线性代数知识点总结第二章

合集下载

线性代数知识点总结

线性代数知识点总结

线性代数知识点总结线性代数知识点总结第一章行列式行列式是线性代数中的重要概念之一。

行列式的定义包括二三阶行列式和N阶行列式。

其中,N阶行列式是由行列式中所有不同行、不同列的n个元素的乘积的和构成的。

行列式的计算需要用到奇偶排列、逆序数和对换等概念。

行列式还具有多种性质,如行列式行列互换其值不变,行列式中某两行(列)互换,行列式变号等。

通过这些性质,我们可以推论出行列式中某两行(列)对应元素相等,则行列式等于零等结论。

行列式还有一些特殊的形式,如转置行列式、对称行列式、反对称行列式、三线性行列式和上(下)三角形行列式等。

行列式在解线性方程组中应用广泛,如克莱姆法则。

非齐次线性方程组的系数行列式不为零时,有唯一解;而齐次线性方程组的系数行列式为1时,只有零解。

第二章矩阵矩阵是线性代数中另一个重要概念。

矩阵是由数个数排成的矩形阵列,其中包括零矩阵、负矩阵、行矩阵、列矩阵、n阶方阵和相等矩阵等。

矩阵的运算包括加法、数乘和乘法。

其中,加法和数乘都满足交换律和结合律。

而矩阵的乘法需要满足行数等于列数的规则。

矩阵的乘法运算需要用到矩阵的元素之间的乘积和求和。

在矩阵的运算中,我们需要注意矩阵的类型和是否有意义。

一般情况下,矩阵乘法不满足消去律。

即使已知AB=0,也不能得到A=0或B=0.对于矩阵A,它的转置等于A乘以A加B。

即transpose(A)=A(A+B)。

对于标量k和矩阵A,有(kA)=kA和(AB)=BA(反序定理)。

对于方幂A^k,有(A^k)=(A^1+k/2)+(A^2+k/2)。

有几种特殊的矩阵,如对角矩阵、数量矩阵、单位矩阵、上下三角形矩阵、对称矩阵、反对称矩阵、阶梯型矩阵和分块矩阵。

对于分块矩阵,加法、数乘和乘法的规则类似,而转置需要对每个子块进行转置。

矩阵的逆矩阵指的是存在一个N阶矩阵B,使得AB=BA=I。

如果矩阵A是可逆的,则称它是非奇异矩阵,否则称为奇异矩阵,其行列式为0.初等变换不会改变矩阵的可逆性,而初等矩阵都是可逆的。

线性代数各章要点整理

线性代数各章要点整理

第一章行列式主要知识点一、行列式的定义和性质1.余子式和代数余子式的定义2.行列式按一行或一列展开的公式1)2)3.行列式的性质1)2)用数k乘行列式的某一行(列)所得新行列式=原行列式的k倍. 推论3)互换行列式的任意两行(列)所得新行列式等于原行列式的相反数. 推论4)如果行列式中两行(列)对应元素成比例,则行列式值为0.5)行列式可以按任一行(列)拆开.6)行列式的某一行(列)的k倍加到另一行(列)上,所得新行列式与原行列式的值相等.二、行列式的计算1.二阶行列式和三角形行列式的计算.2.对一般数字行列式,利用行列式的性质将其降阶以化成二阶行列式或三角形(或对角形)行列式的计算.3.对行列式中有一行或一列中只有一个或两个非零元的情况,用这一行或一列展开.4.行列式中各行元素之和为一个常数的类型.5.范德蒙行列式的计算公式第二章矩阵主要知识点一、矩阵的概念1.要分清矩阵与行列式的区别2.几种特殊矩阵(0矩阵,单位阵,三角阵,对角阵,数量阵)二、矩阵的运算1.矩阵A , B的加、减、乘有意义的充分必要条件2.矩阵运算的性质比较矩阵运算(包括加、减、数乘、乘法等)的性质与数的运算性质的相同点和不同点(加法、乘法的交换律和结合律;乘法关于加法的分配律)重点是矩阵乘法没有交换律(由此产生了矩阵运算公式与数的运算的公式的不同点).3.转置对称阵和反对称阵1)转置的性质2)若A T=A (A T= - A),则称A为对称(反对称)阵4.逆矩阵1)方阵A可逆(也称非异,非奇异,满秩)的充分必要条件是.当A可逆时,.2)方阵A的伴随阵的定义。

重要公式;与A -1的关系(当方阵A可逆时,)3)重要结论:若n阶方阵A,B满足AB=E,则A,B都可逆,且A-1=B ,B-1=A.4)逆矩阵的性质:; ; .5)消去律:设方阵A可逆,且AB=AC(BA=CA),则必有B=C。

