电气化铁路接触网关节式电分相的研究
接触网锚段关节电分相

接触网工程课程设计指导教师:兰州交通大学自动化与电气工程学院201 年月日1 基本题目1.1题目电分相式锚段关节设计:对各类锚段关节进行分析比较,确定应用锚段关节实现电分相的条件,对电分相式锚段关节进行设计,在传统的器件式电分相方面上的改进。
1.2 题目分析不同牵引变电所的供电,由于交流电相位不同,必须进行分相绝缘,称为电分相。
电分相类型和材质的不同对机车受电弓取流的稳定性、受电弓的质量、列车最高速度和牵引变电所继电保护等都有影响。
当今电气化铁路不断提速,对行车安全要求很高,因此选用好的电分相对列车行车安全、稳定非常重要。
为适应高速铁路的弓网受流,根据设计规定时速200 km以上接触网的电分相均采用带中性段的绝缘锚段关节式电分相。
电分相锚段关节在设计上都必须满足以下几个最基本要求:保证受电弓的平滑过渡;每个断口(空气绝缘间隙)必须能满足相间绝缘要求;断口间距应与机车受电弓间距满足一定的配合关系,即有2个断口电分相锚段关节(含3个断口除外)的间距≠重联或大编组动车组允许同时升起的2个受电弓间的距离,防止2个受电弓同时将2个断口短接造成相间短路;设置位置符合线路坡度及距信号机距离要求。
本文分析了传统器件式电分相与应用锚段关节实现电分相的特点以及使用电分相式锚段关节改进器件式电分相的方式。
2题目论述2.1 概述目前我国电气化铁路电力机车和动车都采用单相供电,为平衡电力系统各相负荷,牵引供电一般实行三相电源相序轮换供电,即电气化铁道牵引变电所向接触网供电的馈线是不同相的,保证铁路牵引供电网实现相与相之间电气隔离,在不同相供电臂的接触网对接处设置了绝缘结构,称电分相。
我国高速铁路电分相一般设置在牵引变电所出口处及供电臂末端、铁路局分界处,主要由接触网部分、车载装置、地面信号装置等组成。
我国早期电气化铁路采用结构复杂的接触网八跨、六跨、五跨等双绝缘锚段关节组成的电分相(简称关节式电分相)。
在20世纪80~90年代电气化工程改造中普遍采用绝缘材料制作的结构简单的器件式电分相。
电气化铁路锚段关节式电分相选型探讨

第3 3卷第 1 5期
杨有福 : 电气化 铁路锚段关节式 电分相选型探讨
j l l
B I
e l
D j
函
F I
情况下 , 只要 不相邻 受 电弓 间距 大 于分 相两 中性 区最 外端 的距 离 , 也 不会 造成 接 触 网两相 短 路 。
^ 2
旦 2
如
参 考文 献 :
图 3 三 断 口锚 段 关 节 式 电 分 相 示 意 图
如图3 所示 , 该种形式电分相有两个 中性段 和三个绝 [ 1 】于万聚. 高速电气化铁路接触 网『 M ] . 成都: 西南交通大学 出版
社, 2 0 0 2 . 缘锚段关节组成 , 有如下优点 : [ 2 ] T B 1 0 0 0 9 — 2 0 0 5 , 铁路电力牵引供电设计规范[ s ] . ①如果 电力机车或 电动车组双 弓运行 , 不论在何种情
况下都不会造成相间短路 。 ②三 台及以上受电弓同时升弓运行 , 即在三 弓运行 的
[ 3 ]彭龙虎. 3 5 0 k m / h 高速铁路 双断 口锚段关节式 电分相施工技 术l J 】 . 铁路技术创新, 2 0 1 1 , ( 1 ) .
