11高数第十一章

合集下载

高数第十一章复习

高数第十一章复习
第十一章
曲线积分
习题课
高等数学
1
知识梳理 一、 两类曲线积分
定义 对弧长的曲线积分 ∫ f ( x, y)ds
L
对坐标的曲线积分
∫ P( x, y)dx = lim ∑P(ξ ,η )∆x λ
L →0
n
= lim∑ f (ξi ,ηi )∆Si
λ→0
i =1
n
∫ Q( x, y)dy = lim ∑Q(ξ ,η )∆y λ
(7)求 )
其中
是以 点 A(1,0) , B(0,1) , C(-1,0) 为 y
B (0,1)
顶点的三角形的正向边界曲线. 顶点的三角形的正向边界曲线 解 上式积分 =
C (-1,0) o
x
A(1,0)
由格林公式,得 由格林公式,
高等数学
13
例2.螺旋形弹簧一圈的方程为 螺旋形弹簧一圈的方程为
二、四个等价命题
条件:在单连通区域 内 条件:在单连通区域G内,函数P ( x , y ) , Q ( x , y ) 具有一阶 连续偏导数 以下四个命题等价: 以下四个命题等价: 内与路径无关; 1 曲线积分 ∫ Pdx + Qdy 在G 内与路径无关;
L
2

∂Q ∂P 3 在 G 内恒成立 内恒成立; = ∂x ∂y 4 Pdx + Qdy = du( x , y ), 即Pdx + Qdy 为某一 u( x , y )的全微分 的全微分.
此时不能用格林公式
2 xy − 3 y x 2 − 5x dx + 2 dy 解 ∫ 2 2 2 x +y L x + y 1 = 2 ∫ (2 xy − 3 y )dx + (x 2 − 5 x )dy a L 1 = 2 ∫∫ [(2 x − 5 ) − (2 x − 3 )]dxdy a x 2 + y 2 ≤a 2

《高等数学》 各章知识点总结——第11章

《高等数学》 各章知识点总结——第11章

1 第11章 曲线积分与曲面积分总结一、曲线曲面积分的计算1、L 的参数方程为 x =ϕ(t ), y =ψ(t ) (α≤t ≤β), dt t t t t f ds y x f L )()()](),([),(22ψϕψϕβα'+'=⎰⎰. 2、有向曲线L : x =ϕ(t ), y =ψ(t ), 参数t 单调地由α变到β时,: ⎰⎰'+'=+βαψψϕϕψϕdt t t t Q t t t P dy y x Q dx y x P L )}()](),([)()](),([{),(),( 3、设闭区域D 由分段光滑的曲线L 围成, 函数P (x , y )及Q (x , y )在D 上具有一阶连续偏导数, 则有 ⎰⎰⎰+=∂∂-∂∂L D Qdy Pdx dxdy y Px Q)(, 其中L 是D 的取正向的边界曲线. 特别要注意曲线不封闭但Q Px y ∂∂-∂∂比较简单时补一曲线使其封闭的情况。

4、曲面∑由方程z =z (x , y )给出, ∑在xOy 面上的投影区域为D xy ,⎰⎰⎰⎰++=∑xyD y x dxdy y x z y x z y x z y x f dS z y x f ),(),(1)],(,,[),,(225、曲面∑由方程z =z (x , y )给出的, ∑在xOy 面上的投影区域为D xy ,⎰⎰⎰⎰±=∑xyD dxdy y x z y x R dxdy z y x R )],(,,[),,(,其中当∑取上侧时, 积分前取“+”; 当∑取下侧时, 积分前取“-”.6、空间闭区域Ω是由分片光滑的闭曲面∑所围成,⎰⎰⎰⎰⎰∑Ω++=∂∂+∂∂+∂∂Rdxdy Qdzdx Pdydz dv z Ry Qx P)(,其中∑取外侧。

特别要注意曲面不封闭面三重积分易计算时补一曲面的情况。

2011高数11章习题课

2011高数11章习题课

收o敛
发散 x
机动 目录 上页 下页 返回 结束
定理2. 若
的系数满足

1) 当 ≠0 时, R 1 ;
2) 当 =0 时, R ;
3) 当 =∞时, R 0 .
机动 目录 上页 下页 返回 结束
三、幂级数的运算
定理3. 设幂级数

