线性代数第二章矩阵试题及答案

合集下载

同济五版线性代数习题答案第二章矩阵及其运算.doc

同济五版线性代数习题答案第二章矩阵及其运算.doc

解(X] x 2x 3)第二章 矩阵及其运算(参考答案)(习题二心76)p 54 1.计算下列乘积:<4 3 r<7、⑴ 1 -2 3 2q7<b<4 3 r ['4x7 + 3x24-1x1、15、 解1 -23 2 — lx7 + (—2)x2 + 3xl — 6 q 70 /、5x74-7x2 + 0x1 \ z <49;3⑵(1,2,3) 2 .,3、解(1 2 3) 2 =(lx3 + 2x2 + 3xl) = (10).J;<2-1(5)3],易,工3)a \2<2‘2x(-1)2x2、 "-2 4、解1 (T 2)=1x(-1)1x2 -1 2X /<3x(-1) 3x2)厂3⑶ 1 (-1,2).31 1 \'1 3 1、"2 1 4 0、 0 -1 2(6 -7 8、 J T 3 4,1 -3 1_〔20 -5 —6,.4 0 一240 解\-2J。

a \2>i = -3Z] + z 2'力=2Z|+Z3y 3=-z 2-k3z 3=(%/] + a ]2x 2 + a ]3x 3 a l2x } + a^x 2 + a 13x 3 a u x } + a-,3x 2 + 6t 33x 3) x =a u x[ + a 22x^ + %3工;+ 2a l2x }x 2 + 2a l3x }x 3 + 2a 23x 2x 3。

2 1 0、<10 3 10 10 10 12-1(6).0 0 2 10 0-23^0 0 0 3, ^0 0 0 —3,<12 10、 Q 0 31<1 2 5 20 10 10 12-10 12-4解0 0 2 1 0 0-23 0 0-43^0 0 0 3, 、0 0 0 一3/,0 0 0 -9;q i i)'1 2 3、fl 1 1解 3AB — 2A=3 i i -i-1 -2 4 -2 1 1 -1 J t •>、05 1,J -1 b5 8、<1 1 qr-2 13 22、 0 -5 6 -2 1 1 -i -2 -17 20<29 0;<1-1<429 -2>求从Z], Z2, Z 3到X p X 2, W 的线性变换.<1 11、< 1 2 3、乌2.设A = 1 1-1 ,B =-1 -2 4<1 "I<o 5 L求 3 AB —2 A 及NB.<1 1 1) '1 2 3、<0 5 8、 A 『B = 1 1 -1 -1 -2 40 -5 6J -1 •> p 0 5 1)<2 9 o >P 54 3.已知两个线性变换而=2一+为< 邑=一2乂+3),2+2为 石=4名+力+5为/、< 2 0 1) 3、< 2 0 1) '-3 1 oy J-2 3 2-2 3 2 2 0 i<4 1 5>*4 \ 1 5, /-1 3^ 由己/ 、22k Z 3>所以有2、 3>8> AB 主 BA(2) (A + B)22、 "2 2、 r 8 14 5, 2 51429 / \ /\ <3 8、 %8、 / + + <4<8 12\‘10 16、J5 27,<2 (A + B)(A —B)=2V05人。

线性代数第二章矩阵练习题(有答案)

线性代数第二章矩阵练习题(有答案)

第二章一、选择题 1、计算13230102-⎡⎤⎡⎤+⎢⎥⎢⎥⎣⎦⎣⎦的值为(C ) A.-5 B.6 C.3003⎡⎤⎢⎥⎣⎦ D.2902-⎡⎤⎢⎥⎣⎦2、设,A B 都是n 阶可逆矩阵,且AB BA =,则下列结论中不正确的是(D ) A. 11AB B A --= B. 11A B BA --= C. 1111A B B A ----= D.11B A A B --=3、初等矩阵(A )A. 都是可逆阵B.所对应的行列式值等于1C. 相乘仍是初等阵D.相加仍是初等阵 4、已知,A B 均为n 阶矩阵,满足0AB =,若()2r A n =-,则(C ) A. ()2r B = B.()2r B < C. ()2r B ≤ D.()1r B ≥二、判断题1、若,,A B C 都是n 阶矩阵,则()k k k k ABC A B C =. (×)2、若,A B 是n 阶反对称方阵,则kA 与A B +仍是反对称方阵.(√)3、矩阵324113A ⎡⎤=⎢⎥⎣⎦与矩阵2213B ⎡⎤=⎢⎥⎣⎦可进行乘法运算. (√) 4、若n 阶方阵A 经若干次初等变换后变成B ,则A B =. (×)三、填空题1、已知[]456A =,123B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,求AB 得_________。

(32)2、已知12n a a A a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦(0,1,2,,ia i n ≠= ),则1A -=3、设A 为n 阶方阵,2A =,求TA A的值为_________。

4、设A 为33⨯矩阵,3A =-,把A 按列分块为()123A A A A =,求出132,4,A A A 的值为__________。

四、计算题1、计算()101112300121024--⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦.解 原式()1292(38)4-⎡⎤⎢⎥==-⎢⎥-⎢⎥⎣⎦.2、求矩阵100120135A -⎡⎤⎢⎥=-⎢⎥-⎢⎥⎣⎦的逆矩阵. 解求出10A =-,11201035A ==,1210515A -=-=-,1311113A --==--, 2100035A =-=,2210515A -==--,2310313A -==-,12111n a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦1212n +3100020A ==,3210010A -=-=-,3310212A -==--故*11001102213110105A A A -⎡⎤⎢⎥-⎢⎥⎢⎥==-⎢⎥⎢⎥-⎢⎥⎣⎦.五、证明题设n 阶方阵A 满足3()0A I +=,求证A 可逆,且求1A -.证 由3()0A I +=得32330A A A I +++=,于是2(33)A A A I I ⎡⎤-++=⎣⎦. 令233B A A I =---,则AB =I ,故A 可逆,且1233A A A I -=---.。