( 上接第1 0 8 页) 线及 杆 塔 的投 入 的人 力 物力 财力 。 2 . 6 科 学控 制 雷 电绕 击线 路
D 2
&
图2郑西 客专 采用的l 6 跨长 分相示 意图
③从 电分相结构来讲 , 三断 口锚段关节式电分相不需 要设单独 的中性段 , 只是相邻两锚段 的叠加 , 线索关系简 单, 施工方便 , 维护容易。 F 2 由以上分析可以看出 , 三断 口电分相相 比双断 口锚段 关节式电分相无 电区长度未增加 , 由于又多了一处空气绝 缘 间隙, 对机车多弓运行 限制条件 大大减少 , 非常适于我 国当前的客货混运 , 多机重载和提速改造的需要。
适应高铁接触网的电分相

一种适应于高速电气化铁路的接触网电分相一、前言随着列车速度的大幅度提高,器件式电分相对电力机车受电弓冲击大(俗称硬点)成为困扰我国电气化铁路提速改造的主要问题之一。
由于锚段关节式电分相(以下简称关节式电分相)由两个绝缘锚段关节组成,消除了器件式电分相存在的硬点大问题,在我国新建电气化铁路及提速改造中被普遍采用。
广深、武广、哈大、京秦、宁西线等铁路电气化改造、京广、陇海线铁路第五次大提速改造均采用了关节式电分相。
正在建设中的胶济、郑徐、浙赣线以及计划建设中的京沪、武广、郑-西高速客运专线也计划采用关节式电分相。
目前,世界大多数国家的高速电气化铁路电分相也均采用该种型式。
本文根据目前关节式电分相存在问题及意大利罗马-那不勒斯(Rome-Naples)高速电气化铁路采用的电分相设计原理,提出一种新型的三个绝缘锚段关节双中性段关节式电分相型式,可较好解决关节式电分相对电力机车受电弓多弓运行条件的限制,建议尽快在我国新建电气化铁路和提速改造中采用,实现接触网电分相改造的跨越式发展。
二、目前采用的关节式电分相存在的主要问题1、由于绝缘锚段关节有三跨、四跨和五跨三种型式,锚段关节跨距长度不同,两个关节的衔接布置也有多种方式,关节式电分相存在四跨、五跨、七跨、八跨、九跨、十跨、十二跨等多种型式,中性区距离也长短不一。
这些关节式电分相的共同特点是均由两个绝缘锚段关节和一段接触网中性区组成。
由于关节式电分相由两处空气绝缘间隙实现电气绝缘,即使是两个电气隔离的受电弓(如多机牵引、电力机车附挂、牵引机车后挂有接触网检测车、多弓运行的电动车组等情况)在受电弓间距不满足限制条件时都有可能造成相间短路(限制条件如表一所示)。
实际运行中,这类故障已经多次发生。
表一我国部分电气化铁路关节式电分相限制多弓运行条件为此,铁道部《第五次大面积提速调图有关规章制度标准暂行规定》的通知(铁运[2004]26号)中规定重联机车运行至锚段关节式电分相时必须单弓运行通过,这样就对重联机车或电动车组的机车乘务员提出了更高要求。
电分相原理

电气化铁路关节式电分相的研究张和平摘要:本文针对电气化铁路两种较常应用的关节式电分相的特点、存在的问题和解决的方案进行研究。
关键词:电气化、电分相、锚段关节一、关节式电分相的结构特点1.七跨锚段关节式电分相结构分析七跨式绝缘锚断关节式电分相,它是由二个4跨绝缘锚段关节交叉组合而成,从头到尾共有七个跨距,故称七跨锚段关节式电分相。
其原理是利用2个四跨绝缘锚段关节的空气绝缘间隙来达到电分相的目的。
中性区正常情况下不带电(无机车通过时),但不允许接地,其对地仍按25kv电压等级要求绝缘。
一般考虑在关节处行车方向远端设置一台手动隔离开关,以疏导中性区的故障机车。
七跨锚段关节式电分相如图1、2所示。
图1七跨锚段关节式电分相结构图图2七跨锚段关节式电分相直线平面图当电力机车准备经过电分相时,机车主断路器打开,受电弓不降弓通过。
