那么就称矩阵A与矩阵B相等,记作A=B
16
判断下列各组矩阵是否相等
(1)
8
(3)2
5 2 0
s9in61
2 2 2.5 0.5
9 0 8
(2)
0 0
0 0
0 0
00
0 0
1 0 0
(3)
0
0
1 0
0 1
(1 )
am1x1am2x 2 amn xn bm
m个方程 ,
n个未知数
a11 a12
a
21
a 22
a m 1 a m 2
a1n
a2n
a m n
a11 a12
a21
a22
线性代数矩阵的初等变换及其性质

行最简形矩阵:
4. 非零行的第一个非零元为1; 5. 这些非零元所在的列的其它
元素都为零.
1 0 1 0 4
0
0
1 0
1 0
0 1
3 3
B5
0
0
00
0
c3 c4
c4 c1 c2 c5 4c1 3c2 3c3
1 0 0 0 0
0
0
x3 2x3 9x3
x4 2x4 7 x4
2 4 9
增广矩阵的比较
2 -1 -1 1 2 1 1 -2 1 4 (A b)= 4 -6 2 -2 4 3 6 -9 7 9
1 1 -2 1 4 2 -1 -1 1 2 4 -6 2 -2 4 3 6 -9 7 9
交换(A b) 的第1行与第2行
1 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0
0 0
1 0
0 0
00
1 0 0 0 0 1 0 0 0 0 1 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
例 1 用初等行变换化为行简化阶梯形
12 3 45
12 3 45
~ A= 2 4 6 8 10
例2 阶梯形,行简化阶梯形,标准形
1 A 0
0
0 1 0
8 1 0
0 0 1
1
B
0 0 0
0 1 0 0
2 0 0 0
1 0 0 0
0 0 10
0 1 1 0 C 0 0 0 1
0 0 0 0
0 1 2 0 3 D 0 0 0 1 2
0 0 0 0 0
线性代数复习(矩阵)

PART 04
矩阵的秩与线性方程组
矩阵的秩的定义与性质
定义
矩阵的秩是其行向量组或列向量组中 线性无关向量的最大数量。
性质
矩阵的秩是唯一的,且对于任何矩阵 A,有r(A)≤min(m,n),其中m和n分
别是矩阵A的行数和列数。
推论
若矩阵A是方阵,则r(A)=n当且仅当 矩阵A是满秩的。
利用矩阵的秩求解线性方程组
矩阵的数乘
定义
数乘是将一个标量与一个矩 阵相乘,得到一个新的矩阵 。
例子
标量k与矩阵A的数乘是每个 元素都乘以k,得到新的矩阵 B。
注意事项
数乘满足结合律和分配律。
矩阵的乘法
定义
矩阵的乘法是满足结合律和分配律的一种运 算,适用于满足一定条件的两个矩阵。
例子
矩阵A和矩阵B的乘积是按照一定的规则计算得到的 新的矩阵C。
注意事项
矩阵的乘法不满足交换律,且不是所有矩阵 都可以相乘。
矩阵的转置
定义
矩阵的转置是将原矩阵的行变为列,列变为行,得到 一个新的矩阵。
例子
矩阵A的转置是将其行变为列,得到新的矩阵B。
注意事项
转置后的矩阵与原矩阵的元素对应关系不变,但行和 列的位置互换。
PART 03
矩阵的逆与行列式
逆矩阵的定义与性质
https://
2023 WORK SUMMARY
线性代数复习(矩阵)
REPORTING
https://
目录
• 矩阵的定义与基本性质 • 矩阵的运算 • 矩阵的逆与行列式 • 矩阵的秩与线性方程组 • 矩阵的特征值与特征向量
PART 01
线性方程组的解的判定
若线性方程组有唯一解,则其系数矩阵的秩等于增广矩阵的秩;若线性方程组有无穷多解,则其系数矩阵 的秩等于增广矩阵的秩减去1;若线性方程组无解,则其系数矩阵的秩不等于增广矩阵的秩。
大学线性代数矩阵教学最全课件

B
1 4 2
7 2 0
1 31, 求(AB)T.
AB
2 1
0 3
21
1 4 2
7 2 0
311
0 17
14 13
130,
所以
AB
T
0 14 3
111703.
解法2:
1
(AB)T=BTAT
0 Biblioteka 1 的方阵, 称为单位矩阵,
其中主对角线上的元素都是1,其他元素都是0。记作: En 或 E
第二章 矩阵
§1 矩阵的概念
(6) 形如
1
0
0
0
2
0
0
0
n
的方阵,
称为对角矩阵(或对角阵),
其中1, 2, ···, n不全为零.记作 A=diag(1, 2, ···, n)
第二章 矩阵
§1 矩阵的概念 §2 矩阵的运算 §3 逆矩阵 §4 分块矩阵 §5 矩阵的初等变换 §6 矩阵的秩
第二章 矩阵
§1 矩阵的概念
一、矩阵的定义 定义: 由m×n个数aij (i = 1,2, ∙ ∙ ∙, m ; j = 1,2, ∙ ∙ ∙, n) 排
成的m行n列的数表
称为m行n列矩阵,简称m×n矩阵.
4
5
6
7 8 9 7 8 9
11 2 2 33 2 4 6
4
4
55
6
6
线性代数5

