八年级数学上册:三角形中的边角关系命题与证明练习
沪科版八年级上册数学第13章 三角形中的边角关系、命题与证明含答案

沪科版八年级上册数学第13章三角形中的边角关系、命题与证明含答案一、单选题(共15题,共计45分)1、如图,将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,则∠1+∠2的度数为( )A.120°B.135°C.150°D.180°2、如图,△ABC的面积为1cm2, AP垂直∠B的平分线BP于P,则△PBC的面积为()A. B. C. D.3、如图,在矩形ABCD中,点E是AD上任意一点,则有()A.△ABE的周长+△CDE的周长=△BCE的周长B.△ABE的面积+△CDE 的面积=△BCE的面积C.△ABE∽△DECD.△ABE∽△EBC4、若等腰三角形的顶角为,则它的一个底角度数为A.20°B.50°C.80°D.100°5、平行四边形的两条对角线长分别为8cm和10cm,则其边长的范围是()A.2<x<6B.3<x<9C.1<x<9D.2<x<86、如图,在△ABC中,∠A=50°,∠1=30°,∠2=40°,∠D的度数是()A.110°B.120°C.130°D.140°7、如图,已知△ABC中,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.90°B.135°C.270°D.315°8、如图,直线AB∥CD,∠B=50°,∠C=40°,则∠E等于()A.70°B.80°C.90°D.100°9、如果三角形的两边长分别是4和9,那么第三边长可能是( )A.1B.5C.8D.1410、如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=( )A.3:4B.4:3C.16:9D.9:1611、在△ABC中,∠A、∠B、∠C的对边分别是、、,则下列说法中错误的是()A.如果∠C-∠B=∠A,那么△ABC是直角三角形,∠C=90°B.如果,则∠B=60°,∠A=30° C.如果,那么△ABC是直角三角= D.如果,那么△ABC是直角三角形12、如图,四边形ABCD是菱形,AC=8,AD=5,DH⊥AB于点H,则DH的长为( )A.24B.10C.4.8D.613、如图,AB是圆O的直径,CD是圆O的弦,AB、CD的延长线交于点E,已知AB=2DE,∠E=16°,则∠ABC的度数是( )A. B. C. D.14、如图,锐角△ABC中,D、E分别是AB、AC边上的点,△ADC≌△ADC′,△AEB≌△AEB′,且C′D∥EB′∥BC,BE、CD交于点F.若∠BAC=35°,则∠BFC的大小是()A.105°B.110°C.100°D.120°15、下列命题正确的有 ( )个①40°角为内角的两个等腰三角形必相似②若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为750③一组对边平行,另一组对边相等的四边形是平行四边形④一个等腰直角三角形的三边是a、b、c,(a>b=c),那么a2∶b2∶c2=2∶1∶1⑤若△ABC的三边a、b、c满足a2+b2+c2+338=10a+24b+26c,则此△为等腰直角三角形。
三角形中的边角关系、命题与证明期末复习(含答案)

期末复习三角形中的边角关系、命题与证明类型一三角形的有关概念1.已知AD,AE分别是△ABC的中线和角平分线,则下列结论中错误的是()A.BD=BCB.BC=2CDC.∠BAE=∠BACD.∠BAC=2∠CAD2.如图QM3-1所示:图QM3-1(1)在△ABC中,BC边上的高是;(2)在△AEC中,AE边上的高是.3.如图QM3-2,回答下列问题:(1)图中有几个三角形?试写出这些三角形;(2)∠1是哪个三角形的内角?(3)以CE为一条边的三角形有几个?是哪几个?图QM3-2类型二三角形中三边关系的应用4.小明和小丽是同班同学,小明的家距学校2千米远,小丽的家距学校5千米远,设小明家距小丽家x千米远,则x的值应满足()A.x=3B.x=3或x=7C.3<x<7D.3≤x≤75.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5B.6C.12D.166.△ABC的边长均为整数,且最大边的长为7,那么这样的三角形共有个.7.已知三角形两边的长为4,8,则第三边的长可以是(写出一个即可).类型三三角形内角和定理及其推论的应用8.[2017·大庆]在△ABC中,∠A,∠B,∠C的度数之比为234,则∠B的度数为()A.120°B.80°C.60°D.40°9.将一副三角尺如图QM3-3放置,已知AE∥BC,则∠AFD的度数是()图QM3-3A.45°B.50°C.60°D.75°10.如图QM3-4,在△ABC中,∠ACB=∠ABC,∠A=40°,P是△ABC内一点,且∠1=∠2,求∠BPC 的度数.图QM3-4类型四命题与证明11.请写出一个原命题是真命题,逆命题是假命题的命题:.12.请举反例说明“对于任意实数x,x2+5x+4的值总是正数”是假命题,你举的反例是x= (写出一个x的值即可).13.对于同一平面内的三条直线a,b,c,给出下列5个论断:①a∥b;②b∥c;③a⊥b;④a∥c;⑤a⊥c.请以其中两个论断为条件,一个论断为结论,组成一个你认为正确的命题.14.如图QM3-5,在四边形ABCD中,∠B=∠D=90°,AE平分∠BAD,若AE∥CF,∠BCF=60°.请你求出∠DCF的度数,并说明你的理由.图QM3-5类型一分类讨论思想的应用15.已知等腰三角形两边的长分别为5和6,则这个等腰三角形的周长为.16.△ABC中,AB∶AC=3∶2,BC=AC+1,若△ABC的中线BD把△ABC的周长分成8∶7两部分,求边AB,AC的长.17.现在要设计一种三角形有两种方案:①三角形三边长分别为2x,3x,10,其中x为正整数,且周长不超过30;②有两边长分别是7分米,3分米,第三边长y为奇数(单位:分米).分别讨论满足条件的三角形各有几个.类型二解三角形问题常用辅助线18.如图QM3-6所示,已知a∥b,∠2=95°,∠3=150°,求∠1的度数.图QM3-619.如图QM3-7,若AB∥CD,求证:∠E+∠BAE-∠CDE=180°.图QM3-720.如图QM3-8,AD,BC相交于点E,∠1=∠2,∠3=∠4,∠C=32°,∠D=28°,求∠APB的度数.图QM3-8类型三创新问题展示21.在研究三角形内角和等于180°的证明方法时,小明和小虎分别给出了下列证法.小明:在△ABC中,延长BC到点D,∴∠ACD=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和).又∵∠ACD+∠ACB=180°(平角的定义),∴∠A+∠B+∠ACB=180°(等式的性质).小虎:在△ABC中,过点C作CD⊥AB于点D(如图QM3-9),∴∠ADC=∠BDC=90°(直角的定义),则∠A+∠ACD=90°,∠B+∠BCD=90°(直角三角形的两锐角互余),∴∠A+∠ACD+∠B+∠BCD=180°(等式的性质),即∠A+∠B+∠ACB=180°.请你判断上述两名同学的证法是否正确,如果不正确,写出一种你认为较简单的证明三角形内角和定理的方法,并与同伴交流.