高中数学新课程创新教学设计案例50篇 31 角的概念的推广

合集下载

高中数学新课程创新教学设计案例 角的概念的推广

高中数学新课程创新教学设计案例 角的概念的推广

31 角的概念的推广教材分析这节课主要是把学生学习的角从不大于周角的非负角扩充到任意角,使角有正角、负角和零角.首先通过生产、生活的实际例子阐明了推广角的必要性和实际意义,然后又以“动”的观点给出了正、负、零角的概念,最后引入了几个与之相关的概念:象限角、终边相同的角等.在这节课中,重点是理解任意角、象限角、终边相同的角等概念,难点是把终边相同的角用集合和符号语言正确地表示出来.理解任意角的概念,会在平面内建立适当的坐标系,通过数形结合来认识角的几何表示和终边相同的角的表示,是学好这节的关键.教学目标1. 通过实例,体会推广角的必要性和实际意义,理解正角、负角和零角的定义.2. 理解象限角的概念、意义及表示方法,掌握终边相同的角的表示方法.3. 通过对“由一点出发的两条射线形成的图形”到“射线绕着其端点旋转而形成角”的认识过程,使学生感受“动”与“静”的对立与统一.培养学生用运动变化的观点审视事物,用对立统一规律揭示生活中的空间形式和数量关系.任务分析这节课概念很多,应尽可能让学生通过生活中的例子(如钟表上指针的转动、体操运动员的转体、自行车轮子上的某点的运动等)了解引入任意角的必要性及实际意义,变抽象为具体.另外,可借助于多媒体进行动态演示,加深学生对知识的理解和掌握.教学设计一、问题情境[演示]1. 观览车的运动.2. 体操运动员、跳台跳板运动员的前、后转体动作.3. 钟表秒针的转动.4. 自行车轮子的滚动.[问题]1. 如果观览车两边各站一人,当观览车转了两周时,他们观察到的观览车上的某个座位上的游客进行了怎样的旋转,旋转了多大的角2. 在运动员“转体一周半动作”中,运动员是按什么方向旋转的,转了多大角3. 钟表上的秒针(当时间过了时)是按什么方向转动的,转动了多大角4. 当自行车的轮子转了两周时,自行车轮子上的某一点,转了多大角显然,这些角超出了我们已有的认识范围.本节课将在已掌握的0°~360°角的范围的基础上,把角的概念加以推广,为进一步研究三角函数作好准备.二、建立模型1. 正角、负角、零角的概念在平面内,一条射线绕它的端点旋转有两个方向:顺时针方向和逆时针方向.习惯上规定,按逆时针旋转而成的角叫作正角;按顺时针方向旋转而成的角叫作负角;当射线没有旋转时,我们也把它看成一个角,叫作零角.2. 象限角当角的顶点与坐标原点重合、角的始边与x轴正半轴重合时,角的终边在第几象限,就把这个角叫作第几象限的角.如果角的终边在坐标轴上,就认为这个角不属于任何象限.3. 终边相同的角在坐标系中作出390°,-330°角的终边,不难发现,它们都与30°角的终边相同,并且这两个角都可以表示成0°~360°角与k个(k∈Z)周角的和,即390°=30°+360°,(k=1);-330°=30°-360°,(k=-1).设S={β|β=30°+k·360°,k∈Z},则390°,-330°角都是S中的元素,30°角也是S中的元素(此时k=0).容易看出,所有与30°角终边相同的角,连同30°角在内,都是S中的元素;反过来,集合S中的任一元素均与30°角终边相同.一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合:S={β|β=α+k·360°,k∈Z},即任一与α终边相同的角,都可以表求成角α与整数个周角的和.三、解释应用[例题]1. 在0°~360°范围内,找出与下列各角终边相同的角,并判断它们是第几象限的角.(1)-150°.(2)650°.(3)-950°5′.2. 分别写出与下列角终边相同的角的集合S,并把S中适合不等式-360°≤β<720°的元素写出来.(1)60°.(2)-21°.(3)363°14′.3. 写出终边在y轴上的角的集合.解:在0°~360°范围内,终边在y轴上的角有两个,即90°,270°.因此,与这两个角终边相同的角构成的集合为S1={β|β=90°+k·360°,k∈Z}={β|β=90°+2k·180°,k∈Z},而所有与270°角终边相同的角构成的集合为S2={β|β=270°+k·360°,k∈Z}={β|β=90°+(2k+1)·180°,k∈Z}.于是,终边在y轴上的角的集合为S=S1∪S2={β|β=90°+2k·180°,k∈Z}∪{β|β=90°+(2k+1)·180°,k∈Z}={β|β=90°+n·180°,n∈Z}.注:会正确使用集合的表示方法和符号语言.[练习]1. 写出与下列各角终边相同的角的集合,并把集合中适合不等式-720°≤β<360°的元素β写出来.(1)45°.(2)-30°.(3)420°.(4)-225°.2. 辨析概念.(分别用集合表示出来)(1)第一象限角.(2)锐角.(3)小于90°的角.(4)0°~90°的角.3. 一角为30°,其终边按逆时针方向旋转三周后的角度数为.4. 终边在x轴上的角的集合为;终边在第一、三象限的角的平分线上的角集合为.四、拓展延伸1. 若角α与β终边重合,则α与β的关系是;若角α与β的终边互为反向延长线,则角α与β的关系是.2. 如果α在第二象限时,那么2α,是第几象限角注:(1)不能忽略2α的终边可能在坐标轴上的情况.(2)研究在哪个象限的方法:讨论k的奇偶性.(如果是呢)点评这篇案例运用多媒体展示了生活中常见的实例,极易激发学生学习的兴趣和热情.在对知识的探讨过程中,特别注意了知识的形成过程,重点突出.例题的设置比较典型,难易度适中.练习题注重基础,但也有一定的梯度,利于培养学生灵活处理问题的能力,并为学生学习以后章节做了较好的铺垫.。

