一次函数图象的应用二
一次函数图象的应用(二)演示文稿

l2 l1
P
t/分 分
(5)当A逃到离海岸12海里的公海时,B将无法对其进行 检查。照此速度,B能否在A逃入公海前将其拦截? 从图中可以看出,l1与l1交点P的纵坐标小于12, 这说明在A逃入公海前,我边防快艇B能够追上A。 上 述 想 问 一 s/海里 海里 题 想 吗 你 12 ? 能 10 用 P l2 其 8 他 6 l1 方 法 4 解 2 决
4. 请你根据另一幅图表,充分发挥你的想象,自编 请你根据另一幅图表,充分发挥你的想象, 一则新的“龟免赛跑”的寓言故事,要求如下: 一则新的“龟免赛跑”的寓言故事,要求如下: (1)用简洁明快的语言概括大意,不能超过 )用简洁明快的语言概括大意,不能超过200字; 字 (2)图表中能确定的数值,在故事叙述中不得少于 )图表中能确定的数值, 3个,且要分别涉及时间、路和速度这三个量。 个 且要分别涉及时间、路和速度这三个量。
6000 5000 4000 3000 2000 1000
l2
O
1
2
3
4
5
6
x/ 吨
(2)当销售量为6吨时,销售收入= 6000 元, 销售成本= 5000 元; (3)当销售量为 4吨 时,销售收入等于销售成本;
y/元 元
6000 5000 4000 3000 2000 1000
l1 l2
O
1
2
=45km,此时S ⑵当小聪到达“飞瀑”时,即S1=45km,此时S2=42.5km。 当小聪到达“飞瀑” 所以小慧离“飞瀑”还有45-42.5=2.5(km) 所以小慧离“飞瀑”还有45-42.5=2.5( 45
一次函数的图象(二)”教案

“一次函数的图象(二)”教学设计胡小林教学目标:1、知识与技能能熟练作出一次函数的图象,掌握一次函数及其图象的简单性质2、数学思考经历观察、操作、交流、归纳等数学活动过程,发展合情推理能力。
渗透“数形结合”的思想,培养形象思维能力。
3、解决问题在探索一次函数性质的过程中能多个角度进行考虑,敢于质疑,并能用语言清楚地表达自己的思维过程。
4、情感与态度通过“做数学”,体会数学活动充满着探索性、创造性,敢于发表自己的观点,并尊重与理解他人的见解,从交流中获益,增强学习自信心。
二、教材分析:函数是研究现实世界变化规律的一个重要模型,对它的学习一直是初中阶段数学学习的一个重要内容。
有关函数的知识在人们的日常生活和生产中有着广泛的应用,如:讨论社会问题、经济问题、计算机的使用等。
因此早期对函数的丰富经历是非常重要的。
“一次函数的图象”第二课时,是在七年级下学期探索了变量之间的关系及本章学习了函数、一次函数的概念、经历了做函数图象的过程的基础上学习的,本节通过解剖“一次函数”这一“麻雀”,使学生了解函数的有关性质和研究方法,并初步形成利用函数的观点认识现实世界的意识和能力。
渗透“数形结合“的思想,培养形象思维能力。
重点:一次函数的性质难点:根据一次函数的图象及关系式探索并理解其性质三、教学过程:四、教学反思:成功之处:(1)能根据学生的实际精心设计教学,估计各个环节学生可能出现的问题,提出解决问题的策略,提高了课堂的有效率。
(2)充分发挥学生的主体作用,以“问题串”的的形式进行引导,知识的获取由学生通过自主探索、合作交流的形式完成,课堂上师生互动合作,以挑战活动等形式,充分调动学生参与的积极性和学习兴趣。
(3)调整了课本第一组“议一议”(1)、(2)的顺序,学生刚作完图象,直接提问(2)是学生作图过程、思维过程的再现,比较合理。
有学生回答画图象时描一个点,过这个点和(0,0)点画一条直线即可。
问:“你怎么知道图象过(0,0)点?”答:“开始画时描了两个点,画完后发现图象都经过(0,0)点,因此再描一个点就够了”说明学生已经开始学会反思自己的学习过程。
八年级数学上册4.4一次函数的应用第二课时教学全国公开课一等奖百校联赛微课赛课特等奖PPT课件

4.4
一次函数
一次函数应用
第2课时1/6源自• 1.能经过一次函数图象获取有用信息,并处理实际问
• 题;(重点)
• 2.了解一元一次方程与一次函数关系,会利用它们之间
• 关系处理一些实际问题。
2/6
•
观察右边图象,你能从图象
•
中得到哪些信息?你是怎样得到?
•
与同伴交流。
3/6
1.依据小组讨论结果,试着回答“问题导引”中问题。
所以这个函数的表达式为 y=- x+10.
把 y=1 代入 y=-x+10 中,可得 x=450.
5/6
1.一次函数图象直观地反应了两个变量之间关系,利用一次函数
横轴
纵轴
图象处理实际问题时,首先要明确_______、_______表示变量
实际意义。
2.利用一次函数y=kx+b图象,怎样确定kx+b=0解?