(若不知A可逆,仅知A≠0结论不一定成立。

线性代数知识点总结第二章doc资料

线性代数知识点总结第二章doc资料

线性代数知识点总结第二章 矩阵及其运算第一节 矩阵 定义由m n ⨯个数()1,2,,;1,2,,ija i m j n ==L L 排成的m 行n 列的数表111212122212nn m m mna a a a a a a a a LL M M M L称为m 行n 列矩阵。

简称m n ⨯矩阵,记作111212122211n n m m mn a a a a a a A a a a ⎛⎫ ⎪⎪= ⎪⎪⎝⎭L L L L L L L,简记为()()m n ij ij m nA A a a ⨯⨯===,,m n A ⨯这个数称为的元素简称为元。

说明 元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。

扩展几种特殊的矩阵:方阵 :行数与列数都等于n 的矩阵A 。

记作:A n 。

行(列)矩阵:只有一行(列)的矩阵。

也称行(列)向量。

同型矩阵:两矩阵的行数相等,列数也相等。

相等矩阵:AB 同型,且对应元素相等。

记作:A =B 零矩阵:元素都是零的矩阵(不同型的零矩阵不同) 对角阵:不在主对角线上的元素都是零。

单位阵:主对角线上元素都是1,其它元素都是0,记作:E n (不引起混淆时,也可表示为E )(课本P29—P31)注意 矩阵与行列式有本质的区别,行列式是一个算式,一个数字行列式经过计算可求得其值,而矩阵仅仅是一个数表,它的行数和列数可以不同。

第二节 矩阵的运算矩阵的加法 设有两个m n ⨯矩阵()()ij ij A a B b ==和,那么矩阵A 与B 的和记作A B +,规定为111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b A B a b a b a b +++⎛⎫⎪+++ ⎪+=⎪⎪+++⎝⎭L L L L L LL说明 只有当两个矩阵是同型矩阵时,才能进行加法运算。

(课本P33) 矩阵加法的运算规律()1A B B A +=+;()()()2A B C A B C ++=++()()1112121222113,()n n ij ij m nm n m m mn a a a a a a A a A a a a a ⨯⨯---⎛⎫⎪--- ⎪=-=-= ⎪⎪---⎝⎭L L L L L L L设矩阵记,A -称为矩阵A 的负矩阵()()()40,A A A B A B +-=-=+-。

线性代数-知识点总结part 2

线性代数-知识点总结part 2

线性代数知识点总结—part 2三、向量组的线性相关与线性方程组(1)n 维向量记为a=(a 1,a 2……a n )第i 个a i 称为a 的得i 个分量或坐标有几个向量就是几维向量。

(2)向量加减法按照对应项相加减。

(3)若干个同维数的列向量(或同维数的行向量)所组成的集合叫做向量组0 ,0 ,,,;,0 ,,,,,,, 3.42122112122112121。

可以推出称为线性无关,如果由一向量组则称该向量组线性相关使全为零的数如果存在不给定向量组定义=====+++=+++m m m m mm m m k k k k k k k k k k k k ΛρΛΛρΛΛΛαααααααααααα(4)向量组线性相关的充分必要条件是至少有一个向量可由其他向量线性表示。

(5)部分向量组线性相关,则整个向量组线性相关;整个向量组线性无关,则部分向量组线性无关。

(6)线性无关组添加相同数量个分量所得的向量组仍线性无关;线性相关组减少相同位置相同数量个分量所得的向量组仍线性相关。

唯一表示。

可由线性相关,则,线性无关,而设mm m αααββαααααα,,,,,,,,, 212121ΛΛΛ向量组⎪⎪⎪⎪⎪⎫⎛=⎪⎪⎪⎪⎪⎫⎛=n n T T a a aa a a A M MML L M 222211121121αα(7)若(8)若向量组A 和B 能相互线性表示就称A 和B 等价;(9)一个向量组T ,从中选出r 个向量a 1,a 2,…..a r 满足它们线性无关,并且T 中任意一个向量都可以用a 1,a 2…..a r 线性表示 那么我们就称a 1,a 2,…..a r 是T 的最大向量无关组(10)向量组的最大线性无关组所含向量的个数,称为向量组的秩. (11)矩阵A 的秩等于它的列向量组的秩,也等于行向量组的秩 (12)设向量组(I)的秩为r1,向量组(II)的秩为r2,且(I)能由(II)线性表示,则r1<=r2(13)等价的向量组有相同的秩。

