中北大学高数习题 第十一章-2答案
高等代数与解析汇报几何第11章习题参考解答

§11.1二次曲线的几何性质 1、解(1)∵025),(22=++=ΦYXY X Y X 时 )52(:51:i Y X ±-=,同时 0411152>==I∴曲线为椭圆型,有两个共轭的渐近方向:)52(:51i ±-(2)∵034),(22=++=ΦY XY X Y X 时1:1:-=Y X 和1:3:-=Y X同时0132212<-==I , ∴曲线为双曲型,有两个渐近方向:1:1-和1:3-(3)∵02),(22=+-=ΦY XY X Y X 时1:1:=Y X , 同时011112=--=I∴曲线为抛物型,有一个实渐近方向:1:12、解(1)∵0492252522≠-==I , ∴曲线是中心曲线. 由⎪⎩⎪⎨⎧=-+==-+=023225),(03252),(21y x y x F y x y x F 解得⎩⎨⎧=-=21y x ∴中心为)2,1(-(2)∵013392=--=I ,3231322121211-===a a a aa a , ∴曲线为线心曲线。
(3)∵042212=--=I ,且231322121211a a a a a a ≠=, ∴曲线为无心曲线。
3、解(1)由⎪⎩⎪⎨⎧=-+-==+-=023223),(02123),(21y x y x F y x y x F 解得中心)3,5(-- 由0252),(22=++=ΦY XY X Y X 得渐近方向为2:1:11-=Y X , 1:2:22-=Y X所以渐近线方程是 2315+=-+y x 和1325+=-+y x , 即0132=++y x 和0112=++y x (2)由⎩⎨⎧=++==++=01),(012),(21y x y x F y x y x F 解得中心)1,0(-,由022),(22=++=ΦY XY X Y X 解得渐近方向为X:Y = 2:)1(i ±-, 所以渐近线方程是 211+=+-y i x 和211+=--y i x 即0)1(=++y x i 和0)1(=+-y x i4、解(1)∵2723),(1-+=y x y x F , 452),(2-+=y x y x F , ∴29)1,2(1=F5)1,2(2=F , ∴所求切线方程为 0)1(5)2(29=-+-y x 即 028109=-+y x(2)∵4)1,2(=--F ∴)1,2(--不在二次曲线上;设过点)1,2(--的切线与已知二次曲线相切于),(00y x ,那么切线方程为03)(2)(21)(21000000=++++++++y y x x yy xy y x xx ①把)1,2(--代入切线方程得 00=x ②又因),(00y x 在曲线上,把它代入曲线方程得03400200020=+++++y x y y x x ③由②③解得切点为)1,0(),3,0(--,代入①得 切线方程为03=++y x 和01=+y5、解(1)⎪⎪⎭⎫⎝⎛=5228A ,13581=+=I , 3652282==I , 特征方程为036132=+-λλ 解得9,421==λλ, 求得21,λλ对应的特征向量 {}2,11-=ξ ,{}1,22=ξ, 所以主方向是 )2(:1:11-=Y X , 1:2:22=Y X , 主直径是0),(),(2111=+y x F Y y x F X 与 0),(),(2212=+y x F Y y x F X , 即 0)852)(2()428(=-+-+++y x y x 与 0)852()428(2=-++++y x y x , 就是052=+-y x 与02=+y x(2)⎪⎪⎭⎫⎝⎛=5445A ,10551=+=I ,954452==I 特征方程为09102=+-λλ,解得9,121==λλ,求得21,λλ对应的特征向量 {}111,-=ξ, {}112-=,ξ, 所以主方向是1:1:11-=Y X )1(:1:22-=Y X 主直径为 0),(),(2111=+y x F Y y x F X 与 0),(),(2212=+y x F Y y x F X , 即 0=-y x 与 02=-+y x(3)⎪⎪⎭⎫ ⎝⎛--=1612129A , 251691=+=I ,016121292=--=I , 特征方程为0252=-λλ,解得251=λ,02=λ, 求得21,λλ对应的特征向量是 {}4,31-=ξ, {}3,42=ξ 所以非渐近主方向是)4(:3:11-=Y X , 渐近主方向是 3:4:22=Y X , 主直径只有一条,就是 0),(4),(321=-y x F y x F , 即0743=+-y x 6、证明:(1)中心曲线有椭圆型和双曲型两类,设其中心为),(00y x ,则因为),(00y x 是方程⎩⎨⎧==0),(0),(21y x F y x F 的唯一解,可设过),(00y x 的直线方程为0),(),(21=+y x F y x F μλ ① 对于椭圆型曲线,因只有两个虚的渐近方向,所以任何实方向都是它的非渐近方向, 故①又表示与非渐近方向μλ:共轭的直径的方程。
高数下册第11章解析

则 1时级数收敛; 1 时级数发散; 1时失效.
(5) 根值审敛法 (柯西判别法)
设 un 是正项级数,
n1
如果lim n n
un
(为数或 ),
则 1时级数收敛; 1时级数发散; 1时失效.
3、交错级数及其审敛法
定义 正 、负项相间的级数称为交错级数.
(1)n1un或 (1)nun (其中un 0)
如果级数 an x n 在x x0处发散,则它在满足
n0
不等式 x x0 的一切x 处发散.
推论
如果幂级数 an x n 不是仅在x 0 一点收敛,也
n0
不是在整个数轴上都收敛,则必有一个完全确定
的正数 R 存在,它具有下列性质:
当 x R时,幂级数绝对收敛;
当 x R时,幂级数发散;
函数
1、常数项级数
定义
un u1 u2 u3 un
n1
n
级数的部分和 sn u1 u2 un ui
i 1
级数的收敛与发散
常数项级数收敛(发散)
lim
n
sn
存在(不存在).
收敛级数的基本性质
性质1: 级数的每一项同乘一个不为零的常数, 敛散性不变.
性质2:收敛级数可以逐项相加与逐项相减.
(2)
讨论
lim
n
Rn
0
或
f
(n) ( x)
M,
则级数在收敛区间内收敛于 f ( x).
b.间接法 根据唯一性, 利用常见展开式, 通过 变量代换, 四则运算, 恒等变形, 逐项求导, 逐项积 分等方法,求展开式.
(4) 常见函数展开式
e x 1 x 1 x2 1 xn x (,)
高等数学方明亮版第十一章答案

习 题 11-1
1.判断下列方程是几阶微分方程?
(1) ;(2) ;
(3) ;(4) .
解微分方程中所出现的未知函数的导数(或微分)的最高阶数,叫做微分方程的阶.所以有,
(1)一阶微分方程;(2)一阶微分方程;
(3)三阶微分方程;(4)三阶微分方程.
2.指出下列各题中的函数是否为所给微分方程的解:
,
故有 .
设子弹穿过木板的时间为 秒,则
,
又已知 时, 米/秒,于是
,
从而,
,
为此有
,
所以
(秒),
故子弹穿过木板运动持续了 (秒).
4.求下列齐次方程的通解或特解:
(1) ;(2) ;
(3) ;(4) ;
(5) , ;(6) , .
解(1)原方程变形,得
,
令 ,即 ,有 ,则原方程可进一步化为
,
分离变量,得
.
(4)显然,原方程是一个齐次方程,又注意到方程的左端可以看成是以 为变量的函数,故令 ,即 ,有 ,则原方程可化为
,
整理并分离变量,得
,
两端积分,得
,
即
.
将 代入上式并整理,得原方程的通解为
.
(5)原方程可化为
.
令 ,有 ,则原方程可进一步化为
,
即
,
两端积分,得
,
将 代入上式,得
,
代入初始条件 ,得
(1) , ;
(2) , ;
(3) , ;
(4) , .
解(1)将 代入所给微分方程的左边,得左边 ,而右边=2 左边,所以 是 的解.