一次函数y=kx+b图象与x轴交点横坐标就是方程kx+b=0解。
6/6
能够从对应值、与x轴(或y轴)交点,改变趋势、函数表示式
等方面提取信息。
2.小明解答“例2”中第(4)问时,发觉了一个新方法,他先依据
图象与x轴、y轴交点坐标求出这个函数表示式,再把y=1代入
表示式中求出x值即可。按照他方法试一试,小组讨论你结果。
4/6
设这个函数的表达式为 y=kx+b,
把(0,10),(500,0)代入,可得 b=10,k=-,
浙教版八年级上册期末点对点攻关:一次函数应用(图像类)(二)

浙教版八年级上册期末点对点攻关:一次函数应用(图像类)(二)1.在一次越野赛中,甲选手匀速跑完全程,乙选手1.5小时后速度为每小时10千米,两选手的行程y(千米)随时间x(小时)变化的图象(全程)如图所示,则乙比甲晚到小时.2.自行车运动员甲准备参加一项国际自行车赛事,为此特地骑自行车从A地出发,匀速前往168千米外的B地进行拉练.出发2小时后,乙发现他忘了带某训练用品,于是马上骑摩托车从A地出发匀速去追甲送该用品.已知乙骑摩托车的速度比甲骑自行车的速度每小时多30千米,但摩托车行驶一小时后突遇故障,修理15分钟后,又上路追甲,但速度减小了,乙追上甲交接了训练用品(交接时间忽略不计),随后立即以修理后的速度原路返回,甲继续以原来的速度骑行直至B地.如图表示甲、乙两人之间的距离S (千米)与甲骑行的时间t(小时)之间的部分图象,则当甲达到B地时,乙距离A地千米.3.一个装有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min 内既进水又出水,接着关闭进水管直到容器内的水放完,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间(单价:min)之间的关系如图所示.在第分钟时该容器内的水恰好为10L.4.一个有进水管与出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后8分钟内既进水又出水,每分钟的进水量和出水量是两个常数.容器内的水量y(单位:升)与时间x(单位:分钟)之间的关系如图所示,则每分钟出水5.某日上午,甲,乙两车先后从A地出发沿同一条公路匀速前往B地,甲车8点出发,如图是其行驶路程s(千米)随行驶时间t(小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v(单位:千米/小时)的范围是.6.A,B两地相距的路程为240千米,甲、乙两车沿同一线路从A地出发到B地,分别以一定的速度匀速行驶.甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达B地.甲、乙两车相距的路程y(千米)与甲车行驶时间x(小时)之间的关系如图所示,求乙车修好时,甲车距B地还有千米.7.一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来速度的一半,小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的关系如图所示(小玲和妈妈上、下楼以及妈妈交学习用品给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为米.8.星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家.他离家的距离y(千米)与时间t(分钟)的关系如图所示,则上午8:45小明离家的距离是千米.9.“龟、蟹赛跑趣事”:某天,乌龟和螃蟹在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速跑400米.当螃蟹领先乌龟225米时,螃蟹停下来休息并睡着了.当乌龟追上螃蟹的瞬间,螃蟹惊醒了(惊醒时间忽略不计)立即以原来的速度继续跑向终点,并赢得了比赛.在比赛的整个过程中,乌龟和螃蟹间的距离y(米)与乌龟出发的时间x(分钟)之间的关系如图所示,则螃蟹到达终点时,乌龟距终点的距离米.10.在一条笔直的公路上有A、B、C三地,C地位于A、B两地之间.甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地,在甲、乙行驶过程中,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.则当乙车到达A地时,甲车已在C地休息了小时.11.甲、乙两人从距快递公司30千米的物流中心站同时出发,各自将货物运回公司,他们将货物运回公司立即卸货后,又各自以原速原路向中心站行驶,在整个过程中,甲、乙两个均保持各自的速度匀速行驶,且甲的速度比乙的速度快.甲、乙相距的路程y(千米)与甲离开中心站的时间x(分钟)之间的关系如图所示(卸货时间不计),则在甲返回到中心站时,乙距中心站的路程为千米.12.已知A地在C、B两地之间,甲乙两人分别从A、B两地同时出发,相向而行,经过一段时间后相遇,甲继续向B地前进,乙继续向A地前进;甲到达B地后立即返回,在C地甲追上乙.甲乙两人相距的路程y(米)与出发的时间x(分钟)之间的关系如图所示,则A、C两地相距米.13.小明和小亮分别从同一直线跑道A、B两端同时相向匀速出发,小明和小亮第一次相遇后,小明觉得自己速度太慢便提速至原速的倍,并匀速运动达到B端,且小明到达B端后停止运动,小亮匀速跑步到达A端后,立即按原速返回B端(忽略调头时间),回到B端后停止运动,已知两人相距的路程S(千米)与小亮出发时间t(秒)之间的关系如图所示,则当小明到达B端后,经过秒,小亮回到B端.14.一条笔直的公路上顺次有A、B、C三地,甲车从B地出发往A地匀速行驶,到达A 地后停止,在甲车出发的同时,乙车从B地出发往A地匀速行驶,到达A地停留1小时后,调头按原速向C地行驶,若AB两地相距200千米,在两车行驶的过程中,甲、乙两车之间的距离(千米)与乙车行驶时间x(小时)之间的函数图象如图所示,则在他们出发后经过小时相遇.15.小芸家与学校之间是一条笔直的公路,小芸从家步行前往学校的途中发现忘记带阅读分享要用的U盘,便停下给妈妈打电话,妈妈接到电话后,带上U盘马上赶往学校,同时小芸沿原路返回.两人相遇后,小芸立即赶往学校,妈妈沿原路返回家,并且小芸到达学校比妈妈到家多用了5分钟.若小芸步行的速度始终是每分钟100米,小芸和妈妈之间的距离y与小芸打完电话后步行的时间x之间的函数关系如图所示,则妈妈从家出发分钟后与小芸相遇,相遇后妈妈回家的平均速度是每分钟米,小芸家离学校的距离为米.16.甲、乙两车分别从A、B两地同时出发,相向行驶,已知甲车的速度大于乙车的速度,甲车到达B地后马上以另一速度原路返回A地(掉头的时间忽略不计),乙车到达A地以后即停在地等待甲车.如图所示为甲乙两车间的距离y(千米)与甲车的行驶时间t(小时)之间的函数图象,则当乙车到达A地的时候,甲车与A地的距离为千米.17.甲、乙两人骑自行车匀速同向行驶,乙在甲前面100米处,同时出发去距离甲1300米的目的地,其中甲的速度比乙的速度快.设甲、乙之间的距离为y米,乙行驶的时间为x秒,y与x之间的关系如图所示.甲到达目的地时,乙距目的地还有米.18.A,B两地相距480km,C地在AB之间,现有甲、乙两辆货车分别从A,B两地匀速同时出发,乙车达到C地后停止.