7,8跨电分相
7-8跨电分相

电气化铁路关节式电分相的研究张和平摘要:本文针对电气化铁路两种较常应用的关节式电分相的特点、存在的问题和解决的方案进行研究。
关键词:电气化、电分相、锚段关节一、关节式电分相的结构特点1.七跨锚段关节式电分相结构分析七跨式绝缘锚断关节式电分相,它是由二个4跨绝缘锚段关节交叉组合而成,从头到尾共有七个跨距,故称七跨锚段关节式电分相。
其原理是利用2个四跨绝缘锚段关节的空气绝缘间隙来达到电分相的目的。
中性区正常情况下不带电(无机车通过时),但不允许接地,其对地仍按25kv电压等级要求绝缘。
一般考虑在关节处行车方向远端设置一台手动隔离开关,以疏导中性区的故障机车。
七跨锚段关节式电分相如图1、2所示。
图1 七跨锚段关节式电分相结构图图2 七跨锚段关节式电分相直线平面图当电力机车准备经过电分相时,机车主断路器打开,受电弓不降弓通过。
电力机车在电分相中性无电区范围内利用中性锚段来作工作支,使受电弓平稳的由一端正线锚段运行到另一端的正线锚段,该中性嵌入线从左侧的中1处变为工作支,到右侧中2处开始抬升,变为非工作支,可保证约有100~150m长的中性区。
机车乘务人员须按照设置的“断”、“合”、电力机车禁“停”标志断、合机车主断路器(如图3、4所示)。
为了保证电力机车正常通过绝缘锚段关节式电分相绝缘器,原则上要求单台受电弓升弓运行,确需多台受电弓同时升弓时,对受电弓间距离应做限制。
图3 下行方向行车标志的设置图 4 上行方向行车标志的设置2.八跨锚段关节式电分相结构分析八跨锚段关节式电分相的结构如图5所示。
图中Z表示直线区段;J表示绝缘锚段关节;ZJ为支柱装配形式。
图 5 八跨锚段关节式电分相的平面图不管是哪种型式,其结构都是利用2个绝缘锚段关节重合1跨或2跨,再增加1个分相锚段组成,即:分相锚段与既有接触网的2个下锚支组成2个绝缘锚段关节并重合2个锚段关节的1跨或2跨,在分相无电区工作范围内利用分相锚段作工作支,而分相锚段与既有锚段间采用相间空气绝缘的装配形式,从而达到分相的目的。
锚段及锚段关节

锚段及锚段关节锚段为满足供电和机械受力方面的需要,将接触网分成若干一定长度且相互独立的分段,这种独立的分段称为锚段。
一、锚段的作用设立锚段可以限制事故范围。
当发生断线或支柱折断等事故时,由于各锚段间在机械受力上是独立的,则使事故限制在一个锚段内,缩小了事故范围。
设立锚段便于在接触线和承力索两端设置补偿装置,以调整线索的弛度与张力。
设立锚段有利于供电分段,配合开关设备,满足供电方式的需要。
可实现一定范围内的停电检修作业。
二、锚段长度确定接触网每个锚段包括若干个跨距。
在确定锚段长度时,要考虑发生事故的影响范围;当温度变化时,因线索伸缩引起吊弦、定位器及腕臂的偏斜不超过允许值;下锚处补偿坠砣应有足够的上下移动空间;要保证在极限温度下,中心锚结处和补偿器端线索张力差不超过规定值。
由于线索顺线路的热胀冷缩移动,使每一吊弦、定位器和腕臂固定点处,因偏斜而对线索产生分力作用出现张力差。
对于半补偿链形悬挂设计规定其张力差不超过接触线额定张力的±15%;全补偿链形悬挂,除满足接触线张力差外,要求承力索张力差不超过承力索额定张力的±10%。
锚段长度一般采用两种方法确定,经验取值法和计算法,经验取值可根据铁道部颁发的“铁路工程技术规范”中经验取值表确定,如所示。
计算法则通过对线索张力差的计算,确定锚段长度。
见表3。
隧道内一般不分锚段,但隧道长度超过2000m时,应划分锚段,锚段长度确定原则与上述方法相同。
锚段关节两个相邻的锚段的斜接部分称为锚段关节。