图QM3-922.已知:如图QM3-10①,在△ABC中,∠ABC,∠ACB的平分线相交于点O,则∠BOC=90°+∠A=×180°+∠A.请说明理由;如图QM3-10②,在△ABC中,∠ABC,∠ACB的两条三等分线分别对应交于点O1,O2,则∠BO1C=×180°+∠A,∠BO2C=×180°+∠A.请说明理由;根据以上阅读理解,猜想n等分时[内部有(n-1)个交点],用含n的代数式表示∠BO n-1C= (直接写出结果,不需说明理由).图QM3-10期末复习1.D2.(1)AB(2)CD3.解:(1)图中共有8个三角形,分别是△ABC,△ABE,△ACD,△BCD,△BCE,△BCO,△BDO,△CEO.(2)∠1是△BCD和△BDO的内角.(3)以CE为一条边的三角形有2个,分别是△BCE和△CEO.4.D5.C6.167.答案不唯一,如5,6等8.C9.D10.解:∵∠A=40°,∠ACB=∠ABC,∴∠ACB=∠ABC=70°.又∵∠1=∠2,∴∠BCP=∠ABP.∴∠2+∠BCP=∠2+∠ABP=∠ABC=70°,∴∠BPC=180°-(∠2+∠BCP)=110°.11.答案不唯一,如“对顶角相等”12.-3(答案不唯一)13.解:可能组成的正确命题有如下几种结果(前两个作为条件,后一个作为结论):①②④;②④①;①④②;②⑤③;③⑤②;②③⑤.14.解:∠DCF=60°.理由如下:如图,∵∠B=90°,∠BCF=60°,∴∠1=30°.∵AE∥CF,∴∠2=∠1=30°.∵AE平分∠BAD,∴∠3=∠2=30°.又∵∠D=90°,∴∠4=60°.∵AE∥CF,∴∠DCF=∠4=60°.15.16或1716.解:设AB=3x,AC=2x,则BC=2x+1,由题意得①3x+x=(3x+2x+2x+1)×,解得x=2,则AB=6,AC=4;②3x+x=(3x+2x+2x+1)×,解得x=,则AB=,AC=.答:边AB的长为6,边AC的长为4;或者边AB的长为,边AC的长为.17.解:①2x+3x+10≤30,解得x≤4,即x可取1,2,3,4.当x等于1时,三边长分别为2,3,10,构不成三角形;当x等于2时,三边长分别为4,6,10,构不成三角形;当x等于3时,三边长分别为6,9,10;当x等于4时,三边长分别为8,12,10.故满足条件的三角形共有2个.②三角形的第三边长y满足:7-3<y<3+7,即4<y<10.因为第三边长为奇数,因而第三边长可以为5,7或9.故满足条件的三角形共有3个.18.解:解法一:如图①,∠ABC=180°-∠2=85°.∵a∥b,∴∠CAB=180°-∠3=30°.∵∠1是△ABC的外角,∴∠1=∠CAB+∠ABC=115°;解法二:如图②,过∠2的顶点A作射线AB∥a,那么AB∥b,则∠CAB=180°-150°=30°,∴∠DAB=∠2-∠CAB=95°-30°=65°,∴∠1=180°-∠DAB=115°;解法三:如图③,连接AC,∵a∥b,∴∠DAC+∠ECA=180°.而∠DAC=∠1-∠BAC,∠ECA=∠3-∠ACB,∴(∠1-∠BAC)+(∠3-∠ACB)=180°,即∠1+∠3-(∠BAC+∠ACB)=180°.在△ABC中,∠BAC+∠ACB+∠2=180°,即∠BAC+∠ACB=180°-∠2,∴∠1+∠3-(180°-∠2)=180°,从而∠1=360°-∠2-∠3=360°-95°-150°=115°.19.证明:如图,连接AD.∵AB∥CD,∴∠BAD=∠CDA(两直线平行,内错角相等).又∵∠ADE+∠DAE+∠E=180°(三角形内角和定理),∴∠ADE+∠DAE+∠E+∠BAD=180°+∠CDA,∴∠ADE+∠DAE+∠E+∠BAD=180°+∠ADE+∠CDE,∴∠E+∠BAE=180°+∠CDE,∴∠E+∠BAE-∠CDE=180°.20.解:由三角形的外角等于和它不相邻的两个内角的和,得∠AEB=∠CAE+∠C=∠DBC+∠D,从而2∠AEB=∠1+∠2+∠3+∠4+∠C+∠D,即∠AEB=∠2+∠3+(∠C+∠D).连接PE并延长至点F,易知∠AEF=∠2+∠APF,∠BEF=∠3+∠BPF,∴∠AEB=∠2+∠3+∠APB,∴∠APB=(∠C+∠D)=30°.21.解:两名同学的证法都不对.因为“三角形的一个外角等于和它不相邻的两个内角的和”与“直角三角形的两锐角互余”都是由三角形内角和定理推导的.证明:如图,在△ABC中,过点A作EF∥BC,∴∠EAB=∠B,∠FAC=∠C(两直线平行,内错角相等).∵∠EAB+∠BAC+∠FAC=180°(平角的定义),∴∠B+∠BAC+∠C=180°.22.解:在题图①中,∵∠OBC=∠ABC,∠OCB=∠ACB,∴∠BOC=180°-∠OBC-∠OCB=180°-(∠ABC+∠ACB)=180°-(180°-∠A)=90°+∠A=×180°+∠A.在题图②中,∵∠O1BC=∠ABC,∠O1CB=∠ACB,∴∠BO1C=180°-∠O1BC-∠O1CB=180°-(∠ABC+∠ACB)=180°-(180°-∠A)=120°+∠A=×180°+∠A.同理,∵∠O2BC=∠ABC,∠O2CB=∠ACB,∴∠BO2C=180°-∠O2BC-∠O2CB=180°-(∠ABC+∠ACB)=180°-(180°-∠A)=60°+∠A=×180°+∠A.通过前两个结果的证明,从而猜想:∠BO n-1C=×180°+-∠A.。
沪科8年级数学上册第13章2 命题与证明

作为进一步判断其他命题真假的依据,只不过基本事实
(公理) 是最原始的依据;而命题不一定是真命题,因而不
能直接用来作为判断其他命题真假的依据.
例 4 填写下列证明过程中推理的依据.
知4-练
如图13.2-1,已知AC,BD相交于点O,DF平分
∠CDO与AC相交于点F,BE平分
∠ABO与AC相交于点E,∠A=∠C.
知识点 5 三角形内角和定理及推论1, 2
知5-讲
1. 定理 三角形的内角和等于180°. 几何语言:在△ABC中,∠A+∠B+∠C=180°.
2. 三角形内角和定理的证明
知5-讲
证明方法 方法一
图示
证明过程
如图,过点A作l∥BC,则 ∠2=∠B,∠3=∠C. 因为 ∠1+∠2+∠3=180°,所 以∠1+∠B+∠C=180°.
知1-练
解:(1)(2)(3)(4)(5)(7)是命题,其中(2)(3)是真命题, (1)(4)(5)(7)是假命题.(6)不是命题.
知1-练
1-1. [期末·宿州桥区]下列命题是真命题的是( C ) A. 如果AB=BC,那么点C是AB的中点 B. 三条线段的长分别为a,b,c,如果a+b > c,那 么这三条线段一定能组成三角形 C. 三角形的内角和等于180° D. 如果| a |=| b |,那么a=b
续表: 证明方法
方法二
图示
知5-讲
证明过程 如图, 过点C作CD∥AB, 则∠1=∠A,∠2=∠B. 因 为∠1+∠2+∠ACB= 180°,所以∠A+∠B+ ∠ACB=180°.
续表: 证明方法
方法三
图示
知5-讲
证明过程 如图,过点D作DE∥AB, DF∥AC,则∠1=∠C, ∠2=∠4,∠3=∠B,∠A =∠4. 所以∠2=∠A. 因为 ∠1+∠2+∠3=180°,所 以∠A+∠B+∠C=180°.