第二章-线性代数(第四版)习题答案

第二章-线性代数(第四版)习题答案
y1 2 2 1 2 1 −1 x1 −7 −4 3 2 9 y1
y2 = 3 3 y2
5 3
x2 = 6 3 x3
−7 y2 . y3 −4

y1 = −7x1 − 4x2 + 9x3 , y2 = 6x1 + 3x2 − 7x3 , y = 3x + 2x − 4x . 3 1 2 3
由数学归纳法知: Ak =
8 .设 A = 0
解: 方法一. 首先计算
1 = 0 0 λ λ3 0 λn 猜测: An = 0 0 nλn−1 λn 0
同理得 y2 = 6x1 + 3x2 − 7x3 , y3 = 3x1 + 2x2 − 4x3 .
2 . 已知两个线性变换 x1 = 2y1 + y3 , x2 = −2y1 + 3y2 + 2y3 , x = 4y + y + 5y , 3 1 2 3 y1 = −3z1 + z2 , y 2 = 2 z1 + z3 , y = −z + 3z , 3 2 3
1 0 (6) 0 0
1 3 (1) AB = BA 吗?
5. 设A=
1
2
,B=
1 1
0 2
, 问:
(2) (A + B )2 = A2 + 2AB + B 2 吗? (3) (A + B )(A − B ) = A2 − B 2 吗?
解: (1) 因为
AB = 3 4 4 6 , BA = 1 2 3 8 ,

线性代数矩阵练习题参考答案

线性代数矩阵练习题参考答案

《线性代数》第二章练习题参考答案8、设矩阵A满足A2+A-4E=O,则(A-E)-1=(A+2E) 一、填空题1、设A=⎛ 12 ⎫⎛3-2⎫⎛⎝-13⎪⎪⎭,B= ⎝21⎪⎪⎭,则 3A+2B =⎛ 92⎫⎝111⎪⎭; AB =⎛ 70⎫⎝35⎪⎭;BT= 3⎝-2⎛19-3⎫2、设矩阵A=⎛ -15⎫⎪,8⎪⎝13⎭B=⎛ 31⎫则⎛-614⎫-1 -8⎝-20⎪,⎭3A-B= ⎝59⎪,⎭AB= 11⎪⎪。

⎝88⎪⎭3、设A为三阶矩阵,且A=2,则2A*-A-1=2724、设矩阵A为3阶方阵,且|A|=5,则|A*|=__25____,|2A|=____40_ ⎛⎛3、设A= 120⎫340⎪⎪,B=⎛ 23-1⎫T86⎫ 1810⎪⎝-121⎪⎭⎝-240⎪⎪⎭,则AB=⎪⎝310⎪⎭⎛11⎫4、设A=1 225⎪⎪,且r(A)=2,则t= 4 ⎝11t⎪⎭⎛ 1233⎫5、若A=3-12⎪06-24⎪⎪则r(A)=_2____ ⎝0000⎪⎭6、设矩阵A=⎛ 1-1 ⎫⎛⎝23⎪⎪⎭,B=A2-3A+2E,则B-1= 01⎫ 2⎪⎝-1-1⎪⎭7、设A是方阵,已知A2-2A-2E=O,则(A+E)-1=3E-A2⎫1⎪⎭ 2⎛102⎫9、设A是4⨯3矩阵且r(A)=2,B= 020⎪⎪,则r(AB)=⎝-103⎪⎭⎛10、设A= 100⎫ 220⎪⎪,则(A*)-1=1⎛100⎫A=1 220⎪⎪⎝345⎪⎭A10 ⎝345⎪⎭⎛⎛ 100⎫11、设A= 300⎫ 140⎪⎪,则(A-2E)-1=-11⎪⎝003⎪⎭220⎪⎪(用分块矩阵求逆矩阵) ⎝001⎪⎭⎛⎛ 520⎫1-20⎫0-2500⎪12、设A= 2100⎪⎪001-2⎪,则A-1=0012⎪⎪ 33⎪⎝0011⎪⎪⎭⎪⎝00-11⎪33⎪⎭13、已知A为四阶方阵,且A=12,则3281⎛⎫⎛2n⎫14、设A= 2⎫3⎪⎛22,A2= 32⎪⎪⎛2-1n⎪⎪,An= 3⎪,A-1= 3-1⎝4⎪⎭⎝42⎪⎭⎝4n⎪⎭⎝⎛ 100⎫⎪⎛00⎛15、若A= 230则A*= 18⎫ -1260⎪=1⎪,A-1 1800⎫⎪,-1260⎪⎝456⎪⎭⎝-2-53⎪⎭18⎝-2-53⎪⎪⎭二、单项选择题⎫⎪⎪4-1⎪⎭1、若A2=A,则下列一定正确的是 ( D ) (A) A=O (B) A=I (C) A=O或A=I (D)以上可能均不成立2、设A,B为n阶矩阵,下列命题正确的是( C )(A)(A+B)=A+2AB+B;(B)(A+B)(A-B)=A-B; 21(A)a;(B);(C)an-1;(D)an。