(2)将 , 代入所给微分方程的左边,得左边 右边,所以 是所给微分方程 的解.
中北大学高数习题 第十章-2答案

1
e
2
0
ydy e
0
1
y
2
2
d (
y
2
) e
y
2
2
2
|0 1 e
1
1 2
.
(2)
I
D
dxdy,其中D是由直线 y x 及曲线 y 2 x
所围成的闭区域. 解: 画出D的图形:
y
y
dy 2 dx
y y
1
2
x
yx
D
sin y y
1
dxdy
6
dx
0 2 0
2
2 x
(6 3x 2 y)dy
2 2 x
0
(6 y 3xy y ) |0
2 0
dx
2
2
3
[6(2 x ) 3x (2 x ) (2 x ) ]dx (2 x 8x 8)dx (
2 0 2
2
2 3
9.计算下列二重积分: (1) e
D 2
dxdy
D 是由 x 0, y x, y 1 所围成的区域.
机动
目录
上页
下页
返回
结束
解:画出D 的图形:
e
D
y
2
2
dxdy e
0 y
2
1
y
2
2
dy dx
0 y
2
y
e
0
1
2
x |0 dy
sin y y
高等数学下册 第十一章 综合练习题答案

第十一章自测题参考答案一、填空题: 1.()⎰Γ++ds R Q P γβαcos cos cos 切向量2.()⎰⎰∑++dS R Q P γβαcos cos cos 法向量3.⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂D dxdy y P x Q 4. 0 5. π4 6. π2 7. 0 8.()⎰⎰101,dy y x f dx , ()⎰⎰-110,dy y x f dx , 09.()⎰-Lds x x y x P 22,二、选择题:1.C2.C3.A4.A5.D 三、计算题:1.解 由于曲线L 表达式中x ,y, z 是对称的,所以⎰Lds x 2=⎰Lds y 2=⎰Lds z 2,故⎰L ds x 2=()⎰++ds z y x 22231=3223223131a a a ds a L ππ=⋅=⎰. 2.解 原式=()[](){}⎰+---π20sin cos 1cos 12dt t t t()⎰+=π202sin sindt t t =π202sin 2121⎪⎭⎫ ⎝⎛-t t =π 3.解 记222:y x a z S --=,D :xoy 平面上圆域222a y x ≤+原式=()dxdy y z x z y x a y x D222221⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+--++⎰⎰ =()⎰⎰--⋅--++Ddxdy yx a y x a y x a2222221注意到积分区域D 关于坐标轴的对称性及被积函数的奇偶性知⎰⎰--Ddxdy yx a x 222=⎰⎰--Ddxdy yx a y 222=0,所以原式=⎰⎰Ddxdy a=2aa π⋅=3a π.4.解 利用高斯公式原式=()⎰⎰⎰Ω++dxdydz z y x 2其中Ω为S 所围成的空间区域。
由Ω关于坐标平面的对称性知⎰⎰⎰Ωxdxdydz =⎰⎰⎰Ωydxdydz =0,所以,原式=⎰⎰⎰Ωzdxdydz 2=⎰⎰⎰+1222y x D zdz dxdy xy=()⎰⎰--xyD dxdy y x 221=()⎰⎰-12201ρρρθπd d=2412ππ=⋅5.解 原式=()()[]()⎰+--π202222sin cos 1cos 1dt t a t a t a=()⎰-π20253cos 12dt t a =⎰π20253sin 8dt at=du u a⎰π53sin 16=315256a 6.解 ()()()()()x f y x Q y x f e y x P x -=+=,,,要使曲线积分与路径无关,当且仅当xQ y P ∂∂=∂∂,即()()x f x f e x '-=+ 解此微分方程可得()x xe Cex f 21-=-,又()210=f ,所以C =1,故()x x e e x f 21-=- 现在计算从()0,0A 到()1,1B 的曲线积分的值.由于积分与路径无关,故选取有向折线________CB AC +进行积分,其中()0,1C 。
高等数学 课后习题答案第十一章

习题十一1.设L 为xOy 面内直线x =a 上的一段,证明:(),d 0L P x y x =⎰其中P (x ,y )在L 上连续. 证:设L 是直线x =a 上由(a ,b 1)到(a ,b 2)这一段,则 L :12x ab t b y t =⎧≤≤⎨=⎩,始点参数为t =b 1,终点参数为t =b 2故()()()221d ,d d 0d 0d b b L b b a P x y x P a,t t P a,t t t ⎛⎫=⋅=⋅= ⎪⎝⎭⎰⎰⎰2.设L 为xOy 面内x 轴上从点(a ,0)到点(b ,0)的一段直线,证明:()(),d 0d bLaP x y x P x,x=⎰⎰,其中P (x ,y )在L 上连续.证:L :0x xa xb y =⎧≤≤⎨=⎩,起点参数为x =a ,终点参数为x =b .故()(),d ,0d bL a P x y x P x x=⎰⎰3.计算下列对坐标的曲线积分:(1)()22d -⎰Lx y x,其中L 是抛物线y =x 2上从点(0,0)到点(2,4)的一段弧;(2)d L xy x ⎰其中L 为圆周(x -a )2+y 2=a 2(a >0)及x 轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行);(3)d d L y x x y +⎰,其中L 为圆周x =R cos t ,y =R sin t 上对应t 从0到π2的一段弧; (4)()()22d d Lx y x x y yx y +--+⎰,其中L 为圆周x 2+y 2=a 2(按逆时针方向绕行);(5)2d d d x x z y y z Γ+-⎰,其中Γ为曲线x =kθ,y =a cos θ,z =a sin θ上对应θ从0到π的一段弧; (6)()322d 3d ++-⎰x x zy x y z Γ,其中Γ是从点(3,2,1)到点(0,0,0)的一段直线;(7)d d d L x y y z -+⎰,其中Γ为有向闭拆线ABCA ,这里A ,B ,C 依次为点(1,0,0),(0,1,0),(0,0,1);(8)()()222d 2d L x xy x y xy y-+-⎰,其中L 是抛物线y =x 2上从点(-1,1)到点(1,1)的段弧.解:(1)L :y =x 2,x 从0变到2,()()22222435001156d d 3515L x y x x x x x x ⎡⎤-=-=-=-⎢⎥⎣⎦⎰⎰ (2)如图11-1所示,L =L 1+L 2.其中L 1的参数方程为图11-1cos 0πsin x a a tt y a t =+⎧≤≤⎨=⎩ L 2的方程为y =0(0≤x ≤2a )故()()()()()12π20π320ππ32203d d d 1+cost sin cos d 0d sin 1cos d sin d sin dsin π2LL L axy x xy x xy xa a t a a t t x a t t ta t t t ta =+'=⋅++=-+=-+=-⎰⎰⎰⎰⎰⎰⎰⎰(3)()π20π220π220d d sin sin cos cos d cos 2d 1sin 220Ly x x y R t R t R tR t tRt tR t +=-+⎡⎤⎣⎦=⎡⎤=⎢⎥⎣⎦=⎰⎰⎰(4)圆周的参数方程为:x =a cos t ,y =a sin t ,t :0→2π.故 ()()()()()()222π202π220d d 1cos sin sin cos sin cos d 1d 2πLx y x x y yx y a t a t a t a t a t a t t a a t a +--+=+---⎡⎤⎣⎦=-=-⎰⎰⎰(5)()()()2π22π3220π3320332d d d sin sin cos cos d d 131ππ3x x z y y zk k a a a a k a k a k a Γθθθθθθθθθθ+-=⋅+⋅--=-⎡⎤=-⎢⎥⎣⎦=-⎰⎰⎰(6)直线Γ的参数方程是32=⎧⎪=⎨⎪=⎩x t y t z t t 从1→0.故()032210314127334292d 87d 1874874t t t t t tt tt ⎡⎤=⋅+⋅⋅+-⋅⎣⎦==⋅=-⎰⎰(7)AB BC CA Γ=++(如图11-2所示)图11-21:0y x AB z =-⎧⎨=⎩,x 从0→1()01d d d 112AB x y y z dx -+=--=-⎡⎤⎣⎦⎰⎰. 