锚段关节结构复杂,其工作状态的好坏直接影响接触网供电质量和电力机车取流。
电力机车通过锚段关节时,受电弓应能平滑、安全地由一个锚段过渡到另一个锚段,且弓线接触良好,取流正常。
锚段关节按用途可分为非绝缘锚段关节和绝缘锚段关节两种。
区别在于:非绝缘锚段关节只起机械分段作用,不进行电分段;绝缘锚段关节起机械分段作用,又进行电分段作用。
按锚段关节的衔接长度可分为二跨、三跨、四跨、五跨、七跨、八跨、九跨锚段关节等几种不同形式。
七跨式电分相技术资料

七跨式电分相技术资料、技术标准、检修工艺、事故抢修预案二00六年五月八日七跨式电分相技术标准1、中心柱处两支承力索的水平间距为500mm误差为0~100mm抬高支承力索比另一支承力索抬高不小于500mm两支接触线距轨面等高,误差10mm两支接触线的水平间距为500mm误差0~50mm2、中心柱处两支悬挂(包括支撑装置、定位装置等)之间的空气间隙不得小于500mm。
3、中心柱处抬高支悬挂应在靠近支柱侧(顺线路方向)。
4、转换柱处两支承力索的水平间距为500mm误差为0~100mm非支承力索比工作支承力索抬高300mm误差为0~100mm两支接触线的水平间距为500mm误差为0~50mm非支接触线比工作支接触线抬高500mm误差为土50mm非工作支分段绝缘子及其接头的最下端比工作支接触线抬高不得小于300mm。
5、同一组四跨绝缘锚段关节两转换柱分段绝缘子内侧两悬挂间的空气间隙在任何情况下不得小于500mm。
6、转换柱和中心柱处,承力索应位于相对应的接触线的正上方。
7、转换柱和锚柱间加装一组电连接器,两支承力索间的电连接线螺盘3~5圈,圈径为线径的3~5 倍,承力索和接触线间的电连接线不盘圈。
&两下锚支接触悬挂相交叉时,应保持50mn以上的距离。
9、多功能定位器的最大抬升高度为100mm误差为土10mm无抬高量时,防抬高间隙一般为:腕臂柱定位器为7~9mm软横跨定位器为5~7mm10、七跨式电分相内的其它设备(补偿装置、支撑装置、定位装置、隔离开关、分段绝缘子、导线接头、承力索接头、接触线拉出值和高度及坡度、下锚拉线、吊弦等)的技术标准按已有标准执行。
七跨式电分相由2个四跨绝缘锚段关节组成。
共有锚柱2根,转换柱2根,中心柱2根,锚柱加转换柱2根,电分相两中心柱间为无电区(对机车),如下图:图1七跨式电分相平面布置图分相地面标志如下图行虽7?內S止耶M图2电分相地面标志图七跨式电分相检修工艺检修七跨式电分相必须用重合天窗。
适应高铁接触网的电分相

一种适应于高速电气化铁路的接触网电分相一、前言随着列车速度的大幅度提高,器件式电分相对电力机车受电弓冲击大(俗称硬点)成为困扰我国电气化铁路提速改造的主要问题之一。
由于锚段关节式电分相(以下简称关节式电分相)由两个绝缘锚段关节组成,消除了器件式电分相存在的硬点大问题,在我国新建电气化铁路及提速改造中被普遍采用。
广深、武广、哈大、京秦、宁西线等铁路电气化改造、京广、陇海线铁路第五次大提速改造均采用了关节式电分相。
正在建设中的胶济、郑徐、浙赣线以及计划建设中的京沪、武广、郑-西高速客运专线也计划采用关节式电分相。
目前,世界大多数国家的高速电气化铁路电分相也均采用该种型式。
本文根据目前关节式电分相存在问题及意大利罗马-那不勒斯(Rome-Naples)高速电气化铁路采用的电分相设计原理,提出一种新型的三个绝缘锚段关节双中性段关节式电分相型式,可较好解决关节式电分相对电力机车受电弓多弓运行条件的限制,建议尽快在我国新建电气化铁路和提速改造中采用,实现接触网电分相改造的跨越式发展。