《线性代数》第二章矩阵及其运算精选习题及解答

《线性代数》第二章矩阵及其运算精选习题及解答

第二章 矩阵及其运算2.1 目的要求1.理解矩阵的概念;2.了解单位矩阵, 对角矩阵, 三角矩阵, 对称矩阵以及它们的基本性质; 3.掌握矩阵的线性运算, 乘法, 转置及其运算规则;4.理解逆矩阵的概念; 掌握可逆矩阵的性质; 会用伴随矩阵求矩阵的逆; 5.了解分块矩阵的概念, 了解分块矩阵的运算法则.2.2重要公式和结论1.对于任意方阵A , 总有 E A =A A =AA **,如果0≠A , 即A 为可逆矩阵, 则有 *1A AA1=−或1*A A A −=; 2.数乘以方阵的关系 , TTk k A A =)(111)(−−=A A kk , A A n k k =, A A 11=−;3.矩阵乘法的关系T T T A B (AB)=, , 111A B (AB)−−−=BA AB =;,()22T TA)(A =()2112A )(A−−=,22A A =;4.若A 、均为可逆矩阵, 则; ; B 10B A 0−⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=−−0AB 011⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛−−−111B 00A B 00A ⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛−−−−−11111B 0CB A A B 0C A ;; ⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛−−−−−11111B CA B 0A BC 0A 5.已知A 为一个n 阶可逆矩阵, 则有)2(≥n 1n *AA −=;6.已知A 为一个阶矩阵,则n A A nk k =,1−=n nk k A A *,()1)1(*−−=n n n kk AA ;7.已知A 为一个n 阶可逆矩阵, 则有)3(≥n A AA 2**)(−=n .2.3典型例题例2.1计算:(1) (2) .⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛n n b b a a M L 11)(()n n b b a a L M 11⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛解 (1) =;⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛n n b b a a M L 11)(∑==+n k k k n n b a b a b a 111L (2) . ()⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛n n n n n n n n b a b a b a b a b a b a b a b a b a b b a a L M M M L L L M 21222121211111例2.2 设 为三阶矩阵, 且已知)(j i a =A a =A , *A 为A 的伴随矩阵又⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=333231232221131211na na na ma ma ma la la la B , 求 *BA 解 由于 CA B =⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=333231232221131211333231232221131211000000a a a a a a a a a n m l na na na ma ma ma la la la 其中, ,故⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=n m l 000000C ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛====an am al a 000000C E A C CAA BA **.例2.3 设, , 求的关系, 使⎟⎟⎠⎞⎜⎜⎝⎛=3421A ⎟⎟⎠⎞⎜⎜⎝⎛=y x 21B y x 与A 与是可交换的. B 解 要使A , 可交换, 即B BA AB =又⎟⎟⎠⎞⎜⎜⎝⎛++++=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=y x y x y x 3464214213421AB ⎟⎟⎠⎞⎜⎜⎝⎛++++=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=y y x x y x 3442324342121BA 故的充要条件是 , 得到 BA AB =⎪⎪⎩⎪⎪⎨⎧+=++=++=++=+yy y x x y x x 343442643221441−=y x .例2.4 设n ×=1)21,0,,0,21(L C , , ,计算C C E A T −=C 2C E B T +=AB .解: C)C C)(E C (E AB TT +−=C CC 2C C C C 2C E T T T T −−+= )C (CC 2C C C E TTT−+=C C 212C C E T T ××−+=E = 故 E AB =.例2.5 设. , 求⎟⎟⎠⎞⎜⎜⎝⎛=5423A 1−A解 由于075423≠==A , 故A 是可逆的,又, 故⎟⎟⎠⎞⎜⎜⎝⎛−−=⎟⎟⎠⎞⎜⎜⎝⎛=342522122111*A A A A A ⎟⎟⎠⎞⎜⎜⎝⎛−−==−3425711*1A A A . 例2.6 设阶矩阵n A 的伴随矩阵为*A , 是常数, 试证 k ()*A A 1*−=n k k . 证明 把看作一个整体, 根据A k E A AA *=, 有 ()E A A A )()(*k k k =,由于A 是可逆的,则也是可逆的,故)(A k ()*11111*1)()(A A A A A A A A −−−−−==×==n n n k k kk k k k . 证毕例2.7 设, ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=2111021100210001A *A 为A 的伴随矩阵, 求. **)(A 解 由于 082111021100210001≠==A , 故A 是可逆的, *A 是可逆;根据E A AA *=, 有 E A )(A A ****=,方程左右两边同时左乘以A ,得 E A A )(A AA ****=, 即 A A A)(A ***1=, 又 1n *A A −=, A 是4阶矩阵,故 10001200()6411201112−⎛⎞⎜⎟⎜⎟===⎜⎟⎜⎟⎜⎟⎝⎠n 22**A AA AA . 例2.8 设A , 是n 阶方阵, 若B AB E −可逆, 试证 BA E −也可逆 .证明 由于A AB)AB)(E B(E E BA E 1−−−−=−A AB)BAB)(E (B E 1−−−−=A AB)BA)B(E (E E 1−−−−=移项得到E A AB)BA)B(E (E BA)(E 1=−−+−−即E A)AB)B(E BA)(E (E 1=−−−−根据可逆矩阵的定义, BA E −可逆, 并且.证毕A AB)B(E E BA)(E 11−−−+=−例2.9 设, 求.⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎝⎛−=00010000200010L L MM M MLL n n n A 1−nA 解 对矩阵分块, , 其中 n A ⎟⎟⎠⎞⎜⎜⎝⎛=0CB 0A n )(n =C , , ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−=100020001n L M M M L L B 故1(1n=−C , ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−=−)1(10002100011n L M M M LLB, 根据分块矩阵的逆矩阵公式⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛=−−−−0B C 00C B 0A 1111n⎟⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎜⎝⎛−=0)1(100021000011000n n LM M M M L L L . 例2.10 设阶方阵 , , 求, 使n ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=100001010A ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−=021102341B X B AX =. 解 由于01100001010≠−==A , 故A 是可逆的; 并且 ;⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=−1000010101A 方程左右两边同时左乘以1−A 得到⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛==−021341102021102341100001010B A X 1.例2.11 设,求, 使⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=134030201A X X A E AX 2+=+.解 对方程移项得 E A X AX 2−=−, 根据矩阵乘法分配律得E A E)X (A 2−=−由于 016034020200≠−==−E A , 故E A −可逆.方程左右两边同时左乘以, 得(1−−E A )()()E)(A E A E)(A E A E)(A X 121+−−=−−=−−⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=+=234040202E)(A例2.12 设, 求. 其中E BA)B X(E TT1=−−X , ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−−−=1000110001100011A ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=2000120031204312B 解 根据乘法转置公式得 TTT(AB)A B =T T 1T T1A)(B A)]B [B(E BA)B (E −=−=−−−又 011234012300120001)(≠==−TA B , 故可逆, 对方程 右乘以[, 得到 . T )(A B −E A)X(B T=−]1)(−−T A B []⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−−−=−=−12100121001200011T A)(B X例2.13 设A 的伴随矩阵, 求, 使. ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−=8030010100100001*A B 3E BA ABA 11+=−−解 根据, 得到 3E BA ABA 11+=−−()3E BA E A 1=−−故 皆是可逆的, 并且A E,A −()()()1111A E A A E AB −−−−−=−=33[]1111)A (E E))(A (A −−−−−=−=33又由1n *AA −=, 8*=A , , 故 4=n 2=A ,1*1*11)A E ()A (E )A (E B −−−−⎥⎦⎤⎢⎣⎡−=−=−=22132133 11*1*60300101001000016)2(6)2(213−−−⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−−=−=⎥⎦⎤⎢⎣⎡−=A E A E B . ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−=1030060600600006例2.14 设阶矩阵n A 的伴随矩阵为*A , 试证(1) 若0=A , 则0*=A ; (2) 1*−=n AA ; (3) 1)1(*)(−−=n n n kk AA .证明 (1 ) 根据0=A 得到0A =与0A ≠两种情况,① 当0A =时, 则, 显然0A *=0*=A ;② 当0A ≠时, 利用反证法, 不妨反设0*≠A ,则可逆, 即存在*A 1*−A , 又由于E A AA *=,0=A ,得到0)(A 0)(A A A 1*1*=⋅==−−, 这与矛盾.假设0A ≠0*≠A 不成立.故综合①②得到若0=A , 则0*=A .(2 ) 分0=A 和0≠A 两种情况,① 当0=A 时, 由(1)得到0*=A , 显然有1*−=n AA .② 当0≠A 时, 则A 可逆, 由E A AA *=引入行列式得到n*A A A =, 从而1n *AA −=.(3 ) 根据(2 )中1n *AA −=得到1)1(11*)()()(−−−−===n n n n n n k k k k AA A A .例2.15 设A , 均为阶方阵, B n 2=A , 3−=B , 求1*B)(A −2.解1*n1*1*1*B A B A B)(A B)(A −−−−⎟⎠⎞⎜⎝⎛===212122, 又根据E BB1=−, 得到1=−1B B , 即BB 11=−, 以及1−=n A A *,所以6131)2(212121−=⎟⎠⎞⎜⎝⎛−××⎟⎠⎞⎜⎝⎛=⎟⎠⎞⎜⎝⎛=−−−n n1*n1*B A B)(A例2.16 设5阶矩阵A , 且2=A , 求A A −. 解 由于2=A , ()()6423225−=×−=−=−=−A A AA A 5.例2.17 设A , 均为3阶矩阵, B 2=A , 21=B , 求()*AB . 解()()122122=⎟⎠⎞⎜⎝⎛====−−1313*****ABA B A B AB . 例2.18 设阶矩阵n A , 有E A m=, 若A 中每个元素用其对应的代数余子式代替, 得到矩阵, 求.ij a ij A B mB 解 依题意, 得 , (其中T *)(A B =*A 为A 的伴随矩阵),由E A m=, 得到1=m A ,即A 是可逆的,故 1ΤΤ1Τ1Τ*)(ΑΑ)(ΑΑ)ΑΑ()(ΑΒ−−−====,又由, 得111A B (AB)−−−=T T T A B (AB)=()()222112)(,)(T T A A A A ==−−,所以 ()()11)()(−−=T m mTA A , 故()()E A A AB===−−11)()(Tm T m mm.例2.19 设⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛−=21232321A , 且E A 6=, 求11A 解 由 E A 6=, 得E A12=, 即E AA 11=, 故⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛−=−212323211A A 11. 例2.20 设, )5,4,3,2,1(=A ⎟⎠⎞⎜⎝⎛=51,41,31,21,1B , 又B A X T =, 求n X 解 由X XX XnL =B)(A B)B)(A(A T TTL =()()()B BA BA BA A T T T T L =又因为,故 5=T BA ⎟⎠⎞⎜⎝⎛⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎝⎛==−−514131211543215511n n n B A X T ⎟⎟⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎜⎜⎝⎛=−145352555413424534312335242321251413121151n . 例2.21 设, 满足⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=100000001B ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=112012001P PB AP =,求A , 9A .解.由于01112012001≠−=−=P , 故是可逆的,且,P ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=−1140120011P 由题意, , ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−==−1140120011000000011120120011PBPA ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=116002001又 A PBP P PB PBP PBPA 119119====−−−−L ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=116002001.例2.22 设, 求⎟⎟⎠⎞⎜⎜⎝⎛=101λA nA . 解 由于 ,⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛==1021101101λλλAA A 2⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛==10311011021λλλA A A 23不妨假设结论,下用归纳法证明. 当⎟⎟⎠⎞⎜⎜⎝⎛=101λn nA 2=k 时,显然成立, 不妨设时也成立, 即, 则当1−=n k ⎟⎟⎠⎞⎜⎜⎝⎛−=−10)1(11λn n An k =时⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−==−10110110)1(1λλλn n A A A 1n n ,故结论成立, 即. ⎟⎟⎠⎞⎜⎜⎝⎛=101λn nA2.4 独立作业2.4.1 基础练习1.设阶矩阵, 且n )(ij a =A ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=n λλO 1D )(j i j i ≠≠λλ则=AD (A )()ij i a λ ; (B )()j ij a λ; (C )()ij i a 1+λ ; (D )以上都不对. 2.设A 、均为阶矩阵,下列命题正确的是 B n(A )0B 0A 0AB ==⇒=或; (B )0B 0A 0AB ≠≠⇔≠且; (C )00==⇒=B A 0AB 或; (D )00≠≠⇔≠B A 0AB 且. 3.设阶矩阵满足, 则有 n E ABC =(A ) (B )E ACB =E CBA = (C )E BAC = (D )E BCA =4.设,则⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=120001430A =A k(A ) (B ) (C )311k −311k k 11− (D ) k 115.下列命题正确的是 (A )若A 是阶方阵,且n 0A ≠,则A 可逆; (B )若A 、是阶可逆方阵,则B n B A +也可逆; (C )若A 是不可逆方阵,则必有0A =; (D )若A 是阶方阵,则n A 可逆⇔TA 可逆.6.已知,,则⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=210413121A ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=121312410B ()T AB 7.设,,则⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛=0111,300121A A ⎟⎟⎠⎞⎜⎜⎝⎛=21A 00A A =−1A8.已知,则 ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=300041003A =−−1)(2E A9.设矩阵满足,其中B 9E 3B A AB 2−=−E 为三阶单位矩阵,⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=400020101A , 则 =B10.已知,满足⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=200012021B A B AB =−,则=A 11.设,,求矩阵,使⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=311201A ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=041012B X B X A =+23成立.12.设,计算⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=141021001A ()()()2181644A A E A E A E +−−−−T .13.设,,求矩阵⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−−−=1000210032101321B ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=1000210002101021C A , 使成立.T T 1C B)A C(2E =−−14.