0:1x BC y z =⎧⎨=-⎩,z 从0→1()()()1010120d d d 112d 12232BC x y y z z dz z zz z -+=--+-⎡⎤⎣⎦=-⎡⎤=-⎢⎥⎣⎦=⎰⎰⎰0:1y CA z x =⎧⎨=-⎩,x 从0→1[]1d d d 1001CAx y y z dx -+=-+=⎰⎰.故()()d d d d d d 312122LABBCCAx y y zx y y z-+=++-+=-++=⎰⎰⎰⎰(8)()()()122421123541222d 224d 1415x x x x x x x xxx x x x--⎡⎤=-⋅+-⋅⋅⎣⎦=-+-=-⎰⎰4.计算()()d d Lx y x y x y ++-⎰,其中L 是(1)抛物线y 2=x 上从点(1,1)到点(4,2)的一段弧; (2)从点(1,1)到点(4,2)的直线段;(3)先沿直线从(1,1)到点(1,2),然后再沿直线到点(4,2)的折线; (4)曲线x =2t 2+t +1,y =t 2+1上从点(1,1)到点(4,2)的一段弧.解:(1)L :2x y y y ⎧=⎨=⎩,y :1→2,故()()()()()2221232124321d d 21d 2d 111232343L x y x y x yy y y y y yy y y yy y y ++-⎡⎤=+⋅+-⋅⎣⎦=++⎡⎤=++⎢⎥⎣⎦=⎰⎰⎰(2)从(1,1)到(4,2)的直线段方程为x =3y -2,y :1→2故()()()()()2121221d d 32332d 104d 5411L x y x y x y y y y y y y yy y ++-=-+⋅+-+⎡⎤⎣⎦=-⎡⎤=-⎣⎦=⎰⎰⎰(3)设从点(1,1) 到点(1,2)的线段为L 1,从点(1,2)到(4,2)的线段为L 2,则L =L 1+L 2.且L 1:1x y y =⎧⎨=⎩,y :1→2;L 2:2x x y =⎧⎨=⎩,x :1→4;故()()()()()12122211d d 101d 1d 212L x y x y x yy y y y y y y ++-=+⋅+-⎡⎤⎣⎦⎡⎤=-=-⎢⎥⎣⎦=⎰⎰⎰()()()()()()24144211d d 220d 12d 22272L x y x y x yx x x x x x ++-=++-⋅⎡⎤⎣⎦⎡⎤=+=+⎢⎥⎣⎦=⎰⎰⎰ 从而()()()()()12d d d d 1271422LL L x y x y x y x y x y x y++-=+++-=+=⎰⎰⎰(4)易得起点(1,1)对应的参数t 1=0,终点(4,2)对应的参数t 2=1,故()()()()()()122132014320d d 32412d 10592d 10592432323L x y x y x y t t t tt t tt t t tt t t t ++-⎡⎤=++++--⋅⎣⎦=+++⎡⎤=+++⎢⎥⎣⎦=⎰⎰⎰ 5.设质点受力作用,力的反方向指向原点,大小与质点离原点的距离成正比,若质点由(a ,0)沿椭圆移动到B (0,b ),求力所做的功.解:依题意知 F =kxi +kyj ,且L :cos sin x a t y a t =⎧⎨=⎩,t :0→π2()()()()π2022π20π222022d d cos sin sin cos d sin 2d 2cos 2222LW kx x ky yka t t kb t b t t k b a t tk b a t k b a =+=-+⋅⎡⎤⎣⎦-=--⎡⎤=⎢⎥⎣⎦-=⎰⎰⎰(其中k 为比例系数)6.计算对坐标的曲线积分:(1)d Lxyz z⎰,Γ为x 2+y 2+z 2=1与y =z 相交的圆,方向按曲线依次经过第Ⅰ、Ⅱ、Ⅲ、Ⅳ封限;(2)()()()222222d d d Lyz x z x y x y z-+-+-⎰,Γ为x 2+y 2+z 2=1在第Ⅰ封限部分的边界曲线,方向按曲线依次经过xOy 平面部分,yOz 平面部分和zOx 平面部分. 解:(1)Γ:2221x y z y z ⎧++=⎨=⎩ 即2221x z y z ⎧+=⎨=⎩其参数方程为:cos 2sin 22sin 2x t y t z t =⎧⎪⎪⎪=⎨⎪⎪=⎪⎩ t :0→2π故:2π2π2202π202π0222d cos sin sin cos d 2222sin cos d 42sin 2d 1621cos 4d 1622π16xyz z t t t t t t t t t t ttΓ=⋅⋅⋅==-==⎰⎰⎰⎰⎰(2)如图11-3所示.图11-3Γ=Γ1+Γ2+Γ3.Γ1:cos sin 0x t y t z =⎧⎪=⎨⎪=⎩ t :0→π2,故()()()()()1222222π2220π3320π320d d d sin sin cos cos d sincos d 2sin d 24233yz x z x y x y zt t t t tt t tt tΓ-+-+-⎡⎤=--⋅⎣⎦=-+=-=-⋅=-⎰⎰⎰⎰又根据轮换对称性知()()()()()()1222222222222d d d 3d d d 4334y z x z x y x y zy z x z x y x y zΓΓ-+-+-=-+-+-⎛⎫=⨯- ⎪⎝⎭=-⎰⎰7.应用格林公式计算下列积分:(1)()()d d 24356+-++-⎰x y x y x y Γ, 其中L 为三顶点分别为(0,0),(3,0)和(3,2)的三角形正向边界;(2)()()222d d cos 2sin e sin 2e x x L x yx y x xy x y x x y ++--⎰,其中L 为正向星形线()2223330x y a a +=>;(3)()()3222d d 2cos 12sin 3+--+⎰L x y xy y x y x x y ,其中L 为抛物线2x =πy 2上由点(0,0)到(π2,1)的一段弧;(4)()()22d d sin Lx yx y x y --+⎰,L 是圆周22y x x =-上由点(0,0)到(1,1)的一段弧;(5)()()d d e sin e cos xx Lx yy my y m +--⎰,其中m 为常数,L 为由点(a ,0)到(0,0)经过圆x 2+y 2=ax上半部分的路线(a 为正数).图11-4解:(1)L 所围区域D 如图11-4所示,P =2x -y +4,Q =3x +5y -6,3Q x ∂=∂,1P y ∂=-∂,由格林公式得()()d d 24356d d 4d d 4d d 1432212LD DDx yx y x y Q P x y x y x yx y+-++-∂∂⎛⎫-= ⎪∂∂⎝⎭===⨯⨯⨯=⎰⎰⎰⎰⎰⎰⎰(2)P =x 2y cos x +2xy sin x -y 2e x ,Q =x 2sin x -2y e x ,则2cos 2sin 2e xPx x x x y y ∂=+-∂, 2cos 2sin 2e xQx x x x y x ∂=+-∂.从而P Q y x ∂∂=∂∂,由格林公式得. ()()222d d cos 2sin e sin 2e d d 0++--∂∂⎛⎫-= ⎪∂∂⎝⎭=⎰⎰⎰x x LD x yxy x xy x y x x y Q P x y x y(3)如图11-5所示,记OA ,AB ,BO 围成的区域为D .(其中BO =-L )图11-5P =2xy 3-y 2cos x ,Q =1-2y sin x +3x 2y 2 262cos Pxy y x y ∂=-∂,262cos Q xy y x x ∂=-∂ 由格林公式有:d d d d 0L OA AB D Q P P x Q y x y x y -++∂∂⎛⎫-+== ⎪∂∂⎝⎭⎰⎰⎰故π21220012202d d d d d d d d ππd d 12sin 3243d 12π4π4++=+=+++⎛⎫=+-+⋅⋅ ⎪⎝⎭⎛⎫=-+ ⎪⎝⎭=⎰⎰⎰⎰⎰⎰⎰LOA AB OA ABP x Q y P x Q yP x Q y P x Q yO x yy y y y y(4)L 、AB 、BO 及D 如图11-6所示.图11-6由格林公式有d d d d ++∂∂⎛⎫-+=- ⎪∂∂⎝⎭⎰⎰⎰L AB BO D Q P P x Q y x y x y而P =x 2-y ,Q =-(x +sin 2y ).1∂=-∂Py ,1∂=-∂Q x ,即,0∂∂-=∂∂Q P x y于是()d d d d 0+++++=+=⎰⎰⎰⎰LABBOL AB BOP x Q y P x Q y从而()()()()()()()22222211220011300d d d d sin d d d d sin sin d d 1sin 131sin 232471sin 264L LBA OB P x Q y x y x y x y x y x y x y x y x y x y y x xy x y y +=--+=-+--+-+=-++⎡⎤⎡⎤=+-+⎢⎥⎢⎥⎣⎦⎣⎦=-+⎰⎰⎰⎰⎰⎰(5)L ,OA 如图11-7所示.