概率论第6章样本及抽样分布
概率论与数理统计(06)第6章 统计量及其抽样分布

σx =
σ
n
当样本容量足够 大时( 大时(n ≥ 30) , 样本均值的抽样 分布逐渐趋于正 态分布
6 - 11
µx = µ
xቤተ መጻሕፍቲ ባይዱ
x 的分布趋 于正态分布 的过程
6 - 12
6.4 正态总体 6.3.1 χ2分布 6.3.2 t 分布 6.3.3 F 分布
6 - 13
χ2 分布
第六章 样本与统计量
6.1引言 6.1引言
数理统计学: 运用概率论的基础知识,对要研究的随机现象进行 多次观察或试验,研究如何合理地获得数据资料, 建立有效的数学方法,根据所获得的数据资料,对 所关心的问题作出估计与检验。
6-1
§6.2总体与样本 6.2总体与样本
对某一问题的研究对象全体称为总体。 组成总体的某个基本单元,称为个体。 总体可以是具体事物的集合,如一批产品。 也可以是关于事物的度量数据集合,如长度测量。 总体可以包含有限个个体,也可以包含无限个个体。 有限总体在个体相当多的情况下,可以作为无限 总体进行研究。 总体中的个体,应当有共同的可观察的特征。该 特征与研究目的有关。
6 - 16
χ2分布
(图示) 图示)
n=1 n=4 n=10
n=20
6 - 17 不同容量样本的抽样分布
χ2
t 分布
6 - 18
t 分布
1. 高 塞 特 (W.S.Gosset) 于 1908 年 在 一 篇 以 (W. “Student”(学生)为笔名的论文中首次提出 Student”(学生)
X ~ N(µ,σ ) ,则
2
χ2分布
2. 3.
z=
X −µ
Y=z
概率论与数理统计-ch6-样本与抽样分布

概率论与数理统计-ch6-样本与抽样分布概率论中,所研究的随机变量是假定其分布是已知的,在此前提下研究它的性质、数字特征等。
在数理统计中,所研究的随机变量的分布是未知或不完全知道的,通过重复独⽴的试验得到许多观察值去推断随机变量的种种可能分布。
1、随机样本总体:试验的全部可能的观察值。
=样本空间个体:每⼀个可能观察值。
=样本点容量:总体中所包含的个体的个数。
有限总体⽆限总体⼀个总体对应⼀个随机变量X,对总体的研究就是对随机变量X的研究。
所以将不区分总体与相应的随机变量,统称为总体X。
样本:在数理统计中,⼈们都是通过从总体中抽取⼀部分个体,根据获得的数据来对总体分布得出推断的,被抽出的部分个体叫做总体的⼀个样本。
对总体进⾏⼀次观察,就会得到⼀个随机变量X1,对总体进⾏n次重复的、独⽴的观察,就会得到n个随机变量X1,X2,...,Xn,这n个随机变量X1,X2,...,Xn是对总体随机变量X观察的结果。
则X1,X2,...,Xn是相关独⽴且与X具有相同分布,称为来⾃总体X的⼀个简单随机样本。
n称为样本的容量。
进⾏n次观察得到的⼀组实数x1,x2,...,xn是随机变量X1,X2,...,Xn的观察值,称为样本值,也称为X的n个独⽴的观测值。
2、抽样分布样本是统计推断的依据,但往往不直接使⽤样本本⾝,⽽是由样本构造的函数。
统计量:设X1,X2,...,Xn是来⾃总体X的⼀个样本,g(X1,X2,...,Xn)是其函数,且g中不含任何未知参数,则称g(X1,X2,...,Xn)是⼀统计量。
统计量也是⼀个随机变量。
g(x1,x2,...,xn)是统计量的观测值。
常⽤的统计量:经验分布函数:经验分布函数(empirical distribution function)是根据样本得到的分布函数.如设,是总体的样本值,将它们按⼤⼩顺序排列为,则称分布函数为经验分布函数是与总体分布函数相对应的统计量。
总体的分布函数是F(x),统计量的经验分布函数是F n(x),⽤F n(x)去推断F(x),当n⾜够⼤时,F n(x)以概率1收敛于F(x)。
第六章样本及样本函数的分布

∼ t(n −1). .