甲、乙两车之间的距离y(km)与甲车行驶时间x (h)之间的关系如图所示,则当乙车到达C地时,甲车与C的距离为km.19.如图,甲和乙同时从学校放学,两人以各自速度匀速步行回家,甲的家在学校的正西方向,乙的家在学校的正东方向,乙家离学校的距离比甲家离学校的距离远3900米,甲准备一回家就开始做作业,打开书包时发现错拿了乙的练习册.于是立即跑步去追乙,终于在途中追上了乙并交还了练习册,然后再以先前的速度步行回家,(甲在家中耽搁和交还作业的时间忽略不计)结果甲比乙晚回到家中,如图是两人之间的距离y米与他们从学校出发的时间x分钟的函数关系图,则甲的家和乙的家相距米.20.小颖和小明骑自行车从滨江路上相距9500米的A、B两地同时出发,相向而行,行驶一段时间后小颖的自行车坏了,立刻停车并马上打电话通知小明,小明接到电话后立刻提速至原来的倍,碰到小颖后用了5分钟修好了小颖的自行车,修好车后小明立刻骑车以提速后的速度继续向终点A地前行,小颖则留在原地整理工具,2分钟以后小颖以原速向B走了3分钟后,发现小明的包在自己身上,马上掉头以原速的倍的速度返回A地,在整个行驶过程中,小颖和小明均保持匀速行驶(小明停车和打电话的时间忽略不计),两人相距的路程S(米)与小颖出发的时间t(分钟)之间的关系如图所示,则小明到达A地时,小颖与A地的距离为米.参考答案1.解:由图象可得,甲的速度为:10÷1=10km/h,这次越野赛的全程长是:2×10=20km,设当0.5≤x≤1.5时,y与x的函数解析式为y=kx+b,,得,∴当0.5≤x≤1.5时,y与x的函数解析式为y=4x+6,当x=1.5时,y=12,∴乙跑完全程用的时间为:1.5+(20﹣12)÷10=2.3h,∴乙比甲晚到:2.3﹣2=0.3h,故答案为:0.3.2.解:设甲的速度为a千米/分,则乙的速度为(a+30)千米/小时.由题意,乙车修复故障时两人相距为:2a+a﹣(a+30)+=24∴a=24,乙修复车辆后速度为=36千米/小时∵乙修复摩托车时两人相距24千米∴乙追上甲用时为小时甲距离B为168﹣(3++2)×24=42千米甲到B时乙距离A为:千米故答案为:633.解:由图象0﹣4分钟,水量每分钟增加5升,则增加到10升需2分钟.在4﹣12分钟,水的体积增加10升,则每分钟增加升.∵此时,进水和出水管同时打开∴出水管的出水速度是每分钟5﹣=升∴水的体积从30升降到10升用时为=分此时时间为第12+=故答案为:2或174.解:根据图象知道:每分钟出水[(12﹣4)×5﹣(30﹣20)]÷(12﹣4)=升;故答案为:升5.解:根据图象可得,甲车的速度为120÷3=40(千米/时).由题意,得,解得60≤v≤80.故答案为60≤v≤80.6.解:由题意可得,甲车的速度为:30÷=45千米/时,甲车从A地到B地用的时间为:240÷45=5(小时),乙车刚开始的速度为:[45×2﹣10]÷(2﹣)=60千米/时,∴乙车发生故障之后的速度为:60﹣10=50千米/时,设乙车发生故障时,乙车已经行驶了a小时,60a+50×()=240,解得,a=,∴乙车修好时,甲车行驶的时间为:=小时,∴乙车修好时,甲车距B地还有:45×(5)=90千米,故答案为:90.7.解:由图象得:小玲步行速度:1200÷30=40(米/分),由函数图象得出,妈妈在小玲10分后出发,15分时追上小玲,设妈妈去时的速度为v米/分,(15﹣10)v=15×40,v=120,则妈妈回家的时间:=10,(30﹣15﹣10)×40=200.故答案为:200.8.解:设当40≤t≤60时,距离y(千米)与时间t(分钟)的函数关系为y=kt+b,∵图象经过(40,2)(60,0),∴,解得:,∴y与t的函数关系式为y=﹣x+6,当t=45时,y=﹣×45+6=1.5,故答案为:1.5.9.解:由图形可知:乌龟80分钟到达终点,∴乌龟的速度为:400÷80=5(米/秒),设螃蟹的速度为v米/秒,15v﹣15×5=225,v=20,螃蟹走完全程的时间:t==20,225÷5=45(分),∴点B(60,0),20+45=65,则螃蟹到达终点时,乌龟距终点的距离5(80﹣65)=75(米).故答案为:75.10.解:由题意可得,甲车到达C地用时4个小时,乙车的速度为:200÷(3.5﹣1)=80km/h,乙车到达A地用时为:(200+240)÷80+1=6.5(小时),当乙车到达A地时,甲车已在C地休息了:6.5﹣4=2.5(小时),故答案为:2.5.11.解:甲的速度为30÷30=1(千米/分钟),乙的速度为30÷45=(千米/分钟),甲返回到中心站的时间为30×2÷1=60(分钟),在甲返回到中心站时,乙行驶的总路程为×60=40(千米),∴在甲返回到中心站时,乙距中心站的路程为30×2﹣40=20(千米).故答案为:20.12.解:甲乙两人的速度和为450÷3=150(米/分钟),甲的速度为450÷5=90(米/分钟),乙的速度为150﹣90=60(米/分钟).设A、C两地相距m米,则B、C两地相距(m+450)米,根据题意得:=,解得:m=450.故答案为:450.13.解:小明提速前,小亮和小明的速度和为360÷45=8m/s,小明提速后,小亮和小明的速度和为270÷(72﹣45)=10m/s,小明提速前的速度为(10﹣8)÷(﹣1)=3m/s,小明提速后的速度为3×=5m/s,小亮的速度为8﹣3=5m/s,小明到达B端的时间为72+(360﹣270)÷5=90s,小亮回到B端的时间为72×2=144s,∵144﹣90=54s.∴当小明到达B端后,经过54秒,小亮回到B端.故答案为:54.14.解:由题意可得,乙车的速度为:(200+400)÷(7﹣1)=100千米/时,甲乙两车的速度之比是:(200﹣120):200=2:5,∴甲车的速度是:100÷5×2=40千米/时,乙车从B地到A地的时间为:200÷100=2小时,∴两车相遇的时间是:2+1+(200﹣40×3)÷(100+40)=3小时,故答案为:3.15.解:当x=8时,y=0,故妈妈从家出发8分钟后与小芸相遇,当x=0时,y=1400,∴相遇后18﹣8=10分钟小芸和妈妈的距离为1600米,1600÷(18﹣8)﹣100=60(米/分),∴相遇后妈妈回家的平均速度是每分钟60米;1600+(23﹣18)×100=2100(米),∴小芸家离学校的距离为2100米.故答案为:8;60;2100.16.解:设甲车从A地到B地的速度为x千米/时,乙车从B地到A地的速度是y千米/时,,解得,,∴甲车从A地到B地用的时间为:900÷100=9小时,甲车从B地到A地的速度为:900÷(16.5﹣9)=120千米/时,乙车从B地到甲地的时间为:900÷80=11.25小时,∴当乙车到达A地的时候,甲车与A地的距离为:900﹣120×(11.25﹣9)=630(千米),故答案为:630.17.解:∵300秒时,乙到达目的地,∵乙的速度为:=4(米/秒).设甲的速度为x米/秒,∵50秒时,甲追上乙,∴50x﹣50×4=100,解得x=6,∴甲走完全程所需的时间为:=(秒),∴甲到达目的地时,乙距目的地还有:1300﹣100﹣×4=(米).故答案为.18.解:甲车的速度为480÷12=40km/h,甲、乙两车的速度和为480÷4.8=100km/h,乙车的速度为100﹣40=60km/h,A、C两地间的距离为480﹣360=120km,乙车到达C地的时间为360÷60=6h,乙车到达C地时,甲车与C的距离为40×6﹣120=120km.故答案为:120.19.解:设学校离甲的家距离为a米,则学校离乙的家距离为(a+3900)米,由图象可知,20分时甲到家,70分时乙到家,∴v甲=米/分,v乙=米/分,由题意得:40分时,甲追上乙,由BC段可知:70分时,乙到家时,甲到学校,即甲30分钟所走路程,乙走了40分,则40×=30×,解得:a=2400,∴甲家到乙家的距离为:2a+3900=2×2400+3900=8700,故答案为:8700.20.解:小颖和小明初始速度和为:(9500﹣1800)÷14=550米/分钟,小明提速后的速度为:800÷2=400米/分钟,小明的初始速度为:400÷=300米/分钟,小颖的速度为:550﹣300=250米/分钟,小颖坏车的地方离A地的距离为:250×14=3500米,修好车后小明到达A地所需时间为3500÷400=8.75(分钟),小明到达A地时,小颖与A地的距离为:3500+3×250﹣(8.75﹣2﹣3)×250×=2937.5米,故答案为:2937.5.。