高中数学新课程创新教学设计案例角的概念的推广

高中数学新课程创新教学设计案例角的概念的推广

31 角的概念的推广教材分析这节课主要是把学生学习的角从不大于周角的非负角扩充到任意角,使角有正角、负角和零角.首先通过生产、生活的实际例子阐明了推广角的必要性和实际意义,然后又以“动”的观点给出了正、负、零角的概念,最后引入了几个与之相关的概念:象限角、终边相同的角等.在这节课中,重点是理解任意角、象限角、终边相同的角等概念,难点是把终边相同的角用集合和符号语言正确地表示出来.理解任意角的概念,会在平面内建立适当的坐标系,通过数形结合来认识角的几何表示和终边相同的角的表示,是学好这节的关键.教学目标1. 通过实例,体会推广角的必要性和实际意义,理解正角、负角和零角的定义.2. 理解象限角的概念、意义及表示方法,掌握终边相同的角的表示方法.3. 通过对“由一点出发的两条射线形成的图形”到“射线绕着其端点旋转而形成角”的认识过程,使学生感受“动”与“静”的对立与统一.培养学生用运动变化的观点审视事物,用对立统一规律揭示生活中的空间形式和数量关系.任务分析这节课概念很多,应尽可能让学生通过生活中的例子(如钟表上指针的转动、体操运动员的转体、自行车轮子上的某点的运动等)了解引入任意角的必要性及实际意义,变抽象为具体.另外,可借助于多媒体进行动态演示,加深学生对知识的理解和掌握.教学设计一、问题情境[演示]1. 观览车的运动.2. 体操运动员、跳台跳板运动员的前、后转体动作.3. 钟表秒针的转动.4. 自行车轮子的滚动.[问题]1. 如果观览车两边各站一人,当观览车转了两周时,他们观察到的观览车上的某个座位上的游客进行了怎样的旋转,旋转了多大的角?2. 在运动员“转体一周半动作”中,运动员是按什么方向旋转的,转了多大角?3. 钟表上的秒针(当时间过了1.5min时)是按什么方向转动的,转动了多大角?4. 当自行车的轮子转了两周时,自行车轮子上的某一点,转了多大角?显然,这些角超出了我们已有的认识范围.本节课将在已掌握的0°~360°角的范围的基础上,把角的概念加以推广,为进一步研究三角函数作好准备.二、建立模型1. 正角、负角、零角的概念在平面内,一条射线绕它的端点旋转有两个方向:顺时针方向和逆时针方向.习惯上规定,按逆时针旋转而成的角叫作正角;按顺时针方向旋转而成的角叫作负角;当射线没有旋转时,我们也把它看成一个角,叫作零角.2. 象限角当角的顶点与坐标原点重合、角的始边与x轴正半轴重合时,角的终边在第几象限,就把这个角叫作第几象限的角.如果角的终边在坐标轴上,就认为这个角不属于任何象限.3. 终边相同的角在坐标系中作出390°,-330°角的终边,不难发现,它们都与30°角的终边相同,并且这两个角都可以表示成0°~360°角与k个(k∈Z)周角的和,即390°=30°+360°,(k=1);-330°=30°-360°,(k=-1).设S={β|β=30°+k·360°,k∈Z},则390°,-330°角都是S中的元素,30°角也是S中的元素(此时k =0).容易看出,所有与30°角终边相同的角,连同30°角在内,都是S中的元素;反过来,集合S中的任一元素均与30°角终边相同.一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合:S={β|β=α+k·360°,k∈Z},即任一与α终边相同的角,都可以表求成角α与整数个周角的和.三、解释应用[例题]1. 在0°~360°范围内,找出与下列各角终边相同的角,并判断它们是第几象限的角.(1)-150°.(2)650°.(3)-950°5′.2. 分别写出与下列角终边相同的角的集合S,并把S中适合不等式-360°≤β<720°的元素写出来.(1)60°.(2)-21°.(3)363°14′.3. 写出终边在y轴上的角的集合.解:在0°~360°范围内,终边在y轴上的角有两个,即90°,270°.因此,与这两个角终边相同的角构成的集合为S1={β|β=90°+k·360°,k∈Z}={β|β=90°+2k·180°,k∈Z},而所有与270°角终边相同的角构成的集合为S2={β|β=270°+k·360°,k∈Z}={β|β=90°+(2k+1)·180°,k∈Z}.于是,终边在y轴上的角的集合为S=S1∪S2={β|β=90°+2k·180°,k∈Z}∪{β|β=90°+(2k+1)·180°,k∈Z}={β|β=90°+n·180°,n∈Z}.注:会正确使用集合的表示方法和符号语言.[练习]1. 写出与下列各角终边相同的角的集合,并把集合中适合不等式-720°≤β<360°的元素β写出来.(1)45°.(2)-30°.(3)420°.(4)-225°.2. 辨析概念.(分别用集合表示出来)(1)第一象限角.(2)锐角.(3)小于90°的角.(4)0°~90°的角.3. 一角为30°,其终边按逆时针方向旋转三周后的角度数为.4. 终边在x轴上的角的集合为;终边在第一、三象限的角的平分线上的角集合为.四、拓展延伸1. 若角α与β终边重合,则α与β的关系是;若角α与β的终边互为反向延长线,则角α与β的关系是.2. 如果α在第二象限时,那么2α,是第几象限角?注:(1)不能忽略2α的终边可能在坐标轴上的情况.(2)研究在哪个象限的方法:讨论k的奇偶性.(如果是呢?)点评这篇案例运用多媒体展示了生活中常见的实例,极易激发学生学习的兴趣和热情.在对知识的探讨过程中,特别注意了知识的形成过程,重点突出.例题的设置比较典型,难易度适中.练习题注重基础,但也有一定的梯度,利于培养学生灵活处理问题的能力,并为学生学习以后章节做了较好的铺垫.。