图11-7P =e x sin y -my , Q =e x cos y -m , e cos x Py m y ∂=-∂,e cos x Q y x ∂=∂ 由格林公式得:22d d d d d d d d 1π22π8L OA D DDQ P P x Q y x y x y m x ym x ya m m a +∂∂⎛⎫-+= ⎪∂∂⎝⎭==⎛⎫=⋅⋅ ⎪⎝⎭=⎰⎰⎰⎰⎰⎰⎰于是:()()[]220202πd d d d 8πd 0e sin 00e cos08π0d 8π8+=-+=-+⋅⋅-⋅⋅-=-=⎰⎰⎰⎰L OA a x x a m aP x Q y P x Q y m a xm m m a xm a8.利用曲线积分,求下列曲线所围成的图形的面积:(1)星形线x =a cos 3t ,y =a sin 3t ; (2)双纽线r 2=a 2cos2θ; (3)圆x 2+y 2=2ax . 解:(1) ()()()()()2π3202π2π242222002π202π202π202d sin 3cos d sin 33sin cos d sin 2sin d 43d 1cos 41cos 2163d 1cos 2cos 4cos 2cos 416312π+d cos 2cos 61623π8LA y x a t a t tt a t t t a t t t a t t t a tt t t t a t t t a =-=-⋅-==⋅=--=--+⎡⎤=+⎢⎥⎣⎦=⎰⎰⎰⎰⎰⎰⎰(2)利用极坐标与直角坐标的关系x =r cos θ,y =r sin θ得 cos cos 2x a θ=sin cos 2y a θ=从而x d y -y d x =a 2cos2θd θ.于是面积为:[]π24π4π24π4212d d 2cos 2d sin 22LA x y y xa a a θθθ--=⋅-===⎰⎰(3)圆x 2+y 2=2ax 的参数方程为 cos 02πsin x a a y a θθθ=+⎧≤≤⎨=⎩故()()[]()2π022π021d d 21d a+acos sin 2d 1cos 2πcos sin L A x y y x a a a a a θθθθθθθ=-=-=+=⋅-⎰⎰⎰ 9.证明下列曲线积分与路径无关,并计算积分值: (1)()()()()1,10,0d d x y x y --⎰;(2)()()()()3,423221,2d d 663x yxy y x y xy +--⎰;(3)()()1,221,1d d x y x x y -⎰沿在右半平面的路径;(4)()()6,81,0⎰沿不通过原点的路径;证:(1)P =x -y ,Q =y -x .显然P ,Q 在xOy 面内有连续偏导数,且1P Q y x ∂∂==-∂∂,故积分与路径无关.取L 为从(0,0)到(1,1)的直线段,则L 的方程为:y =x ,x :0→1.于是()()()()11,100,00d 0d d x x y x y ==--⎰⎰(2) P =6xy 2-y 3,Q =6x 2y -3xy 2.显然P ,Q 在xOy 面内有连续偏导数,且2123Pxy y y ∂=-∂,2123Q xy yx ∂=-∂,有P Q y x ∂∂=∂∂,所以积分与路径无关. 取L 为从(1,2)→(1,4)→(3,4)的折线,则()()()()()()[]3,423221,2432214323212d d 663d d 63966434864236x yxyy x y xy y xy y x y y x x +--=+--=+⎡⎤--⎣⎦=⎰⎰⎰(3)2y P x =,1Q x =-,P ,Q 在右半平面内有连续偏导数,且21P y x ∂=∂,21Q x x ∂=∂,在右半平面内恒有P Q y x ∂∂=∂∂,故在右半平面内积分与路径无关. 取L 为从(1,1)到(1,2)的直线段,则()()()21,2211,1d d d 11x y x x y y -==--⎰⎰(4) P =,Q =P Q y x ∂∂=∂∂分在不含原点的区域内与路径无关, 取L 为从(1,0)→(6,0)→(6,8)的折线,则()()686,8101,0801529x y=+⎡=+⎣=⎰⎰⎰10.验证下列P (x ,y )d x +Q (x ,y )d y 在整个xOy 面内是某一函数u (x ,y )的全微分,并求这样的一个函数u (x ,y ):(1)(x +2y )d x +(2x +y )d y ; (2)2xy d x +x 2d y ;(3)(3x 2y +8xy 2)d x +(x 3+8x 2y +12y e y )d y ; (4)(2x cos y +y 2cos x )d x +(2y sin x -x 2sin y )d y . 解:证:(1)P =x +2y ,Q =2x +y . 2P Q y x ∂∂==∂∂,所以(x +2y )d x +(2x +y )d y 是某个定义在整个xOy 面内的函数u (x ,y )的全微分.()()()()()(),0,0022022d d ,22d d 2222222x y xy yu x yx y x y x y x x yx y x y xy x y xy =+++=++⎡⎤=++⎢⎥⎣⎦=++⎰⎰⎰(2)P =2xy ,Q =x 2, 2P Q x y x ∂∂==∂∂,故2xy d x +x 2d y 是某个定义在整个xOy 面内的函数u (x ,y )的全微分.()()(),20,02022d d ,0d d x y xy u xy x x yx y x x yx y=+=+=⎰⎰⎰(3)P =3x 2y +8xy 2,Q =x 3+8x 2y +12y e y ,2316∂∂=+=∂∂P Q x xy y x ,故(3x 2y +8xy 2)d x +(x 3+8x 2y +12y e y )d y是某个定义在整个xOy 面内函数u (x ,y )的全微分, ()()()()()(),22320,03200322d ,38812e 0d d 812e 412e 12e 12x y y xyy y y u x x y x y x y x x y y x y x x y y x y x y y =++++=+++=++-+⎰⎰⎰(4)P =2x cos y +y 2cos x ,Q =2y sin x -x 2sin y ,2sin 2cos Px y y x y ∂=-+∂,2cos 2sin Q y x x yx ∂=-∂, 有P Q y x ∂∂=∂∂,故(2x cos y +y 2cos x )d x +(2y sin x -x 2sin y )d y 是某一个定义在整个xOy 面内的函数u (x ,y )的全微分, ()()()()()(),220,020022d d ,2cos cos 2sin sin 2d d 2sin sin sin cos x y xyu x y x y x y y x y x x y x x yy x x y y x x y=++-=+-=+⎰⎰⎰11.证明:22d d x x y yx y ++在整个xOy 平面内除y 的负半轴及原点外的开区域G 内是某个二元函数的全微分,并求出这样的一个二元函数.证:22x P x y =+,22y Q x y =+,显然G 是单连通的,P 和Q 在G 内具有一阶连续偏导数,并且.()2222∂∂-==∂∂+P Q xy y x x y ,(x ,y )∈G因此22d d x x y y x y ++在开区域G 内是某个二元函数u (x ,y )的全微分.由()()22222222d d 11ln 22d x y x x y y d x y x y x y ++⎡⎤==+⎢⎥++⎣⎦ 知()()221ln ,2u x y x y =+.12.设在半平面x >0中有力()3kF xi yj r =-+构成力场,其中k为常数,r =,证明:在此力场中场力所做的功与所取的路径无关. 证:场力沿路径L 所作的功为.33d d L k k W x x y y r r =--⎰ 其中3kx P r =-,3kyQ r =-,则P 、Q 在单连通区域x >0内具有一阶连续偏导数,并且 53(0)P kxy Q x y r x ∂∂==>∂∂因此以上积分与路径无关,即力场中场力所做的功与路径无关.13.当Σ为xOy 面内的一个闭区域时,曲面积分()d d ,,R x yx y z ∑⎰⎰与二重积分有什么关系?解:因为Σ:z =0,在xOy 面上的投影区域就是Σ故()()d d d d ,,,,0R x y R x yx y z x y ∑∑=±⎰⎰⎰⎰当Σ取的是上侧时为正号,Σ取的是下侧时为负号. 14.