初中数学一次函数及其应用2含答案

一次函数及其应用2一.选择题(共33小题)1.一次函数图象与y轴交于点(0,3),图象经过第四象限,下列函数解析式中符合题意的是()A.y=2x﹣3B.y=2x+3C.y=﹣2x﹣3D.y=﹣2x+3 2.对于函数y=﹣x+3,下列结论正确的是()A.当x>4时,y<0B.它的图象经过第一、二、三象限C.它的图象必经过点(﹣1,3)D.y的值随x值的增大而增大3.已知函数y=kx+b的图象如图所示,则函数y=﹣bx+k的图象大致是()A.B.C.D.4.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x>O B.x>﹣1C.x<0D.x>25.把直线y=kx向上平移3个单位,经过点(1,5),则k值为()A.﹣1B.2C.3D.56.将直线y=﹣2x+1向上平移2个单位长度,所得到的直线解析式为()A.y=2x+1B.y=﹣2x﹣1C.y=2x+3D.y=﹣2x+37.一次函数y=2﹣x与x轴的交点为()A.(1,1)B.(0,2)C.(2,0)D.(3,0)8.一次函数y=(m+2)x﹣m+1,若y随x的增大而减小,且该函数的图象与x轴交点在原点右侧,则m的取值范围是()A.m>﹣2B.m<﹣2C.﹣2<m<1D.m<19.若一次函数y=(a﹣3)x﹣a的图象经过第二、三、四象限,则a的取值范围是()A.a≠3B.a>0C.a<3D.0<a<310.把一次函数y=2x+1的图象向下平移1个单位后得到一个新图象,则新图象所表示的函数的解析式是()A.y=2x﹣1B.y=2x+2C.y=2x D.y=2x﹣311.将直线L1:y=2x﹣2沿y轴向上平移4个单位的到L2,则L1与L2的距离为()A.B.C.D.12.已知(﹣1,y1),(1,y2)是直线y=﹣x+3上的两点,则y1,y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.无法确定13.A点(﹣1,m)和点(0.5,n)是直线y=(k﹣1)x+b(0<k<1)上的两个点,则m,n关系为()A.m>n B.m≥n C.m≤n D.m<n14.甲、乙两辆塑料汽车同时沿直线轨道AC起作同方向的匀速运动,甲乙同时分别A,B 出发,沿轨道到达C处,已知甲的速度始终是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B处的距离分别为S1,S2,S1,S2与t的函数关系如图,当两车的距离小于10米时,信号会产生相互干扰,那么t是下列哪个值时两车的信号在产生相互干扰()A.B.C.D.15.甲乙两人在同一条笔直的公路上步行从A地去往B地.已知甲、乙两人保持各自的速度匀速步行,且甲先出发,甲乙两人的距离y(千米)与甲步行的时间t(小时)的函数关系图象如图所示,下列说法:①乙的速度为7千米/时;②乙到终点时甲、乙相距8千米;③当乙追上甲时,两人距A地21千米;④A、B两地距离为27千米.其中错误的个数为()A.1个B.2个C.3个D.4个16.小明从家出发,沿一条直道跑步,经过一段时间原路返回,刚好在第16min回到家中,设小明出发第tmin时的速度为vm/min,离家的距离为sm,v与t之间的函数关系如图所示,下列说法错误的是()A.小明出发第2分钟时离家200mB.跑步过程中,小明离家的最远距离为780mC.当2<t≤5时,s与t之间的函数表达式为s=160t﹣120D.小明出发第5分钟时,开始按原路返回17.在某次物理实验课上,小明同学测得在弹簧的弹性限度内弹簧的长度y与物体质量x的关系如下表,则y与x的关系式是()x/g0204060……y/cm10111213……A.y=x B.y=0.1x+10C.y=0.05x+10D.y=0.2x+10 18.甲、乙施工队分别从两端修一段长度为380米的公路.在施工过程中,乙队曾因技术改进而停工一天,之后加快了施工进度并与甲队共同按期完成了修路任务.下表是根据每天工程进度绘制而成的.施工时间/天123456789累计完成施工量/米3570105140160215270325380下列说法错误的是()A.甲队每天修路20米B.乙队第一天修路15米C.乙队技术改进后每天修路35米D.前七天甲,乙两队修路长度相等19.点(﹣2,6)在正比例函数y=kx图象上,下列各点在此函数图象上的为()A.(3,1)B.(﹣3,1)C.(1,3)D.(﹣1,3)20.直线不经过点()A.(﹣2,3)B.(0,0)C.(3,﹣2)D.(﹣3,2)21.已知一次函数y=3x+2上有两点M(x1,y1),N(x2,y2),若x1>x2,则y1、y2的关系是()A.y1>y2B.y1=y2C.y1<y2D.无法判断22.将直线y=2x经过平移可得到直线y=2(x+3)+4,平移方法正确的是()A.先向右平移3个单位,再向上平移4个单位B.先向右平移3个单位,再向下平移4个单位C.先向左平移3个单位,再向上平移4个单位D.先向左平移3个单位,再向下平移4个单位23.已知点(k,b)为第二象限内的点,则一次函数y=﹣kx+b的图象大致是()A.B.C.D.24.已知一次函数的函数表达式为y=kx+b,若k+b=﹣6,kb=5,则一次函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限25.已知点A(5,y1)和点B(4,y2)都在直线y=﹣7x+b上,则y1与y2的大小关系为()A.y1>y2B.y1=y2C.y1<y2D.不能确定26.一次函数y=mx+n的图象如图所示,则下面结论正确的是()A.m<0,n>0B.m>0,n<0C.m<0,n<0D.m>0,n>0 27.已知一次函数y=x+b不过第二象限,则b的取值范围是()A.b<0B.b>0C.b≤0D.b≥028.若a、b为实数,且,则直线y=ax+b不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限29.将直线y=5x﹣1平移后,得到直线y=5x+7,则原直线()A.沿y轴向上平移了8个单位B.沿y轴向下平移了8个单位C.沿x轴向左平移了8个单位D.沿x轴向右平移了8个单位30.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶.已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需()分钟到达终点B.A.78B.76C.16D.1231.甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x (min)之间的函数关系如图所示.有下列说法:①A、B之间的距离为1200m;②甲行走的速度是乙的1.5倍;③b=960;④a=34.以上结论正确的有()A.①④B.①②③C.①③④D.①②④32.一蓄水池有水40m3,按一定的速度放水,水池里的水量y(m3)与放水时间t(分)有如下关系:放水时间(分)1234…水池中水量(m)38363432…下列结论中正确的是()A.y随t的增加而增大B.放水时间为15分钟时,水池中水量为8m3C.每分钟的放水量是2m3D.y与t之间的关系式为y=38﹣2t33.一蓄水池有水40m3,按一定的速度放水,水池里的水量y(m3)与放水时间t(分)有如下关系:放水时间(分)1234…水池中水量38363432…(m3)下列结论中正确的是()A.y随t的增加而增大B.放水时间为15分钟时,水池中水量为8m3C.每分钟的放水量是2m3D.y与t之间的关系式为y=40t二.填空题(共7小题)34.正比例函数y=kx(k≠0)经过点(2,1),那么y随着x的增大而_____.(填“增大”或“减小”)35.把直线y=2x﹣1向上平移2个单位再向左平移3个单位,所得直线解析式为_____.36.在一次函数y=kx﹣2x+2中,y随x的增大而增大,则k的取值范围为_____37.直线y=(3m﹣1)x﹣m,函数y随x的增大而增大,且图象经过一,三,四象限,则m的取值范围是_____.38.若(m,n)在函数y=3x﹣7的图象上,3m﹣n的值为_____.39.若y与x的函数关系式为y=2x﹣2,当x=2时,y的值为_____.40.某汽车生产厂对其生产的A型汽车进行油耗试验:匀速行驶的汽车在行驶过程中,油箱的剩余油量y(升)与行驶时间(小时)之间的关系如下表;t(小时)0123…y(升)100928476…由表格中y与t的关系可知,当汽车行驶_____小时,油箱的剩余油量为28升.三.解答题(共10小题)41.已知函数y=(m﹣2)是y关于x的正比例函数.(1)求m的值;(2)求出该正比例函数图象向右平移一个单位所得到的函数解析式.42.已知一次函数y=(2m+1)x+3﹣m(1)若y随x的增大而减小,求m的取值范围;(2)若图象经过第一、二、三象限,求m的取值范围.43.一辆快递车从长春出发,走高速公路,途经伊通,前往靖宇镇送快递,到达后卸货和休息共用1h,然后开车按原速原路返回长春.这辆快递车在长春到伊通、伊通到靖宇的路段上分别保持匀速前进,这辆快递车距离长春的路程y(km)与它行驶的时间x(h)之间的函数图象如图所示.(1)快递车从伊通到长春的速度是_____km/h,往返长春和靖宇两地一共用时_____h.(2)当这辆快递车在靖宇到伊通的路段上行驶时,求y与x之间的函数关系式,并写出自变量x的取值范围.(3)如果这辆快递车两次经过同一个服务区的时间间隔为4h,直接写出这个服务区距离伊通的路程.44.如图,A(0,2),M(4,3),N(5,6),动点P从点A出发,沿y轴以每秒1个单位速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时、点M关于l的对称点落在坐标轴上.45.甲、乙两家采摘园的圣女果品质相同,售价也相同,节日期间,两家均推出优惠方案,甲:游客进园需购买60元门票,采摘的打六折;乙:游客进园不需购买门票,采摘超过一定数量后,超过部分打折,设某游客打算采摘x千克,在甲、乙采摘园所需总费用为y1、y2元,y1、y2与x之间的函数关系的图象如图所示.(1)分别求出y1、y2与x之间的函数关系式;(2)求出图中点A、B的坐标;(3)若该游客打算采摘10kg圣女果,根据函数图象,直接写出该游客选择哪个采摘园更合算.46.如图①,某容器由A、B、C三个长方体组成,其中A、B、C的底面积分别为25cm2、10cm2、5cm2,整个容器容积是长方体C的容积的4倍(容器各面的厚度均忽略不计),现以速度v(单位:cm3/s)均匀地向容器内注水,直至注满为止.图②是注水全过程中容器内的水面高度h(单位:cm)与注水时间t(单位:s)的函数图象.(1)在注水过程中,注满A所用的时间为_____s,再注满B又用了_____s.(2)求A的高度h A及注水的速度V t.(3)求注满容器所需时间及容器的高度47.“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过部分的种子的价格打8折.(1)填写下表购买种子数量/千克0.51 1.52 2.53 3.54…付款金额/元________________________(2)写出付款金额y(元)与购买数量x(千克)之间的函数关系式,并画出图象.48.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达日的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.(1)根据图象信息,当t=_____分钟时甲乙两人相遇,乙的速度为_____米/分钟;(2)求点A的坐标.49.一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:(1)甲乙两地的距离是_____千米;(2)两车行驶多长时间相距300千米?(3)求出两车相遇后y与x之间的函数关系式.50.如图所示OA、BA分别表示甲、乙两名学生在同一直线上沿相同方向的运动过程中,路程S(米)与时间t(秒)的函数关系图象,试根据图象回答下列问题.(1)出发时,乙在甲前面多少米处?(2)在什么时间范围内甲走在乙的后面?在什么时间他们相遇?在什么时间内甲走在乙的前面?一次函数及其应用2参考答案与试题解析一.选择题(共33小题)1.解:设一次函数表达式为:y=kx+b=kx+3,b=3,图象经过第四象限,则k<0,故选:D.2.解:A.当x>4时,y<0,符合题意;B.它的图象经过第一、二、四象限,不符合题意;C.它的图象必经过点(﹣1,4),不符合题意;D.y的值随x值的增大而减小,不符合题意;故选:A.3.解:∵函数y=kx+b的图象经过第一、三、四象限,∴k>0,b<0,∴﹣b>0∴函数y=﹣bx+k的图象经过第一、二、三象限.故选:A.4.解:由图象可得,当y>0时,x的取值范围是x>﹣1,故选:B.5.解:直线y=kx(k≠0)的图象向上平移3个单位长度后的解析式为y=kx+3,将点(1,5)代入y=kx+3,得:5=k+3,∴k=2,∴平移后直线解析式为y=2x+3.故选:B.6.解:由“上加下减”的原则可知,把直线y=﹣2x+1上平移2个单位长度后所得直线的解析式为:y=﹣2x+12,即y=﹣2x+3故选:D.7.解:令y=0,则2﹣x=0,解得x=2,所以一次函数y=2﹣x与x轴的交点坐标是(2,0),故选:C.8.解:∵y随x的增大而减小,∴m+2<0,解得m<﹣2;又该函数的图象与x轴交点在原点右侧,所以图象过一、二、四象限,直线与y轴交点在正半轴,故﹣m+1>0.解得m<1.∴m的取值范围是m<﹣2.