二、目前采用的关节式电分相存在的主要问题1、由于绝缘锚段关节有三跨、四跨和五跨三种型式,锚段关节跨距长度不同,两个关节的衔接布置也有多种方式,关节式电分相存在四跨、五跨、七跨、八跨、九跨、十跨、十二跨等多种型式,中性区距离也长短不一。
这些关节式电分相的共同特点是均由两个绝缘锚段关节和一段接触网中性区组成。
由于关节式电分相由两处空气绝缘间隙实现电气绝缘,即使是两个电气隔离的受电弓(如多机牵引、电力机车附挂、牵引机车后挂有接触网检测车、多弓运行的电动车组等情况)在受电弓间距不满足限制条件时都有可能造成相间短路(限制条件如表一所示)。
实际运行中,这类故障已经多次发生。
表一我国部分电气化铁路关节式电分相限制多弓运行条件为此,铁道部《第五次大面积提速调图有关规章制度标准暂行规定》的通知(铁运[2004]26号)中规定重联机车运行至锚段关节式电分相时必须单弓运行通过,这样就对重联机车或电动车组的机车乘务员提出了更高要求。
电分相、电分段、越区供电基础知识

电分相、电分段、越区供电 基本知识
济南机务段
电分相基本知识
济南机务段
什 么 是 电 分 相
电分相的基本知识
c
b
a
4
3
2
1
器件式电分相
在单相交流牵引供电
普 速
系统中,电力机车是
由单相电供电的,为
了平衡电力系统的A、
B、C各相负荷,一般 高 1 2 3 4 5 6 7 8
c
b速
关节式电分相
济南机务段
电分相的基本知识
分
分段绝缘器的种类较多,但由于接触网
段 绝
设备及材料的发展,曾经广泛使用的玻
缘 器
璃钢、环氧树脂分区绝缘器等,因结构
简
笨重或耐脏污、耐电弧性能差,也有的
介
易老化开裂或泄漏距离不足等原因,现
已逐渐淘汰,被新型的高铝陶瓷分段绝
缘器和引进英国的滑道式菱形式分段绝
缘器所代替。
济南机务段 越区供电基本知识
三、一条供电臂只能供二十几公里的电, 再远末端电压就会降低,所以在两条供 电臂交汇的关节处设置电分相,这样才 能保证所有的接触网最低电压能满足电 力机车的工作电压。
电分相的基本知识
济南机务段 分相绝缘器分为两种
1、单棒型分相绝缘器:绝缘滑板、接头
分 相
线夹、定位架、单孔线夹、引弧件、承
绝 缘
力索绝缘子、承力索吊弦线夹、承力索
弦、夹环、承力索终端锚固线夹等。
济南机务段
分 段 绝 缘 器 简 介
电分相的基本知识
分段绝缘器在电气化铁道区段各车站的 装卸线、机车整备线上及电力机车库线 等地,为了保证工作人员的作业方便及 人身安全,将接触网在电的方向分成独 立的区段。分段绝缘器安设在上述独立 区段的两端,其结构既能保证供电的分 段,又能使受电弓平滑地通过该设备。 分段绝缘器大多应配合隔离开关使用, 以便使分段绝缘器两端的接触线当开关 闭合时都能带电;当隔离开关打开时, 独立的区段中则没有电,便于在该独立
电气化铁道接触网关节式电分相运营问题分析

除接 触 网上 的 硬 点 ,改 善 弓 网 关 系 , 高列 车 运行速 度 等起 到 良好 提
求 救援 , 响后续列 车运 行 。 影
洛 阳东 疏解 区 下 行 电 分 相 改
造 为七 跨锚 段 关节 式 电分 相后 , 由
于分 相设 置在 疏解 区内 。 疏 解 区 距 下 行 出站信 号 机前 方不 远 , 使 电 致
设置 的 位置 不合 理 ( 坡道 上 、 上 信 号机 前 方 附 近 ) 原 因 , 易 使 列 等 容 车停 在 电分 相无 电 区 内 , 得不 请 不
相绝 缘器 (p e七跨 或八 跨) 两种 。器
件式 电 分相 由三个 绝 缘杆 件 组成 ,
无 电 区总 长 3 O米 ,每个 绝缘 杆 件