电力机车在电分相中性无电区范围内利用中性锚段来作工作支,使受电弓平稳的由一端正线锚段运行到另一端的正线锚段,该中性嵌入线从左侧的中1处变为工作支,到右侧中2处开始抬升,变为非工作支,可保证约有100~150m长的中性区。
机车乘务人员须按照设置的“断”、“合”、电力机车禁“停”标志断、合机车主断路器(如图3、4所示)。
为了保证电力机车正常通过绝缘锚段关节式电分相绝缘器,原则上要求单台受电弓升弓运行,确需多台受电弓同时升弓时,对受电弓间距离应做限制。
图3下行方向行车标志的设置图4上行方向行车标志的设置2.八跨锚段关节式电分相结构分析八跨锚段关节式电分相的结构如图5所示。
图中Z表示直线区段;J表示绝缘锚段关节;ZJ为支柱装配形式。
图5八跨锚段关节式电分相的平面图不管是哪种型式,其结构都是利用2个绝缘锚段关节重合1跨或2跨,再增加1个分相锚段组成,即:分相锚段与既有接触网的2个下锚支组成2个绝缘锚段关节并重合2个锚段关节的1跨或2跨,在分相无电区工作范围内利用分相锚段作工作支,而分相锚段与既有锚段间采用相间空气绝缘的装配形式,从而达到分相的目的。
高速铁路接触网关节式电分相改造施工工法(2)

高速铁路接触网关节式电分相改造施工工法高速铁路接触网关节式电分相改造施工工法一、前言:高速铁路是现代交通运输的重要组成部分,而接触网是高速铁路供电系统中的重要部件。
然而,在高速铁路运营中,为了满足更高的供电负荷和能源利用效率的需求,往往需要对接触网进行改造和升级。
本文将介绍一种常用的工法,即高速铁路接触网关节式电分相改造施工工法。
该工法通过采用新型的关节式电分相改造装置,可以提高接触网的供电稳定性和可靠性。
二、工法特点:关节式电分相改造施工工法具有以下几个特点:1. 可大幅度减少施工工期:采用了关节式装置,可以最大限度地减少接触网的拆除和重建工作,从而缩短施工工期。
2. 提高供电稳定性:关节式电分相改造装置能够减少电源侧的功角差,降低供电系统电压波动,从而提高供电稳定性和可靠性。
3. 降低施工难度和风险:通过采用新型的施工工法,可以减少施工过程中的人力和物力投入,降低施工风险,提高施工效率。
三、适应范围:关节式电分相改造施工工法适用于高速铁路接触网的改造和升级工程,特别是需要提高供电稳定性和可靠性的线路。
四、工艺原理:该工法的工艺原理是通过在接触网中引入关节式电分相改造装置,将接触网分成若干个相邻的电段,并通过可变电容器和可编程控制器来实现每个电段的独立供电。
这样做的目的是降低供电系统的功角差,减少电流的集中流过电缆集中接地网,提高供电系统的稳定性和可靠性。
五、施工工艺:1. 施工准备阶段:进行工地布置和设备调试,准备施工所需的人员和材料。
2. 布线设置阶段:根据接触网的设计要求,在施工区域内进行布线设置,包括电缆敷设和接口连接。
3. 关节式电分相改造装置安装阶段:根据设计要求,安装关节式电分相改造装置及其相关设备。
5. 调试阶段:对施工完成的接触网进行调试,包括给每个电段独立供电,测试供电稳定性和可靠性。
6. 施工验收阶段:根据完成的施工工程进行验收,确保施工质量符合设计要求。
六、劳动组织:施工过程中,需要配备足够数量的工人和技术人员,确保施工工作的顺利进行。
关于接触网“分相”的探讨

况 ,出 现 了不 断 电式 锚 段 关 节 分
1 分 相 形 式 及 特 点
将 负 荷 电 流 通 过 空 气 间 隙 引 向 中
性线 时 ,空气 间 隙 击穿 形 成 电 弧 , 烧 伤接触网 , 同时 机 车绝 缘 ( 机 如 车 顶 断 路器 外 部 间 隙 、瓷 瓶 等 ) 接