安徽省八年级上册数学(沪科版)期末考试复习:第13章《三角形中的边角关系、命题与证明》解答题精选

2020-2021学年安徽省八年级上册数学(沪科版)期末考试复习:第13章《三角形中的边角关系、命题与证明》解答题精选一.解答题(共22小题)1.(2019秋•当涂县期末)如图,在△ABC中,∠A=75°,∠ABC与∠ACB的三等分线分别交于点M、N 两点.(1)求∠BMC的度数;(2)若设∠A=α,用α的式子表示∠BMC的度数.2.(2019秋•埇桥区期末)(1)如图(a),BD平分∠ABC,CD平分∠ACB.①当∠A=60°时,求∠D的度数.②猜想∠A与∠D有什么数量关系?并证明你的结论.(2)如图(b),BD平分外角∠CBP,CD平分外角∠BCQ,(1)中②的猜想还正确吗?如果不正确,请你直接写出正确的结论(不用写出证明过程).3.(2019秋•临泉县期末)如图,在△ABC和△DEF中,B、E、C、F在同一直线上,下面有四个条件:①AB=DE;②AC=DF;③AB∥DE;④BE=CF.请你从中选三个作为题设,余下的一个作为结论,写出一个真命题,并加以证明.解:我写的真命题是:已知:;求证:.(注:不能只填序号)证明如下:4.(2019秋•濉溪县期末)在如图所示的平面直角坐标系中,作出下列坐标的A(﹣3,2),B(0,﹣4),C (5,﹣3),D(0,1).并求出四边形ABCD的面积.5.(2019秋•潜山市期末)如图,∠A=37°,∠B=28°,∠ADB=148°,求∠C的度数.6.(2019秋•庐阳区期末)如图,在△ABC中,AD、CE分别平分∠BAC和∠ACB,AD、CE交于点O,若∠B=50°,求∠AOC.7.(2019秋•庐阳区期末)在△ABC中,∠A+∠B=∠C,∠B﹣∠A=30°.(1)求∠A、∠B、∠C的度数;(2)△ABC按角分类,属于什么三角形?△ABC按边分类,属于什么三角形?8.(2019秋•裕安区期末)如图,在△ABC中,∠BAC=90°,∠B=50°,AE,CF是角平分线,它们相交于为O,AD是高,求∠BAD和∠AOC的度数.9.(2019秋•瑶海区期末)如图,已知△ABC.(1)若AB=4,AC=5,则BC边的取值范围是;(2)点D为BC延长线上一点,过点D作DE∥AC,交BA的延长线于点E,若∠E=55°,∠ACD=125°,求∠B的度数.10.(2019秋•全椒县期末)已知,如图,在△ABC中,∠A=∠ABC,直线EF分别交△ABC的边AB,AC 和CB的延长线于点D,E,F.(1)求证:∠F+∠FEC=2∠A;(2)过B点作BM∥AC交FD于点M,试探究∠MBC与∠F+∠FEC的数量关系,并证明你的结论.11.(2019秋•涡阳县期末)如图,在△ABC中,AC=6,BC=8,AD⊥BC于D,AD=5,BE⊥AC于E,求BE的长.12.(2019秋•全椒县期末)如图,在△ABC中(AC>AB),AC=2BC,BC边上的中线AD把△ABC的周长分成60和40两部分,求AC和AB的长.13.(2019秋•和县期末)如图,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分线交于点E,求∠E的度数.14.(2019秋•涡阳县期末)如图,三角形AOB中,A、B两点的坐标分别为(﹣4,﹣6),(﹣6,﹣3),求三角形AOB的面积(提示:三角形AOB的面积可以看作一个梯形的面积减去一些小三角形的面积).15.(2018秋•望江县期末)在△ABC中,AB=9,BC=2,AC=x.(1)求x的取值范围;(2)若△ABC的周长为偶数,则△ABC的周长为多少?16.(2018秋•长丰县期末)已知:如图,D是AB上的一点,E是AC上一点,BE、CD相交于点F,∠A =62°,∠ACD=35°,∠ABE=20°.求:(1)∠BDC的度数;(2)∠BFC的度数.17.(2018秋•埇桥区期末)在△ABC中,∠A=∠B+20°,∠C=∠A+50°,求△ABC各内角的度数.18.(2018秋•包河区期末)如图,△ABC中,∠ACB>90°,AE平分∠BAC,AD⊥BC交BC的延长线于点D.(1)若∠B=30°,∠ACB=100°,求∠EAD的度数;(2)若∠B=α,∠ACB=β,试用含α、β的式子表示∠EAD,则∠EAD=.(直接写出结论即可)19.(2018秋•桐城市期末)如图,△ABC中,AD⊥BC于点D,AE是∠BAC的平分线,∠B=30°,∠C =70°,分别求:(1)∠BAC的度数;(2)∠AED的度数;(3)∠EAD的度数.20.(2018秋•无为县期末)如图,AC平分∠DCE,且与BE的延长线交于点A.(1)如果∠A=35°,∠B=30°,则∠BEC=.(直接在横线上填写度数)(2)小明经过改变∠A,∠B的度数进行多次探究,得出∠A、∠B、∠BEC三个角之间存在固定的数量关系,请你用一个等式表示出这个关系,并进行证明.解:(2)关系式为:证明:21.(2018秋•阜南县期末)如图,在△ABC中,AD是BC边上的高,AE平分∠BAC,∠B=42°,∠C=70°,求:∠DAE的度数.22.(2019春•庐江县期末)已知:三角形ABC和同一平面内的点D.(1)如图1,点D在BC边上,DE∥BA交AC于E,DF∥CA交AB于F.若∠EDF=85°,则∠A的度数为°.(2)如图2,点D在BC的延长线上,DF∥CA,∠EDF=∠A,证明:DE∥BA.(3)如图3,点D是三角形ABC外部的一个动点,过D作DE∥BA交直线AC于E,DF∥CA交直线AB于F,直接写出∠EDF与∠A的数量关系(不需证明).2020-2021学年安徽省八年级上册数学(沪科版)期末考试复习:第13章《三角形中的边角关系、命题与证明》解答题精选参考答案与试题解析一.解答题(共22小题)1.【解答】解:(1)∵∠A =75°,∴∠ABC +∠ACB =180°﹣75°=105°,∴∠MBC +∠MCB =23×105°=70°,∴∠BMC =180°﹣70°=110°.(2)∵∠A =α,∴∠ABC +∠ACB =180°﹣α∴∠MBC +∠MCB =23×(180°﹣α)=120°−23α∴∠BMC =180°﹣(120°−23α)=60°+23α2.【解答】解:(1)①∵∠A =60°,∴∠ABC +∠ACB =180°﹣60°=120°,∵∠DBC =12∠ABC ,∠DCB =12∠ACB ,∴∠DBC +∠DCB =12×120°=60°,∴∠D =180°﹣60°=120°.②结论:∠D =90°+12∠A .理由:∵∠DBC =12∠ABC ,∠DCB =12∠ACB ,∴∠DBC +∠DCB =12×(∠ABC +∠ACB )=12(180°﹣∠A )=90°−12∠A∴∠D =180°﹣(90°−12∠A )=90°+12∠A .(2)不正确.结论:∠D =90°−12∠A .理由:∵∠DBC =12∠PBC ,∠DCB =12∠ACB ,∴∠DBC +∠DCB =12×(∠PBC +∠QCB )=12(∠A +∠ACB +∠A +∠ABC )=12(180°+∠A )=90°+12∠A ,∴∠D =180°﹣(90°−+12∠A )=90°−12∠A .3.【解答】解:我写的真命题是:已知:①②④;求证:③证明如下:∵BE =FC ,∴BE +EC =CF +EC ,即BC =FE ,在△ABC 和△DEF 中{AA =AA AA =AA AA =AA ,∴△ABC ≌△DEF (SSS ),∴∠B =∠DEF ,∴AB ∥DE .故答案为①②④;③.4.【解答】解:如图所示,S 四边形ABCD =12×5×3+12×5×5=20.5.【解答】解:连接CD 并延长点E , ∵∠ACD =∠ADE ﹣∠A =∠ADE ﹣37°,∴∠A =37°,∠ADE =∠A +∠ACD ,同理可得:∠BCD =∠BDE ﹣28°,∵∠ACB =∠ACD +∠BCD ,∴∠ADB =148°,∠ACB =∠ADB ﹣∠A ﹣∠B ,=148°﹣37°﹣28°=83°.6.