线性代数重点知识总结

线性代数重点知识总结

说明:1.本总结只是把课本的重点知识总结了一下,我没有看到期末考试题,所以考着了算是侥幸,考不着也正常。

2.知识点会了不一定做的对题,所以还要有相应的练习题。

3.前后内容要贯穿起来,融汇贯通,建立自己的知识框架。

第一章行列式1.行列式的定义式(两种定义式)-->行列式的性质-->对行列式进行行、列变换化为上下三角(求行列式的各种方法逐行相加、倒叙相减、加行加列、递推等方法,所有方法是使行列式出现尽可能多的0为依据的)。

2.行列式的应用——>克拉默法则(成立的前提、描述的内容、用途,简单的证明可从逆矩阵入手)。

总结:期末第一章可能不再单独考,但会在求特征值/判断正定性等内容时顺便考察行列式的求解。

第二章矩阵1.矩阵是一个数组按一定的顺序排列,和行列式(一个数)具有天壤之别。

2.高斯消元法求线性方程组的解—>唯一解、无解、无穷解时阶梯型的样子(与第三章解存在的条件以及解的结构联系在一起)3.求逆矩阵的方法(初等变换法,I起到记录所有初等变换的作用)、逆矩阵与伴随矩阵的关系。

4.初等矩阵和初等变换的一一对应关系,学会由初等变换找出与之对应的初等矩阵。

5.分块矩阵(运用分块矩阵有时可以很简单的解决一些复杂问题)记得结论A 可逆,则)A -(1|A |A -1T T αααα=+。

第三章 线性方程组第三章从向量组的角度入手,把线性方程组的系数矩阵的每一列看作一个列向量,从而得到一个向量组假设为n 21,,,ααα ,右边常则看作一个向量β,1)若向量β被向量组n 21,,,ααα 表出唯一(即满足关系:n n n ==),,,,(r ),,,(r 2121βαααααα 时,因为只有向量组n 21,,,ααα 线性无关才表出唯一),则只有唯一解;2)若β不能由向量组n 21,,,ααα 线性表出(即满足条件),,,,(r 1),,,(r 2121βααααααn n =+时)则无解;3)若β由向量组n 21,,,ααα 表出不唯一(即满足条件n n n <=),,,,(r ),,,(r 2121βαααααα 时,只有n 21,,,ααα 线性相关才表出不唯一)有无穷解。

线性代数 第二章总结

线性代数 第二章总结

第二章 矩阵及其运算矩阵是线性代数主要研究对象,是求解线性方程组的一个有力工具,它在自然科学、工程技术及经济问题等各个领域中都有广泛的应用。

本章的教学基本要求:理解矩阵概念并掌握矩阵的线性运算、乘法、转置及其运算规律;理解逆矩阵的概念,掌握逆矩阵存在的条件,了解求逆矩阵的伴随矩阵法;熟练掌握利用逆矩阵求解矩阵方程的方法;了解单位矩阵、对角矩阵、对称矩阵及其性质;了解分块矩阵及其运算。

本章的重点及难点:矩阵的各种运算及其运算规律,尤其矩阵的乘法;逆矩阵存在的条件,利用伴随矩阵法会求逆矩阵,主要是二阶和特殊的三阶矩阵的逆矩阵;用逆矩阵求解矩阵方程。

§ 1 矩阵的概念一、内容提要1.矩阵定义 由n m ⨯个数排成的m 行n 列的矩形数表⎪⎪⎪⎪⎪⎭⎫⎝⎛mn m m n n a a a a a a a a a 212222111211称为一个m ×n 矩阵,其中ij a 表示位于数表中第i 行第j 列的数(m i ,,2,1 =;n j ,2,1=)。