简 、 价低 、 工 和维 修 量小 ; 段 造 施 锚 关 节 式分 相 不存 在 老 化 、脏 污 、 断 裂 、 弓 问 题 , 结 构 复 杂 、 价 碰 但 造 高 、 工 和维修 量大 。 施
接 到 地 面 信 号 指 令 后 向 中 性 线 送
电 , 机 车通 过 中性 区 时也 能 取 得 使
常见 跳 闸 为 1 供 电 臂 .是 由 个
于机 车 通过 分 相 时 “ 电” ( 情 断 迟 此
接触 网上 称 “ 相 ” 分 。
一 蝴
相
容 易 造 成 机 车 在 锚 段 关 节 式 分 相
的“ 电” 无 中性 区途 停 。针 对 此 情
况 多 ,司 机 手 动操 作 ) “ 电 ” 、合 早
蝴 分相" 关于接触 网“ 的探讨 撇 触是 供 , 分 电 电 黼舱 相全维
西 安铁 路 局 宝 鸡 供 电段 孙 茂耀
铁蚶 ~一 的使 电本 向 高 黻 ~跨 展搬 m声 用 一
电力 机 车 运 行 靠 牵 引 供 电设
大 . 时机 车不 用 电能 对列 车 运行 短
异 常 。通过 运行 并 结合 跳 闸分 析 , 两机 车联挂 都升受 电 弓引起 跳 闸。 七跨示意 图 :
跨 ” 间短 路 。查 看 受 电 弓烧 伤情 相 况为 , 弓子 间距 5 .m。 两 06
接触网七跨锚段关节式电分相技术探讨

跨 锚段 关节式 电分相 用于 广局 京广 线 ; 九跨 锚段关 节式 电分相 用于武 局京广 线
速 2 0 m 以上 接 触 网系统 的 要 求 。 0 k
四、中性无电区与机车双 弓关 系
七跨 及其 他锚 段关节 式的 中性 无 电 区与 电力机 车双 弓间 的距离 有关 ,如 图
分相 装 置远 不 能满 足机 车 运行 的需 要 。 锚 段关节式 电分 相在 我国最 早应 用 于 广深 高速 铁 路 ,打 破 了我 国传 统 式 的 3组 绝缘部件 构成的 电分 相模式 ,
达 到 分 相 的 目的 。
三 线 索 关 系
高 与 正 线 接 触 线 等 高 ,正 线 接 触 线 由 原 非 工作 支 变 换 为 工 作 支 。在 转 换 柱
高约 2 O O mm 。
关节转换区≤4 0 %的技术要求 ,也为了 我国电气化铁道接触网通常采用的 在中性无电区保持 良好的弓网关系, 在 锚 段关 节式 电分相有 七跨 式 、八跨式 和 I 关节区内加设了 1 个分相锚段,使分相 九 跨式 3 。其 中 ,七跨 锚段 关节式 电 种 关 节 有 1 段 中性 无 电 区 ,无 电 区段分 分相 用于 郑局京 广线 、广局 广深 线 ;八 相 锚 段作 工作 支 。
一
,
概 述
本文介绍 电气化铁路接 触 囱七跨 锚段 关节
美攥
电气化铁道接触网关节式电分相运营问题分析

除接 触 网上 的 硬 点 ,改 善 弓 网 关 系 , 高列 车 运行速 度 等起 到 良好 提
求 救援 , 响后续列 车运 行 。 影
洛 阳东 疏解 区 下 行 电 分 相 改
造 为七 跨锚 段 关节 式 电分 相后 , 由
于分 相设 置在 疏解 区内 。 疏 解 区 距 下 行 出站信 号 机前 方不 远 , 使 电 致
设置 的 位置 不合 理 ( 坡道 上 、 上 信 号机 前 方 附 近 ) 原 因 , 易 使 列 等 容 车停 在 电分 相无 电 区 内 , 得不 请 不
相绝 缘器 (p e七跨 或八 跨) 两种 。器
件式 电 分相 由三个 绝 缘杆 件 组成 ,
无 电 区总 长 3 O米 ,每个 绝缘 杆 件
跨距 (3— 1O米 )由于列车 通过 15 5 ,
电 分 相 时 要 断 电利 用 惯 性 通 过 无