高中数学新课程创新教学设计案例50篇__34_诱导公式

高中数学新课程创新教学设计案例50篇__34_诱导公式

诱导公式的应用教材分析这节内容以学生在初中已经学习了锐角的三角函数值为基础,利用单位圆和三角函数的定义,导出三角函数的五组诱导公式,即有关角k·360°+α,180°+α,-α,180°-α,360°-α的公式,并通过运用这些公式,把求任意角的三角函数值转化为求锐角的三角函数值,从而渗透了把未知问题化归为已知问题的化归思想.这节课的重点是后四组诱导公式以及这五组公式的综合运用.把这五组公式用一句话归纳出来,并切实理解这句话中每一词语的含义,是切实掌握这五组公式的难点所在.准确把握每一组公式的意义及其中符号语言的特征,并且把公式二、三与图形对应起来,是突破上述难点的关键.教学目标1. 在教师的引导下,启发学生探索发现诱导公式及其证明,培养学生勇于探求新知、善于归纳总结的能力.2. 理解并掌握正弦、余弦、正切的诱导公式,并能应用这些公式解决一些求值、化简、证明等问题.3. 让学生体验探索后的成功喜悦,培养学生的自信心.4. 使学生认识到转化“矛盾”是解决问题的有效途径,进一步树立化归思想.任务分析诱导公式的重要作用之一就是把求任意角的三角函数值转化为求锐角的三角函数值.在五组诱导公式中,关于180°+α与-α的诱导公式是最基本的,也是最重要的.在推导这两组公式时,应放手让学生独立探索,寻求“180°+α与角α的终边”及“-α与角α的终边”之间的位置关系,从而完成公式的推导.此外,要把90°~360°范围内的三角函数转化为锐角的三角函数,除了利用第二、四、五个公式外,还可以利用90°+α,270°±α与α的三角函数值之间的关系.应引导学生在掌握前五组诱导公式的基础上进一步探求新的关系式,从而使学生在头脑中形成完整的三角函数的认知结构.教学设计一、问题情境教师提出系列问题1. 在初中我们学习了求锐角的三角函数值,现在角的概念已经推广到了任意角,能否把任意角的三角函数值转化为锐角的三角函数值呢?2. 当α=390°时,能否求出它的正弦、余弦和正切值?3. 由2你能否得出一般性的结论?试说明理由.二、建立模型1. 分析1在教师的指导下,学生独立推出公式(一),即2. 应用1在公式的应用中让学生体会公式的作用,即把任意角的三角函数值转化为0°~360°范围内的角的三角函数值.练习:求下列各三角函数值.(1)cosπ.(2)tan405°.3. 分析2如果能够把90°~360°范围内的角的三角函数值转化为锐角的三角函数值,即可实现“把任意角的三角函数值转化为锐角的三角函数值”的目标.例如,能否将120°,240°,300°角与我们熟悉的锐角建立某种联系,进而求出其余弦值?引导学生利用三角函数的定义并借助图形,得到如下结果:cos120°=cos(180°-60°)=-cos60°=-,cos240°=cos(180°+60°)=-cos60°=-,cos300°=cos(360°+60°)=cos60°=.4. 分析3一般地,cos(180°+α),cos(180°-α),cos(360°-α)与cosα的关系如何?你能证明自己的结论吗?由学生独立完成下述推导:设角α的终边与单位圆交于点P(x,y).由于角180°+α的终边就是角α的终边的反向延长线,则角180°+α的终边与单位圆的交点P′与点P关于原点O对称.由此可知,点P′的坐标是(-x,-y).又∵单位圆的半径r=1,∴cosα=x,sinα=y,tanα=,cos(180°+α)=-x,sin (180°+α)=-y,tan(180°+α)=.从而得到:5. 分析4在推导公式三时,学生会遇到如下困难,即:若α为任意角,180°-α与角α的终边的位置关系不容易判断.这时,教师可引导学生借助公式二,把180°-α看成180°+(-α),即:先把180°-α的三角函数值转化为-α的三角函数值,然后通过寻找-α的三角函数值与α的三角函数值之间的关系,使原问题得到解决.由学生独立完成如下推导:如图,设任意角α的终边与单位圆相交于P(x,y),角-α的终边与单位圆相交于点P′.∵这两个角的终边关于x轴对称,∴点P′的坐标是(x,-y).又∵r=1,∴cos(-α)=x,sin(-α)=-y,tan(-α)=从而得到:进而推出:注:在问题的解决过程中,教师要注意让学生充分体验成功的快乐.6. 教师归纳公式(一)、(二)、(三)、(四)、(五)都叫作诱导公式,利用它们可以把k·360°+α,180°±α,-α,360°-α的三角函数转化为α的三角函数.那么,在转化过程中,发生了哪些变化?这种变化是否存在着某种规律?引导学生进行如下概括:α+k·360°(k∈Z),-α,180°±α,360°-α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号.为了便于记忆,还可编成一句口诀“函数名不变,符号看象限”.三、解释应用[例题]1. 求下列各三角函数值.通过应用,让学生体会诱导公式的作用:①把任意角的三角函数转化为锐角三角函数,其一般步骤为评注:本题中,若代入cosα·cot3α形式,就须先求得cosα的值.由于不能确定角α所在象限,解题过程将变得烦锁.以此提醒学生注意选取合理形式解决问题.四、拓展延伸教师出示问题:前面我们利用三角函数的定义及对称性研究了角α+k·360°(k∈Z),-α,180°±α,360°-α的三角函数与角α的三角函数之间的关系,这些角有一个共同点,即:均为180°的整数倍加、减α.但是,在解题过程中,还会遇到另外的情况,如前面遇到的120°角,它既可以写成180°-60°,也可以写成90°+30°,那么90°+α的三角函数与α的三角函数有着怎样的关系呢?学生探究:经过独立探求后,有学生可能会得到如下结果:设角α的终边与单位圆交于点P(x,y),角90°+α的终边与单位圆交于点P′(x′,y′)(如图),则cosα=x,sinα=y,cos(90°+α)=x′,sin(90°+α)=y′.过P作PM⊥x轴,垂足为M,过P′作P′M′⊥y轴,垂足为M′,则△OPM≌△OP′M′,∴OM=OM′,MP=M′P′,即x=y′,y=x′.进而得到cos(90°+α)=sinα,sin(90°+α)=cosα.对此结论和方法,教师不宜作任何评论,而应放手让学生展开辩论和交流,最后得到正确结果:由于OM与OM′,MP与M′P′仅是长度相等,而当点P在第一象限时,P′在第二象限,∴x′<0,y′>0,又∵x>0,y>0,∴x′=-y,y′=x.从而得到:教师进一步引导:(1)推导上面的公式时,利用了点P在第一象限的条件.当点P不在第一象限时,是否仍有上面的结论?(通过多媒体演示角α的终边在不同象限的情景,使学生理解公式六中的角α可以为任意角)(2)推导公式六时,采用了初中的平面几何知识.是否也能像推导前五组公式那样采用对称变换的方式呢?学生探究:学生先针对α为锐角时的情况进行探索,再推广到α为任意角的情形.设角α的终边与单位圆交点为P(x,y),+α的终边与单位圆的交点为P′(x′,y′)(如图).由于角α的终边经过下述变换:2(-α)+2a=,即可得到+α的终边.这是两次对称变换,即先作P关于直线y=x的对称点M(y,x),再作点M关于y轴的对称点P′(-y,-x),∴x′=-y,y′=x.由此,可进一步得到:教师归纳:公式六、七、八、九也称作诱导公式,利用它们可以把90°±α,270°±α的三角函数转化为α的三角函数.引导学生总结出:90°±α,270°±α的三角函数值等于α的余名函数值,前面加上一个把α看成锐角时原函数值的符号.两套公式合起来,可统一概括为对于k·90°±α(k∈Z)的各三角函数值,当k为偶数时,得α的同名函数值;当k为奇数时,得α的余名函数值.然后,均在前面加上一个把α看成锐角时原函数值的符号.为了便于记忆,也可编成口诀:“奇变偶不变,符号看象限”.点评这篇案例从学生的实际出发,充分尊重学生的思维特点,通过创设问题情境,引发认知冲突,较好地调动了学生的积极性和主动性,符合新课程理念的精神.在教学设计中,教师以学生活动为主,注意师生互动,体现学生的自主学习.实际的课堂教学表明,在教学过程中,教师对每名同学的发言都给以充分地鼓励,即使他的解法不完美,甚至不正确.这对保护学生大胆尝试、认真思考的积极性至关重要.只有这样,才能将教学效果落实到学生个体的学习行为上,进而实现预期的教学目标.总之,这篇案例的突出特点就是,注意通过问题驱动的方式,激发学生主动探究的热情,完成五组诱导公式的推导.缺陷是,在关注五组诱导公式推导的“一气呵成”的同时,巩固、强化工作显得单薄.这是一对棘手的矛盾!。