跨距 (3— 1O米 )由于列车 通过 15 5 ,
电 分 相 时 要 断 电利 用 惯 性 通 过 无
电区, 如果 电分 相所 处位 置 线路 状 况不 良( 施工 限 速慢 行 ) 或 电分 相 ,
触 网供 电 的馈 线是 不 同相 序 的 , 跨 是 利 用 2个 四跨 绝 缘 锚 段 关 节 的 不 运 同 相供 电 臂 在 接 触 网 的相 交 处 设
在 电分 相 范 围 内 的 承力 索 上 缠 绕 绝 缘热缩 带 。
() 2 电分相 改造 时要 注 意其 位 置与信 号 机 的距离 , 能设 在信 号 不 机前方 太近 的地方 。当电分 相设在 相 当于 车站 的疏解 区内 时 , 其要 尤
系 ; 要 时在列 车进 入 电分 相 的前 必
方 30 0 m处 ,设 置列 车断 电利用 惯 性 通过 电分相 的最低 速度标 。 合 ( ) 改造 七跨 锚 段 关节 式 电 5在 分 相 时适 当增 大 七 跨 锚 段 关 节 式 电分相 内 接触 网的结 构高 度 , 同时
接触网 锚段关节电分相

接触网工程课程设计专业:班级:姓名:学号:指导教师:兰州交通大学自动化与电气工程学院201 年月日1 基本题目1.1题目电分相式锚段关节设计:对各类锚段关节进行分析比较,确定应用锚段关节实现电分相的条件,对电分相式锚段关节进行设计,在传统的器件式电分相方面上的改进。
1.2 题目分析电分相是为了满足接触网不同相供电而在两相交接处设立的分相隔离装置,电分相类型和材质的不同对机车受电弓取流的稳定性、受电弓的质量、列车最高速度和牵引变电所继电保护等都有影响。
当今电气化铁路不断提速,对行车安全要求很高,因此选用好电分相才对列车行车安全、稳定非常重要。
为适应高速铁路的弓网受流,2005年国内颁布的《新建时速200公里客货共线铁路设计暂行规定》中规定:时速200 km以上接触网的电分相均采用带中性段的绝缘锚段关节式电分相。
电分相锚段关节在设计上都必须满足以下几个最基本要求:保证受电弓的平滑过渡;每个断口(空气绝缘间隙)必须能满足相间绝缘要求;断口间距应与机车受电弓间距满足一定的配合关系,即有2个断口电分相锚段关节(含3个断口除外)的间距≠重联或大编组动车组允许同时升起的2个受电弓间的距离,防止2个受电弓同时将2个断口短接造成相间短路;设置位置符合线路坡度及距信号机距离要求。
本文分析了传统器件式电分相与应用锚段关节实现电分相的特点以及使用电分相式锚段关节改进器件式电分相的方式。
2题目论述2.1 概述目前我国电气化铁路电力机车和动车都采用单相供电,为平衡电力系统各相负荷,牵引供电一般实行三相电源相序轮换供电,即电气化铁道牵引变电所向接触网供电的馈线是不同相的,保证铁路牵引供电网实现相与相之间电气隔离,在不同相供电臂的接触网对接处设置了绝缘结构,称电分相。
我国高速铁路电分相一般设置在牵引变电所出口处及供电臂末端、铁路局分界处,主要由接触网部分、车载装置、地面信号装置等组成。
我国早期电气化铁路采用结构复杂的接触网八跨、六跨、五跨等双绝缘锚段关节组成的电分相(简称关节式电分相)。
浅谈八跨锚段关节式电分相无电区长度和吊弦长度的计算

浅谈八跨锚段关节式电分相无电区长度和吊弦长度的计算摘要:本文根据新建或大修线路施工需要,提出了八跨电分相在施工过程中无
电区的计算及八跨电分相中吊弦的长度计算的过程,解决了施工中八跨电分相的布置及吊弦的计算困难。
关键词:八跨电分相;无电区;吊弦计算
电气化铁路牵引变电所间的供电分区采用异相供电时,接触网在不同相连接处设置的电气绝缘装置称为分相绝缘器。