所以 2 x , y
即
2
4 x , x y , y 0
(5.1)
x , y
2
x , x y , y
上式被称为许瓦兹(Schwarz)不等式.
西安建大
二.正交向量组与正交化方法
1.正交向量组
1.正交向量组
当 x
y 0 时,定义向量
cos
2.施密特正交化方法
西安建大
三.正交矩阵与正交变化
1. 正交矩阵 定义5.2 定理5.3
1.正交矩阵
2.正交变换
如果 n阶方阵 A 满足 AT A 则称 A 为正交矩阵.
I
如果 A , B均为 n阶正交矩阵,
T
1
那么:⑴ A1 AT ⑵ A 即 A 为正交矩阵
1 A A ⑶ 2 A A 为 2n 阶正交矩阵
量两两正交,从而这 n 个向量就构成了向量空 间 R n的一组正交基.
西安建大
例5.1
T 已知 R 3的一个向量 1 1 ,1 ,1, 求 R 3的一组正交基. T T 解:求 2 x21 , x22 , x23 ,使 1 2 0
即: x21 x22 x23 0
bi ( i 1 ,2 , , r ) 再取 i bi
显然 1 , 2 , , r为正交规范化的向量组, 且与 1 , 2 , , r 等价.
西安建大
T T T 例5.2:已知 1 1 ,1 ,1 , 2 1, 2 ,1 , 3 1 ,1 ,2
西安建大
定义5.1
设n 维向量 1 , 2 , , r是向量空间 V ( V R n )的一组正交基,如果它们均为单位向 量,则称 1 , 2 , , r 为V 的一组正交规范基 或标准正交基.
线代第五讲线性代数