【解答】解:∵∠ABC =50°, ∴∠BAC +∠ACB =180°﹣50°=130°,∵AD ,CE 分别平分∠BAC 、∠ACB ,∴∠OAC =12∠BAC ,∠OCA =12∠ACB ,∴∠OAC +∠OCA =12(∠BAC +∠ACB )=12×130°=65°,在△AOC 中,∠AOC =180°﹣(∠OAC +∠OCA )=180°﹣65°=115°.7.【解答】解:(1)由题意:{∠A +∠A =∠AAA −AA =30°AA +AA +AA =180°,解得{∠A =30°AA =60°AA =90°.(2)∵∠C =90°,∠A =30°,∠B =60°,∴按角分类,属于直角三角形.△ABC 按边分类,属于不等边三角形.8.【解答】解:∵AD 是高,∠B =50°,∴Rt △ABD 中,∠BAD =90°﹣50°=40°,∵∠BAC =90°,∠B =50°,∴△ABC 中,∠ACB =90°﹣50°=40°,∵AE ,CF 是角平分线,∴∠CAE =12∠BAC =45°,∠ACF =12∠ACB =20°,∴△AOC 中,∠AOC =180°﹣45°﹣20°=115°.9.【解答】解:(1)∵AB =4,AC =5,∴5﹣4<BC <4+5,即1<BC <9,故答案为:1<BC <9;(2)∵∠ACD =125°,∴∠ACB =180°﹣∠ACD =55°,∵DE ∥AC ,∴∠BDE =∠ACB =55°.∵∠E =55°,∴∠B =180°﹣∠E ﹣∠BDE =180°﹣55°﹣55°=70°.10.【解答】(1)证明:∵∠FEC =∠A +∠ADE ,∠F +∠BDF =∠ABC ,∴∠F +∠FEC =∠F +∠A +∠ADE ,∵∠ADE =∠BDF ,∴∠F +∠FEC =∠A +∠ABC ,∵∠A =∠ABC ,∴∠F +∠FEC =∠A +∠ABC =2∠A .(2)∠MBC =∠F +∠FEC .证明:∵BM ∥AC ,∴∠MBA =∠A ,、∵∠A =∠ABC ,∴∠MBC =∠MBA +∠ABC =2∠A ,又∵∠F +∠FEC =2∠A ,∴∠MBC =∠F +∠FEC .11.【解答】解:∵S △ABC =12AC •BE ,S △ABC =12BC •AD ,∴AC •BE =BC •AD ,∴BE =406=203.12.【解答】解:设BD =CD =x ,AB =y ,则AC =2BC =4x ,∵BC 边上的中线AD 把△ABC 的周长分成60和40两部分,AC >AB , ∴AC +CD =60,AB +BD =40,即{4A +A =60A +A =40,解得:{A =12A =28, 当AB =28,BC =24,AC =48时,符合三角形三边关系定理,能组成三角形,所以AC =48,AB =28.13.【解答】解:∵三角形的外角∠DAC 和∠ACF 的平分线交于点E ,∴∠EAC =12∠DAC ,∠ECA =12∠ACF ;又∵∠B =47°(已知),∠B +∠1+∠2=180°(三角形内角和定理),∴12∠DAC +12∠ACF =12(∠B +∠B +∠1+∠2)=227°2(外角定理),∴∠E =180°﹣(12∠DAC +12∠ACF )=66.5°.14.【解答】解:S △AOB =S 梯形BCDO ﹣(S △ABC +S △OAD ) =12×(3+6)×6﹣(12×2×3+12×4×6)=27﹣(3+12) =12.15.【解答】解:(1)由题意知,9﹣2<x <9+2,即7<x <11;(2)∵7<x <11,∴x 的值是8或9或10,∴△ABC 的周长为:9+2+8=19(舍去).或9+2+9=20或9+2+10=21(舍去)即该三角形的周长是20.16.【解答】解:(1)∵∠A =62°,∠ACD =35°,∴∠BDC =∠A +∠ACD =62°+35°=97°;(2)∵∠ABE =20°,∠BDC =97°,∴∠BFC =∠BDC +∠ABE =97°+20°=117°.17.【解答】解:∵∠A =∠B +20°,∠C =∠A +50°, ∴∠C =∠B +20°+50°,∵∠A +∠B +∠C =180°,∴∠B +20°+∠B +∠B +20°+50°=180°,解得:∠B =30°,∴∠A =30°+20°=50°,∴∠C =50°+50°=100°,即∠A =50°,∠B =30°,∠C =100°.18.【解答】解:(1)∵AD ⊥BC ,∴∠D =90°,∵∠ACB =100°,∴∠ACD =180°﹣100°=80°,∴∠CAD =90°﹣80°=10°,∵∠B =30°,∴∠BAD =90°﹣30°=60°,∴∠BAC =50°,∵AE 平分∠BAC ,∴∠CAE =12∠BAC =25°,∴∠EAD =∠CAE +∠CAD =35°;(2)∵AD ⊥BC ,∴∠D =90°,∵∠ACB =β,∴∠ACD =180°﹣β,∴∠CAD =90°﹣∠ACD =β﹣90°,∵∠B =α,∴∠BAD =90°﹣α,∴∠BAC =90°﹣α﹣(β﹣90°)=180°﹣α﹣β, ∵AE 平分∠BAC ,∴∠CAE =12∠BAC =90°−12(α+β),∴∠EAD =∠CAE +∠CAD =90°−12(α+β)+β﹣90°=12β−12α.故答案为:12β−12α.19.【解答】解:(1)∵∠B =30°,∠C =70°,∴∠BAC =180°﹣∠B ﹣∠C =80°;(2)∵AE 是∠BAC 的平分线,∴∠BAE =12∠BAC =40°,∴∠AED =∠BAE +∠B =40°+30°=70°;(3)∵AD ⊥BC ,∴∠ADE =90°,∴∠EAD =∠ADE ﹣AED =90°﹣70°=20°.20.【解答】解:(1)∵∠A =35°,∠B =30°,∴∠ACD =∠A +∠B =65°,又∵AC 平分∠DCE ,∴∠ACE =∠ACD =65°,∴∠BEC =∠A +∠ACE =35°+65°=100°, 故答案为:100°;(2)关系式为∠BEC =2∠A +∠B .理由:∵AC 平分∠DCE ,∴∠ACD =∠ACE ,∵∠BEC =∠A +∠ACE =∠A +∠ACD ,∵∠ACD =∠A +∠B ,∴∠BEC =∠A +∠A +∠B =2∠A +∠B .21.【解答】解:∵∠B =42°,∠C =70°,∴∠BAC =180°﹣∠B ﹣∠C =68°,∵AE 平分∠BAC ,∴∠CAE=12A BAC=34°,∵AD是BC边上的高,∴∠ADC=90°,∵∠C=70°,∴∠CAD=180°﹣∠ADC﹣∠C=20°,∴∠DAE=∠CAE﹣∠CAD=34°﹣20°=14°.22.【解答】解:(1)∵DE∥BA,DF∥CA,∴∠A=∠DEC,∠DEC=∠EDF,∵∠EDF=85°∴∠A=∠EDF=85°;故答案为:85;(2)证明:如图1,延长BA交DF于G.∵DF∥CA,∴∠2=∠3.又∵∠1=∠2,∴∠1=∠3.∴DE∥BA.(3)∠EDF=∠A,∠EDF+∠A=180°,理由:如图2,∵DE∥BA,DF∥CA,∴∠EDF+∠E=180°,∠E+∠EAF=180°,∴∠EDF=∠EAF=∠A;如图3,∵DE∥BA,DF∥CA,∴∠EDF+∠F=180°,∠F=∠CAB,∴∠EDF+∠BAC=180°.即∠EDF+∠A=180°,。
沪科版八年级数学上第13章三角形中的边角关系、命题与证明13

自主学习
基础夯实
整合运用
思维拓展
第2页
八年级 数学 上册 沪科版
典例导学 如图,在△ABC 中,∠ACB=90°,∠ACD=∠B.求证:△CDB 是直角
三角形.
【思路分析】要证△CDB 是直角三角形,可证∠B+∠DCB=90°,在△ABC
中,已知∠ACB=90°,易证△CDB 是直角三角形.