但是随着列车速度的大幅度提高,分段绝缘器产生的硬点问题成为困扰我国电气化铁路提速改造的主要问题之一。
那么采用带中性段、空气间隙绝缘的八跨锚段关节形式,很好的消除了器件式电分相存在硬点的问题。
在新建后者大修电气化改造工程中,八跨电分相是我们施工中的重要环节(八跨电分相简单示意图见图1)。
由于关节式电分相由两处空气绝缘间隙实现电气绝缘,即使是两个电气隔离的受电弓(如多机牵引、电力机车附挂、牵引机车后挂有接触网检测车、多弓运行的电力机车组等情况)在受电弓间距不满足限制条件时都有肯能造成相间短路,因此无电区的长度及过度跨导线的坡度成为电力机车受电弓安全通过八跨分相的关键点。
本文通过对八跨分相无电区的分析及利用抛物线计算吊弦的方法,来解决施工及大修过程中在分相中的难题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电气化铁路关节式电分相的研究张和平摘要:本文针对电气化铁路两种较常应用的关节式电分相的特点、存在的问题和解决的方案进行研究。
关键词:电气化、电分相、锚段关节一、关节式电分相的结构特点1.七跨锚段关节式电分相结构分析七跨式绝缘锚断关节式电分相,它是由二个4跨绝缘锚段关节交叉组合而成,从头到尾共有七个跨距,故称七跨锚段关节式电分相。
其原理是利用2个四跨绝缘锚段关节的空气绝缘间隙来达到电分相的目的。
中性区正常情况下不带电(无机车通过时),但不允许接地,其对地仍按25kv电压等级要求绝缘。
一般考虑在关节处行车方向远端设置一台手动隔离开关,以疏导中性区的故障机车。
七跨锚段关节式电分相如图1、2所示。
图1 七跨锚段关节式电分相结构图图2 七跨锚段关节式电分相直线平面图当电力机车准备经过电分相时,机车主断路器打开,受电弓不降弓通过。
电力机车在电分相中性无电区范围内利用中性锚段来作工作支,使受电弓平稳的由一端正线锚段运行到另一端的正线锚段,该中性嵌入线从左侧的中1处变为工作支,到右侧中2处开始抬升,变为非工作支,可保证约有100~150m长的中性区。
机车乘务人员须按照设置的“断”、“合”、电力机车禁“停”标志断、合机车主断路器(如图3、4所示)。
为了保证电力机车正常通过绝缘锚段关节式电分相绝缘器,原则上要求单台受电弓升弓运行,确需多台受电弓同时升弓时,对受电弓间距离应做限制。
图3 下行方向行车标志的设置图 4 上行方向行车标志的设置2.八跨锚段关节式电分相结构分析八跨锚段关节式电分相的结构如图5所示。
图中Z表示直线区段;J表示绝缘锚段关节;ZJ为支柱装配形式。
图 5 八跨锚段关节式电分相的平面图不管是哪种型式,其结构都是利用2个绝缘锚段关节重合1跨或2跨,再增加1个分相锚段组成,即:分相锚段与既有接触网的2个下锚支组成2个绝缘锚段关节并重合2个锚段关节的1跨或2跨,在分相无电区工作范围内利用分相锚段作工作支,而分相锚段与既有锚段间采用相间空气绝缘的装配形式,从而达到分相的目的。
八跨锚段关节式电分相由2个五跨绝缘锚段关节重合2跨组成,它比其他2种多了分相中心柱,其余结构相同。
(1)线索关系八跨锚段关节式电分相的分相锚段及2个正线锚段线索的关系(如图6所示)。
图6 八跨锚段关节式电分相平面布置图八跨锚段关节式电分相的中性无电区约35m;在整个锚段关节内2支接触悬挂的水平间距均为500mm。
2支接触悬挂间空气绝缘间隙应450mm;为满足接触线工作坡度的变化率在正线关节转换区4‰的技术要求,也为了在中性无电区保持良好的弓网关系,在关节区内加设了1个分相锚段,使分相关节有1段中性无电区,无电区段分相锚段作工作支。