电区, 如果 电分 相所 处位 置 线路 状 况不 良( 施工 限 速慢 行 ) 或 电分 相 ,
触 网供 电 的馈 线是 不 同相 序 的 , 跨 是 利 用 2个 四跨 绝 缘 锚 段 关 节 的 不 运 同 相供 电 臂 在 接 触 网 的相 交 处 设
在 电分 相 范 围 内 的 承力 索 上 缠 绕 绝 缘热缩 带 。
() 2 电分相 改造 时要 注 意其 位 置与信 号 机 的距离 , 能设 在信 号 不 机前方 太近 的地方 。当电分 相设在 相 当于 车站 的疏解 区内 时 , 其要 尤
系 ; 要 时在列 车进 入 电分 相 的前 必
方 30 0 m处 ,设 置列 车断 电利用 惯 性 通过 电分相 的最低 速度标 。 合 ( ) 改造 七跨 锚 段 关节 式 电 5在 分 相 时适 当增 大 七 跨 锚 段 关 节 式 电分相 内 接触 网的结 构高 度 , 同时
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电气化铁路接触网关节式电分相的研究摘要:本文针对电气化铁路两种较常应用的关节式电分相的特点、存在的问题和解决的方案进行研究。
关键词:电气化、电分相、锚段关节一、关节式电分相的结构特点1.七跨锚段关节式电分相结构分析七跨式绝缘锚断关节式电分相,它是由二个4跨绝缘锚段关节交叉组合而成,从头到尾共有七个跨距,故称七跨锚段关节式电分相。
其原理是利用2个四跨绝缘锚段关节的空气绝缘间隙来达到电分相的目的。
中性区正常情况下不带电(无机车通过时),但不允许接地,其对地仍按25kv电压等级要求绝缘。
一般考虑在关节处行车方向远端设置一台手动隔离开关,以疏导中性区的故障机车。
七跨锚段关节式电分相如图1、2所示。
图1 七跨锚段关节式电分相结构图图2 七跨锚段关节式电分相直线平面图当电力机车准备经过电分相时,机车主断路器打开,受电弓不降弓通过。
电力机车在电分相中性无电区范围内利用中性锚段来作工作支,使受电弓平稳的由一端正线锚段运行到另一端的正线锚段,该中性嵌入线从左侧的中1处变为工作支,到右侧中2处开始抬升,变为非工作支,可保证约有100~150m长的中性区。
机车乘务人员须按照设置的“断”、“合”、电力机车禁“停”标志断、合机车主断路器(如图3、4所示)。
为了保证电力机车正常通过绝缘锚段关节式电分相绝缘器,原则上要求单台受电弓升弓运行,确需多台受电弓同时升弓时,对受电弓间距离应做限制。
图3 下行方向行车标志的设置图 4 上行方向行车标志的设置2.八跨锚段关节式电分相结构分析八跨锚段关节式电分相的结构如图5所示。
图中Z表示直线区段;J表示绝缘锚段关节;ZJ为支柱装配形式。
图 5 八跨锚段关节式电分相的平面图不管是哪种型式,其结构都是利用2个绝缘锚段关节重合1跨或2跨,再增加1个分相锚段组成,即:分相锚段与既有接触网的2个下锚支组成2个绝缘锚段关节并重合2个锚段关节的1跨或2跨,在分相无电区工作范围内利用分相锚段作工作支,而分相锚段与既有锚段间采用相间空气绝缘的装配形式,从而达到分相的目的。
八跨锚段关节式电分相由2个五跨绝缘锚段关节重合2跨组成,它比其他2种多了分相中心柱,其余结构相同。
(1)线索关系八跨锚段关节式电分相的分相锚段及2个正线锚段线索的关系(如图6所示)。
图6 八跨锚段关节式电分相平面布置图八跨锚段关节式电分相的中性无电区约35m;在整个锚段关节内2支接触悬挂的水平间距均为500mm。
2支接触悬挂间空气绝缘间隙应450mm;为满足接触线工作坡度的变化率在正线关节转换区4‰的技术要求,也为了在中性无电区保持良好的弓网关系,在关节区内加设了1个分相锚段,使分相关节有1段中性无电区,无电区段分相锚段作工作支。