自主学习
A.85° B.90° C.95° D.100°
自主学习
基础夯实
整合运用
思维拓展
第 14 页
八年级 数学 上册 沪科版
9.如图,在△ABC 中,∠C=90°,则∠B 为 A.15° B.30° C.50° D.60°
(D)
自主学习
基础夯实
整合运用
思维拓展
第 15 页
八年级 数学 上册 沪科版
10.已知三角形 ABC 的三个内角满足关系∠B+∠C=3∠A,则此三角形 (D)
八年级 数学 上册 沪科版
第 3 课时 三角形内角和定理的证明及 推论
自主学习
基础夯实
整合运用
思维拓展
第1页
八年级 数学 上册 沪科版
要点感知 1.三角形内角和定理:三角形的内角和等于 18180°0°. 2.为了证明的需要,在原来图形上添画的线叫做辅辅助线助线. 3.直角三角形的两锐角互互余 余. 4.有两个角互余的三角形是直直角角三三角形角形.
1 ∴∠EGD=3×(180°-60°)=40°, ∴∠1=40°.
自主学习
基础夯实
整合运用
思维拓展
第 23 页
八年级 数学 上册 沪科版
(2)∠AEF+∠FGC=90°. 理由:∵AB∥CD, ∴∠AEG+∠CGE=180°, 即∠AEF+∠FEG+∠EGF+∠FGC=180°, 又∵∠FEG+∠EGF=90°, ∴∠AEF+∠FGC=90°.
八年级数学上册三角形中的边角关系、命题与证明 . 命题与证明三角形的外角

12.星期天,小明见爸爸愁眉苦脸在看一张图纸,他便悄悄地来到爸爸身边,想看爸爸为什么犯愁.爸爸 见到他,高兴地对他说:“来帮我一个忙,你看这是一个四边形零件的平面图,它要求∠BDC等于 140°才算合格,小明通过测量得∠A=90°,∠B=19°,∠C=40°后就下结论说此零件不合格,于是爸爸 让小明解释(jiěshì)这是为什么,小明很轻松地说出了原因,并用如下的三种方法解出此题.请你分别说 出不合格的理由. ( 1 )如图1,连接AD并延长. ( 2 )如图2,延长CD交AB于点E. ( 3 )如图3,连接BC.
( 2 )∵∠BAC+∠B+∠C=180°,∠BAC=70°,∠B=40°,
∴∠C=70°.
第六页,共十四页。
6.如图所示,∠ACD是△ABC的一个外角,CE平分∠ACD,F为CA延长线上的一 点(yī diǎn),FG∥CE,交AB于点G,下列说法正确的是 ( C )
A.∠2+∠3>∠1 B.∠2+∠3<∠1 C.∠2+∠3=∠1 D.无法(wúfǎ)判断
你的结论.
解:( 1 )延长(yáncháng)BD交AC于点E. ∵∠BDC是△CDE的外角,∴∠BDC=∠ACD+∠CED,
∵∠CED是△ABE的外角,∴∠CED=∠A+∠ABD.
∴∠BDC=∠A+∠ABD+∠ACD. ( 2 )∠D+∠A+∠ABD+∠ACD=360°. ( 3 )令BD,AC交于点E, ∵∠AED是△ABE的外角,∴∠AED=∠A+∠ABD, ∵∠AED是△CDE的外角,∴∠AED=∠D+∠ACD,
第四页,共十四页。
知识点2 三角形外角(wài jiǎo)的性质
第十三章 三角形边角关系及命题与证明 (含答案)

第十三章三角形边角关系及命题与证明一、单选题1.已知△ABC的两条高分别为4和12,第三条高也为整数,则第三条高所有可能值为()A. 3和4 B. 1和2 C. 2和3 D. 4和52.已知非直角三角形ABC中,∠A=45°,高BD与CE所在直线交于点H,则∠BHC的度数是()A. 45° B. 45°或135° C. 45°或125° D. 135°3.下列说法中正确的是()A.两条射线组成的图形叫做角B.小于平角的角可分为锐角和钝角两类C.射线就是直线D.两点之间的所有连线中,线段最短4.如图,把一张长方形纸条ABCD沿EF折叠,C、D 两点落到、处已知,且,则的度数为A. B. C. D.5.已知如图,△ABC中,∠ABC=50°,∠BAC=60°,BO、AO分别平分∠ABC 和∠BAC,求∠BCO的大小()A. 35° B. 40° C. 55° D. 60°6.下列命题中,属于真命题的是()A.同位角相等 B.任意三角形的外角一定大于内角C.多边形的内角和等于180° D.同角或等角的余角相等7.如图:在△ABC中,G是它的重心,AG⊥CD ,如果,则△AGC的面积的最大值是()A. B. 8 C. D. 68.如图,在△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE交BD于G,交BC于H,下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=(∠BAC﹣∠C);④∠BGH=∠ABE+∠C.试卷第1页,总4页其中正确的是()A.①②③ B.①③④ C.①②④ D.①②③④9.如图,四边形ABCD中,E、F、G、H依次是各边中点,O是四边形ABCD内一点,若四边形AEOH、四边形BFOE、四边形CGOF的面积分别为7、9、10,则四边形DHOG的面积为()A. 7 B. 8 C. 9 D. 1010.设△ABC的面积为1,如图①将边BC、AC分别2等份,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等份,BE1、AD1相交于点O,△AOB的面积记为S2;……,依此类推,则S5的值为()A. B. C. D.二、填空题11.对于命题“如果∠1+∠2=90°,那么∠1=∠2”,能说明它是假命题的反例是_____.12.如图,点C是线段AB上的动点,分别以AC、BC为边在AB的同侧作等边△ACD、等边△BCE,BD、AE交于点P.若AB=6,则PC的最大值为_____.13.如图,设△ABC的两边AC与BC之和为a,M是AB的中点,MC=MA=5,则a的取值范围是_____.14.如图,中,,、分别平分,,则________,若、分别平分,的外角平分线,则________.15.三角形中一个内角是另一个内角的两倍时,我们称此三角形为“特征三角形”,其中称为“特征角”,如果一个“特征三角形”的“特征角”为,那么这个“特征三角形”的最小内角的度数为______.三、解答题试卷第2页,总4页16.已知:点D是∠ABC所在平面内一点,连接AD、CD.(1)如图1,若∠A=28°,∠B=72°,∠C=11°,求∠ADC;(2)如图2,若存在一点P,使得PB平分∠ABC,同时PD平分∠ADC,探究∠A,∠P,∠C的关系并证明;.(3)如图3,在 (2) 的条件下,将点D移至∠ABC的外部,其它条件不变,探究∠A,∠P,∠C的关系并证明(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(保留作图痕迹,不写作法);(2)若(1)中的射线CM交AB于点D,∠A=600,∠B=400,求∠BDC.18.如图①,在△ABC中,AE平分∠BAC,∠C>∠B,F是AE上一点,且FD⊥BC于D点.(1)试猜想∠EFD,∠B,∠C的关系,并说明理由;(2)如图②,当点F在AE的延长线上时,其余条件不变,(1)中的结论还成立吗?说明理由.①②19.“转化”是数学中的一种重要思想,即把陌生的问题转化成熟悉的问题,把复杂的问题转化成简单的问题,把抽象的问题转化为具体的问题.已知:如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”,试解答下列问题:问题一:在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系;问题二:在图2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N,试求∠P的度数;试卷第3页,总4页问题三:在图3中,已知AP、CP分别平分∠BAM、∠BCD,请问∠P与∠B、∠D之间存在着怎样的数量关系?并说明理由.问题四:在图4中,已知AP的反向延长线平分∠EAB,CP平分∠DCF,请直接写出∠P与∠B、∠D之间的数量关系.20.一副三角板如图1摆放,∠C=∠DFE=90∘,∠B=30∘,∠E=45∘,点F在BC上,点A在DF上,且AF平分∠CAB,现将三角板DFE绕点F顺时针旋转(当点D落在射线FB上时停止旋转).(1)当∠AFD=_ __∘时,DF∥AC;当∠AFD=__ _∘时,DF⊥AB;(2)在旋转过程中,DF与AB的交点记为P,如图2,若AFP有两个内角相等,求∠APD的度数;(3)当边DE与边AB、BC分别交于点M、N时,如图3,若∠AFM=2∠BMN,比较∠FMN与∠FNM的大小,并说明理由。