在转换柱g,E间和A,b间,分相锚段接触线与正线的接触线等高且比正线标准导高抬高约80mm,在进入过渡区前的转换柱b,g,a,h 处,分相锚段接触线做非工作支处理,采取逐段抬高方式,转换柱b,g处非工作支抬高150mm(若考虑200km时速,可抬高大于160mm),转换柱a~h处非工作支抬高500mm。
即:转换柱A~b,E~g跨非工作支抬高70mm,转换柱a~b、g~h跨抬高350mm。
使线索平滑抬高,便于关节悬挂调整,相邻的绝缘子串距分相中心(图6中D)约为10.5m,D处抬高支距分相锚段接触线抬高500mm。
(2)中性无电区与机车取流的双弓间距关系八跨及其他锚段关节式的中性无电区与电力机车双弓间的距离有关,(如图7所示),八跨锚段关节式电分相中性无电区为35m,该距离应大于单机机车取流的双弓间距,即当机车组2个受电弓之间有高压母线连接时,2个受电弓间的距离必须小于35m。
当机车组的2个受电弓无高压母线连接,2个受电弓间的距离,应小于35m或者大于2绝缘转换柱h,a的绝缘子内侧间的距离(约250m),该距离以及中性无电区的长度均与电分相结构和跨距大小有关。
图7 八跨电分相中性无电区与机车受电弓位置关系示意图通过电分相时,高压母线连通的机车组之间的不同机车禁止同时升弓,机车断合标及禁止双弓标位置(如图8所示)。
中性区正常情况下不带电(无机车通过时),但不允许接地,其对地仍按25kV 电压等级要求绝缘。
可考虑在关节处行车方向远端设置一台手动隔离开关,以疏导中性区的故障机车。
图8 电分相处断合标与禁止双弓标位置示意图二、关节式电分相在运营中存在问题的分析由于锚段关节式电分相(以下简称关节式电分相)由2个绝缘锚段关节组成,消除了器件式电分相存在的硬点大的问题,在我国新建电气化铁路及提速改造中被普遍采用。
第一,由于绝缘锚段关节有三跨、四跨和五跨3种型式,锚段关节跨距长度不同,2个关节的衔接布置也有多种方式,关节式电分相存在四跨、五跨、七跨、八跨、九跨、十跨、十二跨等多种型式,中性区距离也长短不一。
这些关节式电分相的共同特点是均由两个绝缘锚段关节和一段接触网中性区组成。
由于关节式电分相由2处空气绝缘间隙实现电气绝缘,即使是2个电气隔离的受电弓(如多机牵引、电力机车附挂、牵引机车后挂有接触网检测车、多弓运行的电动车组等情况)在受电弓间距不满足限制条件时都有可能造成相间短路。
实际运行中,这类故障已经多次发生。
第二,机车断电迟缓、送电太早或未断电通过分相时均能造成拉弧烧伤、烧断承力索造成事故。
关节式电分相线索烧损原因分析:电力机车在通过七跨锚段关节式电分相时,如果出现机车司机疏忽、麻痹大意,断电不及时、忘记断电或送电太早等原因,均可能造成受电弓拉弧烧伤电分相中性无电区内承力索、导线,严重者甚至烧断承力索。
关节式电分相线索烧损基本是由于中性段和带电导线间产生大电流电弧造成的高温烧损。
线索烧损部位大多集中在第一和第二起弧点跨内和交叉跨内,(如图9)。
其主要原因有以下几点:图9 七跨关节式电分相平面示意图1、电力机车在不断载情况下快速通过电分相时,因拉弧造成弧光相间短路烧损线索。
2、电力机车通过电分相时因过电压造成机车放电间隙击穿,短路电流在中性线和带电线间产生电弧烧损线索,这种故障发生的概率较大。
3、关节式电分相结构参数检调时,中心柱两侧线索及吊弦水平间距设置偏小,各支柱拉出值布置不合理,进行安装调整时通常比照四跨绝缘关节检调,水平间距一般控制在450mm左右,对各支柱拉出值的布置往往只关注于满足水平间隙要求,而忽略了结构稳定。