ij a 又称为矩阵的元素。

规定,1×1矩阵 a a =)(。

矩阵也可表示为)(ij a 或n m ij a ⨯)( 。

如果不需要表示出矩阵的元素,通常用大写英文字母表示矩阵,如:A ,B ,...,或n m A ⨯,n m B ⨯,...。

元素都是实数的矩阵称为实矩阵;有复数元素的矩阵称为复矩阵。

若两个矩阵的行数、列数分别相等,则称它们是同型矩阵。

矩阵A =()n m ij a ⨯,B =()n m ij b ⨯是同型矩阵。

若它们的对应元素相等,即ij ij b a = ()n j m i 2,1;2,1== 那么称矩阵A 与矩阵B 相等,记作:A = B 。

2.特殊矩阵零矩阵 所有元素都为零的矩阵称为零矩阵。

如一个n m ⨯的零矩阵为nm ⨯⎪⎪⎪⎪⎪⎭⎫⎝⎛000000000记为0n m ⨯。

在不会引起混淆的情形下,也可记为0。

线性代数超强总结

线性代数超强总结

考试重点第一章: 行列式的定义、行列式的计算;第二章: 1、求矩阵的逆阵(伴随矩阵法、初等变换法); 2.求矩阵的秩(用初等变换法);3.求矩阵方程: Ax=B, xA=B, AxB=C ; 第三章: 证明向量组的线性相关性; 第四章: 方程组Ax=0, Ax=b 求解; 第五章: 1、会求特征值与特征向量; 2.相似矩阵的性质;3.实对称矩阵的对角化; 第六章: 1.用正交变换把二次型化为标准形;2.二次型的秩, 二次型正定的定义; 3、矩阵正定的判断方法:(1)各阶顺序主子式都大于零;(2)每个特征值都大于零()0A r A n A Ax A A οο⎧⎪<⎪⎪=⇔=⎨⎪⎪⎪⎩不可逆 有非零解是的特征值的列(行)向量线性相关 12()0,,T s i nA r A n Ax A A A A A A A p p p p Ax οββ⎧⎪=⎪⎪=⎪⎪⎪≠⇔⎨⎪⎪⎪⎪=⋅⋅⋅⎪⎪∀∈=⎩可逆 只有零解 的特征值全不为零 的列(行)向量线性无关 是正定矩阵 与同阶单位阵等价 是初等阵总有唯一解⎫⎪−−−→⎬⎪⎭具有向量组等价相似矩阵反身性、对称性、传递性矩阵合同 √ 行列式的计算:① 若A B 与都是方阵(不必同阶),则(1)mn A A A A B B B B A A BB οοοοο*===**=-②上三角、下三角行列式等于主对角线上元素的乘积.③关于副对角线: √ 逆矩阵的求法:①1A A A*-=②1()()A E E A -−−−−→初等行变换③11a b d b c d c a ad bc --⎡⎤⎡⎤=⎢⎥⎢⎥--⎣⎦⎣⎦ TT T T T A B A C C D BD ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦④12111121n aa n a a a a -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦21111211na a n a a a a -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⑤11111221n n A A A A A A ----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ 11121211n nA A A A A A ----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦√ 设 , 对 阶矩阵 规定: 为 的一个多项式.√ 设 的列向量为 , 的列向量为 , 的列向量为 ,√ 用对角矩阵Λ左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的行向量; 用对角矩阵Λ右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘,与分块对角阵相乘类似,即:11112222kk kk A B A B AB A B οο⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦√ 判断 是 的基础解系的条件: ① 12,,,s ηηη线性无关; ② 12,,,s ηηη是0Ax =的解;③ ()s n r A =-=每个解向量中自由变量的个数.① 零向量是任何向量的线性组合,零向量与任何同维实向量正交. ② 单个零向量线性相关;单个非零向量线性无关.③ 向量组12,,,n ααα⋅⋅⋅线性相关⇔向量组中至少有一个向量可由其余1n -个向量线性表示. 向量组12,,,n ααα⋅⋅⋅线性无关⇔向量组中每一个向量i α都不能由其余1n -个向量线性表示. ④ m 维列向量组12,,,n ααα⋅⋅⋅线性相关()r A n ⇔<; m 维列向量组12,,,n ααα⋅⋅⋅线性无关()r A n ⇔=. ⑤ ()0r A A ο=⇔=.⑥ 若 线性无关, 而 线性相关,则 可由 线性表示,且表示法惟一. ⑦ 矩阵的行向量组的秩等于列向量组的秩. 阶梯形矩阵的秩等于它的非零行的个数.⑧ 矩阵的行初等变换不改变矩阵的秩,且不改变列 、行向量间的线性关系.⑨ 矩阵 与 等价 作为向量组等价,即: 秩相等的向量组不一定等价.矩阵A 与B 作为向量组等价⇔1212(,,,)(,,,)n n r r αααβββ⋅⋅⋅=⋅⋅⋅=1212(,,,,,,)n n r αααβββ⋅⋅⋅⋅⋅⋅⇒ 矩阵A 与B 等价.向量组 可由向量组 线性表示 ≤ .向量组 可由向量组 线性表示,且 , 则 线性相关.向量组12,,,s βββ⋅⋅⋅线性无关,且可由12,,,n ααα⋅⋅⋅线性表示,则s ≤n .⑩ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且12(,,,)s r βββ⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅,则两向量组等价;⑪ 任一向量组和它的极大无关组等价.⑫ 向量组的任意两个极大无关组等价,且这两个组所含向量的个数相等. ⑬ 若两个线性无关的向量组等价,则它们包含的向量个数相等. 