4 030rr34 2Brr344
r1 r2 r2 r3
1 0 1 0 4
0 0
1 0
1 0
0 1
3 3
B
5
0 0 0 0 0
矩阵 B4 和 B5 都称为行阶梯形矩阵. 特点:
(1)、可划出 一条阶梯线,线 的下方全为零;
(2)、每个 台阶 只有一行,
1 0 1 0 4
0 0
1 0
1 0
同理可定义矩阵的初等列变换(所用记号是 把“r”换成“c”).
定义2 矩阵的初等列变换与初等行变换统称为 初等变换.
初等变换的逆变换仍为初等变换, 且变换类型 相同.
ri rj ri k ri krj
逆变换 逆变换 逆变换
ri rj;
ri
(1) k
或
ri
k;
ri (k)rj 或 ri krj .
§2.4 矩阵的初等变换
一、矩阵的初等变换
定义1 下面三种变换称为矩阵的初等行变换:
1 对调两行(对调i, j两行,记作ri rj); 2 以数 k 0 乘以某一行的所有元素;
(第 i 行乘 k,记作 ri k)
3 把某一行所有元素的k 倍加到另一行
对应的元素上去(第 j 行的 k 倍加到第 i 行上 记作ri krj).
5
2 2 1 9 2 3
r3 42r1
r4
603r1
B2
13 23 1 4 4 3
r3 5r2 r4 3r2
0 0
1 0
1 0
1 2
Hale Waihona Puke 0 6B30 0 0 1 3
1 rBr343 2rr34000
11 10 00 00
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3.1 行列式的概念;
1.3.2行列式的性质;
1.3.3 克莱姆法则;
1.3.4 行列式与方阵的关系;
计算行列式常用方法: (1)利用性质把行列式化为三角形行列式,从而算 得行列式的值.
(2)利用降阶法(定义), 在行列式含零元素较多时, 可以按含零的行(或列)展开,降阶直到 二阶或 三阶行列式后计算.
b 0 0
b 0 0
D ba a b
a b
a b
再将各列加至第一列,
a (n 1)b 0 0 0 b a b 0 0 b 0 0 b 0 0
a b
[a (n 1)b](a b) n1.
a b
1.3.3 克莱姆法则
其中 D j 是把系数行列式 D 中第 j 列的元素用方程 组右端的常数项代替后所得到的 n 阶行列式,即
a11 a1 , j 1 a n 1 a n , j 1
b1 bn
a1 , j 1 a1 n a n , j 1 a nn
D j
A a A a A a A 2 n 11 21 12 22 1 n A , A A
O
0
O
性质
证明
设 A aij ,
AA A A A I .
记 AA cij , 则
0, i j; cij ai1 Aj1 ai 2 Aj 2 ain Ajn | A |, i j.
当D=0,即当 =1或 =-2时有非零解。
注意:
1. 用克莱姆法则解方程组的两个条件
(1)方程个数等于未知量个数;
(2)系数行列式不等于零.
2. 克莱姆法则建立了线性方程组的解和已知的系 数与常数项之间的关系.它主要适用于理论推导.
1.3.4 行列式与方阵的关系
a11 a12 a1n a21 a22 a2 n n阶矩阵A a a a n2 nn n1 a11 a12 a1n a21 a22 a2 n n阶行列式 an1 an 2 ann
a b D b
b a b
b b a
b b b
b b b a
解 将第1行乘(-1),依次加至下面各行;
a b 0 0 b 0 0 b 0 0 ba a b ba
D ba
a b
a b
a ba ba
b 0 0
数表
数
定义1.3.2 n阶矩阵A (aij )的元素按原来的顺序 构成的n阶行列式,称为n阶方阵A的行列式, 记为|A|,也记作|aij | 或 det A.
2 3 例 A 6 8
则A 2 3 6 8
2.
若 | A | 0, 则称A为非奇异矩阵.
T 1 A A; 运算性质
(3)
1 0 r4 3r1 0 0
1 0 2 2
2 3 1 0 0 4 1 5
例1
1 1 2 3 0 2 1 5 r2 r4 0 2 0 4 0 0 1 0 1 1 2 3 0 2 1 5 r3 r2 0 0 1 1 0 0 1 0
2 A n A;
3 AB A B ;
判断
ห้องสมุดไป่ตู้
1 AB
3
BA ;
2 A B B A ;
A B A B;
4若AB O, 则 | A | 0或 | B | 0; 2 5若A 2 A I O, 则A非奇异;
(6)若A非奇异, 则Ak (k为正整数),AT 也为非奇异矩阵;
解
从第2列开始,直到最后一列,分别将第j列 bj 乘以- 加到第1列,得到一个上三角行列式, cj anbn a2b2
a1
D
c2
cn
a2 c2
a3 an c3
cn
anbn a2b2 c2c3 cn (a1 ) c2 cn
例3 计算 n 阶行列式
故
AA
A I.
同理可得
n A A Aki akj A I . k 1
如果方程组所有常数项都为零,则称该方程组 为齐次线性方程组,否则称为非齐次线性方程 组.
1.3.3 克莱姆法则
定理1.3.1 如果线性方程组的系数行列式
a11 a21 a n1
a12 a1n a22 a2 n 0 an 2 ann
则方程组有解且有唯一解. 其解可以表示为
Dn D1 D2 x1 , x2 , , xn . D D D
a11 a12 a1n A11 A21 An1 a a22 a2 n A12 A22 An 2 21 a1n A1n A AA a11 A11 a12 A12 a a a A A A an1 A n 2 a Ann 1n a2 n A nn A n1 n1 n2 n2 nn nn
1.3.3 克莱姆法则
推论1.3.3 若齐次线性方程组的系数行列式
a11 a21 a n1
a12 a1n a22 a2 n 0 an 2 ann
则方程组仅有零解.
1.3.3 克莱姆法则
例4 齐次线性方程组 x1 x2 x3 0, x1 x2 x3 0, x x x 0, 2 3 1 讨论方程组在什么情况下有非零解. 解:系数行列式为 1 1 2 ( 2)( 1) 1 1 1 1
例1
1 0 r4 r3 0 0
1 2 0 0
2 1 1 0
3 5 1 1
1 (2) 1 (1) 2
a1
a2 c2
a3 an c3 cn
例2 计算 n 阶行列式 D b3
ci 0, i 2,3,, n
bn
b2
1.3.3 克莱姆法则
a11 x1 a12 x 2 a1 n x n b1 a x a x a x b 21 1 22 2 2n n 2 a n1 x1 a n 2 x 2 a nn x n bn
例1
1 1 2 3 3 3 3 7 9 D 2 0 4 2 3 5 7 14 1 0 r2 3r1 2 3 1 2 3 0 1 0 0 4 2 5 7 14
(2)
例1
1 0 r3 2r1 0 3
1 0 2 5
2 3 1 0 0 4 7 14
定义 行列式 A 的各个元素的代数余子式Aij 所 构成的如下矩阵
A11 A12 A A 1n
A21 An1 A22 An 2 A2 n Ann
称为矩阵 A 的伴随矩阵.
a b * * 例5 设A c d , 求A 和A A. d b * 0 ad bc * 解: A c a A A 0 ad bc