在转换柱g,E间和A,b间,分相锚段接触线与正线的接触线等高且比正线标准导高抬高约80mm,在进入过渡区前的转换柱b,g,a,h 处,分相锚段接触线做非工作支处理,采取逐段抬高方式,转换柱b,g处非工作支抬高150mm(若考虑200km时速,可抬高大于160mm),转换柱a~h处非工作支抬高500mm。
即:转换柱A~b,E~g跨非工作支抬高70mm,转换柱a~b、g~h跨抬高350mm。
使线索平滑抬高,便于关节悬挂调整,相邻的绝缘子串距分相中心(图6中D)约为10.5m,D处抬高支距分相锚段接触线抬高500mm。
(2)中性无电区与机车取流的双弓间距关系八跨及其他锚段关节式的中性无电区与电力机车双弓间的距离有关,(如图7所示),八跨锚段关节式电分相中性无电区为35m,该距离应大于单机机车取流的双弓间距,即当机车组2个受电弓之间有高压母线连接时,2个受电弓间的距离必须小于35m。
当机车组的2个受电弓无高压母线连接,2个受电弓间的距离,应小于35m或者大于2绝缘转换柱h,a的绝缘子内侧间的距离(约250m),该距离以及中性无电区的长度均与电分相结构和跨距大小有关。
图7 八跨电分相中性无电区与机车受电弓位置关系示意图通过电分相时,高压母线连通的机车组之间的不同机车禁止同时升弓,机车断合标及禁止双弓标位置(如图8所示)。
中性区正常情况下不带电(无机车通过时),但不允许接地,其对地仍按25kV 电压等级要求绝缘。
可考虑在关节处行车方向远端设置一台手动隔离开关,以疏导中性区的故障机车。
图8 电分相处断合标与禁止双弓标位置示意图二、关节式电分相在运营中存在问题的分析由于锚段关节式电分相(以下简称关节式电分相)由2个绝缘锚段关节组成,消除了器件式电分相存在的硬点大的问题,在我国新建电气化铁路及提速改造中被普遍采用。
第一,由于绝缘锚段关节有三跨、四跨和五跨3种型式,锚段关节跨距长度不同,2个关节的衔接布置也有多种方式,关节式电分相存在四跨、五跨、七跨、八跨、九跨、十跨、十二跨等多种型式,中性区距离也长短不一。
这些关节式电分相的共同特点是均由两个绝缘锚段关节和一段接触网中性区组成。
由于关节式电分相由2处空气绝缘间隙实现电气绝缘,即使是2个电气隔离的受电弓(如多机牵引、电力机车附挂、牵引机车后挂有接触网检测车、多弓运行的电动车组等情况)在受电弓间距不满足限制条件时都有可能造成相间短路。
实际运行中,这类故障已经多次发生。
第二,机车断电迟缓、送电太早或未断电通过分相时均能造成拉弧烧伤、烧断承力索造成事故。
关节式电分相线索烧损原因分析:电力机车在通过七跨锚段关节式电分相时,如果出现机车司机疏忽、麻痹大意,断电不及时、忘记断电或送电太早等原因,均可能造成受电弓拉弧烧伤电分相中性无电区内承力索、导线,严重者甚至烧断承力索。
关节式电分相线索烧损基本是由于中性段和带电导线间产生大电流电弧造成的高温烧损。
线索烧损部位大多集中在第一和第二起弧点跨内和交叉跨内,(如图9)。
其主要原因有以下几点:图9 七跨关节式电分相平面示意图1、电力机车在不断载情况下快速通过电分相时,因拉弧造成弧光相间短路烧损线索。
2、电力机车通过电分相时因过电压造成机车放电间隙击穿,短路电流在中性线和带电线间产生电弧烧损线索,这种故障发生的概率较大。
3、关节式电分相结构参数检调时,中心柱两侧线索及吊弦水平间距设置偏小,各支柱拉出值布置不合理,进行安装调整时通常比照四跨绝缘关节检调,水平间距一般控制在450mm左右,对各支柱拉出值的布置往往只关注于满足水平间隙要求,而忽略了结构稳定。