若 是 矩阵,则 ,若 , 的行向量线性无关;若 , 的列向量线性无关,即:12,,,n ααα⋅⋅⋅线性无关.Ax β=1122n n x x x αααβ+++=1112111212222212,,n n m m mn n m a a a x b a a a x b A x a a a x b β⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 12,1,2,,j j jmj j n αααα⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦51212120,,,0,,,()(),,,A n A n n Ax Ax A nAx Ax A Ax r A r A n βοαααβοβαααββααα⇒⇔==−−−−−→=<<≠⇒⇒⇔==−−−−−→≠⇔=⇔=<≠=⇒当为方阵时当为方阵时有无穷多解有非零解线性相关 有唯一组解只有零解可由线性表示有解线性无关 12()(),,,()()()1()A n r A r A Ax r A r A r A r A ββαααβββ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪−−−−−→⎪⎩⇔≠⎧⎪⇔=⇔<⎨⎪⇔+=⎩当为方阵时 克莱姆法则 不可由线性表示无解6线性方程组解的性质:√ 设A 为m n ⨯矩阵,若()r A m =,则()()r A r A β=,从而Ax β=一定有解. 当m n <时,一定不是唯一解.⇒<方程个数未知数的个数向量维数向量个数,则该向量组线性相关.m 是()()r A r A β和的上限. √ 矩阵的秩的性质:① ()()()T T r A r A r A A == ② ()r A B ±≤()()r A r B + ③ ()r AB ≤{}min (),()r A r B④ ()0()00r A k r kA k ≠⎧=⎨=⎩若 若⑤ ()()A r r A r B B οο⎡⎤=+⎢⎥⎣⎦⑥0,()A r A ≠若则≥1⑦ ,,()0,()()m n n s A B r AB r A r B ⨯⨯=+若且则≤n ⑧ ,()()()P Q r PA r AQ r A ==若可逆,则 ⑨ ,()()A r AB r B =若可逆则,()()B r AB r A =若可逆则⑩ (),()(),r A n r AB r B ==若则且A 在矩阵乘法中有左消去律:0AB B AB AC B Cο=⇒==⇒=n 个n 维线性无关的向量,两两正交,每个向量长度为1.(,)0αβ=.1α==.√ 内积的性质: ① 正定性:② 对称性: ③ 双线性:1212(,)(,)(,)ααβαβαβ+=+ (,)(,)(,)c c c αβαβαβ==123,,ααα线性无关,112122111313233121122(,)()(,)(,)()()βααββαβββαβαββαββββββ=⎧⎪⎪⎪=-⎨⎪⎪=--⎪⎩正交化单位化: T AA E =.√ 是正交矩阵的充要条件: 的 个行(列)向量构成 的一组标准正交基.√ 正交矩阵的性质: ① ; ② T T AA A A E ==;③ A 是正交阵,则T A (或1A -)也是正交阵; ④ 两个正交阵之积仍是正交阵; ⑤ 正交阵的行列式等于1或-1.E A λ-.()E A f λλ-=.√ 上三角阵、下三角阵、对角阵的特征值就是主对角线上的n 各元素.√ 若0A =,则0λ=为A 的特征值,且0Ax =的基础解系即为属于0λ=的线性无关的特征向量. √ 12n A λλλ= 1ni A λ=∑tr√ 若 ,则 一定可分解为 = 、 ,从而 的特征值为: , .√ 若 的全部特征值 , 是多项式,则: ① ()f A 的全部特征值为12(),(),,()n f f f λλλ;② 当A 可逆时,1A -的全部特征值为12111,,,n λλλ,A *的全部特征值为12,,,n A AAλλλ.√ 1122,.m m Ak kA a b aA bEAA AA A λλλλλλλ-*⎧⎪++⎪⎪⎪⎨⎪⎪⎪⎪⎩是的特征值则:分别有特征值 √ 1122,m m Ak kAa b aA bEAx A x AA A λλλλλλλ-*⎧⎪++⎪⎪⎪⎨⎪⎪⎪⎪⎩是关于的特征向量则也是关于的特征向量.. 相似于对角阵的充要条件: 恰有 个线性无关的特征向量.这时, 为 的特征向量拼成的矩阵, 为对角阵,主对角线上的元素为 的特征值. √ 可对角化的充要条件: 为 的重数. √ 若n 阶矩阵A 有n 个互异的特征值,则A 与对角阵相似.1B P AP -= (P 为正交矩阵)√ 相似矩阵的性质: ① 若 均可逆 ② T T A B③ kk A B (k 为整数)④ E A E B λλ-=-,从而,A B 有相同的特征值,但特征向量不一定相同.即:x 是A 关于0λ的特征向量,1P x -是B 关于0λ的特征向量. ⑤ A B = 从而,A B 同时可逆或不可逆 ⑥ ()()r A r B = ⑦ ()()A B =tr tr√ 数量矩阵只与自己相似. √ 对称矩阵的性质:① 特征值全是实数,特征向量是实向量; ② 与对角矩阵合同;③ 不同特征值的特征向量必定正交;④ k 重特征值必定有k 个线性无关的特征向量;⑤ 必可用正交矩阵相似对角化(一定有n 个线性无关的特征向量,A 可能有重的特征值,重数=()n r E A λ--).12(,,,)T n f x x x X AX = A 为对称矩阵 12(,,,)T n X x x x =√ 用正交变换法化二次型为标准形:① 求出A 的特征值、特征向量; ② 对n 个特征向量单位化、正交化; ③ 构造C (正交矩阵),1C AC -=Λ; ④ 作变换X CY =,新的二次型为2121(,,,)nn i i f x x x d y =∑,Λ的主对角上的元素i d 即为A 的特征值.正定二次型对应的矩阵. √ 合同变换不改变二次型的正定性.① √ 成为正定矩阵的充要条件(之一成立):②正惯性指数为n;③A的特征值全大于0;④A的所有顺序主子式全大于0;⑤大于0).√成为正定矩阵的必要条件: ;.11。