《角的概念的推广》——教学设计方案-

《角的概念的推广》——教学设计方案-

角的概念的推广教学设计扶风县第二高中冯海平一、教学内容解析:1.本节课的主要内容是角的概念的推广,主要是运用运动观点来定义和理解角,即用角的始边和终边及旋转方向来定义任意角,从而达到对角的概念的推广。

2.地位和作用:本节内容是高中数学北师大版必修四第一章三角函数的第二节,是对初中锐角三角函数的一个延伸和推广,主要是推广到任意角三角函数。

本节课《角的概念的推广》就起到了一个铺垫的作用。

它是学习任意角的三角函数必备的知识。

二、教学目标设置1.知识与技能(1)理解为什么要推广角的概念,怎样来推广,理解并掌握正角、负角、零角的定义(2)理解任意角、象限角的概念;掌握所有与α角终边相同的角(包括α角)的表示方法;会判断是哪个象限角还是终边在坐标轴上的角(3)类比初中所学的角的概念,以前所学角的概念是从静止的观点阐述,现在是从运动的观点阐述,进行角的概念推广2.过程与方法(1)借助图片、视频、实物演示、动手绘制角等手段,让学生充分体会到多媒体等手段对数学教学的作用。

(2)在老师的引导、及时评价下,同学之间的互相评价下,学生积极探究知识的形成过程。

3.情感、态度与价值观(1)通过本节的学习,让学生意识到数学来源于生活,服务于生活,激发学习数学的兴趣。

(2)体会数形结合思想,学会运用运动变化的观点认识事物.(3)通过课堂上的学生自评、互评,教师评价,培养学生竞争意识和团队合作意识,锻炼学生的语言表达能力,提高分析问题和解决问题的能力。