计算下列对坐标的曲面积分: (1)22d d x y z x y∑⎰⎰,其中Σ是球面x 2+y 2+z 2=R 2的下半部分的下侧;(2)d d d d d d z x y x y z y z x ∑++⎰⎰,其中Σ是柱面x 2+y 2=1被平面z =0及z =3所截得的在第Ⅰ封限内的部分的前侧;(3)()()()d d 2d d d d ,,,,,,f x y z f y z x f z x y x y z x y z x y z ∑+++++⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰,其中f (x ,y ,z )为连续函数,Σ是平面x -y +z =1在第Ⅳ封限部分的上侧;(4)d d d d d d xz x y xy y z yz z x ∑++⎰⎰,其中Σ是平面x =0,y =0,z =0,x +y +z =1所围成的空间区域的整个边界曲面的外侧;(5)()()()d d d d d d y z z x x y y z x y z x ∑++---⎰⎰,其中Σ为曲面22z x y =+与平面z =h (h >0)所围成的立体的整个边界曲面,取外侧为正向; (6)()()22d d d d d d +++-⎰⎰y y z x z x x yy xz x z ∑,其中Σ为x =y =z =0,x =y =z =a 所围成的正方体表面,取外侧为正向;解:(1)Σ:222z R x y =---,下侧,Σ在xOy 面上的投影区域D xy 为:x 2+y 2≤R 2.()()()()()()()()()()22222222π42222002π222222222002π35422222222200354*******d d d d d cos sin d 1sin 2d d 81d d 1cos421612422π1635xyD RR R xy z x y x y x yR x y r r rR r R r R R r r R R R r R R r R r R r R R R r R r ∑θθθθθθθ=----=---=-⋅-⎡⎤+--⎣⎦⎡⎤=----+---⎣⎦=-⋅-+--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰()72220772π105RR r R ⎡⎤-⎢⎥⎣⎦=(2)Σ如图11-8所示,Σ在xOy 面的投影为一段弧,图11-8故d d 0z x y ∑=⎰⎰,Σ在yOz 面上的投影D yz ={(y ,z )|0≤y ≤1,0≤z ≤3},此时Σ可表示为:21x y =-(y ,z )∈D yz,故23202d d 1d d d 1d 31d yzD x y z y y zz y yy y∑=-=-=-⎰⎰⎰⎰⎰⎰⎰Σ在xOz 面上的投影为D xz ={(x ,z )|0≤x ≤1,0≤z ≤3},此时Σ可表示为:21y x =-(x ,z )∈D xz, 故23202d d 1d d d 1d 31d xzD y z x x z xz x xx x∑=-=-=-⎰⎰⎰⎰⎰⎰⎰因此:120120d d d d d d 231d 61d π643π2z x y x y z y z xx x x x∑++⎡⎤=-⎢⎥⎣⎦=-=⋅=⎰⎰⎰⎰(3)Σ如图11-9所示,平面x -y +z =1上侧的法向量为 n ={1,-1,1},n 的方向余弦为1cos 3α=,1cos 3β-=,1cos 3γ=,图11-9由两类曲面积分之间的联系可得:()()()()()()()()()d d 2d d d d ,,,,,,cos d (2)cos d ()d d cos cos d d (2)d d ()d d cos cos (2)()d d d d 1d d xyD f x y z f y z x f z x y x y z x y z x y z s f y s f z x yf x x y f y x y f z x y f x f y f z x y f x x yx y z x yx y x y ∑∑∑∑∑αβαβγγ+++++⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦=+++++=+++++=-+++⎡⎤+⎣⎦=-+=+-⎡⎤--⎣⎦⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰d d 111212xyD x y==⨯⨯=⎰⎰⎰⎰(4)如图11-10所示:图11-10Σ=Σ1+Σ2+Σ3+Σ4.其方程分别为Σ1:z =0,Σ2:x =0,Σ3:y =0,Σ4:x +y +z =1,故()()123441100d d 000d d d d 11d d 124xyD xxz x yxz x yx x yx y x x y x y ∑∑∑∑∑∑-=+++=+++=--==--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰由积分变元的轮换对称性可知.1d d dzd 24xy y z yz x ∑∑==⎰⎰⎰⎰因此.d d dyd d d 113248xz x y xy z yz z x ∑++=⨯=⎰⎰(5)记Σ所围成的立体为Ω,由高斯公式有:()()()()()()d d d d d d d d d 0d d d 0y z z x x yy z x y z x y z x y z x x y z x y z x y z ∑ΩΩ++---∂∂⎛⎫--∂-=++ ⎪∂∂∂⎝⎭==⎰⎰⎰⎰⎰⎰⎰⎰(6)记Σ所围的立方体为Ω, P =y (x -z ),Q =x 2,R =y 2+xz . 由高斯公式有()()()()()22200204d d d d d d d d d d d d d d d d d d 2d 2a aaaaaaay y z x z x x yyxz x z P Q R x y z x y z x y zx y x y z x y x a yx y y a x xy a a x ax a ∑ΩΩ+++-∂∂∂⎛⎫++= ⎪∂∂∂⎝⎭=+=+=+⎡⎤=+⎢⎥⎣⎦⎡⎤=+⎢⎥⎣⎦=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰15.设某流体的流速V =(k ,y ,0),求单位时间内从球面x 2+y 2+z 2=4的内部流过球面的流量. 解:设球体为Ω,球面为Σ,则流量3d d d d d d d 432d d d π2π33k y z y z xP Q x y z x y x y z ∑ΩΩΦ=+∂∂⎛⎫+= ⎪∂∂⎝⎭==⋅=⎰⎰⎰⎰⎰⎰⎰⎰(由高斯公式)16.利用高斯公式,计算下列曲面积分:(1)222d d d d d d x y z y z x z x y ∑++⎰⎰,其中Σ为平面x =0,y =0,z =0,x =a ,y =a ,z =a 所围成的立体的表面的外侧;(2)333d d d d d d x y z y z x z x y ∑++⎰⎰,其中Σ为球面x 2+y 2+z 2=a 2的外侧; (3)()()2232d d d d d d 2xz y z z x x yxy z xy y z ∑++-+⎰⎰,其中Σ为上半球体x 2+y 2≤a 2,0z ≤的表面外侧;(4)d d d d d d x y z y z x z x y ∑++⎰⎰,其中Σ是界于z =0和z =3之间的圆柱体x 2+y 2=9的整个表面的外侧;解:(1)由高斯公式()()22204d d d d d d d 2222d 6d 6d d d 3aaax y z y z x z x yvx y z vx y z x v x x y za ∑ΩΩΩ++=++=++==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰对称性(2)由高斯公式:()3332222ππ405d d d d d d d 3d 3d d sin d 12π5ax y z y z x z x yP Q R v x y z v x y z r ra ∑ΩΩθϕϕ++∂∂∂⎛⎫++= ⎪∂∂∂⎝⎭=++==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰(3)由高斯公式得 ()()()2232222π2π222024π05d d d d d d 2d d d d sin d 2πsin d d 2π5aaxz y z z x x yxy z xy y z P Q R v x y z v z x y r r rr ra ∑ΩΩθϕϕϕϕ++-+∂∂∂⎛⎫++= ⎪∂∂∂⎝⎭=++=⋅==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰(4)由高斯公式得: 2d d d d d d d 3d 3π3381πx y z y z x z x yP Q R v x y z v∑ΩΩ++∂∂∂⎛⎫++= ⎪∂∂∂⎝⎭==⋅⋅⋅=⎰⎰⎰⎰⎰⎰⎰⎰17.