线性代数知识点总结

线性代数知识点总结

第一章 线性方程组的解1.线性方程组的定义、齐次与非齐次方程组2.方程组的线性组合:3.初等变换:4.用消元法解方程组5.矩阵的定义与表示方法实矩阵、复矩阵、方阵、行/列向量、零矩阵等概念。

注意:不同阶数的零矩阵不等。

6.系数矩阵与增广矩阵7.通解与特解:8.线性方程组求解的一般过程:一般线性方程组Ax=B,把增广矩阵进行初等行变换,化成行最简形。

解的讨论:上边是解的自由未知量形式,其中,x r+1, x r+2,….,x n 称为自由向量。

还可以表示成参数形式:或表示成向量形式:9.数域:第二章向量空间2.1线性相关与线性无关1.n维向量的定义、实向量、复向量、零向量2.向量空间:3.n维向量的运算:加法、数乘、负向量、减法、内积、向量范数、单位化、向量间的夹角、向量的正交4.线性组合6.线性相关与线性无关:一条很重要的性质:7.线性相关性判定定理:2.2 向量组的秩1.极大线性无关组与秩的定义:2.用初等变换求向量组的秩和极大无关组:注意:如果只求矩阵的秩,不需要求矩阵的哪几行(列)线性无关,那么行、列变换都可以,因为矩阵行秩=列秩。

但求向量组的秩和极大无关组,只能做一种变换。

3.向量组的等价:等价三公理:反身性、对称性、传递性(但逆命题不一定成立,秩相等的向量组不一定等价)2.3 基1.向量空间定义:若V 是向量空间,则V 必含有零向量2.子空间(向量空间属于线性空间,对子空间的定义请看2.5节:线性空间)3.等价向量组生成相同的向量空间4.向量组生成的向量空间可由其任何一个极大无关组生成5.基与向量组的维数(看2,5节)6.只含零向量的向量空间,维数为0 注意:两个不同概念:7.设V 是由n 维向量构成的r 维向量空间,则: (1)V 的任意r+1个向量必定线性相关(2)V 的基是向量组的一个极大无关组,从而dimV=V 秩(3)V 中任意r 个线性无关向量都可作为V 的一个基(4)V 可由基α1,α2,…, αr 所生成,即 V=L (α1,α2,…, αr ) (5) (6)(7)(8)(9)8.9.基变换与过渡矩阵(见2.5节)2.4 线性方程组解的结构1.解空间定义齐次方程组的若干个解向量的任意线性组合仍是此线性方程组的解向量2.解空间的维数Ax=b的通解可表示为:2.5 线性空间1.线性空间的定义(8个条件)说明:凡满足以上8条规律的加法和乘数运算,称为线性运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数知识点总结第二章 矩阵及其运算第一节 矩阵 定义由m n ⨯个数()1,2,,;1,2,,ija i m j n ==排成的m 行n 列的数表111212122212nn m m mna a a a a a a a a 称为m 行n 列矩阵。

简称m n ⨯矩阵,记作111212122211n n m m mn a a a a a a A a a a ⎛⎫ ⎪⎪= ⎪⎪⎝⎭,简记为()()m n ij ij m nA A a a ⨯⨯===,,m n A ⨯这个数称为的元素简称为元。