重、难点突破措施:采用看图片,视频,列举生活中的实例等多种形式来理解为什么要推广角的概念?怎样来推广?这两个问题。

借助电子白板和几何画板让同学做角,来感受现在的角是动态的。

再用几何画板展示终边相同的角的产生过程,从而理解终边相同的角不是一个而是无数个,这些角可以组成一个集合。

这样会形象直观理解这些抽象的概念,并且产生了深刻的印象。

三、学情分析高一学生因为在初中学习时,学习态度,学习方法,学习能力的不同,知识掌握程度参差不齐,两级分化已经形成,但普遍储备了一定感性具体的数学问题情境,在初中,学生学习了角的定义,角的范围很窄。

高中数学新课程创新教学设计案例50篇__30_几何概型

高中数学新课程创新教学设计案例50篇__30_几何概型

30 几何概型教材分析和古典概型一样,在特定情形下,我们可以用几何概型来计算事件发生的概率.它也是一种等可能概型.教材首先通过实例对比概念给予描述,然后通过均匀随机数随机模拟的方法的介绍,给出了几何概型的一种常用计算方法.与本课开始介绍的P(A)的公式计算方法前后对应,使几何概型这一知识板块更加系统和完整.这节内容中的例题既通俗易懂,又具有代表性,有利于我们的教与学生的学.教学重点是几何概型的计算方法,尤其是设计模型运用随机模拟方法估计未知量;教学难点是突出用样本估计总体的统计思想,把求未知量的问题转化为几何概型求概率的问题.教学目标1. 通过这节内容学习,让学生了解几何概型,理解其基本计算方法并会运用.2. 通过对照前面学过的知识,让学生自主思考,寻找几何概型的随机模拟计算方法,设计估计未知量的方案,培养学生的实际操作能力.3. 通过学习,让学生体会试验结果的随机性与规律性,培养学生的科学思维方法,提高学生对自然界的认知水平.任务分析在这节内容中,介绍几何概型主要是为了更广泛地满足随机模拟的需要,因此,教学重点是随机模拟部分.这节内容的教学需要一些实物模型作为教具,如教科书中的转盘模型、例2中的随机撒豆子的模型等.教学中应当注意让学生实际动手操作,以使学生相信模拟结果的真实性,然后再通过计算机或计算器产生均匀随机数进行模拟试验,得到模拟的结果.随机模拟的教学中要充分使用信息技术,让学生亲自动手产生随机数,进行模拟活动.有条件的学校可以让学生用一种统计软件统计模拟的结果.教学设计一、问题情境如图,有两个转盘.甲、乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜.问题:在下列两种情况下分别求甲获胜的概率.二、建立模型1. 提出问题首先引导学生分析几何图形和甲获胜是否有关系,若有关系,和几何体图形的什么表面特征有关系?学生凭直觉,可能会指出甲获胜的概率与扇形弧长或面积有关.即:字母B 所在扇形弧长(或面积)与整个圆弧长(或面积)的比.接着提出这样的问题:变换图中B 与N的顺序,结果是否发生变化?(教师还可做出其他变换后的图形,以示决定几何概率的因素的确定性).题中甲获胜的概率只与图中几何因素有关,我们就说它是几何概型.注意:(1)这里“只”非常重要,如果没有“只”字,那么就意味着几何概型的概率可能还与其他因素有关,这是错误的.(2)正确理解“几何因素”,一般说来指区域长度(或面积或体积).2. 引导学生讨论归纳几何概型定义,教师明晰———抽象概括如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.在几何概型中,事件A的概率的计算公式如下:3. 再次提出问题,并组织学生讨论(1)情境中两种情况下甲获胜的概率分别是多少?(2)在500ml的水中有一个草履虫,现从中随机取出2ml水样放到显微镜下观察,求发现草履虫的概率.(3)某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10min的概率.通过以上问题的研讨,进一步明确几何概型的意义及基本计算方法.三、解释应用[例题]1. 假设你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,而你父亲离开家去工作的时间在早上7:00~8:00之间,问你父亲在离开家前能得到报纸(称为事件A)的概率是多少.分析:我们有两种方法计算事件的概率.(1)利用几何概型的公式.(2)利用随机模拟的方法.解法1:如图,方形区域内任何一点的横坐标表示送报人送到报纸的时间,纵坐标表示父亲离开家去工作的时间.假设随机试验落在方形内任一点是等可能的,所以符合几何概型的条件.根据题意,只要点落到阴影部分,就表示父亲在离开家前能得到报纸,即事件A 发生,所以解法2:设X,Y是0~1之间的均匀随机数.X+6.5表示送报人送到报纸的时间,Y +7表示父亲离开家去工作的时间.如果Y+7>X+6.5,即Y>X-0.5,那么父亲在离开家前能得到报纸.用计算机做多次试验,即可得到P(A).教师引导学生独立解答,充分调动学生自主设计随机模拟方法,并组织学生展示自己的解答过程,要求学生说明解答的依据.教师总结,并明晰用计算机(或计算器)产生随机数的模拟试验.强调:这里采用随机数模拟方法,是用频率去估计概率,因此,试验次数越多,频率越接近概率.2. 如图,在正方形中随机撒一大把豆子,计算落在圆中的豆子数与落在正方形中的豆子数之比,并以此估计圆周率的值.解:随机撒一把豆子,每个豆子落在正方形内任何一点是等可能的,落在每个区域的豆子数与这个区域的面积近似成正比,即假设正方形的边长为2,则由于落在每个区域的豆子数是可以数出来的,所以这样就得到了π的近似值.另外,我们也可以用计算器或计算机模拟,步骤如下:(1)产生两组0~1区间的均匀随机数,a1=RAND,b1=RAND;(2)经平移和伸缩变换,a=(a1-0.5)*2,b=(b1-0.5)*2;(3)数出落在圆内a2+b2<1的豆子数N1,计算(N代表落在正方形中的豆子数).可以发现,随着试验次数的增加,得到π的近似值的精度会越来越高.本例启发我们,利用几何概型,并通过随机模拟法可以近似计算不规则图形的面积.[练习]1. 如图30-4,如果你向靶子上射200镖,你期望多少镖落在黑色区域.2. 利用随机模拟方法计算图30-5中阴影部分(y=1和y=x2围成的部分)的面积.3. 画一椭圆,让学生设计方案,求此椭圆的面积.四、拓展延伸1. “概率为数…0‟的事件是不可能事件,概率为1的事件是必然事件”,这句话从几何概型的角度还能成立吗?2. 你能说一说古典概型和几何概型的区别与联系吗?3. 你能说说频率和概率的关系吗?点评这篇案例设计完整,整体上按知识难易逐渐深入,同时充分调动了学生的积极性,以学生之间互动为主,教师引导为辅.例题既有深化所学知识的,又有应用所学知识的.“拓展延伸”既培养了学生的思维能力,又有利于学生从总体上把握这节课所学的知识.。