设矩阵,,,⎟⎟⎠⎞⎜⎜⎝⎛=3152P ⎟⎟⎠⎞⎜⎜⎝⎛−=1001B ⎟⎟⎠⎞⎜⎜⎝⎛−−=2153Q PBQ A =, 试计算QP 和nA .15.设(k 为正整数),(1)试证 ;0A k =1k 1A A E A)(E −−+++=−L (2)求. 1)4(−−E)(A 2.4.2提高练习1.设A 为阶矩阵,且有n A A 2=,则结论正确的是________________ (A)(B) 0A =E A = (C) 若A 不可逆,则0A = (D) 若A 可逆,则E A 2=2.已知,,且⎟⎟⎠⎞⎜⎜⎝⎛=22211211a a a a A ⎟⎟⎠⎞⎜⎜⎝⎛=y a x a 2111B 1,1==B A ,则=+B A (A) 2; (B) 3; (C) 4; (D) 5.3.设 ,是两个阶方阵,则)(ij a =A )(ij b =B n AB 的第行是 i (A ) 的各行的线性组合,组合系数是B A 的第行各元素; i (B ) A 的各行的线性组合,组合系数是的第行各元素; B i (C ) 的各列的线性组合,组合系数是B A 的第行各元素; i (D ) 的各行的线性组合,组合系数是B A 的第列各元素. i 4.设A 、、C 为可逆矩阵,则B ()=−1T ACB(A ) ; (B ) ;()1−−−C A B11T 11T A C B −−(C ) ( D ) ()1T 11B CA −−−()11T1A C B−−−.5.设A 为阶矩阵,为其伴随矩阵,则n *A =*A k (A ) A n k (B) nk A (C)1−n n k A(D)nn kA1−6.设三阶矩阵A 的行列式3=A ,则=−−*123A A7.设阶矩阵n A 的行列式5=A ,则()=−1*5A8.已知 则⎟⎟⎠⎞⎜⎜⎝⎛−=θθθθcos sin sin cos A =−1A 9.设阶矩阵n A 、、C ,且B E CA BC AB ===,则 =++222C B A10.设A 、是四阶矩阵,且B 2=A ,21=B ,则()=*AB11.设三阶矩阵A 、Β满足关系式,BA 6A BA A 1+=−⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛=710004100031A ,求 B 12.设 B A B A AX AXB 22+−+=,求.其中,X⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=100110111A ,⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=200020102B 13.设A 、均为阶方阵,若B n AB B A =+,求()1−−E A .14.设, ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=211021001A *A 为A 的伴随矩阵, 求.1*)(−A第二章 参考答案与提示2.4.1 基础练习1.( B ) 提示 AD 表示A 的第i 行与D 的第列j 相乘得到()j ij a λ. 2.(C )提示 0000==⇒=⇒=⇒=B A B A A 0AB 或B . 3.(D )提示 A 、、C 可逆,等式左乘以B 1−A ,右乘以A . 4.(A )提示 3311k k k −==A A .5.(D )提示 由于A 可逆⇔00≠⇔≠T A A ⇔TA 可逆.6., ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−−=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=15419102935121312410210413121AB ()⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−−=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−−=1541910293511995103425TAB . 7.⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛=−−−110100000310000112111A 00A A.8.,()⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=−1000210012E A ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=−−1000212100121E A . 9. , ,E B A AB 293−=−E A B AB 293−=−)333E E)(A (A E)B (A +−=−由于021*********≠=−−=−E A ,故E)A 3(−是可逆的,.⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=+=7000501043E)(A B 10.A B AB =− , ,B E)A(B =−04100002020≠=−=−E B ,E B −是可逆的,⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛−=⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛−⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=−=−200012102111000021021020********E)B(B A .11.()⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−−=−=91461121321A B X .12.()()()21T A A E A E A E +−−−−81644()()()A E A)E (A E A E 1T−−−−=−4444()()A E A E T−−=44()24A E −=324182==.13.左乘以C ,,由于 E B)A C (T=−20110002100321043212≠==−B C ,故 是可逆的,(. B C −2()()⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−−−=−=−=−−−1210012100120001222C 1T T1B)C (B)C (B)A 14.,即、互为逆矩阵, ⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−=100131522153QP P Q ()()()()BQ QP QP B QP PB PBQ A nn L ==Q PB n =,由于,故.)(-L ,2,1,122===k k kBB E B⎪⎩⎪⎨⎧⎟⎟⎠⎞⎜⎜⎝⎛−−==为奇数为偶数n n 1162011A E A n 15.(1)由于()1k AA E A)(E −+++−L )A A (A )AA (E n 21k +++−+++=−L LE A E n =−=, 故 ,1k 1A A E A)(E −−+++=−L (2)()111A)(E A))(E (E))(A (−−−−−=−−=−4144()1k A A E −+++−=L 41. 2.4.2提高练习 1.(D )提示:,若0E)A(A A A2=−⇔=A 可逆,则E A =,E A 2=.2.(C )提示:,⎟⎟⎠⎞⎜⎜⎝⎛++=+y a ax a a 2221121122B A 422221112221121122211211=⎟⎟⎠⎞⎜⎜⎝⎛+=++=+y a x a a a a a y a a x a a B A . 3.(A )提示:乘积AB 的第行是i A 的第行与的列的乘积. i B n ,,1L 4.(D )提示:()()()()()()1−−−−−−−===A C B AC B B AC ACB1T 111T 1T 1T .5.(C )提示:1**−==n nn k k k AA A .6.()()()9313133232333111*1−=×−=−=−=−=−−−−−AA A A A A A .7.()n n n n211*1*1*5151151)(515−−−−==⎟⎠⎞⎜⎝⎛==A AA A. 8.⎟⎟⎠⎞⎜⎜⎝⎛−==−θθθθcos sin sin cos 1*1A A A . 9.由于E CA BC AB ===,故 ,2A A(BC)A ABCA E ===2B B(CA)B BCAB E ===,,2C C(AB)C CABC E ===所以 .E CB A 2223=++10.()()11=====−3341*)B A (AB ABABAB AB AB .11.由于,,右乘以得BA A BA A 1+=−6A E)BA (A 16=−−1−A E E)B (A16=−−又可逆.故A)(E −16−−−=E)(A B1⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛=6100031000216. 12.方程整理得B E)A)(B A(X =−−由于0≠A ,0≠−E B ,故A 、E B −是可逆的,且⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−=−1001102111A ,()⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=−−1000101011E B 所以11E)B(B A A X −−−=− ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−=200220522100010101200020102100110211故 . ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=300330613X 13.由于AB B A =+B AB A −=⇒()B E A A −=⇒(但是B 不一定可逆,不能同时右乘以1−B)()()B E A E E A −=+−⇒()()E E B E A =−−⇒,故 ()E)(B E A 1−=−−.14.由于0421102101≠==A , 故A 是可逆的, *A 是可逆的; 根据E A AA *=, 有 E )(A A **=−1方程左右两边同时左乘以A 得,AE )(A AA **=−1即 A A )(A *11=−, 故 ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛==−2110210014111A A )(A *.。