故选:B.9.解:∵一次函数y=(a﹣3)x﹣a的图象经过第二、三、四象限,∴,解得:0<a<3.故选:D.10.解:由“上加下减”的原则可知,把一次函数y=2x+1的图象向下平移1个单位后所得直线的解析式为:y=2x+1﹣1,即y=2x.故选:C.11.解:∵将直线L1:y=2x﹣2沿y轴向上平移4个单位的到L2,∴L2的解析式为:y=2x+2,∴L2:y=2x+2与y轴交于(0,2),如图,∵y=2x+2与x轴交于B(﹣1,0),与y轴交于A(0,2),y=2x﹣2与x轴交于F(1,0),与y轴交于E(0,﹣2),∴OB=OF,过O作OC⊥AB于C,反向延长OC交EF于D,∵AB∥EF,∴CD⊥EF,∴∠OCB=∠ODF=90°,∵∠BOC=∠DOF,∴△OBC≌△OFD,∴OC=OD,∵OA=2,OB=1,∴AB=,∴OC==,∴CD=,∴L1与L2的距离为,故选:D.12.解:∵k=﹣1<0,∴函数y随x增大而减小,∵﹣1<1,∴y1>y2.故选:A.13.解:∵0<k<1,∴直线y=(k﹣1)x+b中,k﹣1<0,∴y随x的增大而减小,∵﹣1<0.5,∴m>n.故选:A.14.解:乙的速度v2=120÷3=40(米/分),甲的速度v甲=40×1.5=60米/分.所以a==1分.设函数解析式为S1=kt+b,0≤t≤1时,把(0,60)和(1,0)代入得S1=﹣60t+60,1<t≤3时,把(1,0)和(3,120)代入得S1=60t﹣60;S2=40t,当0≤t<1时,S2+S1<10,即﹣60t+60+40t<10,解得t>2.5,因为0≤t<1,所以当0≤t<1时,两遥控车的信号不会产生相互干扰;当1≤t≤3时,d2﹣d1<10,即40t﹣(60t﹣60)<10,所以t>2.5,当2.5<t≤3时,两遥控车的信号会产生相互干扰.∵,∴时两车的信号在产生相互干扰.故选:C.15.解:①由题意,得甲的速度为:12÷4=3千米/时;设乙的速度为a千米/时,由题意,得(7﹣4)a=3×7,解得:a=7.即乙的速度为7千米/时,故①正确;②乙到终点时甲、乙相距的距离为:(9﹣4)×7﹣9×3=8千米,故②正确;③当乙追上甲时,两人距A地距离为:7×3=21千米.故③正确;④A,B两地距离为:7×(9﹣4)=35千米,故④错误.综上所述:错误的只有④.故选:A.16.解:由图象可得,小明出发第2分钟时离家:100×2=200(m),故选项A正确;跑步过程中,小明离家的最远距离为:[100×2+160×(5﹣2)+80×(16﹣5)]÷2=780(m),故选项B正确;当2<t≤5时,s与t之间的函数表达式为s=100×2+(t﹣2)×160=160t﹣120,故选项C正确;小明出发5分钟时,离家的距离为:160×5﹣120=680<780,故此时小明没有达到离家的最远距离,没有按原路返回,还要继续向前走,故选项D错误;故选:D.17.解:在弹簧的弹性限度内弹簧的长度y与物体质量x的关系为一次函数关系,设y与x的关系式为y=kx+b,把,代入,可得,解得,∴y与x的关系式为y=0.05x+10,故选:C.18.解:由题意可得,甲队每天修路:160﹣140=20(米),故选项A正确;乙队第一天修路:35﹣20=15(米),故选项B正确;乙队技术改进后每天修路:215﹣160﹣20=35(米),故选项C正确;前7天,甲队修路:20×7=140米,乙队修路:270﹣140=130米,故选项D错误;故选:D.19.解:将点(﹣2,6)代入函数表达式:y=kx得:6=﹣2k,解得:k=﹣3,故函数的表达式为:y=﹣3x,当x=1时,y=﹣3,当x=3时,y=﹣9,当x=﹣3时,y=9,当x=﹣1时,y=3,故选:D.20.解:A、当x=﹣2时,y=﹣×(﹣2)=≠3,故直线不经过点(﹣2,3);B、当x=0时,y=﹣×0=0,故直线经过点(0,0);C、当x=3时,y=﹣×3=﹣2,故直线经过点(3,﹣2);D、当x=﹣3时,y=﹣×(﹣3)=2,故直线经过点(﹣3,2).故选:A.21.解:k=3>0,故函数y随x的增大而增大,∵若x1>x2,则y1>y2,故选:A.22.解:将直线y=2x先向左平移3个单位,再向上平移4个单位,得到直线的解析式为y =2(x+3)+4,故选:C.23.解:∵点(k,b)为第二象限内的点,∴k<0,b>0,∴﹣k>0.∴一次函数y=﹣kx+b的图象经过第一、二、三象限,观察选项,C选项符合题意.故选:C.24.解:∵k+b=﹣6<0,kb=5>0,∴k<0,b<0,∴一次函数y=kx+b的图象经过第二、三、四象限,即一次函数的图象不经过第一象限,故选:A.25.解:∵﹣7<0,∴y随x的增大而减小,∵5>4,则y1<y2,故选:C.26.解:如图,∵该直线经过第二、四象限,∴m<0.又∵该直线与y轴交于正半轴,∴n>0.综上所述m<0,n>0.故选:A.27.解:一次函数y=x+b的图象不经过第二象限,则可能是经过一三象限或一三四象限,经过一三象限时,b=0;经过一三四象限时,b<0.故b≤0,故选:C.28.解:∵,∴,解得a=,∴b=﹣5,∴直线y=x﹣5经过第一,三,四象限,∴不经过的象限是第二象限,故选:B.29.解:∵将直线y=5x﹣1平移后,得到直线y=5x+7,而7﹣(﹣1)=8,∴原直线沿y轴向上平移了8个单位,故选:A.30.解:由纵坐标看出甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟,甲的速度是1÷6=千米/分钟,由纵坐标看出AB两地的距离是16千米,设乙的速度是x千米/分钟,由题意,得10x+16×=16,解得x=千米/分钟,相遇后乙到达A站还需(16×)÷=2分钟,相遇后甲到达B站还需(10×)÷80分钟,当乙到达终点A时,甲还需80﹣2=78分钟到达终点B,故选:A.31.解:①当x=0时,y=1200,∴A、B之间的距离为1200m,结论①正确;②乙的速度为1200÷(24﹣4)=60(m/min),甲的速度为1200÷12﹣60=40(m/min),60÷40=1.5,∴乙行走的速度是甲的1.5倍,结论②错误;③b=(60+40)×(24﹣4﹣12)=800,结论③错误;④a=1200÷40+4=34,结论④正确.故结论正确的有①④.故选:A.32.解:由表格可得,y随t的增加而减小,故选项A错误,放水时间为15分钟时,水池中水量为:40﹣(40﹣38)÷1×15=10m3,故选项B错误,每分钟的放水量是40﹣38=2m3,故选项C正确,y与t之间的关系式为y=40﹣(40﹣38)÷1×t=40﹣2t,故选项D错误,故选:C.33.解:设y与t之间的函数关系式为y=kt+b,将(1,38)、(2,36)代入y=kt+b,,解得:,∴y与t之间的函数关系式为y=﹣2t+40,D选项错误;∵﹣2<0,∴y随t的增大而减小,A选项错误;当t=15时,y=﹣2×15+40=10,∴放水时间为15分钟时,水池中水量为10m3,B选项错误;∵k=﹣2,∴每分钟的放水量是2m3,C选项正确.故选:C.二.填空题(共7小题)34.解:∵点(2,1)在正比例函数y=kx(k≠0)的图象上,∴k=,故y=x,则y随x的增大而增大.故答案为:增大.35.解:把直线y=2x﹣1向上平移2个单位再向左平移3个单位,所得直线解析式为y=2(x+3)﹣1+2=2x+7.故答案为:y=2x+7.36.