由于机车受电弓快速通过电分相时必将引起线索振动,吊弦在抬升力的作用下也会松弛鼓肚,这样线索整体摆动量加大,线索间、吊弦间、线索与吊弦间水平距离缩小,极易造成弧光过电压并可能成为电弧长燃的维持通道,进而烧损线索、吊弦。
第三,理论和运行经验都表明,受空气动力的影响,机车在高速运动过程中降、升受电弓对接触网的安全运行非常不利,运行中应尽量避免。
对于高速运行的电动车组,这个问题尤为突出。
三、针对关节式电分相存在问题的改进1、为防止列车停在锚段关节式电分相中性无电区内,确保列车正常运行,在改造电分相时,电分相尽量设置在没有坡道或坡道较小的线路上,同时不能距原分相位置太远;必须设在坡道上时,要考虑电分相所处位置的线路坡度、列车速度和惰性距离的关系;必要时在列车进入电分相的前方300m处,设置列车断电利用惯性通过电分相的最低速度标志。
2、电分相改造时要注意其位置与信号机的距离,不能设在信号机前方太近的地方。
当电分相设在相当于车站的疏解区内时,尤其要注意。
3、为防止电力机车通过七跨锚段关节式电分相时烧伤、烧断电分相中性无电区内承力索,保证供电设备安全,在机车上设置自动断电装置;当电力机车运行至电分相标志牌“T断”牌所在里程时,机车自动断电通过电分相,通过电分相后,合上机车开关继续运行。
4、在改造七跨锚段关节式电分相时适当增大七跨锚段关节式电分相内接触网的结构高度,同时在电分相范围内的承力索上缠绕绝缘热缩带。
防止关节式电分相线索烧损应从以下几个方面采取防范措施:1、根据电力机车运用区段的不同,合理修正车顶放电间隙的距离。
2、完善机车监控仪的功能。
将机车主断路器操作开关分合位置信号接入监控仪进行监控,这可有效地减少司乘人员因不断载过分相造成接触网跳闸及关节分相线索烧损故障的发生。
3、优化关节式电分相各部结构及参数的检调。
对于多次发生上述故障的电分相,必须认真检查各部支柱拉出值布置是否合理,定位器的状态如何。
起弧跨和交叉跨应避免重合,若改动困难,可采取在交叉点处承力索(一侧)上加装绝缘护套,防止烧损承力索。
吊弦布置应尽量采取不对应布置,即相互间错位并有一定的间隔距离,减少燃弧通道。
4、重视关节式电分相绝缘距离的检调。
从现场运行看,有2个环节是至关重要的:一是中心柱线索与相邻水平腕臂、定位管、定位器的最小距离(即绝缘距离)应保证500mm,不能达到的可临时采取在腕臂、定位管上加装绝缘护套来满足绝缘要求;二是相邻线索的水平距离必须保证在500mm以上,这样可以防止机车通过电分相时引起线索、吊弦摆动缩短彼此绝缘距离,为燃弧提供通道,造成息弧困难。
5、加强“2个坡度”的检调,即导线坡度和定位器坡度的调整。
关节处导线坡度应不大于1‰且应以连续坡度设置为宜,相邻点高度差应控制在20~40mm。
定位器坡度的调整也是关节式电分相检调的重点之一,定位器坡度偏小极易形成硬点。
6、使用可调式绝缘吊弦。
由于关节式电分相不具备越区供电的能力,只需考虑机车掉坑后的应急供电,一般电流在500A以下,因此可以将载流整体吊弦更换为绝缘吊弦,减少燃弧通道。
为保证电气回路的畅通和电分相末端电压,可在电分相进、出口处分别加装一组横向电连接。
综上所述,造成关节式电分相线索烧损的主要原因是机车不断载过电分相和过电压致使机车放电间隙击穿造成的电弧烧损。
对于前者,应加快关节式电分相配套设施的建设,即地面感应式机车自动断载装置的安装使用;对于后者,由于过电压发生的概率较大,随机性较强,且目前还缺乏对过电压的有效抑制手段,因此必须从关节式电分相的结构优化和参数检调入手。
只有多种措施并用,才能有效防范线索烧损故障的发生,提高关节式电分相的安全运行性能。