说明 元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。

扩展几种特殊的矩阵:方阵 :行数与列数都等于n 的矩阵A 。

记作:A n 。

行(列)矩阵:只有一行(列)的矩阵。

也称行(列)向量。

同型矩阵:两矩阵的行数相等,列数也相等。

相等矩阵:AB 同型,且对应元素相等。

记作:A =B 零矩阵:元素都是零的矩阵(不同型的零矩阵不同) 对角阵:不在主对角线上的元素都是零。

单位阵:主对角线上元素都是1,其它元素都是0,记作:E n (不引起混淆时,也可表示为E )(课本P29—P31)注意 矩阵与行列式有本质的区别,行列式是一个算式,一个数字行列式经过计算可求得其值,而矩阵仅仅是一个数表,它的行数和列数可以不同。

第二节 矩阵的运算矩阵的加法 设有两个m n ⨯矩阵()()ij ij A a B b ==和,那么矩阵A 与B 的和记作A B +,规定为111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b A B a b a b a b +++⎛⎫⎪+++ ⎪+= ⎪⎪+++⎝⎭说明 只有当两个矩阵是同型矩阵时,才能进行加法运算。

(课本P33) 矩阵加法的运算规律()1A B B A +=+;()()()2A B C A B C ++=++()()1112121222113,()n n ij ij m nm n m m mn a a a a a a A a A a a a a ⨯⨯---⎛⎫⎪--- ⎪=-=-= ⎪⎪---⎝⎭设矩阵记,A -称为矩阵A 的负矩阵()()()40,A A A B A B +-=-=+-。

(课本P33) 数与矩阵相乘,A A A λλλ数与矩阵的乘积记作或规定为111212122211,n n m m mn a a a a a a A A A A A a a a λλλλλλλλλλλλλλ⎛⎫⎪ ⎪== ⎪⎪⎝⎭数与矩阵的乘积记作或规定为数乘矩阵的运算规律(设A B 、为m n ⨯矩阵,,λμ为数)()()()1A A λμλμ=; ()()2A A A λμλμ+=+;()()3A B A B λλλ+=+。

(课本P33) 矩阵相加与数乘矩阵统称为矩阵的线性运算。

矩阵与矩阵相乘 设(b )ij B =是一个m s ⨯矩阵,(b )ij B =是一个s n ⨯矩阵,那么规定矩阵A与矩阵B的乘积是一个m n ⨯矩阵(c )ij C =,其中()12121122j j i i is i j i j is sj sj b b a a a a b a b a b b ⎛⎫⎪ ⎪=+++ ⎪ ⎪ ⎪⎝⎭1sik kj k a b ==∑,()1,2,;1,2,,i m j n ==,并把此乘积记作C AB = 注意1。

A 与B 能相乘的条件是:A 的列数=B 的行数。

2。

矩阵的乘法不满足交换律,即在一般情况下,AB BA ≠,而且两个非零矩阵的乘积可能是零矩阵。

3。

对于n 阶方阵A 和B ,若AB=BA ,则称A 与B 是可交换的。

矩阵乘法的运算规律()()()1AB C A BC =;()()()()2AB A B A B λλλ==()()3A B C AB AC +=+,()B C A BA CA +=+()4m n n n m m m n m n A E E A A ⨯⨯⨯⨯⨯==()5若A 是n 阶方阵,则称 A k 为A 的k 次幂,即k k A A A A =个,并且m k m k A A A +=,()km mk A A =(),m k 为正整数。

规定:A 0=E注意 矩阵不满足交换律,即AB BA ≠,()kk k AB A B ≠(但也有例外)(课本P36)纯量阵 矩阵0E 0λλλλ⎛⎫⎪⎪= ⎪ ⎪⎝⎭称为纯量阵,作用是将图形放大λ倍。

且有()(E)E A A A λλλ==,A 为n 阶方阵时,有()(E )n n n n n E A A A λλλ==,表明纯量阵与任何同阶方阵都是可交换的。

(课本P36) 转置矩阵把矩阵A 的行换成同序数的列得到的新矩阵,叫做A 的转置矩阵,记作A T ,如122458A ⎛⎫= ⎪⎝⎭,142528TA ⎛⎫⎪= ⎪ ⎪⎝⎭。

转置矩阵的运算性质()()1TT AA =;()()2TT T A B A B +=+;()()3TT A A λλ=;()()4TT T AB B A =。

(课本P39) 方阵的行列式由n 阶方阵A 的元素所构成的行列式,叫做方阵A 的行列式,记作A 或记住这个符号)注意 矩阵与行列式是两个不同的概念,n 阶矩阵是n 2个数按一定方式排成的数表,而n阶行列式则是这些数按一定的运算法则所确定的一个数。

运算性质()1T A A =;()2nA A λλ=;(3)AB A B B A BA ===(课本P40)对称阵 设A 为n 阶方阵,如果满足A =A T ,即(),1,2,,ij ji a a i j n ==那么A 称为对称阵。