利用斯托克斯公式,计算下列曲线积分:(1)d d d y x z y x zΓ++⎰,其中Γ为圆周x 2+y 2+z 2=a 2,x +y +z =0,若从x 轴的正向看去,这圆周是取逆时针的方向;(2)()()()222222d d d x y zyz x y z x Γ++---⎰,其中Γ是用平面32x y z ++=截立方体:0≤x ≤1,0≤y ≤1,0≤z ≤1的表面所得的截痕,若从Ox 轴的正向看去,取逆时针方向; (3)23d d d y x xz y yz z Γ++⎰,其中Γ是圆周x 2+y 2=2z ,z =2,若从z 轴正向看去,这圆周是取逆时针方向;(4)22d 3d d +-⎰y x x y z zΓ,其中Γ是圆周x 2+y 2+z 2=9,z =0,若从z 轴正向看去,这圆周是取逆时针方向.解:(1)取Σ为平面x +y +z =0被Γ所围成部分的上侧,Σ的面积为πa 2(大圆面积),Σ的单位法向量为{}cos ,cos ,cos n αβγ==. 由斯托克斯公式22d d d cos cos cos d d πy x z y x zR Q Q P P R s y z x y z x ss a a Γ∑∑∑αβγ++⎡∂∂∂∂⎤⎛⎫⎛⎫∂∂⎛⎫--=++- ⎪⎢⎥ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭⎣⎦====⎰⎰⎰⎰⎰⎰⎰(2)记为Σ为平面32x y z ++=被Γ所围成部分的上侧,可求得Σ的面积为(是一个边长为2的正六边形);Σ的单位法向量为{}cos ,cos ,cos αβγ==n .由斯托克斯公式()()()(((()222222d d d2222d22d3d23292x y zy z x yz xy z x y sz xsx y zsΓ∑∑∑++---⎡+----=--⎢⎣=++===-⎰⎰⎰⎰⎰(3)取Σ:z=2,D xy:x2+y2≤4的上侧,由斯托克斯公式得:()()()2223d d dd d0d d d d3d d35d d5π220π-+=++--+=-+=-=-⨯⨯=-⎰⎰⎰⎰⎰⎰⎰xyDy x xz y yz zy z z x x yzz xx yzx yΓ∑∑(4)圆周x2+y2+z2=9,z=0实际就是xOy面上的圆x2+y2=9,z=0,取Σ:z=0,D xy:x2+y2≤9由斯托克斯公式得:()()()222d3d dd d d d d d000032d dd dπ39π+-=++---===⋅=⎰⎰⎰⎰⎰⎰⎰xyDy x x y z zy z z x x yx yx yΓ∑∑18.把对坐标的曲线积分()()d d,,LP x Q yx y x y+⎰化成对弧长的曲线积分,其中L为:(1)在xOy面内沿直线从点(0,0)到点(1,1);(2)沿抛物线y=x2从点(0,0)到点(1,1);(3)沿上半圆周x2+y2=2x从点(0,0)到点(1,1).解:(1)L的方向余弦πcos cos cos42αβ===,故()()d d,,dLP x Q yx y x yP x Qs++=⎰⎰(2)曲线y =x 2上点(x ,y )处的切向量T ={1,2x }.其方向余弦为cos α=,cos β=故()()d d ,,d 2,,LP x Q yx y x y P x xQ x y x y s++=⎰⎰(3)上半圆周上任一点处的切向量为⎧⎨⎩其方向余弦为cos α=cos 1x β=-故()()()()()d d ,,d ,,1LLP x Q yx y x y s Q x y x y x +⎤=+-⎦⎰⎰ 19.设Γ为曲线x =t ,y =t 2,z =t 3上相应于t 从0变到1的曲线弧,把对坐标的曲线积分d d d P x Q y R z Γ++⎰化成对弧长的曲线积分.解:由x =t ,y =t 2,z =t 3得d x =d t ,d y =2t d t =2x d t ,d z =3t 2dt =3y d t ,d s t =.故d cos d d cos d d cos d x s y s z s αβγ======因而d d d P x Q x R x s ΓΓ++=⎰⎰20.把对坐标的曲面积分 ()()()d d d d d d ,,,,,,P y z Q z x R x y x y z x y z x y z ∑++⎰⎰化成对面积的曲面积分,其中:(1) Σ是平面326x y ++=在第Ⅰ封限的部分的上侧; (2) Σ是抛物面z =8-(x 2+y 2)在xOy 面上方的部分的上侧.解:(1)平面Σ:326x y ++=上侧的法向量为n ={3,2,,单位向量为n 0={35,25,},即方向余弦为3cos 5α=,2cos5β=,cos γ=.因此:()()()()d d d d d d ,,,,,,d cos cos cos 32d 555P y z Q z x R x y x y z x y z x y z sP Q R sP Q R ∑∑∑αβγ++=++⎛⎫=++ ⎪⎝⎭⎰⎰⎰⎰⎰⎰(2)Σ:F (x ,y ,z )=z +x 2+y 2-8=0,Σ上侧的法向量n ={ F x ,F y ,F z }={ 2x ,2y ,1}其方向余弦:cos α=cos β=cos γ=故()()()()d d d d d d ,,,,,,d cos cos cos P y z Q z x R x y x y z x y z x y z sP Q R s∑∑∑αβγ++=++=⎰⎰⎰⎰⎰⎰。
《高等数学教程》第十一章重积分习题参考答案

《高等数学教程》第十一章 重积分 习题参考答案习题11-11.(,)DQ x y d μσ=⎰⎰.3.(1)0; (2)0; (3)124I =I4.(1)12I ≥I ; (2) 12I ≤I ; (3)12I ≥I ; (4) 12I ≤I .5.(1)02≤I ≤; (2)20π≤I ≤; (3)28≤I ≤; (4)36100ππ≤I ≤.习题11-2(A)1. (1)40(,)xdx f x y dy ⎰⎰或2404(,)yy dy f x y dx ⎰⎰;(2)12220122(,)(,)x xx x dx f x y dy dx f x y dy +⎰⎰⎰⎰或2122122(,)(,)y y y y dy f x y dx dy f x y dx +⎰⎰⎰⎰;(3)224(,)x xf x y dy -⎰或2402(,)(,)dy f x y dx dy f x y dx +⎰⎰.2. (1)42(,)x dx f x y dy ⎰⎰; (2)101(,)ydy f x y dx ⎰⎰;(3)1102(,)ydy f x y dx -⎰⎰; (4)1(,)y eedy f x y dx ⎰⎰.3. (1)203; (2)32π-; (3)655; (4)6415; (5)1e e -- 4. (1)92; (2)21122e e -+.5. 335.6. (1)20(cos ,sin )bad f r r rdr πθθθ⎰⎰;(2)2cos 202(cos ,sin )d f r r rdr πθπθθθ--⎰⎰;(3)1(cos sin )20(cos ,sin )d f r r rdr πθθθθθ-+⎰⎰;(4)3sec tan cot 444(cos ,sin )(cos ,sin )d f r r rdr d f r r rdr ππθθθπθθθθθθ+++⎰⎰⎰⎰sec tan 304(cos ,sin )d f r r rdr πθθπθθθ+⎰⎰;7. (1)sec csc 4402(cos ,sin )(cos ,sin )d f r r rdr d f r r rdr ππθθπθθθθθθ+⎰⎰⎰⎰;(2)23cos 04()d f r rdr πθπθ⎰⎰;(3)1210cos sin (cos ,sin )d f r r rdr πθθθθθ+⎰⎰; (4)sec 40sec tan (cos ,sin )d f r r rdr πθθθθθθ⎰⎰.8. (1)434a π; 1. 9. (1)2364π; (2)(2ln 21)4π-; (3)34()33R π-; (4)a .10. 4332a π.习题11-2(B)1. (1)12(,)yydy f x y dx -⎰⎰; (2)110(,)dy f x y dx ⎰;(3)1012111(,)(,)(,)xf x y dy dx f x y dy dx f x y dy --++⎰⎰⎰⎰⎰;(4)0242(,)(,)y dy f x y dx dy f x y dx +-+⎰⎰⎰.2. (1)0; (2)430; (3)8)3(4)1sin1-. 3. (1)2sec 41arctan4(cos ,sin )d f r r rdr πθθθθ⎰;(3)4cos 202cos (cos ,sin )d f r r rdr πθθθθθ⎰⎰;4. (1)38π; (2)52π.5. (1)2π; (2)49-(3)22π-; (4)414a ; (5)2π.6. (1)232a π; (2)22a ; (3)232π-.7. (1)43π; (2)7ln 23; (3)12e -; (4)2ab π. 8. 