角的概念的推广(教学设计)

角的概念的推广(教学设计)

§2 角的概念的推广【教学目标】1.通过实例,理解角的概念推广的必要性,了解任意角的概念,根据角的旋转方向,能判断正角、负角和零角;2.学会建立直角坐标系来讨论任意角,理解象限角的定义,掌握终边相同角的表示方法;3.通过观察、联想得出相应的数学规律的学习过程,体会由特殊到一般的数学思维方法. 【教学重点】1.了解任意角的概念,初步理解正角、负角、零角、象限角、终边相同的角的概念;2.初步学会终边相同的角的表示方法.【教学难点】终边相同的角的集合的表示方法.【教学方法】六环节分层导学法【课前准备】(学案导学)教师编印导学案,提前两天下发,指导学生完成并检查.学生预习教材P6-8相关内容,完成优化设计基础知识梳理部分和导学案自主学习部分内容,形成对角的概念的推广的初步认识;学有余力的同学尝试完成优化设计典型例题领悟部分和导学案合作探究部分,至少明确本节课的研究主线.(小组交流)学生分组交流讨论,分享自己的学习心得,解决个别同学存在的困惑,共同梳理出自己小组存在的问题,以便在课堂上得到及时解决。

(检查反馈)学生自主学习能力比较差,主要存在以下问题:1)书写不够规范,角的单位“°”容易漏写;2)思维不够严谨,审题不仔细,做题往往不注意条件;3)终边相同的角的表示方法掌握不熟练;4)概念辨析缺乏方法.完成较好的学生有:白焕焕、杨宇、杨强、何楠.【教学过程】一、导入新课初中阶段我们学习了“角的概念”,请大家思考一下问题:(1)初中学过的角是如何定义的,角的范围又是怎样的?(2)跳水运动员在空中身体的旋转周数如何用角度来表示?(3)汽车在前进和后退中,车轮转动的角度如何表示才合理?(4)工人师傅在拧紧或拧松螺丝时,扳手转动的角度如何表示比较合适?学生围绕以上问题进行讨论,从而得出正角、负角和任意角的有关概念.教师对学生的回答进行总结,并强调:在日常生活中,我们经常要遇到大于360°的角及按不同方向旋转而成的角,这些都说明了我们研究推广角的概念的必要性. 之后提出本节课的主要问题,即在初中学习的基础上,将角的概念推广到任意角.【板书】角的概念的推广二、展示评价学生以组推荐代表展示导学案的完成情况,并回答问题:本节课中学习了哪些新概念,这些概念分别是如何定义的?其他同学补充完善,不同组别之间展开交流点评,教师根据学生的回答情况进行板书,并点拨、激励、评价.展示形式:实物投影展示导学案的完成情况,口头表述回答教师所提问题.三、导引探究教师引导学生重点探究象限角的判定与终边相同角的表示方法,学会建立直角坐标系来讨论任意角,理解象限角的定义,掌握终边相同角的表示方法.探究1:判断角所在象限例1在0°~360°之间,找出与下列各角终边相同的角,并分别指出它们是第几象限角:(1)480°;(2)-760°;(3)932°;归纳小结:判断角α所在象限的方法:先在0°~360°之间,找出与所求角终边相同的角β,因为α与β终边相同,因此只需判断角β所在象限,即为角α所在象限.跟踪训练1:象限角的概念:第一象限角的集合可表示为____________ ______;第二象限角的集合可表示为_________ ________ _;第三象限角的集合可表示为;第四象限角的集合可表示为.跟踪训练2:锐角是第几象限角?第一象限的角都是锐角吗?探究2:终边相同的角的表示方法例2写出与60°终边相同的角的集合S,并把S中适合不等式-360°≤β<720°的元素写出来.归纳小结:一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k×360°,k∈Z}.跟踪训练3:在直角坐标系中,写出终边在y轴上的角的集合(用0°~360°表示)四、当堂检测学生独立完成导学案巩固提高部分,教师巡视学生完成情况,检测学生学习效果.五、课堂小结师生共同回顾本节课的相关概念,总结解题方法1.正角、负角、零角2.象限角和终边相同的角3.角所在象限的判定和终边相同的角的表示方法六、作业布置习题1-2 第2,3题【教学反思】本节课是北师大版必修4第一章第二节的内容,是在初中的基础上进一步学习角的概念,是学好三角函数的基础. 本节课使用的方法是六环节分层导学法,由学生先课前预习,完成导学案,小组进行交流学习,课堂由学生展示和教师引导的课堂探究以及当堂检测组成. 由于学生课前预习的过程中存在较大的问题,自主学习能力较差,学习的主动性不够,获取信息的能力较弱,导致学生课前完成的导学案问题较多,影响了课堂展示评价环节的进行,再加上教师对六环节分层导学模式的应用不够熟练,导致课堂评价展示环节流于形式,变成教师的“满堂解释”,导引探究部分,教师引导学生对角所在象限的判断和终边相同的角的表示方法进行探究,学生基本能掌握两种方法,但理解不够,动手能力还不好. 最后由于时间把握不好,当堂检测部分未能按时完成. 这节课基本上完成了教学任务,但是没能很好的体现六环节分层导学模式,今后在教学中将会对这种教学模式进行进一步的探究,以期能熟练应用这种教学模式进行教学,提升教学效率.。