《线性代数》第二章参考答案+详解

《线性代数》第二章参考答案+详解
k ( k 1) 2
k 0
k 2 1 0 k k 1 0 1 0 0 k
k 1 0 0
( k 1) k 1
k 1 0
k 1 ( k 1 ) k 1 k 1
所以(AB)2A22ABB2 (3) (AB)(AB)A2B2 吗? 解: (AB)(AB)A2B2
2 A B 0 0 5 2 0 5 0 2 1 6 9 2 因为 A B 2
2 ( A B)( A B) 2
2 0 1 0

3 8 1 0 2 8 A2 B2 4 11 3 4 1 7
故(AB)(AB)A2B2
5 举反列说明下列命题是错误的 (1) 若 A20 则 A0
0 解: 取 A 0 1 则 A20 但 A0 0
(2)
2 1 设 a 1 ,b 2 ,A abT , 3 4
T
求 A100 .
2 解: b a 1 2 4 1 8 . 3

A100 (abT )100 a (bT a )( bT a )bT a (bT a )bT 2 99 a (b a ) b 1 8 1 2 4 3 4 8 2 99 8 1 2 4 . 3 6 12
2 2 a11x12 a22 x2 a33 x3 2a12 x1x2 2a13 x1x3 2a23 x2 x3
1 1 1 1 2 3 2 设 A 1 1 1 B 1 2 4 求 3AB2A 及 ATB 1 1 1 0 5 1 1 1 1 1 2 3 1 1 1 解: 3AB 2 A 31 1 1 1 2 4 21 1 1 1 1 1 0 5 1 1 1 1 0 5 8 1 1 1 2 13 22 3 0 5 6 21 1 1 2 17 20 2 9 0 1 1 1 4 29 2 1 1 1 1 2 3 0 5 8 A B 1 1 1 1 2 4 0 5 6 1 1 1 0 5 1 2 9 0

线性代数第二章练习题

线性代数第二章练习题

第二章 矩 阵一、选择题 1.设矩阵4203a b a b d c +-æöæö=ç÷ç÷èøèø,则( C )(A)3,1,1,3a b c d ==-== (B)1,3,1,3a b c d =-=== (C)3,1,0,3a b c d ==-== (D)1,3,0,3a b c d =-=== 2.设矩阵()1,2A =,1234B æö=ç÷èø,123456C æö=ç÷èø,则下列矩阵运算中有意义的是(B)(A)ACB (B)ABC (C)BAC (D)CBA 3.设A 、B 均为n 阶矩阵,下列命题正确的是 C (A)0B 0A 0AB ==Þ=或 (B)0B 0A 0AB ¹¹Û¹且 (C)00==Þ=B A 0AB 或 (D)00¹¹Û¹B A 0AB 且 4.设A 、B 均为n 阶矩阵,满足22A B =,则必有( D ) (A)A B = (B)A B =- (C)A B = (D)22A B=5.设A 为n 阶矩阵,且有A A 2=,则结论正确的是________D________ (A) 0A = (B)E A =(C) 若A 不可逆,则0A = (D) 若A 可逆,则E A 2= 6.设B A ,都是n 阶对称矩阵,下列结论不正确的结论是( A ) (A)AB 为对称矩阵 (B)设B A ,可逆,则11--+B A 为对称矩阵(C)B A +为对称矩阵 (D)kA 为对称矩阵7.设A 为任意n 阶矩阵,下列矩阵中为反对称矩阵的是( B ) (A)T A A + (B)T A A - (C)T AA(D)T A A8.设A 为3阶方阵,且2A =,则12A -=( D ) (A)-4 (B)-1 (C)1 (D)49.设A 为n 阶矩阵,*A 为其伴随矩阵,则=*A k C (A) A n k (B) nk A(C)1-n nkA(D)nn kA1-10.设B A ,都是n 阶可逆矩阵,则÷÷øöççèæ--1002B A T等于( A ) (A)12)2(--B A n(B)1)2(--B A n (C)B A T2- (D)12--B A11.设n 阶方阵C B A ,,满足关系式E ABC =,其中E 为n 阶单位阵,则必有( D )。

矩阵试题及答案

矩阵试题及答案

矩阵试题及答案一、选择题(每题4分,共20分)1. 矩阵的秩是指:A. 矩阵中非零元素的个数B. 矩阵中最大的线性无关行(列)向量组的个数C. 矩阵的行数D. 矩阵的列数答案:B2. 若矩阵A与矩阵B相等,则下列说法正确的是:A. A和B的行列式相等B. A和B的迹相等C. A和B的行列式和迹都相等D. A和B的行列式和迹都不相等答案:C3. 矩阵的转置是指:A. 将矩阵的行变成列B. 将矩阵的列变成行C. 将矩阵的行和列互换D. 将矩阵的元素取相反数答案:C4. 对于任意矩阵A,下列说法正确的是:A. A的行列式等于A的转置的行列式B. A的行列式等于A的逆矩阵的行列式C. A的行列式等于A的逆矩阵的转置的行列式D. 以上说法都不正确答案:A5. 若矩阵A是可逆矩阵,则下列说法正确的是:A. A的行列式不为0B. A的行列式为1C. A的行列式为-1D. A的行列式可以是任意非零值答案:A二、填空题(每题5分,共20分)1. 若矩阵A的行列式为-2,则矩阵A的逆矩阵的行列式为____。

答案:1/22. 设矩阵A为2x2矩阵,且A的行列式为3,则矩阵A的转置的行列式为____。

答案:33. 若矩阵A的秩为2,则矩阵A的行向量组的____。

答案:线性无关4. 设矩阵A为3x3矩阵,且A的行列式为0,则矩阵A是____。

答案:奇异矩阵三、解答题(每题10分,共30分)1. 已知矩阵A=\[\begin{bmatrix}1 & 2\\3 & 4\end{bmatrix}\],求矩阵A的行列式。

答案:\(\begin{vmatrix}1 & 2\\3 & 4\end{vmatrix} = (1)(4) - (2)(3) = 4 - 6 = -2\)2. 设矩阵B=\[\begin{bmatrix}2 & 0\\0 & 2\end{bmatrix}\],求矩阵B的逆矩阵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章矩阵一、知识点复习1、矩阵的定义由m⨯n个数排列成的一个m行n列的表格,两边界以圆括号或方括号,就成为一个m⨯n型矩阵。

例如2 -1 0 1 11 1 1 0 22 5 4 -2 93 3 3 -1 8 就是一个4⨯5矩阵、一个矩阵中的数称为它的元素,位于第i行第j列的数称为(i,j)位元素。