Sn
177
概率论与数理统计全程学习指导
∑ = ∑ 【评注】 10
1 统计量 σ 2
n
(X i
−
μ)2
和
i =1
(n −1)S2 σ2
1 σ2
n
(X i
−
X )2
的分布在自由度上是
i =1
∑ ∑ 1
有差别的,这是因为在 σ2
n
(X i
−
X )2
中有一个约束条件
X
i =1
=1 n
x(1) ≤ x(2) ≤
≤x (k)
,并假设
x( i )
出现的频数为
ni
,那么
x( i )
出现的频率为
i = 1, 2, , k, k ≤ n . 函数
fi
=
ni n
,
⎧ 0,
⎪
∑ Fn (x)
=
⎪ ⎨
i
fj,
⎪ j=1
⎪⎩ 1,
x < x(1),
x(i) ≤ x < x(i+1), i = 1, 2, , k −1, x ≥ x(k).
③ χ2 分布的性质
10 若 χ2 ∼ χ2 (n) ,则 E(χ2 ) = n , D(χ2 ) = 2n ;
20
(可加性)若
χ
2
1
∼
χ2 (n1) ,
χ
2
2
∼
χ2 (n2 )
,且
χ
2
1
和
χ
2
2
相互独立,则
χ
2
1
+
χ
2
概率论 第六章 样本及抽样分布

一般,设 x1,x2, …,xn 是总体F的一个容 量为n的样本值,先将x1,x2, …,xn 按自小到 大的次序排列,并重新编号,设为
x(1) ≤x(2) ≤…≤x(n) 则经验分布函数Fn(x)的观察值为
0,
若x x(1) ,
性质:
(1) limf (t)
1
e ; t2 2
n
2
(2)当n 45时 取t (n) Z .
(三)设X~2(n1), Y~ 2(n2), 且X 与Y相互独立,则随机变量
F X/ n1 Y / n2
则称F服从第一自由度为n1,第二自由 度为n2的F分布,记作
F~F(n1 ,n2)
F分布的分布密度为
2 2
E( X 2 ) D( X ) (E( X ))2
2 2
n
E(S 2 )
E[ 1 n 1
n i 1
(Xi
X
)2 ]
E[
1
n
(
n 1 i1
X
2 i
2
n X )]
1
n
E(
n 1 i1
X
2 i
nX
2
)
1 [E( n 1
n i 1
X
2 i
)
E(n X
2
)]
1[ n 1
n i 1
考察某厂生产的电容器
的使用寿命。在这个试验 中什么是总体,什么是个 体。
解 个体是每一个电容器 的使用寿命;总体X是各个 电容器的使用寿命的集合。
2. 样本
为推断总体分布及各种特征,按一定规 则从总体中抽取若干个体进行观察试验,以 获得有关总体的信息,这一抽取过程称为 “抽样”,所抽取的部分个体称为样本. 样 本中所包含的个体数称为样本容量.
概率论6-1,2,3

例如,考察某工厂10月份生产的灯泡的寿命所组 例如,考察某工厂 月份生产的灯泡的寿命所组 成的总体。 成的总体。灯泡寿命落在各个时间区间内有一定的 百分比,如灯泡寿命落在1000小时 小时~1300小时的占灯 百分比,如灯泡寿命落在 小时 小时的占灯 泡总数的85%,落在1300小时 %,落在 小时~1800小时的占灯泡总 泡总数的 %,落在 小时 小时的占灯泡总 数的5%, %,…。 即灯泡寿命的取值有一定的分布。 数的 %, 。 即灯泡寿命的取值有一定的分布。
就取位于 [ 是整数, x([ np ]+1) , 不是整数, 当np不是整数, x 综上, 综上, p = 1 [ x( np ) + x( np+1) ], 当np是整数 . 2
0 当 特别, 特别, p = 0.5时,.5分位数 x0 .5也记为Q2或
数据集的箱线图是由箱子和直线组成的图形, 数据集的箱线图是由箱子和直线组成的图形, 它是基于以下五个数的图形概括: 它是基于以下五个数的图形概括: 最小值 Min, 第一四分位数 Q1,中位数M,第三四分位数 Q3和 中位数 最大值 Max. 作法如下: 作法如下: (1) 画一水平数轴, 在轴上标上 Min,Q1, M, 画一水平数轴, Q3,Max. 在数轴上方画一个上、 下侧平行于数 在数轴上方画一个上、 Q 箱子的左右两侧分别位 于 Q1, 3 的上方. 轴的矩形箱子, 轴的矩形箱子, 在 M点的上方画一条垂直线 段 .线段位于箱子内部. ( 2)自箱子左侧引一条水平 线至 Min; 在同一水平 高度自箱子右侧引一条水平线直至最大值. 高度自箱子右侧引一条水平线直至最大值. 如图所示. 如图所示.