角的概念的推广——教学设计

角的概念的推广——教学设计

角的概念的推广——教学设计教学设计:角的概念的推广教学目标:1.学生能够理解角的概念,并能够准确地描述和命名角;2.学生能够辨别和比较不同角的大小,并能用恰当的符号表示;3.学生能够运用角的概念解决问题,并能够将其应用于实际生活中。

教学重点:1.角的概念、特征及其命名;2.角的比较和大小;3.角的应用。

教学准备:1.教师准备一些图形卡片,上面画有不同角度的图形;2.教师准备一些实际生活中的例子,以便能够运用角的概念进行解决。

教学过程:第一步:导入新知识(15分钟)1.教师将一些图形卡片发给学生,让学生观察卡片上的图形,并思考里面有哪些角;2.学生观察完毕后,教师进行小组讨论,让学生与同组的同学分享自己的观察结果;3.教师搜集学生的观察结果,让不同小组的学生来分享他们观察到的角。

第二步:角的概念及其命名(20分钟)1.教师向学生介绍角的概念,即由两条射线共同端点所形成的图形;2.教师向学生展示不同类型的角,如锐角、直角、钝角和平角,并让学生辨别不同类型的角;3.教师解释每一种角的特征,并给学生演示如何正确地命名角;4.学生进行练习,辨别不同类型的角,并准确地命名它们。

第三步:角的比较和大小(25分钟)1.教师向学生介绍角的大小的比较,并说明使用符号进行表示;2.教师演示如何比较和表示不同角的大小,例如通过测量两个角的度数进行比较;3.学生进行练习,比较不同角的大小,并用符号表示;4.教师与学生进行讨论,确保学生理解了角的大小的比较和表示方式的正确方法。

第四步:角的应用(25分钟)1.教师向学生介绍角的应用,并提供一些实际生活中的例子;2.学生通过实际生活中的例子,运用角的概念进行解决,如角的测量、角的绘制等;3.学生进行小组讨论,分享他们的解决方法和结果;4.教师与学生进行总结和复习,确保学生掌握了角的概念的推广。

第五步:课堂小结(15分钟)1.教师对本节课的内容进行小结,复习角的概念、特征及其命名;2.学生向教师提问,澄清疑惑;3.教师布置角的概念的推广的作业。

高中数学示范教案一:角的概念的推广

高中数学示范教案一:角的概念的推广
生:(跃跃欲试,但苦于无法).
师:这个函数式的最值我们会求!但现在还不行,待我们再学习一些基础知识之后,这个问题便可迎刃而解,并且生丙的这个办法比生甲的办法要简便的多(同学们有了进一步获取知识的欲望),下面我们就来学习、研究与我们生活密切相关的、解决问题十分便利的、并且在各门科学技术中有着广泛应用的重要的基础知识(板书课题).
第四章 三角函数
一、任意角的三角函数
§4.1.1 角的概念的推广(一)
规定:一条射线绕着它的端点按逆时针方向旋转形成的角叫做正角.
按顺时针方向旋转形成的角叫做负角.
没有做任何旋转形成一个零角.
使角的顶点与原点重合,角的始边与x轴的非负半轴重合.那么角的终边落在第几象限,这个角就是第几象限角.
若角的终边落在坐标轴上,则这个角不属于任一象限.
师:好,千万不能求出x、y的值就“收兵”,致使半途而废;解决这个问题,谁还有不同的方法?
生丙:设矩形的面积为S,∠AOB=θ(0°<θ<90°=,则AB=asinθ,OA=acosθ,S=asinθ·2acosθ=a2·2sinθcosθ.求S的最值即可.
师:生丙所列函数关系式正确吗?
生:正确.
师:这个函数式的最值我们会求吗?
例如(打出幻灯片4.1.1 C),图①中的30°、390°、-330°都是第一象限角,图②中的300°、
-60°都是第四象限角,585°角是第三象限角,如果角的终边在坐标轴上,就认为这个角不属于任一象限(板书).
(再用所准备的教具给学生作演示:演示象限角、终边相同的角,并有意识的提醒学生注意:终边相同的一系列角与0°到360°间的某一角有什么关系,从而为终边相同的角的表示做好准备,同时,为了使学生明确终边相同的角的表示方法,还可用教具作成一个60°角,放在直角坐标系内,使角的顶点与原点重合,角的始边与x轴的非负半轴重合,之后,提问学生这是第几象限的角,是多少度的角,学生对后者的回答肯定是多种多样的,至此,教师再因势利导,予以启发).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