6π.习题11-3(A)1. (1)22111(,,)x y dx f x y z dz -+⎰⎰;(2)2221212(,,)x x y dx f x y z dz --+⎰⎰;(3)2211(,,)x y dx f x y z dz -+⎰;(4)1111(,,)dx f x y z dz -⎰⎰.2.32; 3. 15(ln 2)28-; 4.21162π-; 5. (1)1(1)e π--; (2)712π; (3)163π; (4)289a . 6. (1)45π; (2)476a π; (3)552()15R a π-; (4)1330π.7. (1)18; (2)8π; (3)10π; (4)ln 3ln 2)3π-. 8. 4k R π习题11-3(B)1. (1)(,,)aa dx f x y z dz -⎰;200(cos ,sin ,)ad rdr f r r z dz πθθθ⎰⎰;2220sin (cos sin ,sin sin ,cos )ad d f d ππθϕϕρθϕρθϕρϕρρ⎰⎰⎰;(2)11(,,)dx f x y z dz -⎰;21(cos ,sin ,)rd rdr f r r z dz πθθθ⎰⎰;2240sin (cos sin ,sin sin ,cos )d d f d ππθϕϕρθϕρθϕρϕρρ⎰⎰.(3)2211(,,)x y dx f x y z dz +-⎰⎰;2200(cos ,sin ,)rr d rdr f r r z dz πθθθ⎰⎰⎰;2csc 220csc cot 4sin (cos sin ,sin sin ,cos )d d f d ππϕπϕϕθϕϕρθϕρθϕρϕρρ⎰⎰⎰;2.222241()3x y x y f dz --+⎰;2224103r rd f dz πθ-⎰⎰,6π3.2020Rd rdr dr πθI =⎰⎰⎰; 23402sin Rd d d πππθϕϕρρI =⎰⎰⎰, 5415R π. 4. (1)835; (2)2845; (3)0; (4)559480R π. 5. 336π; 6. π; 7. 45π.习题11-4(A)1.2.1)6π.3. 22(2)R π-.4.320. 5. (1)0033(,)58x y ; (2)4(0,)3bπ; (3)22(,0)2()a ab b a b +++. 6. (1)34y a b πI =; 220()4ab a b πI =+(2)725x I =, 967y I =;(3) )33x ab I =, 33y a bI =;7. (1)3(0,0)4; (2)44333()(0,0,)8()A B A B --; (3)2227(,,)5530a a a .8. (1)483a ; (2)27(0,0,)60a ; (3) 611245a .9. 649k R π.习题11-4(B)1. .2. 3535(,)4854.3. .4.44()32b a πρ-.5. 43512a π.6. 368105ρ. 7. (0,0,54a ).8.222(3)12a h a h π+. 9. 2432;327r R R π=.10. 2(lnx F G μ=;0y F =; z F Ga πμ=.11. 0x y F F ==; 2)z F G h πρ=-.总复习题十一一、1.B 2.C 3.C 4.A 5.B 6.A 二、1.(1)()x f x -;2.(1,1)y y --;3.54π;4.41(1)2e --; 5.42211()4R a bπ+. 三、1.2409π-;2.314()33R π-; 3.0; 4.2503π;5. 2(,)(,)f x y dx f x y dx +-22(,)(,)f x y dx f x y dx -.6. 42π-.7.212A . 8. 8π.9. 5144. 10. 以球心O 及0P 的连线作为x 轴正方向建立直角坐标系质心:(,0,0)4R-。
高数答案第11章

第十一章 曲线积分与曲面积分 (09级下学期用) § 1 对弧长的曲线积分 1设 L 关于x 轴对称,1L 表示L 在x 轴上侧的部分,当()y x f ,关于y 是偶函数时,()=⎰Lds y x f ,( B )()⎰1,L ds y x f C. ()⎰-1,2L ds y x f D.ABC 都不对2、设L 是以点()()()()1,0,0,1,1,0,0,1--D C B A 为顶点的正方形边界,则⎰+Lyx ds =( C )24 D. 223、有物质沿曲线L :()103,2,32≤≤===t t z t y t x 分布,其线密度为,2y =μ,则它的质量=m ( A )++1421dt t t t B.⎰++14221dt t t tC.⎰++1421dt t t D.⎰++1421dt t t t4.求,⎰Lxds 其中L 为由2,x y x y ==所围区域的整个边界解:,⎰Lxds =()22155121241111+-=++⎰⎰xdx dy yy 5.,ds y L⎰其中L 为双纽线)0)(()(222222>-=+a y x a y x解:原积分=()()222sin 4sin 442022'2441-==+=⎰⎰⎰a d ad r r r ds y L χππθθθθθ6.⎰+Lds y x ,22其中L 为()022>=+a axy x原积分222cos 2a adt t a ==⎰π7.,2⎰Lds x 其中L 为球面2222a z y x =++与平面0=-y x 的交线解:将y x =代入方程2222a z y x =++得2222a z x =+于是L 的参数方程:t a z t a y t a x sin ,sin 2,cos 2===,又adt ds =原积分=⎰=ππ203222cos 2a adt t a 8、求均匀弧()0,sin ,cos ≤<∞-===t e z t e y t e x t t t 的重心坐标33,30===⎰∞-dt e M dt e ds tt,523cos 100==⎰∞-dt e t e Mx t t ,21,5100=-=z y§2 对坐标的曲线积分 一、选择题1.设L 关于x 轴对称,1L 表示L 在x 轴上侧的部分,当()y x P ,关于y 是偶函数 时,()=⎰Ldx y x P ,( D) A.0 B. ()⎰1,2L dx y x P C.()⎰-1,2Ly x P 都不对2.设L 为1=+y x 的正向,则=++⎰Ly x ydyxdx 3.L 为222a y x =+的正向,=+--+⎰Lyx dyy x dx y x 22)()(( B ) A.2ππ C.0 D.π二、计算1.()()dy y x dx y x L⎰-++2222,其中L 由曲线()2011≤≤--=x x y 从()0,2A 到()0,0O 方向解:()1,1B 01:,:;12:,2:_______→=→-=x x y BO x x y AB=I =+⎰⎰_______BOAB ()()()()()()34122012212222-=++---+-+⎰⎰dx x xdx x x dx x x2.[]d y y x x xy y dx y x L)ln((2222+++++⎰ 其中L 是正向圆周曲线222a y x =+解: 由奇偶对称性022=+⎰Ldx y x ,L :ππ→-==:,sin ,cos t t a y t a x=I ()()=++⎰-dt t a t t a dt t t acos 1ln cos sin cos sin 3224πππππ4cos sin 4224a dt t t a =⎰-3.()⎰Γ-+++dz y x ydy xdx 1其中为从点()1,1,1A 到()4,3,2B 的有向线段解:Γ方程:13,12,1+=+=+=t z t y t x ,=I ()136141=+⎰dt t三、过()0,0O 和()0,πA 的曲线族()0sin >=a x a y ,求曲线L 使沿该曲线从()0,0O 到()0,πA 的积分()()dy y x dx y L+++⎰213的值最小解:()()[]3033344cos sin 2sin 1a a dx x a x a x x a a I +-=+++=⎰ππ()()()0811,014''2'>=⇒=⇒=-=I a a a I 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上,
2
2 Dyz
ds 1 x y xz dydz dydz
'2 '2
1 1 2
( x y )ds
2 2 2 ( x y )ds
y dydz dz y dy
0 0
1 3
3
6
1 1 2 (1 y )dydz dz (1 y 2 )dy 4 . Dyz 0 0
2 2
cos
2
2x 4x 4 y 1
2
, cos
2
2y 4x 4 y 1
2
, cos
2
1 4x 4 y 1
2
.