的收敛半径分别为
R1, R2, 令 R min R1 , R2 , 则有 :
若存在N Z , 对一切 n N ,
机动 目录 上页 下页 返回 结束
定理3. (比较审敛法的极限形式) 设两正项级数
满足 lim un l, 则有 n vn
(1) 当 0 < l <∞ 时, 两个级数同时收敛或发散 ; (2) 当 l = 0 (3) 当 l =∞
机动 目录 上页 下页 返回 结束
R = 时, 幂级数在 (-∞, +∞) 收敛 ;
0 R , 幂级数在 (-R , R ) 收敛 ; 在[-R , R ]
外发散; 在 x R 可能收敛也可能发散 .
R 称为收敛半径 ,(-R , R ) 称为收敛区间.
(-R , R ) 加上收敛的端点称为收敛域.
收敛 发散
发散
定理4 . 比值审敛法 ( D’alembert 判别法)

为正项级数, 且 lim un1 , 则
n
(1) 当 1 时, 级数收敛 ;
un
(2) 当 1 或 时, 级数发散 .
机动 目录 上页 下页 返回 结束
定理5. 根值审敛法 ( Cauchy判别 设
机动 目录 上页 下页 返回 结束
则称无穷级数发散 . 当级数收敛时, 称差值 为级数的余项. 显然

高数第十一章课件第一节

高数第十一章课件第一节

课件目录
课程简介
课程目标
课程内容
课程安排
课程考核
参考资料
课件简介
主题:高数第十一 章课件第一节
内容:介绍高数第 十一章的基本概念、 定理和公式
目的:帮助学生理 解高数第十一章的 内容,提高学习效 率
适用人群:高数第 十一章的学习者
课件内容
第三章
知识点梳理
极限的四则运算法则
函数极限的定义和性质
高数第十一章课件 第一节
,
汇报人:
目录
CONTENTS
01 添加目录标题 02 课件概览 03 课件内容 04 课件特色
05 课件使用建议
单击添加章节标题
第一章
课件概览
第二章
课件封面
● 课程名称:高数第十一章课件第一节
● 授课教师:XXX
● 授课时间:XXXX年XX月XX日
● 课程内容: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX

高数第十一章曲线积分与曲面积分 (1)

高数第十一章曲线积分与曲面积分 (1)


( )
10
总界面 上页 下页 返回 结束
第十一章
曲线积分与曲面积分
例1 计算
L
yds, 其中L是抛物线y x 上点
2
O(0,0)与点B(1,1)之间的一段弧.


L 1
yds
0
1
y
y x2
0
x
2
2 1 ( x ) dx 2
B
x 1 4 x 2 dx
i 1 n
y
B
L M n 1
( i , i ) M i M2 M i 1 M A 1
o
x
3
总界面 上页 下页 返回 结束
第十一章
曲线积分与曲面积分
如果当各小弧段的 长度的最大值 0时, 这和的极限存在 , 则称此极限为函数 f ( x , y ) 在曲线弧 L上对弧长的曲线积分或 第一类曲 线积分, 记作 f ( x , y )ds, 即
x ( t ), L的参数方程为 ( t )其中 y ( t ), ( t ), ( t )在[ , ]上具有一阶连续导数 , 且
2 ( t ) 2 ( t ) 0,则曲线积分 f ( x , y )ds
L
存在,且

L
f ( x , y )ds
曲线积分与曲面积分
定义 设L为xoy面内一条光滑曲线弧 ,函数f ( x , y )
在L上有界.用L上的点M 1 , M 2 ,, M n1把L分成n 个小段.设第i个小段的长度为 si , 又( i , i )为第 i个小段上任意取定的一 点, 作乘积f ( i , i ) si , 并作和 f ( i , i ) si ,

高数下册第11章

高数下册第11章
幂 级 数 a n x 的 和 函 数s( x ) 在 收 敛 区 间
n n0
( R , R )内 可 导 , 并 可 逐 项 求 导 任 意 次 .
7、幂级数展开式
(1) 定义
如 果 f ( x ) 在 点 x 0 处 任 意 阶 可 导 ,则 幂 级 数



f
(n)
( x0 )
n0
x ( , )
ln( 1 x ) x
1 2
x
2
1 3
x ( 1)
3
n1
x
n

n
x ( 1 ,1 ]
(1 x )

1 x
( 1)
2!
x
2
( 1)( n 1)
n!
x
n
x (1,1)
f
(n)
( x0 )
;
(n)
n!
(x) M ,
( 2 ) 讨论 lim R n 0 或 f
n
则级数在收敛区间内收
敛于 f ( x ).
b.间接法 根据唯一性, 利用常见展开式, 通过 变量代换, 四则运算, 恒等变形, 逐项求导, 逐项积 分等方法,求展开式.
(4) 常见函数展开式
e 1 x
如 果 级 数 a n x 在 x x 0 处 发 散 ,则 它 在 满 足
n n0

不等式 x x0 的一切 x 处发散.
推论
如果 幂级 数 an x 不 是 仅在 x 0 一 点 收敛 ,也
n n0
不 是 在 整 个 数 轴 上 都 收 敛 ,则 必 有 一 个 完 全 确 定 的 正 数 R 存 在 ,它 具 有 下 列 性 质 :