八年级数学上册试题 第13章《三角形中的边角关系、命题与证明》章节测试卷-沪科版(含解析)

第13章《三角形中的边角关系、命题与证明》章节测试卷一.选择题(共10小题,满分30分,每小题3分)1.下列实际情景运用了三角形稳定性的是()A.人能直立在地面上B.校门口的自动伸缩栅栏门C.古建筑中的三角形屋架D.三轮车能在地面上运动而不会倒2.如图,△ABC的三边长均为整数,且周长为22,AM是边BC上的中线,△ABM的周长比△ACM的周长大2,则AC长的可能值有()个.A.3B.4C.5D.63.下列命题是假命题的是( )A.如果∠1=∠2,∠2=∠3,那么∠1=∠3B.对顶角相等C.如果一个数能被6整除,那么它肯定也能被3整除D.内错角相等4.如图所示,∠F=90°,CE⊥AB,C是BF的中点,D是BE上的一点,下列说法正确的是( )A.CD是△ABC的中线B.AF是△ABC的高C.CE是△ABF的中位线D.AC是△ABF的角平分线5.如图,在△ABC中,AD是△ABC的角平分线,DE⊥AC,若∠B=40°,∠C=60°,则∠ADE的度数为()A.30°B.40°C.50°D.60°6.如图,在△ABC中,G是边BC上任意一点,D、E、F分别是AG、BD、CE的中点,S△ABC 的值为()=48,则SΔDEFA.2B.4C.6D.87.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为3、4、5、7,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值是( )A.7B.8C.9D.108.如图,△ABC中,∠ABC=3∠C,E分别在边BC,AC上,∠EDC=24°,∠ADE=3∠AED,∠ABC的平分线与∠ADE的平分线交于点F,则∠F的度数是( )A.54°B.60°C.66°D.72°9.如图,在△ABC中,AE平分∠BAC,AD⊥BC于点D.∠ABD的角平分线BF所在直线与射线AE 相交于点G,若∠ABC=3∠C,且∠G=20°,则∠DFB的度数为()A.50°B.55°C.60°D.65°10.如图,∠ABC=∠ACB,BD、CD、BE分别平分∠ABC,外角∠ACP,外角∠MBC,以下结论:①AD∥BC,②BD⊥BE,③∠BDC+∠ABC=90°,④∠BAC+2∠BEC=180°,其中正确的结论有()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分18分,每小题3分)11.如图,有一张三角形纸片ABC,∠B=32°,∠A=100°,点D是AB边上的固定点(BD<1AB),2在BC上找一点E,将纸片沿DE折叠(DE为折痕),点B落在点F处,当EF与AC边平行时,∠BDE的度数为.12.如图,AD为△ABC的中线,DE,DF分别为△ABD,△ACD的一条高,若AB=6,DE=4,则AC=.,DF=8313.已知△ABC的边长a,b,c满足(a−2)2+|b−4|=0,则a、b的值分别是,若c为偶数,则△ABC的周长为.14.如图,在△ABC中,点D是AC边上一点,CD:AD=1:2,连接BD,点E是线段BD上一点,BE:ED=1:3,连接AE,点F是线段AE的中点,连接CF交线段BD于点G,若△ABC的面积是12,则△EFG的面积是.15.如图△AOB和△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=70°,点D在边OA上,将△COD绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中当CD∥AB时,旋转时间秒.16.如果三角形中任意两个内角∠α与∠β满足2α−β=60°,那么我们称这样的三角形为“斜等边三角形”.在锐角三角形ABC中,BD⊥AC于点D,若△ABC、△ABD、△BCD都是“斜等边三角形”,则∠ABC=.三.解答题(共7小题,满分52分)17.(6分)(1)一个多边形的内角和是外角和的3倍,这个多边形是几边形?(2)小明求得一个多边形的内角和为1280°,小强很快发现小明所得的度数有误,后来小明复查时发现他重复加了一个内角,求出这个多边形的边数以及他重复加的那个角的度数.18.(6分)如图所示,D是△ABC的边AC上任意一点(不含端点),连结BD,请判断AB+BC+AC 与2BD的大小关系,并说明理由.19.(8分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.将△ABC平移,使点C平移至点D,点A、B的对应点分别是点E、F.(1)在图中请画出△ABC平移后得到的△DEF;(2)在图中画出△ABC的AB边上的高CH;(3)若连接CD、AE,则这两条线段之间的关系是 ;(4)△DEF的面积为 .20.(8分)如图所示,已知AD,AE分别是△ABC的高和中线,AB=6cm,AC=8cm,BC=10 cm,∠CAB=90°.(1)求AD的长;(2)求△ACE和△ABE周长的差.21.(8分)在△ABC中,∠B,∠C均为锐角且不相等,线段AD是△ABC中BC边上的高,AE是△ABC的角平分线.(1)如图1,∠B=70°,∠C=30°,求∠DAE的度数;(2)若∠B=x°,∠DAE=10°,则∠C=______;(3)F是射线AE上一动点,C、H分别为线段A B,BC上的点(不与端点重合),将△BGH沿着GH 折叠,使点B落到点F处,如图2所示,请直接写出∠1,∠2与∠B的数量关系.22.(8分)已知,在△ABC中,∠BAC=∠ABC,点D在AB上,过点D的一条直线与直线AC、BC分别交于点E、F.(1)如图1,∠BAC=70°,则∠CFE+∠FEC=______°.(2)如图2,猜想∠BAC、∠FEC、∠CFE之间的数量关系,并加以证明;(3)如图3,直接写出∠BAC、∠FEC、∠CFE之间的数量关系______.23.(8分)将含30°角的三角板ABC(∠B=30°)和含45°角的三角板FDE及一把直尺按图方式摆放在起.使两块三角板的直角顶点A,F重合.点A,F,C,E始终落在直尺的PQ边所在直线上.将含45°角的三角板FDE沿直线PQ向右平移.(1)当点F与点C重合,请在备用图中补全图形,并求平移后DC与CB形成的夹角∠DCB的度数;(2)如图,点F在线段AC上移动,M是边AB上的动点,满足∠DFM被FB平分,∠EFM的平分线FN与边BC交于点N,请证明在移动过程中,∠NFB的大小保持不变;(3)仿照(2)的探究,点F在射线CQ上移动,M是边AB上的动点,满足∠DFM被FB平分,∠EFM的平分线F N'所在直线与直线BC交于点N,请写出一个与平移过程有关的合理猜想.(不用证明)答案一.选择题1.C【分析】根据三角形的稳定性进行判断即可求解.【详解】解:古建筑中的三角形屋架是利用了三角形的稳定性,故选C2.B【分析】依据ΔABC的周长为22,ΔABM的周长比ΔACM的周长大2,可得2<BC<11,再根据ΔABC的三边长均为整数,即可得到BC=4,6,8,10.