1.总体与个体 总体与个体
§1 随机样本
总体 试验的全部可能的观察值称为总体. 试验的全部可能的观察值称为总体. 个体 总体中的每个可能观察值称为个体. 总体中的每个可能观察值称为个体.
正态总体下的四大分布

《概率论与数理统计》第六章样本及抽样分布(2)正态总体下的四大分布:正态分布设n x x x ,,,21 为来自正态总体),(2σμN 的一个样本,则样本函数).1,0(~/N nx udefσμ-例:设总体ξ~212(1,2),,,n N ξξξ 且是取自ξ的样本,则(D )A)1(0,1)2N ξ-B)1(0,1)4N ξ-C)()1(0,1)2N ξ-D)(0,1)N ξt 分布设n x x x ,,,21 为来自正态总体),(2σμN 的一个样本,则样本函数),1(~/--n t ns x tdefμ其中t(n-1)表示自由度为n-1的t 分布。
分布2χ设n x x x ,,,21 为来自正态总体),(2σμN 的一个样本,则样本函数),1(~)1(222--n S n wdefχσ其中)1(2-n χ表示自由度为n-1的2χ分布例:已知F 0.1(7,20)=2.04,则F 0.9(20,7)=_______0.4902_____.例.对于给定的正数α,10<<α,设αu ,)(2n αχ,)(n t α,),(21n n F α分别是)1,0(N ,)(2n χ,)(n t ,),(21n n F 分布的下α分位数,则下面结论中不正确...的是(B )(A)αα--=1u u (B))()(221n n ααχχ-=-(C))()(1n t n t αα--=(D)),(1),(12211n n F αα=-2、设X 、Y 相互独立,且都服从标准正态分布,则Z =2Y X 服从______t(1)_____分布(同时要写出分布的参数).3.设ξ和η相互独立且都服从N(0,4),而41,ξξ 和41,ηη 分别是来自总体ξ和η的样本,则统计量242141......ηηξξ++++=U 服从的分布为)4(t 。
概率论与数理统计-第六章

这200人的年龄数据。
总体:北京市民的年龄 随机变量:年龄X
个体:张三28岁;李四5岁;
样本:{ 28;5;14;56;23;2;39;…;69} 样本容量:200
抽样:随机抽取200人进行调查的过程
6
例2:为了确定工厂生产的电池电量分布情况,在
产品中随机抽取500个,测量其电量。记录了
x
0
F n1 , n2
F分布的分位数
x
F分布的上α分位点
对于给定的 , 0 1, 称满足条件
F n1 , n2
f x; n1 , n2 dx 的点F n1 , n2
为F n1 , n2 分布的上 分位数。F n1 , n2 的值可查F 分布表
17
不易计算!