说明对称阵的元素以主对角线为对称轴对应相等,如果TA A =-则称矩阵A 为反对称的。

即反对称矩阵A =(a ij )中的元素满足a ij =-a ji ,i ,j =1,2,…n 伴随矩阵行列式A 的各个元素的代数余子式ij A 所构成的如下矩阵112111222212n n nnnn A A A A A A A A A A *⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭称为矩阵A 的伴随矩阵。

性质 AA A A A E **==(易忘知识点)(课本P ? ) 总结(1)只有当两个矩阵是同型矩阵时,才能进行加法运算。

(2)只有当第一个矩阵的列数等于第二个矩阵的行数时,两个矩阵才能相乘,且矩阵相乘不满足交换律。

(3)矩阵的数乘运算与行列式的数乘运算不同。

第三节 逆矩阵定义对于n 阶矩阵A ,如果有一个n 阶矩阵B ,使得AB =BA =E 则说矩阵A 是可逆的,并把矩阵B 称为A 的逆矩阵。

1A A -的逆矩阵记作,1A B -=即。

说明1 A ,B 互为逆阵, A = B -12 只对方阵定义逆阵。

3.若A 是可逆矩阵,则A 的逆矩阵是唯一的。

定理1矩阵A 可逆的充分必要条件是0A ≠,并且当A 可逆时,有1*1AA A-=(重要)(证明见课本P ? ) 奇异矩阵与非奇异矩阵当0A =时,A 称为奇异矩阵,当0A ≠时,A 称为非奇异矩阵。

即0A A A ⇔⇔≠可逆为非奇异矩阵。

推论若(A=E)AB E =或B ,则1B A -=(证明见课本P ? )求逆矩阵方法**1(1)||||021(3)||A A A A A A -≠=先求并判断当时逆阵存在;()求;求。

更好的求逆矩阵的方法--chapter3初等变换法(A,E) 逆矩阵的运算性质()()1111,,A AAA ---=若可逆则亦可逆且()()1112,0,,A A A A λλλλ--≠=若可逆数则可逆且。

()1113,,,A B AB AB B A ---=若为同阶方阵且均可逆则亦可逆且()。

(以上证明见课本P43)()()()114,,TT T A A A A --=若可逆则亦可逆且。

()115,A A A --=若可逆则有。

总结逆矩阵的计算方法()1待定系数法;()12A A A*-=利用公式;()()3初等变换法下一章介绍第四节 矩阵分块法矩阵分块 将矩阵A 用若干条纵线和横线分成许多个小矩阵,每一个小矩阵称为A 的子块,以子块为元素的形式上的矩阵称为分块矩阵。

分块的目的是为了简化运算。

分块矩阵的运算规则 加法 A 与B 同型,且A 、B 的分块方法相同,则A 与B 的和定义为对应子块相加。

数乘()ij A A λλ=。

转置112111121312222122231323,T T TT T T T A A AA A A A A A A A A A A ⎛⎫⎛⎫ ⎪== ⎪ ⎪⎝⎭ ⎪⎝⎭设则。

(先外转再内转) 乘法 首先AB 有意义,其次A 的列的分法与B 的行的分法相同。

,,A m l B l n ⨯⨯设为矩阵为矩阵分块成()1212,,(),()t n B BA A A AB B ⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭即列向量组即行向量组,1212,,,,,,,i i it j j tj A A A B B B 其中的列数分别等于的行数那么1111r s sr C C AB C C ⎛⎫⎪=⎪ ⎪⎝⎭,()11,,;1,,tij ik kjk C A B i s j r ====∑其中。

结论分块矩阵之间与一般矩阵之间的运算性质类似。

分块对角阵(准对角矩阵)设A 为n 阶矩阵,若A 的分块矩阵只有在主对角线上有非零子块,其余子块都为零矩阵,且非零子块都是方阵,即12s A A A A ⎛⎫⎪⎪= ⎪ ⎪⎝⎭,()1,2,iA i s =其中都是方阵,则有:121)s A A A A =。

122)0,,i s A A A A A A ⎛⎫⎪⎪≠= ⎪ ⎪ ⎪⎝⎭若每个则可逆且有,()1111121,2,,,,,i s A A i s A diag A A A ----⇔==可逆可逆且(diag (A )表示对角阵A )(课本P ? )有用的结论 TA A O,A O P?==设则(证明见课本)线性方程组的分块表示线性方程组1111221121122222m11m22m ..............................................n n n n n n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩,111112112221222212......A (), , , ...n nij n m m m mnm x b a a a b x b a a a b a x b B x b a a a b ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭记, 其中A 为系数矩阵,x 称为未知数向量,b 称为常数向量,B 称为增广矩阵。

相关文档
最新文档