元素全为0的矩阵称为零矩阵,通常就记作0。

两个矩阵A与B相等(记作A=B),就是指它的行数相等,列数也相等(即它们的类型相同),并且对应的元素都相等。

2、n阶矩阵与几个特殊矩阵行数与列数相等的矩阵称为方阵,行列数都为n的矩阵也常常叫做n阶矩阵。

n阶矩阵的从左上角到右下角的对角线称为主对角线。

下面列出几类常用的n阶矩阵,它们都就是考试大纲中要求掌握的、对角矩阵: 对角线外的的元素都为0的n阶矩阵、单位矩阵: 对角线上的的元素都为1的对角矩阵,记作E(或I)、数量矩阵: 对角线上的的元素都等于一个常数c的对角矩阵,它就就是c E、上三角矩阵: 对角线下的的元素都为0的n阶矩阵、下三角矩阵: 对角线上的的元素都为0的n阶矩阵、对称矩阵: 满足A T=A矩阵,也就就是对任何i,j,(i,j)位的元素与(j,i)位的元素总就是相等的n阶矩阵、反对称矩阵:满足A T=-A矩阵、也就就是对任何i,j,(i,j)位的元素与(j ,i)位的元素之与总等于0的n阶矩阵、反对称矩阵对角线上的元素一定都就是0、) 正交矩阵:若AA T=A T A=E,则称矩阵A就是正交矩阵。

(1)A就是正交矩阵⇔A T=A-1 (2)A就是正交矩阵⇔2A=1 阶梯形矩阵:一个矩阵称为阶梯形矩阵,如果满足:①如果它有零行,则都出现在下面。

②如果它有非零行,则每个非零行的第一个非0元素所在的列号自上而下严格单调递增。

把阶梯形矩阵的每个非零行的第一个非0元素所在的位置称为台角。

每个矩阵都可以用初等行变换化为阶梯形矩阵,这种运算就是在线性代数的各类计算题中频繁运用的基本运算,必须十分熟练。

请注意:一个矩阵用初等行变换化得的阶梯形矩阵并不就是唯一的,但就是其非零行数与台角位置就是确定的。

3、矩阵的线形运算(1)加(减)法:两个m⨯n的矩阵A与B可以相加(减),得到的与(差)仍就是m⨯n矩阵,记作A+B (A-B),运算法则为对应元素相加(减)、(2)数乘: 一个m⨯n的矩阵A与一个数c可以相乘,乘积仍为m⨯n的矩阵,记作c A,运算法则为A的每个元素乘c、这两种运算统称为线性运算,它们满足以下规律:①加法交换律:A+B=B+A、2加法结合律:(A+B)+C=A+(B+C)、③加乘分配律:c(A+B)=c A+c B、(c+d)A=c A+d A、④数乘结合律:c(d)A=(cd)A、⑤ c A=0⇔ c=0 或A=0、4、矩阵乘法的定义与性质(1)当矩阵A的列数与B的行数相等时,则A与B可以相乘,乘积记作AB、AB的行数与A相等,列数与B相等、 AB的(i,j)位元素等于A的第i个行向量与B的第j个列向量(维数相同)对应分量乘积之与、12即:n m n s s m C B A ⨯⨯⨯=矩阵的乘法在规则上与数的乘法有不同:① 矩阵乘法有条件、 ② 矩阵乘法无交换律、 即AB ≠BA ③ 矩阵乘法无消去律:即一般地由AB =0推不出A =0或B =0、由AB =AC 与A ≠0推不出B =C 、(无左消去律)由BA =CA 与A ≠0推不出B =C 、 (无右消去律)请注意不要犯一种常见的错误:把数的乘法的性质简单地搬用到矩阵乘法中来、矩阵乘法适合以下法则:① 加乘分配律 A (B +C )= AB +AC , (A +B )C =AC +BC 、② 数乘性质 (c A )B =c(AB )、 ③ 结合律 (AB )C = A (BC )(2)n 阶矩阵的方幂与多项式任何两个n 阶矩阵A 与B 都可以相乘,乘积AB 仍就是n 阶矩阵、并且有行列式性质: |AB |=|A ||B |、如果AB =BA ,则说A 与B 可交换、方幂 设k 就是正整数, n 阶矩阵A 的k 次方幂A k 即k 个A 的连乘积、规定A0=E 、显然A 的任何两个方幂都就是可交换的,并且方幂运算符合指数法则:① A k A h = A k+h 、② (A k )h = A kh 、但就是一般地(AB )k 与A k B k 不一定相等! n 阶矩阵的多项式:设f(x)=a m x m +a m-1x m-1+…+a 1x+a 0,对n 阶矩阵A 规定 f(A )=a m A m +a m-1A m-1+…+ a 1A +a 0E 、称为A 的一个多项式、请特别注意在常数项上加单位矩阵E 、乘法公式 一般地,由于交换性的障碍,小代数中的数的因式分解与乘法公式对于n 阶矩阵的不再成立、但就是如果公式中所出现的n 阶矩阵互相都就是互相可交换的,则乘法公式成立、例如当A 与B 可交换时,有:(A ±B )2=A 2±2AB +B 2; A 2-B 2=(A +B )(A -B )=(A +B )(A -B )、二项展开式成立: B AC B A -=∑=+1)(等等、前面两式成立还就是A 与B 可交换的充分必要条件、(3)乘积矩阵的列向量组与行向量组设A 就是m ⨯n 矩阵B 就是n ⨯s 矩阵,A 的列向量组为α1,α2,…,αn ,B 的列向量组为β1, β2,…,βs ,AB 的列向量组为γ1, γ2,…,γs ,则根据矩阵乘法的定义容易瞧出(也就是分块法则的特殊情形):① AB 的每个列向量为:γi =A βi ,i=1,2,…,s 、即A (β1, β2,…,βs )= (A β1,A β2,…,A βs )、② β=(b 1,b 2,…,b n )T,则A β= b 1α1+b 2α2+…+b n αn 、应用这两个性质可以得到:如果βi =(b 1i ,b 2i ,…,b ni )T,则γi =A βI =b 1i α1+b 2i α2+…+b ni αn 、即:乘积矩阵AB 的第i 个列向量γi 就是A 的列向量组α1, α2,…,αn 的线性组合,组合系数就就是B 的第i 个列向量βi 的各分量。