【详解】解:∵ΔABC的周长为22,ΔABM的周长比ΔACM的周长大2,∴2<BC<22−BC,解得2<BC<11,又∵ΔABC的三边长均为整数,ΔABM的周长比ΔACM的周长大2,∴AC=22−BC−22=10−12BC为整数,∴BC边长为偶数,∴BC=4,6,8,10,即AC的长可能值有4个,故选:B.3.D【分析】利用对顶角的性质、实数的性质、平行线的性质分别判断后即可确定正确的选项.【详解】解:A、如果∠1=∠2,∠2=∠3,那么∠1=∠3,正确,是真命题,故本选项不符合题意;B、对顶角相等,正确,是真命题,故本选项不符合题意;C、如果一个数能被6整除,那么它肯定也能被3整除,正确,是真命题,故本选项不符合题意;D、两直线平行,内错角相等,原命题是假命题,故本选项符合题意.故选:D.4.B【分析】根据三角形中位线的定义,三角形角平分线、中线和高的定义作答.【详解】解:A、AC是△ABC的中线,故本选项不符合题意.B 、由∠F =90°知,AF 是△ABC 的高,故本选项符合题意.C 、CE 是△ABC 的高,故本选项不符合题意.D 、AC 是△ABF 的中线,故本选项不符合题意.故选:B .5.C【分析】根据三角形内角和定理求出∠BAC ,再根据角平分线的定义可得∠BAD=∠DAC =40°,最后利用垂线的定义可得∠AED=90°,进而解答即可.【详解】解:∵∠B =40°,∠C =60°,∴∠BAC=180°−40°−60°=80°.∵AD 平分∠BAC ,∴∠BAD=∠DAC =40°.∵DE ⊥AC ,∴∠AED =90°,∴∠ADE =90°−∠DAE =50°.故选C .6.C【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答.【详解】解:连接CD ,如图所示:∵点D 是AG 的中点,∴S △ABD =12S △ABG ,S △ACD =12S △AGC ,∴S △ABD +S △ACD =12S △ABC =24,∴S △BCD =12S △ABC =24,∵点E 是BD 的中点,∴S△CDE =12S△BCD=12,∵点F是CE的中点,∴S△DEF =12S△CDE=6.故选:C.7.C【分析】若两螺丝的距离最大,则此时这个木框的形状为三角形,根据三角形任意两边之和大于第三边,进行求解即可.【详解】解:①当3、4在一条直线上时,三边长为:5、7、7,此时最大距离为7;②∵4+5<3+7,∴3、7不可能在一条直线上;③当4、5在一条直线上时,三边长为:3、7、9,此时最大距离为9;④∵4+3<5+7,∴5、7不可能在一条直线上;综上所述:最大距离为9.故选:C.8.B【分析】根据题意可知∠FBC=32∠C,设∠C=x,表示出∠ADE,根据角平分线的定义,可得∠EDF的度数,根据∠FDC=∠F+∠FBC列方程,即可求出∠F的度数.【详解】解:∵BF平分∠ABC,∴∠FBC=12∠ABC,∵∠ABC=3∠C,∴∠FBC=32∠C,设∠C=x,则∠FBC=32x,∵∠EDC=24°,∴∠AED=x+24°,∵∠ADE=3∠AED,∴∠ADE=3x+72°,∵DF平分∠ADE,∴∠EDF=32x+36°,∵∠FDC=∠F+∠FBC,∴32x+36°+24°=∠F+32x,∴∠F=60°.故选:B.9.C【分析】由角平分线的定义可以得到∠CAE=∠BAE,∠ABF=∠DBF,设∠CAE=∠BAE=x,假设∠C=y,∠ABC=3y,通过角的等量代换可得到∠DFB=3∠G,代入∠G的值即可.【详解】∵AE平分∠BAC,BF平分∠ABD∴∠CAE=∠BAE,∠ABF=∠DBF设∠CAE=∠BAE=x∵∠ABC=3∠C∴可以假设∠C=y,∠ABC=3y∴∠ABF=∠DBF=∠CBG=12(180°−3y)=90°−32y∵AD⊥CD∴∠D=90°∴∠DFB=90°−∠DBF=32y设∠ABF=∠DBF=∠CBG=z,则{z=x+∠Gz+∠G=x+y∴∠G=12y∴∠DFB=3∠G∵∠G=20°∴∠DFB=60°故答案选:C10.D【分析】根据角平分线的定义、三角形的内角和定理、三角形的外角性质、平行线的判定一一判定即可.【详解】解:①设点A、B在直线MF上,∵BD、CD分别平分△ABC的内角∠ABC,外角∠ACP,∴AD平分△ABC的外角∠FAC,∴∠FAD=∠DAC,∵∠FAC=∠ACB+∠ABC,且∠ABC=∠ACB,∴∠FAD=∠ABC,∴AD∥BC,故①正确.②∵BD、BE分别平分△ABC的内角∠ABC、外角∠MBC,∴∠DBE=∠DBC+∠EBC=12∠ABC+12∠MBC=12×180°=90°,∴EB⊥BD,故②正确.③∵∠DCP=∠BDC+∠CBD,2∠DCP=∠BAC+2∠DBC,∴2(∠BDC+∠CBD)=∠BAC+2∠DBC,∴∠BDC=12∠BAC,∵∠BAC+2∠ACB=180°,∴12∠BAC+∠ACB=90°,∴∠BDC+∠ACB=90°,故③正确.④∵∠BEC=180°−12(∠MBC+∠NCB)=180°−12(∠BAC+∠ACB+∠BAC+∠ABC)=180°−12(180°+∠BAC)∴∠BEC=90°−12∠BAC,∴∠BAC+2∠BEC=180°,故④正确.故选:D.二.填空题11.124°【分析】根据已知、折叠和平行线,得∠BEF=∠C,再计算∠BED的度数,最后根据三角形内角和为180°计算∠BDE的度数即可.【详解】∵EF∥AC,∠B=32°,∠A=100°,∴∠BEF=∠C=180°−∠A−∠B=180°−100°−32°=48°(两直线平行,同位角相等),∵纸片沿DE折叠(DE为折痕),点B落在点F处,∴∠BED=12∠BEF=12×48°=24°,∴∠BDE=180°−∠B−∠BED=180°−32°−24°=124°(三角形内角和为180°),故答案为:124°.12.9【分析】由AD为△ABC的中线得S△ABD =S△ACD,从而得到12⋅AB⋅DE=12⋅AC⋅DF,代入进行计算即可得到答案.【详解】解:∵AD为△ABC的中线,∴BD=CD,∴S△ABD =S△ACD,∵DE,DF分别为△ABD,△ACD的一条高,∴12⋅AB⋅DE=12⋅AC⋅DF,∵AB=6,DE=4,DF=83,∴AC=9,故答案为:9.13. 2、4 10【分析】由(a −2)2+|b −4|=0,可得a −2=0,b −4=0,解得a =2,b =4,由三角形三边关系可得,b −a <c <a +b ,即2<c <6,由c 为偶数,可得c =4,然后求周长即可.【详解】解:∵(a −2)2+|b −4|=0,∴a −2=0,b −4=0,解得a =2,b =4,由三角形三边关系可得,b −a <c <a +b ,即2<c <6,∵c 为偶数,∴c =4,∴△ABC 的周长为2+4+4=10,故答案为:2、4,10.14.94【分析】连接DF ,CE .由题意中的线段的比和S △ABC =12,可推出S △ABD =23S △ABC =8,S △CBD=13S △ABC =4,从而可求出S △ABE =14S △ABD =2,S △ADE =34S △ABD =6.结合中点的性质即得出S △ADF =S △EDF =12S △ADE =3,从而可求出S △CDF =12S △ADF =32,进而得出S △ECF =S △ACF=S △ADF +S △CDF =92,最后即得出DGEG =S △CDF S △ECF=13,最后即可求出S △EFG =34S △EDF =94.【详解】解:如图,连接DF ,CE .∵CD:AD=1:2,S △ABC =12,∴S △ABD =23S △ABC =8,S △CBD =13S △ABC =4.又∵BE:ED =1:3,∴S△ABE =14S△ABD=2,S△ADE=34S△ABD=6.