高数第11章 线性代数PPT课件

高数第11章 线性代数PPT课件

• 本章重点:
1. 利用行列式的性质计算n阶行列式的方法 2.利用克莱姆法则解线性方程 3.矩阵各种运算,矩阵的初等变换 4.矩阵秩的求法,用初等变换求逆矩阵的方法
5.高斯消元法解线性方程组 6. 层次分析法
• 本章难点:
1. 利用行列式的性质计算n阶行列式的方法
2.用矩阵的初等变换求矩阵的秩,逆矩阵
1111213215321213132111163631316??????????????按第一行展开1612106?????21111226121111111111112111126120211211226120261200313100212????????????1111200011111111111112102110211224261200310031????????????11111111211123001212031031???????按第一行展开211111134131124??????????按第二行展开例例2用行列式的性质计算下列行列式
3.高斯消元法解线性方程组
4.层次分析法
第一节 二、三阶行列式的概念与计算方法
1.引理:
对于二元线性方程组
aa2111xx11
a12x2 a22x2
b1 b2
解得
x1
x
2
b1a 22 b2 a12 a11a22 a12a21 b2 a11 b1a 21 a11a22 a12a21
河北机电职业技术学院
线 性代数课件
整体概述
概述一
点击此处输入
相关文本内容
概述二
点击此处输入
相关文本内容
概述三
点击此处输入
相关文本内容
2
第十一章 线性代数

高数第十一章曲线积分与曲面积分 (2)

高数第十一章曲线积分与曲面积分 (2)

A(1, 1)
4 2 y dy . 1 5
1 4
13
总界面 上页 下页 返回 结束
第十一章
曲线积分与曲面积分
例2 计算

L
y dx, 其中L为
2
(1) 半径为 a、圆心为原点、按逆时针方向绕行 的上半圆周; ( 2) 从点 A(a ,0) 沿 x 轴到点 B( a ,0) 的直线段.
n
7
总界面 上页 下页 返回 结束
第十一章
曲线积分与曲面积分
5.性质 (1)设 、 为常数,则 [P1 P2 ]dx P1dx P2 dx,
L L L
L [Q1 Q2 ]dy L Q1dy L Q2dy .
( 2) 如果把 L分成 L1和 L2 , 则
( t ), ( t )在以及为端点的闭区间上具有一阶连
2 2 续导数, 且 ( t ) ( t ) 0, 则曲线积分
L P ( x, y)dx Q( x, y)dy存在,
9
总界面 上页 下页 返回 结束
第十一章
曲线积分与曲面积分
且 P ( x , y )dx Q( x , y )dy
L L
( t ) ( t ) ,cos , 其中cos 2 2 2 2 ( t ) ( t ) ( t ) ( t )
L : A B,
L
A
M2 M1
yi M i 1xi
M i M n 1
x
分割 A M 0 , M1 ( x1 , y1 ),, M n1 ( xn1 , yn1 ), M n B.
M i 1 M i ( xi )i ( yi ) j .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

将薄片分割成若干小块, y 取典型小块,将其近似
(i ,i )
看作均匀薄片, 所有小块质量之和 近似等于薄片总质量
i
o
n
x
M lim 0
(i ,i ) i .
i 1
一、二重积分的概念
定义 设 f ( x, y) 是有界闭区域D 上的有界 函
数,将闭区域D 任意分成n 个小闭区域 1 ,
2 , , n ,其中 i 表示第i 个小闭区域,
记为 f ( x, y)d ,
D
n

D
f
( x,
y)d
lim
0 i1
f
(i ,i ) i.
积被 积 分积 分 区函 变 域数 量
被面 积积 积 表元 分 达素 和 式
在直角坐标系下,用平行于坐标轴的直线族把 D分成一些小区域,这些小区域中除去靠D的边界 的一些不规则小区域外,绝大部分都是小矩形,
z f (x, y)
A(x0 )
y 2(x)
x
b
x0 a