解:∵一次函数y=kx﹣2x+2中,y随x的增大而增大,∴k﹣2>0,解得k>2.故答案为:k>2.37.解:根据题意可得:3m﹣1>0,﹣m<0,解得:m>,故答案为:m>,38.解:将点(m,n)坐标代入y=3x﹣7得:n=3m﹣7,即:3m﹣n=7,故答案为:7.39.解:把x=2代入y=2x﹣2,得y=2×2﹣2=2,故答案为2.40.解:由题意可得:y=100﹣8t,当y=28时,28=100﹣8t解得:t=9.故答案为:9.三.解答题(共10小题)41.解:(1)∵函数y=(m﹣2)是y关于x的正比例函数.∴m2﹣3=1,m﹣2≠0,解得:m=﹣2.(2)正比例函数y=﹣2x的图象向右平移一个单位后所得直线的解析式是:y=﹣2(x﹣1)=﹣2x+2,42.解:(1)由2m+1<0,可得m<﹣,∴当m<﹣时,y随着x的增大而减小;(2)由,可得﹣<m<3,∴当﹣<m<3时,函数图象经过第一、二、三象限.43.解:(1)快递车从伊通到长春的速度是:66÷0.6=110km/h;往返长春和靖宇两地一共用时间为:2.6×2+1=6.2小时;故答案为:110;6.2;(2)当这辆快递车在靖宇到伊通的路段上行驶时,设y与x之间的函数关系式为y=kx+b,由点A(3.6,246),B(5.6,66)得,解得,∴y=﹣90x+570(3.6≤x≤5.6);(3)(246﹣66)÷(2.6﹣0.6)×(4﹣1)×=135(km).246﹣135﹣66=45(km).答:这个服务区距离伊通的路程为45km.44.解:(1)当t=3时,点P的坐标为(0,5),则直线l的表达式为:y=﹣x+5;(2)当直线l过点M时,将点M的坐标代入直线l的表达式:y=﹣x+b得:3=﹣4+b,解得:b=7,t=5;当直线l过点N时,同理可得:t=9,故t的取值范围为:5<t<9;(3)①当点M′落在x轴上,如图,当点M关于l的对称点E′落在坐标轴上时,直线M′M交l于点H,设直线l交x轴于点G,则M′M⊥l,∠HM′G=45°=∠M′GH=∠HGM,即MG⊥x轴,故M′G=MG=3,则点G(4,0),则t=2;②当点M′落在y轴上,同理可得:t=1,故t=1或2.45.解:(1)由图得单价为300÷10=30(元),据题意,得y1=30×0.6x+60=18x+60当0≤x<10时,y2=30x,当x≥10时由题意可设y2=kx+b,将(10,300)和(20,450)分别代入y2=kx+b中,得,解得,故y2与x之间的函数关系式为y2=;(2)联立y2=18x+60,y2=30x,得,解得:,故A(5,150).联立y1=18x+60,y2=15x+150x,得解得,故B(30,600).(3)由(2)结合图象得,当5<x<30时,甲采摘园所需总费用较少.46.解:(1)由图象可知注满A所用的时间为10s,注满B又用了18﹣10=9s;故答案为10,8;(2)由A注满时水的体积和容器容积相等,可得10v t=25h A,∴v t=2.5h A,B注满时水的体积和容器容积相等,可得8v t=10(12﹣h A),∴h A=4,∴v t=10,∴A的高度为4cm,注水的速度为10cm3/s;(3)由整个容器容积是长方体C的容积的4倍,有25h A+10(12﹣h A)+5h C=4×5h C,∴h C=12,∴容器的高度为4+8+12=24cm;注满C容器所需时间为5×12÷10=6s,∴注满整个容器所需时间为18+6=24s.47.解:(1)由题意可得,当购买种子0.5千克时,需要付款:0.5×5=2.5(元),当购买种子1千克时,需要付款:1×5=5(元),当购买种子1.5千克时,需要付款:1.5×5=7.5(元),当购买种子2千克时,需要付款:2×5=10(元),当购买种子2.5千克时,需要付款:2×5+(2.5﹣2)×5×0.8=12(元),当购买种子3千克时,需要付款:2×5+(3﹣2)×5×0.8=14(元),当购买种子3.5千克时,需要付款:2×5+(3.5﹣2)×5×0.8=16(元),当购买种子4千克时,需要付款:2×5+(4﹣2)×5×0.8=18(元),故答案为:2.5,5,7.5,10,12,14,16,18;(2)当0≤x≤2时,y=5x,当x>2时,y=5×2+(x﹣2)×5×0.8=4x+2,即y=,函数图象如右图所示.48.解:(1)根据图象信息,当t=24分钟时甲乙两人相遇,甲的速度为2400÷60=40米/分钟,甲、乙两人的速度和为2400÷24=100米/分钟,乙的速度为:米/分钟.故答案为24,60;(2)乙从图书馆回学校的时间为2400÷60=40分钟,40×40=1600,∴A点的坐标为(40,1600).49.解:(1)由图象得:甲乙两地相距600千米;故答案为:600;(2)由题意得:慢车总用时10小时,∴慢车速度为(千米/小时);设快车速度为x千米/小时,由图象得:60×4+4x=600,解得:x=90,∴快车速度为90千米/小时;设出发x小时后,两车相距300千米.①当两车没有相遇时,由题意得:60x+90x=600﹣300,解得:x=2;②当两车相遇后,由题意得:60x+90x=600+300,解得:x=6;即两车2或6小时时,两车相距300千米;(3)由图象得:(小时),60×400(千米),时间为小时时快车已到达甲地,此时慢车走了400千米,∴两车相遇后y与x的函数关系式为y=.50.解:(1)由图象可得,出发时,乙在甲前面12米处;(2)由图象可得,甲的速度为:12÷1.5=8(米/秒),则当甲行驶64米时,用的时间为:64÷8=8(秒),由图可知,当在第8秒时,两人相遇,故当0≤t<8时,甲走在乙的后面,当t=8秒时,他们相遇,当t>8时,甲走在乙的前面.。
一次函数的图像(2)

《4.3一次函数的图象(2)》教学设计宝氮子校王桂林教学内容分析:《4.3一次函数的图象(2)》是北师大版数学教材八年级上册中第四章“一次函数”的第四课时,主要是认识一次函数图象的性质、正比例函数图像及性质。
本节内容是在七年级学习了“变量之间的关系”和八年级上册第三章学习了“位置的确定”基础上学习和认识的,学生已经有了一定的变量、函数、平面直角坐标系、以及一次函数的概念等有关的知识基础。
同时,本节内容也是继续学习反比例函数、二次函数的图象和性质的重要基础,也是学习高中代数、解析几何及其他数学分支的重要基础,也是学习高中代数、解析几何及其他数学分支的重要基础。
数形结合的思想、化归思想及解析法思想是本节内容所包含的主要数学思想。
学情分析:学生已有学习“函数”、“一次函数图像的画法”的基础,具有一定的动手操作能力和观察分析能力。
本节课,学生在此基础上进一步认识一次函数图像的简单性质和正比例函数及函数图象的性质,并利用动手操作,体会k值、b值对函数图像的影响,进一步增强学生数学学习中“数”“形”结合的意识。
教学目标:知识技能:会用两点法画出一次函数的图像;能结合图像说出一次函数的性质;掌握一次函数的性质;数学思考:经历一次函数图象画法与性质的探索过程,体会“数”“形”结合的数学思想解决问题:体会数形结合的数学思想在问题解决中的作用,并能运用性质、图象及数形结合思想解决相关函数问题情感态度:在动手操作过程中,培养学生的合作意识和大胆猜想、乐于探究的良好品质;体验“数”与“形”的转化过程,感受函数图象的简洁美;激发学生学数学的兴趣。