18
抽样分布 —— 任意统计量 Q = g (X1, X2, …, Xn ) 的分布函数 抽样分布的计算: 多维随机变量(独立、同分布)的函数的分布 函数的计算问题。
得到统计量 Q 的抽样分布,就可以用来解决
关于总体 X 的统计推断问题。
19
关于随机变量独立性的两个定理
解:(1)作变换 Yi
显然Y1 , Y2 ,
2 n i 1
Xi
, Yn相互独立,且Yi N 0,1 i 1, 2,
Xi
i 1, 2,
,n
,n
于是 (
) Yi 2 2 n
2 i 1
28
n
(2)
2 ( X X ) X1 X 2 ~ N (0, 2 2 ), 1 2 2 ~ 2 (1) 2
《概率论与数理统计》第六章

既然总体是随机变量X,自然就有其概率分布。
我们把X的分布称为总体分布。
总体的特性是由总体分布来刻画的。因此,常 把总体和总体分布视为同义语。
第六章 样本及抽样分布 ‹#›
例2
在例1中,假定物体真实长度为(未知)。一般 说来,测量值X就是总体,取 附近值的概率要大一 些,而离 越远的值被取到的概率就越小。
k=1,2,…
第六章 样本及抽样分布 ‹#›
它反映了总体k 阶矩的信息
样本k阶中心矩
Bk
1 n
n i 1
(Xi
X )k
它反映了总体k 阶 中心矩的信息
第六章 样本及抽样分布 ‹#›
统计量的观察值
1 n
x n i1 xi;
s2
1 n 1
n i1
(xi
x )2
s
1 n 1
n i1
(xi
x
)2
第六章 样本及抽样分布 ‹#›
实际上,我们真正关心的并不一定是总体或个
体本身,而真正关心的是总体或个体的某项数量指 标。
如:某电子产品的使用寿命,某天的最高气温, 加工出来的某零件的长度等数量指标。因此,有时也
将总体理解为那些研究对象的某项数量指标的全
体。
第六章 样本及抽样分布 ‹#›
为评价某种产品质量的好坏,通常的做法是: 从全部产品中随机(任意)地抽取一些样品进行观测(检
样本X1,X2,…,Xn 既被看成数值,又被看成随机变量, 这就是所谓的样本的二重性。
随机样本
例 4 (例2续) 在前面测量物体长度的例子中,如果我们 在完全相同的条件下,独立地测量了n 次,把这 n 次测 量结果,即样本记为
X1,X2,…,Xn .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1 随机样本
X 的分布函数和数字特征就称为总体的分布 函数和数字特征. 今后将不区分总体与相应的随机 变量.
例如,我们检验自生产线出来的零件是次品还
是正品,以0表示产品是正品,以1表示产品为次品. 设出现次品的频率为 p(常数),那么总体是由一 些“0”和一些“1”所组成,这一总体对应于一个具有 参数为p的(0-1)分布:
由于每个个体的出现是随机的,所以相应的数量 指标的出现也带有随机性 . 从而可以把这种数量指 标看作一个随机变量X ,因此随机变量X的分布就 是该数量指标在总体中的分布.
总体就可以用一个随机变量及其分布来描述.
因此在理论上可以把总体与概率分布等同起来.
§1 随机样本
例如:研究某批灯泡的寿命时,关心的数量指标 就是寿命,那么,此总体就可以用随机变量X表示, 或用其分布函数F(x)表示.
n
f
(
xi
)
ne
n
i 1
xi
,
i 1
0,
xi 0, 其他.
§1 随机样本
例8 设总体 X 服从两点分布B(1, p),其中0 p 1, ( X1, X2, , Xn )是来自总体的样本, 求样本 ( X1, X2 , , Xn ) 的分布律. 解 总体 X 的分布律为
P{ X i} pi (1 p)1i (i 0, 1)
Байду номын сангаас
§1 随机样本 二、随机样本的定义
1.样本的定义
设 X 是具有分布函数 F 的随机变量, 若 X1, X 2 , , Xn 是具有同一分布函数F、相互独立的 随机变量, 则称 X1, X2 , , Xn 为从分布函数 F (或总体 F、或总体 X ) 得到的容量为 n 的简单 随机样本 , 简称样本 .
总体
寿命 X 可用一概率 (指数)分布来刻划
某批 灯泡的寿命
寿命总体是指数分布总体
鉴于此,常用随机变量的记号 或用其分布函数表示总体. 如 说总体X或总体F(x) .
§1 随机样本
类似地,在研究某地区中学生的营养状况时 , 若关心的数量指标是身高和体重,我们用X 和Y 分 别表示身高和体重,那么此总体就可用二维随机变 量(X,Y)或其联合分布函数 F(x,y)来表示.