f ( x, y)d
b
dx
2 ( x) f ( x, y)dy. y 1(x)
D
a
1( x)
如果积分区域为: c y d , 1( y) x 2( y).
[Y-型]
d
x 1( y) D x 2( y)
c
d
x 1( y)
也 表 示 它 的 面 积 , 在 每 个 i 上 任 取 一 点
(i ,i ),
作乘积 f (i ,i ) i ,
(i 1,2,, n),
n
并作和 f (i ,i ) i ,
i 1
如果当各小闭区域的直径中的最大值 趋近于零
时,这和式的极限存在,则称此极限为函数
f ( x, y)在闭区域 D 上的二重积分,
第一节 二重积分的概念与性质
问题的提出
1.曲顶柱体的体积
柱体体积=底面积×高 特点:平顶.
z f (x, y)
D
柱体体积=? 特点:曲顶.
求曲顶柱体的体积采用 “分割、求和 、取极限”的方法,如下动画演示.
步骤如下:
先分割曲顶柱体的底 z
,并取典型小区域,
z f (x, y)
用若干个小平
顶柱体体积之
[X-型]
y 2(x)
D
y 1( x)
y 2(x)
D
y 1( x)
a
b
a
b
其中函数1( x) 、2( x) 在区间 [a,b]上连续.
f ( x, y)d 的值等于以 D 为底,以曲面 z
D
f (x, y) 为曲顶的柱体的体积.
应用计算“平行截 面面积为已知的立
z
体求体积”的方法,
y
注意内层积分限是外层积分变量的函数,外层 积分限是常数。
例 1
改变积分
1
dx
1x f ( x, y)dy 的次序.
00
解 积分区域如图
y 1 x
原式
1 1 y
dy f ( x, y)dx .
00
例 2 改变积分
1
dx
2 x x2
f ( x, y)dy
2
dx
2x f ( x, y)dy的次序.
紧靠D的边界的小区域的面积 y
i ti j L
D
j
其中L为D的围长
o
x
f ( j , j ) j M j ML 0,( 0)
j
则面积元素为
j
d dxdy
故二重积分可写为
f ( x, y)d f ( x, y)dxdy
D
D
二、二重积分的性质
(二重积分与定积分有类似的性质)
.
D
D1
D2
D3
注ⅰ)二重积分化累次积分的步骤
①画域,②选序,③定限
D3 D1
D2
ⅱ)累次积分中积分的上限不小于 下限
ⅲ)二重积分化累次积分定限是关键,积分限 要根据积分区域的形状来确定,这首先要画好 区域的草图,——画好围成D的几条边界线,
若是X—型, 就先 y 后 x 若是Y—型,就先 x 后 y ,
和近似表示曲
o
顶柱体的体积,
x
D

n
i
曲顶柱体的体积 V lim 0
f (i ,i ) i .
i 1
y
(i ,i )
2.求平面薄片的质量
设有一平面薄片,占有 xoy 面上的闭区域
D ,在点( x, y)处的面密度为 ( x, y) ,假定 ( x, y)在D 上连续,平面薄片的质量为多少?
00
10解 积分区域如图 原式12 y
dy
0
1
1 y2
f ( x, y)dx.
y2 x y 2x x2
例3 计算 xy2dxdy D y x, y x2
D
解一
x2 y x
D:
m f ( x, y)d M (二重积分估值不等式)
D
性质7 设函数 f ( x, y)在闭区域D 上连续, 为D 的面积,则在 D 上至少存在一点( , ) 使得
f ( x, y)d f (,) (二重积分中值定理)
D
第二节 二重积分的计算
一、利用直角坐标系计算二重积分
如果积分区域为: a x b, 1( x) y 2( x).
高等数学
第十一章 二重积分
第一节 二重积分的概念与性质 第二节 二重积分的计算 第三节 二重积分的应用
基本要求:了解重积分在物理上的应用; 熟悉二重积分及三重积分的概念;掌握 二重积分的性质及计算,重积分在几何 上的应用。
重点:二重积分在直角坐标系、极坐标系 下的计算方法。
难点:二重积分解决简单的几何量与物理 量;二重积分在球面坐标系下的计算方 法。
性质1 kf ( x, y)d k f ( x, y)d .
D
D
性质2
[ f ( x, y) g( x, y)]d
D
f ( x, y)d g( x, y)d .
D
D
性质3 f ( x, y)d f ( x, y)d f ( x, y)d .
对D 区域具有可加D1性
D2
( D D1 D2 )
c
D
x 2( y)
f ( x, y)d
d
dy
2 ( y) f ( x, y)dx.
D
c
1( y)
X型区域的特点: 穿过区域且平行于y轴的直
线与区域边界相交不多于两个交点.
Y型区域的特点:穿过区域且平行于x轴的直
线与区域边界相交不多于两个交点.
若区域如图, 则必须分割.
在分割后的三个区域上分别 使用积分公式
性质4 若 为D的面积, 1 d d .
D
D
性质5 若在D上 f ( x, y) g( x, y),
则有 f ( x, y)d g( x, y)d .
D
D
特殊地 f ( x, y)d f ( x, y)d .
D
D
性质6 设M 、m 分别是 f ( x, y)在闭区域 D 上的
最大值和最小值, 为 D 的面积,则
相关文档
最新文档