∵点F是线段AE的中点,∴S△ADF =S△EDF=12S△ADE=3.∵CD:AD=1:2,∴S△CDF =12S△ADF=32,∴S△ACF =S△ADF+S△CDF=92,∴S△ECF =S△ACF=92,∴S△CDFS△ECF =3292=13,即S△DEF+S△DGCS△EFG+S△EGC=13,∴DGEG =13,∴S△EFG =34S△EDF=94.故答案为:94.15.11或29【分析】根据题意,画出图形,进行分类讨论,①当点C在△AOB内时,根据三角形的内角和定理可得∠D=20°,根据平行线的性质得出∠1=∠B=40°,再根据三角形的外角定理求出∠2,进而得出∠AOD=∠AOB+∠2,即可求解;②当点C在△AOB外时,延长BO交CD 于一点,根据平行线的性质得出∠3=∠B=40°,再根据三角形的外角定理求出∠4=20°,即可得出∠AOD,即可求解.【详解】解:①当点C在△AOB内时,如图,在Rt△OCD中,∠C=70°,∴∠D=180°−90°−70°=20°,∵CD∥AB,∠B=40°,∴∠1=∠B=40°,∵∠D+∠2=∠1,∴∠2=40°−20°=20°,∴∠AOD=∠AOB+∠2=90°+20°=110°,∴旋转时间=110÷10=11(秒),②当点C在△AOB外时,延长BO交CD于一点,如图,∵CD∥AB,∠B=40°,∴∠3=∠B=40°,由①可得,∠D=20°,∴∠4=∠3−∠D=40°−20°=20°,∴∠AOD=90°−∠4=70°,∴△COD绕点O沿顺时针方向旋转了360°−70°=290°,∴旋转时间=290÷10=29(秒),故答案为:11或29.16.55°【分析】根据新定义的“斜等边三角形”的特点分情况分析,然后利用三角形内角和定理求解即可.【详解】解:△ABD是“斜等边三角形”,BD⊥AC,∴∠ADB=90°(1)2∠A−∠ABD=60°,∵∠A+∠ABD=90°,∴解得:∠A=50°,∠ABD=40°;(2)2∠A−∠ADB=60°,∴解得:∠A=75°,∠ABD=15°;(3)2∠ABD−∠A=60°,∵∠A+∠ABD=90°,∴解得:∠A=40°,∠ABD=50°;(4)2∠ABD−∠ADB=60°,∴解得:∠ABD=75°,∠A=15°;△BCD是“斜等边三角形”,①2∠C−∠CBD=60°,∵∠C+∠CBD=90°,∴解得:∠C=50°,∠CBD=40°;②2∠C−∠CDB=60°,∴解得:∠C=75°,∠CBD=15°;③2∠CBD−∠C=60°,∵∠C+∠CBD=90°,∴解得:∠C=40°,∠CBD=50°;④2∠CBD−∠CDB=60°,∴解得:∠CBD=75°,∠C=15°;当(1)①成立时,∠A=50°,∠ABD=40°,∠C=50°,∠CBD=40°,∴∠CBA=40°+40°=80°,∴三个角中不满足“斜等边三角形”的定义,不符合题意;当(1)②成立时,∠A=50°,∠ABD=40°,∠C=75°,∠CBD=15°,∴∠CBA=40°+15°=55°,∵2∠CBA−∠A=60°,∴△ABC是“斜等边三角形”,符合题意;同理得:符合题意的只有∠ABC=55°,故答案为:55°三.解答题17.解:(1)设这个多边形的边数是n,由题意得:(n−2)×180=360×3,∴n=8,∴这个多边形是八边形;(2)设这个多边形的边数是m,由题意得:(m−2)×180<1280<(m−2)×180+180,解得:819<m<919,∵m为整数∴m=9,∴重复加的那个角的度数是:1280°−(9−2)×180°=20°答:这个多边形的边数是9,重复加的那个角的度数是20°.18.解:AB+BC+AC>2BD.理由如下:在△ABD中,AB+AD>BD,在△BCD中,BC+CD>BD,∴AB+AD+BC+CD>2BD,即AB+BC+AC>2BD.19.(1)如图所示,△DEF即为所求;(2)如图所示,CH即为所求;(3)如图所示,∵△ABC平移后得到的△DEF∴若连接CD、AE,CD∥AE,CD=AE∴这两条线段之间的关系是平行且相等;(4)如图所示,△DEF的面积=4×6−12×4×3−12×1×3−12×3×6=152.20.(1)解:∵∠BAC=90°,AD是边BC上的高,∴12AB⋅AC=12BC⋅AD,∴AD=AB⋅ACBC =6×810= 4.8(cm),即AD的长度为4.8cm;(2)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长−△ABE的周长=(AC+AE+CE)−(AB+BE+AE)=AC−AB=8−6=2(cm),即△ACE和△ABE的周长的差是2cm.21.(1)解:在△ABC中,∠B=70°,∠C=30°,∴∠BAC=180°−∠B−∠C=180°−70°−30°=80°,∵AE是△ABC的角平分线.∴∠BAE=12∠BAC=12×80°=40°,∵线段AD是△ABC中BC边上的高,∴∠ADB=90°,∴∠BAD=180°−∠B−∠ADB=180°−70°−90°=20°,∴∠DAE=∠BAE−∠BAD=40°−20°=20°,(2)解:∵∠B=x°,线段AD是△ABC中BC边上的高,∴∠BAD=90°−∠B=90°−x°,∵∠DAE=10°,∴∠BAE=∠BAD+∠DAE=90°−x°+10°=100°−x°,∵AE是△ABC的角平分线,∴∠BAC=2∠BAE=200°−2x°,∴∠C=180°−∠B−∠BAC=180°−x°−(200°−2x°)=(x−20°),故答案为:(x−20)°;(3)解:连接BF,∵∠1=∠GBF+∠GFB,∠2=∠HBF+∠HFB,∴∠1+∠2=∠GBF+∠GFB+∠HBF+∠HFB=∠B+∠GFH,∵△GFH由△GBH折叠所得,∴∠B=∠GFH,∴∠1+∠2=2∠B.22.(1)解:∵∠ACB+∠ABC+∠BAC=180°,∠BAC=∠ABC,∴∠ACB=180°−2∠BAC,∵∠CFE+∠FEC=180°−∠ACB,∴∠CFE+∠FEC=180°−(180°−2∠BAC)=2∠BAC,∵∠BAC=70°,∴∠CFE+∠FEC=140°;(2)∠FEC+∠CFE=2∠BAC,证明:在△CEF中∵∠C+∠CEF+∠CFE=180°,∴∠CEF+∠CFE=180°−∠C,在△ABC中,∵∠C+∠BAC+∠ABC=180°,∴∠BAC+∠ABC=180°−∠C,∴∠CEF+∠CFE=∠BAC+∠ABC,∵∠BAC=∠ABC,∴∠CEF+∠CFE=2∠BAC;(3)解:∵∠ACB=∠FEC+∠CFE,∠ACB+∠ABC+∠BAC=180°,∠BAC=∠ABC,∴180°−2∠BAC=∠FEC+∠CFE,∴∠FEC+∠CFE=180°−2∠BAC.23.(1)解:如图所示,∵DC∥AB∴∠DCB=∠B=30°,(2)证明:∵AB∥FD∴∠DFB=∠MBF,设∠DFB=∠MBF=α∵∠DFM被FB平分∴∠DFB=∠MFB,则∠DFB=∠MFB=α,∴∠AMF=∠MBF+∠MFB=2α,∵∠BAC=90°∴∠MFA=90°−2α,∵FN平分∠EFM∴∠EFN=∠MFN=12(180°−∠MFA)=12(180°−90°+2α)=45°+α∴∠NFB=∠NFM−∠BFM=45°+α−α=45°,即∠NFB的大小保持不变;(3)解:在移动过程中,∠NFB的大小保持不变;如图所示,证明:∵AB∥FD∴∠DFB=∠MBF,设∠DFB=∠MBF=α∵∠DFM被FB平分∴∠DFB=∠MFB,则∠DFB=∠MFB=α,∴∠AMF=∠MBF+∠MFB=2α,∵∠BAC=90°∴∠MFA=90°−2α,∵F N'平分∠EFM∴∠EF N'=∠MF N'=12(180°−∠MFA)=12(180°−90°+2α)=45°+α∴∠N'FB=∠N'FM−∠BFM=45°+α−α=45°,∴∠NFB=135°,即∠NFB的大小保持不变;。