由于机车受电弓快速通过电分相时必将引起线索振动,吊弦在抬升力的作用下也会松弛鼓肚,这样线索整体摆动量加大,线索间、吊弦间、线索与吊弦间水平距离缩小,极易造成弧光过电压并可能成为电弧长燃的维持通道,进而烧损线索、吊弦。
第三,理论和运行经验都表明,受空气动力的影响,机车在高速运动过程中降、升受电弓对接触网的安全运行非常不利,运行中应尽量避免。
对于高速运行的电动车组,这个问题尤为突出。
三、针对关节式电分相存在问题的改进1、为防止列车停在锚段关节式电分相中性无电区内,确保列车正常运行,在改造电分相时,电分相尽量设置在没有坡道或坡道较小的线路上,同时不能距原分相位置太远;必须设在坡道上时,要考虑电分相所处位置的线路坡度、列车速度和惰性距离的关系;必要时在列车进入电分相的前方300m处,设置列车断电利用惯性通过电分相的最低速度标志。
2、电分相改造时要注意其位置与信号机的距离,不能设在信号机前方太近的地方。
当电分相设在相当于车站的疏解区内时,尤其要注意。
3、为防止电力机车通过七跨锚段关节式电分相时烧伤、烧断电分相中性无电区内承力索,保证供电设备安全,在机车上设置自动断电装置;当电力机车运行至电分相标志牌“T断”牌所在里程时,机车自动断电通过电分相,通过电分相后,合上机车开关继续运行。
4、在改造七跨锚段关节式电分相时适当增大七跨锚段关节式电分相内接触网的结构高度,同时在电分相范围内的承力索上缠绕绝缘热缩带。
防止关节式电分相线索烧损应从以下几个方面采取防范措施:1、根据电力机车运用区段的不同,合理修正车顶放电间隙的距离。
2、完善机车监控仪的功能。
将机车主断路器操作开关分合位置信号接入监控仪进行监控,这可有效地减少司乘人员因不断载过分相造成接触网跳闸及关节分相线索烧损故障的发生。
3、优化关节式电分相各部结构及参数的检调。
对于多次发生上述故障的电分相,必须认真检查各部支柱拉出值布置是否合理,定位器的状态如何。
起弧跨和交叉跨应避免重合,若改动困难,可采取在交叉点处承力索(一侧)上加装绝缘护套,防止烧损承力索。
吊弦布置应尽量采取不对应布置,即相互间错位并有一定的间隔距离,减少燃弧通道。
4、重视关节式电分相绝缘距离的检调。
从现场运行看,有2个环节是至关重要的:一是中心柱线索与相邻水平腕臂、定位管、定位器的最小距离(即绝缘距离)应保证500mm,不能达到的可临时采取在腕臂、定位管上加装绝缘护套来满足绝缘要求;二是相邻线索的水平距离必须保证在500mm以上,这样可以防止机车通过电分相时引起线索、吊弦摆动缩短彼此绝缘距离,为燃弧提供通道,造成息弧困难。
5、加强“2个坡度”的检调,即导线坡度和定位器坡度的调整。
关节处导线坡度应不大于1‰且应以连续坡度设置为宜,相邻点高度差应控制在20~40mm。
定位器坡度的调整也是关节式电分相检调的重点之一,定位器坡度偏小极易形成硬点。
6、使用可调式绝缘吊弦。
由于关节式电分相不具备越区供电的能力,只需考虑机车掉坑后的应急供电,一般电流在500A以下,因此可以将载流整体吊弦更换为绝缘吊弦,减少燃弧通道。
为保证电气回路的畅通和电分相末端电压,可在电分相进、出口处分别加装一组横向电连接。
综上所述,造成关节式电分相线索烧损的主要原因是机车不断载过电分相和过电压致使机车放电间隙击穿造成的电弧烧损。
对于前者,应加快关节式电分相配套设施的建设,即地面感应式机车自动断载装置的安装使用;对于后者,由于过电压发生的概率较大,随机性较强,且目前还缺乏对过电压的有效抑制手段,因此必须从关节式电分相的结构优化和参数检调入手。
只有多种措施并用,才能有效防范线索烧损故障的发生,提高关节式电分相的安全运行性能。