I
2 xP 2 yQ R 1 4x 4 y
2 2
ds.
5.计算曲面积分
其中f (x,y,z)为连续函数, 是平面x-y+z=1在第四卦限 部分的上侧.
( x y )ds
2 2
2 3
2 3
1 3
4 3
1 3
4 3
(2) 锥面 解: 依题意画图.
( x y )ds
2 2
( x y ) 5dxdy Dxy
2 2
5
2
0
d r rdr
2 0
2
5 2
1 4
r |0 8 5 .
2
2
dxdy
0
d
1
r
rdr 2 e |1 2 (e e).
2
e
2
z
2
x y
2
2
dxdy
e x y
2 2
Dxy
dxdy
2
0
d
e r
rdr 2 e.
1
3 : x y 4 在xoy面的投影为圆周, 投影的面积为零,
2 2 2
取下侧.
1
3dxdydz 0
3
dxdydz 3
2 3
R 2 R 3 .
3
(多简单!)
机动 目录 上页 下页 返回 结束
3. 计算曲面积分
2 2
e
2
z
x y
dxdy, 其中为由z 2
x y ,
2 2
x y 4及z 1 所围立体的边界曲面的外侧.
1 2
Dyz 2 2 2 R y z dydz D R y z dydz
2 2 2
yz
3 2 1 2 3 2 2 2 R 2 2 2 ( ) ( R r ) |0 R 2 d R r rdr 0 0 3 2 3 2 3 ydzdx R .为计算 zdxdy, 类似可得: 3
3.设是长方体 的外侧,则
的整个表面
2 2 2 abc(a b c) x dydz y dzdx z dxdy ____________ .
机动
目录
上页
下页
返回
结束
解: 依题意画图.由高斯公式可得: 原式=
2 dx dy ( x y z) dz
被题设圆周Γ所围部分的上侧,
机动
目录
上页
下页
返回
结束
总习题十一 一.填空题 1.设L是圆: x 2 y 2 a 2 逆时针一周,则 解: 原式即为:
1 a
2
xdy ydx x y
2 2
2 _____ .
L
1 a
2
xdy ydx
2
L
利用格林公式有:
2 .
2dxdy
机动
的部分.
目录 上页 下页 返回 结束
(1)计算 ① 解: 依题意画图. ①
其中
②
②
机动
目录
上页
下页
返回
结束
(2)求均质(μ=1)的薄壳的重心 解: 由于对称性 由①知
zds
2 Dxy
[2 ( x y )] 1 4x 4 y dxdy
2 2 2 2 2
Dxy
'2 '2
1 1
( x y )ds
2
Dxz
x dxdz dz
2
0
x dx
2 1 1
1 3
2
0
4
( x y )ds
2 2
Dxz
( x 1)dxdz dz ( x 1)dx
2
0 0
机动 目录
4 3
.
上页
下页
返回
结束
在平面
(2 r ) 1 4r rdrd 2
1 8
2
0
d
2
1 4r d (1 4r )
2 2
0
2 1 1 2 2 2 2 d (1 4r 1) 1 4r d (1 4r ) 0 8 4 0 5 3 2 2 3 2 2 2 2 2 2 2 2 2 (1 4r ) |0 (1 4r ) 2 |0 (1 4r ) |0 16 5 16 3 2 3
R
将表示为:
z
2
R x y , 取上侧.
2 2 2
zdxdy
3
2 3
Dxy
R x y dxdy
2 2
2
0
d
R
R r rdr
2 2
2 3
R
3
0
原式=
3 R 2 R .
3
解法二:(高斯公式) 补一平面: 原式=
1
1 : z 0( x y R )
原式=
Dxy
z
1
o x
1y
( x y )dxdy
2 2
2
0
d r rdr 2
2 0
1
1 4
r |0
4 1
2
.
2.计算曲面积分 xdydz ydzdx zdxdy 其中为部分 曲面 x y z R ( z 0) 的上侧.
2 2 2 2
a
o
a
a
y
2 3 2 ( cos ) |0
1 5
r |0
5 a
x
6 5
a
5
机动
目录
上页
下页
返回
结束
2. 计算曲面积分 其中为曲线
ze
x0
y
(0 y a )绕
z 轴旋转而成的曲面的下侧.
a
解: 依题意画图.补一平面 1 : z e
原式=
( x y a ) 取其上侧.
L
y
1
( x y )ds ds
L
x y 1
2
机动 目录 上页
o
下页
x
1
返回 结束
4
7.设:
3 x y z R , 则 z ds _____ .
2 2 2 2
2
R
4
解: 由于对称性 z 2 ds x2 ds y2 ds.
2 a
D
a 2 . 2
2
应填
2.设:
x y z a ,则
2 2 2
2 2 2
( x y z ) ds ______ .
2
解: 原式=
2 2 2 ( x y z 2 xy 2 xz 2 yz )ds ( x y z )ds
第十一章
第十一章曲线积分与曲面积分
习题答案(二)(48)
机动
目录
上页
下页
返回
结束
11.4对面积的曲面积分 1.计算曲面积分 ( x y )ds,其中为: (1)平面 x 0, y 0, z 0, x 1, y 1, z 1 所围立体的表面. z 解: 依题意画图. 1 在平面z = 0 ,z =1上, ds 1 z z dxdy dxdy
重心为
机动 目录 上页 下页 返回 结束
5.设半径为R的球面上, 每点的面密度为该点到球面 的某一直径的距离, 求此球面的质量M. 解: 依题意画图. 曲面的方程为: 该曲面的面密度为:
z
由于对称性
(利用极坐标)
o
y
令
x
机动
目录
上页
下页
返回
结束
11.5对坐标的曲面积分 1.计算曲面积分 I zdxdy, 其中是部分曲面 2 2 z x y ( z 1)的上侧. 解: 依题意画图.
2
e
2
z
3
dxdy 0.
2
x y
e
2
z
dxdy 2 (e 2e).
2 2
x y
机动
目录
上页
下页
返回
结束
4.把对坐标的曲面积分
化为对面积的曲面积分,其中 解: 令 则有 n ( F , F , F ) (2 x, 2 y,1).
x y z
取上侧.
F x, y, z x y z 8