31 角的概念的推广
教材分析
这节课主要是把学生学习的角从不大于周角的非负角扩充到任意角,使角有正角、负角和零角.首先通过生产、生活的实际例子阐明了推广角的必要性和实际意义,然后又以“动”的观点给出了正、负、零角的概念,最后引入了几个与之相关的概念:象限角、终边相同的角等.在这节课中,重点是理解任意角、象限角、终边相同的角等概念,难点是把终边相同的角用集合和符号语言正确地表示出来.理解任意角的概念,会在平面内建立适当的坐标系,通过数形结合来认识角的几何表示和终边相同的角的表示,是学好这节的关键.
教学目标
1. 通过实例,体会推广角的必要性和实际意义,理解正角、负角和零角的定义.
2. 理解象限角的概念、意义及表示方法,掌握终边相同的角的表示方法.
3. 通过对“由一点出发的两条射线形成的图形”到“射线绕着其端点旋转而形成角”的认识过程,使学生感受“动”与“静”的对立与统一.培养学生用运动变化的观点审视事物,用对立统一规律揭示生活中的空间形式和数量关系.
任务分析
这节课概念很多,应尽可能让学生通过生活中的例子(如钟表上指针的转动、体操运动员的转体、自行车轮子上的某点的运动等)了解引入任意角的必要性及实际意义,变抽象为具体.另外,可借助于多媒体进行动态演示,加深学生对知识的理解和掌握.
教学设计
一、问题情境
[演示]
1. 观览车的运动.
2. 体操运动员、跳台跳板运动员的前、后转体动作.
3. 钟表秒针的转动.
4. 自行车轮子的滚动.
[问题]
1. 如果观览车两边各站一人,当观览车转了两周时,他们观察到的观览车上的某个座位上的游客进行了怎样的旋转,旋转了多大的角?
2. 在运动员“转体一周半动作”中,运动员是按什么方向旋转的,转了多大角?
3. 钟表上的秒针(当时间过了1.5min时)是按什么方向转动的,转动了多大角?
4. 当自行车的轮子转了两周时,自行车轮子上的某一点,转了多大角?
显然,这些角超出了我们已有的认识范围.本节课将在已掌握的0°~360°角的范围的基础上,把角的概念加以推广,为进一步研究三角函数作好准备.
二、建立模型
1. 正角、负角、零角的概念
在平面内,一条射线绕它的端点旋转有两个方向:顺时针方向和逆时针方向.习惯上规定,按逆时针旋转而成的角叫作正角;按顺时针方向旋转而成的角叫作负角;当射线没有旋转时,我们也把它看成一个角,叫作零角.
2. 象限角
当角的顶点与坐标原点重合、角的始边与x轴正半轴重合时,角的终边在第几象限,就把这个角叫作第几象限的角.如果角的终边在坐标轴上,就认为这个角不属于任何象限.
3. 终边相同的角
在坐标系中作出390°,-330°角的终边,不难发现,它们都与30°角的终边相同,并且这两个角都可以表示成0°~360°角与k个(k∈Z)周角的和,即
390°=30°+360°,(k=1);
-330°=30°-360°,(k=-1).
设S={β|β=30°+k·360°,k∈Z},则390°,-330°角都是S中的元素,30°角也是S中的元素(此时k=0).容易看出,所有与30°角终边相同的角,连同30°角在内,都是S中的元素;反过来,集合S中的任一元素均与30°角终边相同.一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合:S={β|β=α+k·360°,k∈Z},即任一与α终边相同的角,都可以表求成角α与整数个周角的和.
三、解释应用
[例题]
1. 在0°~360°范围内,找出与下列各角终边相同的角,并判断它们是第几象限的角.
(1)-150°.(2)650°.(3)-950°5′.
2. 分别写出与下列角终边相同的角的集合S,并把S中适合不等式-360°≤β<720°的元素写出来.
(1)60°.(2)-21°.(3)363°14′.
3. 写出终边在y轴上的角的集合.
解:在0°~360°范围内,终边在y轴上的角有两个,即90°,270°.因此,与这两个角终边相同的角构成的集合为
S1={β|β=90°+k·360°,k∈Z}={β|β=90°+2k·180°,k∈Z},而所有与270°角终边相同的角构成的集合为
S2={β|β=270°+k·360°,k∈Z}=
{β|β=90°+(2k+1)·180°,k∈Z}.
于是,终边在y轴上的角的集合为
S=S1∪S2={β|β=90°+2k·180°,k∈Z}∪{β|β=90°+(2k+1)·180°,k∈Z}={β|β=90°+n·180°,n∈Z}.
注:会正确使用集合的表示方法和符号语言.
[练习]
1. 写出与下列各角终边相同的角的集合,并把集合中适合不等式-720°≤β<360°的元素β写出来.
(1)45°.(2)-30°.(3)420°.(4)-225°.
2. 辨析概念.(分别用集合表示出来)
(1)第一象限角.(2)锐角.(3)小于90°的角.(4)0°~90°的角.
3. 一角为30°,其终边按逆时针方向旋转三周后的角度数为.
4. 终边在x轴上的角的集合为;终边在第一、三象限的角的平分线上的角集合为.
四、拓展延伸
1. 若角α与β终边重合,则α与β的关系是;若角α与β的终边互为反向延长线,则角α与β的关系是.
2. 如果α在第二象限时,那么2α,是第几象限角?
注:(1)不能忽略2α的终边可能在坐标轴上的情况.
(2)研究在哪个象限的方法:讨论k的奇偶性.(如果是呢?)
点评
这篇案例运用多媒体展示了生活中常见的实例,极易激发学生学习的兴趣和热情.在对知识的探讨过程中,特别注意了知识的形成过程,重点突出.例题的设置比较典型,难易度适中.练习题注重基础,但也有一定的梯度,利于培养学生灵活处理问题的能力,并为学生学习以后章节做了较好的铺垫.。

相关文档
最新文档