概率论与数理分析
第六章 样本及抽样分布
§1 随机样本 §2 直线图和箱线图 §3 抽样分布
§1 随机样本
引言
随机变量及其所伴随的概率分布全面描述了随机 现象的统计性规律。
概率论的许多问题中,随机变量的概率分布通常 是已知的,或者假设是已知的,而一切计算与推理都 是在这已知是基础上得出来的。
但实际中,情况往往并非如此,一个随机现象所 服从的分布可能是完全不知道的,或者知道其分布概 型,但是其中的某些参数是未知的。
例2 某工厂10月份生产的灯泡寿命所组成的总 体中, 个体的总数就是10月份生产的灯泡数, 这是 个有限总体; 而该工厂生产的所有灯泡寿命所组成 的总体是一个无限总体, 它包括以往生产和今后生 产的灯泡寿命.
§1 随机样本
例3 在考察某大学一年级男生的身高这一试 试验中,若一年级男生共2 000人,每个男生的身高 是一个可能观察值,所形成的总体中共含2 000个 可能观察值,是一个有限总体.
( X1, X2, , Xn ) 是来自总体的样本, 求样本
( X1, X2, , Xn ) 的概率密度.
解 总体 X 的概率密度为
ex ,
f (x)
0,
x 0, x 0,
因为 X1, X2, , Xn 相互独立, 且与X 有相同的分布,
所以 ( X1, X2, , Xn )的概率密度为
fn( x1, x2 , , xn )
它们的观察值 x1, x2, , xn 称为样本值, 又称 为X 的 n 个独立的观察值.
§1 随机样本
2. 简单随机抽样的定义
获得简单随机样本的抽样方法称为简单随机抽样.
若X1, X2, , Xn为F 的一个样本, 则X1,X2, ,
X n相互独立,且 它 们 的 分 布 函 数 都 是 F,所以
§1 随机样本
例如:
某公路上行驶车辆的速度服从什么分布是未知的;
电视机的使用寿命服从什么分布是未知的; 产品是否合格服从两点分布,但参数——合格率p是 未知的;
数理统计的任务则是以概率论为基础,根据试验 所得到的数据,对研究对象的客观统计规律性做出合 理的推断。
§1 随机样本 一、总体与个体
1.总体
P{X x} px(1 p)1 x, x 0,1
的随机变量.
§1 随机样本
在数理统计中,人们都是通过从总体中抽取 一部分个体, 根据获得的数据来对总体分布得出 判断的. 被抽出的部分个体叫做总体的一个样本.
所谓从总体抽取一个个体, 就是对总体X 进行 一次观察并记录其结果.
当n次观察一经完成,我们就得到一组实数 x1, x2 , , xn , 它们依次是随机变量X1, X 2 , , X n 的观察值,称为样本值 .
( X1,
X 2,
,
X
n
)
的
分
布
函
数
为 n
F *( x1, x2, , xn ) F ( xi ).
i 1
又若X具有概率密度 f, 则( X1, X2, , Xn ) 的
概率密度为 n
f *( x1, x2, , xn ) f ( xi ).
i 1
§1 随机样本
例7 设总体 X 服从参数为 ( 0) 的指数分布,
试验的全部可能的观察值称为总体.
2.个体
总体中的每个可能观察值称为个体.
例1 在研究2 000名学生的年 龄时,这些学生的年龄的全体 就构成一个总体,每个学生的 年龄就是个体.
§1 随机样本
3.容量
总体中所包含的个体的个数称为总体的容量.
4.有限总体和无限总体
容量为有限的称为有限总体. 容量为无限的称为无限总体.
例4 考察某一湖泊中某种鱼的含汞量, 所得 总体也是有限总体.
§1 随机样本
有些有限总体,它的容量很大, 我们可以认为 它是一个无限总体.
例5 考察全国正在使用的某种型号灯泡的寿 命所形成的总体, 由于可能观察值的个数很多,就 可以认为是无限总体.
§1 随机样本
5. 总体分布
我们关心的是总体中的个体的某项指标(如人的 身高、灯泡的寿命,汽车的耗油量…) .