类似地, 乘积矩阵AB 的第i 个行向量就是B 的行向量组的线性组合,组合系数就就是A 的第i 个行向量的各分量。

以上规律在一般教材都没有强调,但只要对矩阵乘法稍加分析就不难得出、它们无论在理论上与计算中都就是很有用的、利用以上规律容易得到下面几个简单推论:3① 用对角矩阵Λ从左侧乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的各行向量, 用对角矩阵Λ从右侧乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的各列向量。

⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=Λ⨯44332211432121a a a a A m nm m λλλλααααλλλO[][]44332211214321a a a aa a a a A m m λλλλλλλ=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=ΛO② 数量矩阵kE 乘一个矩阵相当于用k 乘此矩阵;单位矩阵乘一个矩阵仍等于该矩阵。

③ 两个同阶对角矩阵的相乘只用把对角线上的对应元素相乘。

④ 求对角矩阵的方幂只需把对角线上的每个元素作同次方幂。

5、矩阵的行列式A 为n 阶方阵,由A 的元素所构成的行列式称为A 的行列式,表示为|A |。

若A 的行列式|A|≠0,称A 为非奇异方阵,|A|=0,称A 为奇异方阵|AB|=|A||B| |cA|=C n |A|、6、矩阵的转置把一个m ⨯n 的矩阵A 行与列互换,得到的n ⨯m 的矩阵称为A 的转置,记作A T(或A ')。

有以下规律:①(A T )T = A 、 ②(A+B)T =A T +B T 、 ③(cA)T =cA T 、 ④(AB)T =B T A T 、 ⑤|A T |=|A|7、矩阵的等价定义:两个矩阵如果可以用初等变换互相转化,就称它们等价、 矩阵的等价的充分必要条件为它们类型相同,秩相等、命题:两个m*n 矩阵A 与 B 等价的充要条件就是存在m 阶满秩矩阵P 及n 阶满秩矩阵Q,使得A=PBQ 8、矩阵方程与可逆矩阵(伴随矩阵)(1) 矩阵方程矩阵不能规定除法,乘法的逆运算就是解下面两种基本形式的矩阵方程:(I) AX =B 、 (II) XA =B 、这里假定A 就是行列式不为0的n 阶矩阵,在此条件下,这两个方程的解都就是存在并且唯一的(否则解的情况比较复杂、)。

当B 只有一列时,(I)就就是一个线性方程组、由克莱姆法则知它有唯一解、 如果B 有s 列,设 B =(β1, β2,…,βs ),则 X 也应该有s 列,记X =(X 1,X 2,…,X s ),则有AX i =βi ,i=1,2,…,s,这就是s 个线性方程组,由克莱姆法则,它们都有唯一解,从而AX =B 有唯一解。

这些方程组系数矩阵都就是A ,可同时求解,即得(I)的解法:将A 与B 并列作矩阵(A |B ),对它作初等行变换,使得A 变为单位矩阵,此时B 变为解X (A |B )→(E |X )。

(II)的解法:对两边转置化为(I)的形式:A T X T =B T ,再用解(I)的方法求出X T ,转置得X 、:(A T |B T )→(E |X T )矩阵方程就是历年考题中常见的题型,但就是考试真题往往并不直接写成(I)或(II)的形式,要用恒等变形简化为以上基本形式再求解。

(2) 可逆矩阵的定义与意义定义:设A 就是n 阶矩阵,如果存在n 阶矩阵B ,使得AB =E , BA =E ,则称A 为可逆矩阵,此时B 就是唯一的,称为A 的逆矩阵,通常记作A -1。

如果A可逆,则A在乘法中有消去律:AB=0⇒B=0;AB=AC⇒B=C、(左消去律);BA=0⇒B=0;BA=CA⇒B=C、(右消去律)如果A可逆,则A在乘法中可移动(化为逆矩阵移到等号另一边):AB=C⇔B=A-1C,BA=C⇔B=CA-1由此得到基本矩阵方程的逆矩阵解法:(I) AX=B的解X=A-1B (II) XA=B的解X= BA-1、这种解法想法自然,好记忆,但就是计算量比初等变换法大(多了一次矩阵乘积运算)、(3) 矩阵可逆性的判别与性质定理n阶矩阵A可逆⇔|A|≠0、证明充分性:对AA-1=E两边取行列式,得|A||A-1|=1,从而|A|≠0、(并且|A-1|=|A|-1、)必要性:因为|A|≠0,矩阵方程AX=E与XA=E都有唯一解、设B,C分别就是它们的解,即AB=E, CA=E、事实上B=C(B=EB=CAB=CE=C),于就是从定义得到A可逆、推论如果A与B都就是n阶矩阵,则AB=E⇔BA=E、于就是只要AB=E(或BA=E)一式成立,则A与B都可逆并且互为逆矩阵、可逆矩阵有以下性质:如果A可逆,则① A-1也可逆,并且(A-1)-1=A、②A T也可逆,并且(A T)-1=(A-1)T、③当c≠0时, c A也可逆,并且(c A)-1=c-1A-1、④对任何正整数k, A k也可逆,并且(A k)-1=(A-1)k、(规定可逆矩阵A的负整数次方幂A-k=(A k)-1=(A-1)k、)⑤如果A与B都可逆,则AB也可逆,并且(AB)-1=B-1A-1、(请自己推广到多个可逆矩阵乘积的情形、)⑥初等矩阵都就是可逆矩阵,并且E(i,j)-1= E(i,j), E(i(c))-1=E(i(c-1)), E(i,j(c))-1= E(i,j(-c))、(4) 逆矩阵的计算与伴随矩阵①计算逆矩阵的初等变换法当A可逆时, A-1就是矩阵方程AX=E的解,于就是可用初等行变换或列变换求A-1:初等行变换:[]1||-→AEEA初等列变换:⎥⎦⎤⎢⎣⎡→⎥⎦⎤⎢⎣⎡-1AEEA这个方法称为求逆矩阵的初等变换法、它比下面介绍的伴随矩阵法简单得多、②伴随矩阵若A就是n阶矩阵,记A ij就是|A|的(i,j)位元素的代数余子式,规定A的伴随矩阵 A11 A21… A n1A*= A12 A22… A n2 =(A ij)T、K K K KA1n A2n… A mn请注意,规定n阶矩阵A的伴随矩阵并没有要求A可逆,但就是在A可逆时, A*与A-1有密切关系。

相关文档
最新文档