教学重点:通过图象理解一次函数的性质教学难点:结合图像理解归纳一次函数的性质的过程教学方法:自主探究、合作交流动。
在导学过程中,坚持诱导式教学,以谈话法、小组合作学习为主。
充分调动学生学习积极性和主动性,突出学生的主体地位,通过自学、讨论、归纳、辨析等方法对学生进行学法指导,培养他们动手、动口、动脑的能力,达到“不但使学生学会,而且使学生会学”的目的。
八年级数学北师大版上册 第4章《4.4 一次函数的应用》教学设计 教案

第四章第四节一次函数的应用(2)一、教材分析本节课内容选自义务教育课程标准实验教科书北京师范大学版的数学教材八年级上册的第四章第四节,课题为《一次函数图象的应用》。
本节课为第2课时。
其主要内容是学生已经学习掌握了一次函数的意义、一次函数的图象及其性质、确定一次函数的表达式的基础之上,通过开展经历体验探究活动,进行应用一次函数的图象解决简单的实际问题并发现一元一次方程与一次函数之间关系的过程。
使学生体会到数学学习过程中“数形结合”思想的重要性。
在整个函数知识体系中,对于图象的感受、解读、分析特别是应用函数的图象解决问题是极其重要的内容,而一次函数图象的应用是学生在整个学习生涯中所接触的第一个相关内容,对于后续其它函数图象应用的学习将积累宝贵的学习经验和经历,因此本节课内容的重要性不言而喻。
二、教学目标及分析知识与能力目标:(1)能通过函数图象获取信息,发展形象思维。
(2)能利用函数图象解决简单的实际问题,发展学生的数学应用能力。
过程与方法目标:(1)在亲身的经历与实践探索过程中体会数学问题解决的办法。
(2)初步体会方程与函数的关系,体会数形结合思想。
情感态度与价值观目标:(1)进一步体会数学知识与现实生活的密切联系,丰富数学情感。
(2)树立良好的环境保护意识,引发热爱自然、热爱家乡的情感。
重点:利用函数图象解决简单的实际问题,提高数学的应用意识和能力。
难点:体会函数与方程的关系,发展“数形结合”的思想”。
三、教学对象分析学生已学习了一次函数及其图象,认识了一次函数的性质。
在现实生活中也见识过大量的函数图象,所以具备了从函数图象中获取信息,并借助这些信息分析问题、解决问题的基础。
但由于初中学生的年龄特点,他们认识事物还不够全面、系统,所以还需通过具体实例来培养他们这方面的能力。
四、教法学法根据本节课的特点、目标要求及学生的实际情况,在教法上主要采用探究式教学法,引导学生进行观察探索、合作交流、归纳总结等学习活动。
一次函数的应用2,3,4

小结:该题考查了数形结合、 待定系数、方程组等多种数学思想 方法的综合运用.
练习: 某边防检查站距边境线3200米,边防战士小 张随即开始追赶,图中l1、l2分别表示可疑人和小张 的运动路程y(米)与小张追赶的时间x(分)之间 的函数关系,根据图象提供的信息,解答下列问题: (1)可疑人在小张开始追赶时已先跑了多少米? (2)小张能否在边境线内追上可疑人?通过计算验 证你的结论.
例2、声音在空气中传播的速度y(m/s) (简称音速)是气温x(℃)的一次函数,下表列 出了一组不同气温时的音速: (1)求y与x之间的函数关系式; (2)气温x=22℃时,某人看到烟花燃烧5s 后才能听到声响,那么此人与燃放的烟花所在地 约相距多远?
X(℃) 0 5 10 15 20
y(m/s) 331
169
178
187
2、某医药研究所开发了一种新药,在试验药效时发现,如果 成人按规定剂量服用,那么服药后2h时血液中含药量最高 达每毫升6(vg),接着逐渐衰减,10h时血液中含药量为 每毫升3(vg),每毫升血液中含药量y(vg)随时间x(h) 的变化如图所示, (1)分别求出x≤2与x≥2时,y与x之间的函数关系式。 (2)如果每毫升血液中含药量为4(ug)或4(ug)以上时对 于治疗疾病是有效的,那么服药以后,药物实际发挥疗效的 时间多长?
2.见书P162.
例2、在平面直角坐标系中画出了函数y=kx+b 的图象。 (1)根据图象,求k和b的值; (2)在图中画出函数y=-2x+2的图象; (3)求x的取值范围,使函数y=kx+b的函数 值大于函数y=-2x+2的函数值.
变式:已知函数y1=x+2,y2=-2x+2,x取何值时 (1)y1>y2 (2)y1=y2 (3)y1<y2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课堂小结
1、两直线交点的意义:
(1)几何意义:两直线交点是它们的公共点;
(2)代数意义:两直线交点的坐标同时满足两个 解析式。
2、利用图象比较函数值的方法:
(1)先找交点坐标,交点处y1=y2; (2)再看交点左右两侧,图象位于上方的直线函 数值较大。
范例讲解 例1、我边防局接到情报,近海处有一可疑船只A 正向公海方向行驶,边防局迅速派出快艇B追赶, 图中l1、l2分别表示两船相对于海岸的距离s(海里) 与追赶时间t(分)之间的关系。 (4)如果一直追下去,那么B能否追上A?
范例讲解 例1、我边防局接到情报,近海处有一可疑船只A 正向公海方向行驶,边防局迅速派出快艇B追赶, 图中l1、l2分别表示两船相对于海岸的距离s(海里) 与追赶时间t(分)之间的关系。 (5)当A逃到离海岸12海里的公海时,B将无法对 其进行检查,照此速度,B能否在A逃入公海前 将其拦截?
y/元
6000 5000 4000 3000 2000
l1
l2
1000
O
1
2
3
4
5
6
7
8
x/吨
新知探究 Ⅰ、如图,l1反映了某公司产品的销售收入与销 售量之间的关系,l2反映了该公司产品的销售成 本与销售量之间的关系,根据图意填空: (2)当销售量为6吨时,销售收入= 元,销售 成本= 元;
y/元
由此你能得到什么结 论?
6000 5000 4000 3000 2000
l2
1000
O
1
2
3
4
5
6
7
8
x/吨
新知归纳
利用图象比较函数值的方法: (1)先找交点坐标,交点处y1=y2; (2)再看交点左右两侧,图象位于上方的直线函 数值较大。
新知探究 Ⅰ、如图,l1反映了某公司产品的销售收入与销 售量之间的关系,l2反映了该公司产品的销售成 本与销售量之间的关系,根据图意填空: (5) l1对应的函数表达式是 , l2对应的函数表达式是 。
(1)从函数图象的形状判断函数类型; (2)从x轴、y轴的实际意义去理解图象上点的坐标 的实际意义。
情景引入 如图,l1反映了某公司产品的销售收入与销 售量之间的关系,l2反映了该公司产品的销售成 本与销售量之间的关系,如果将两函数图象合在 同一直角坐标系中,结果会怎么样?
y/元
6000 5000
y/元
l1
6000 5000 4000 3000 2000
l2
1000
O
1
2
3
4
5
6
7
8
x/吨
巩固练习 1、如图,l1反映了某公司产品的销售收入与销 售量之间的关系,l2反映了该公司产品的销售成 本与销售量之间的关系,根据图意填空: x=3时,销售收入= ,销售成本= , 赢利(收入−成本)= 。
北师大版八年级(上)
6.5 一次函数图象的应用(2)
诊断练习 1、如图,l1反映了某公司产品的销售收入与销 售量之间的关系,根据图意填空: (1)当销售量为2吨时,销售收入= 元; (2)当销售收入为6000元时,销售量= 吨。
y/元
6000 5000 4000 3000 2000 1000
l1
O
巩固练习 2、如图表示甲骑自行车、乙骑摩托车沿相同路线 由A到B地行驶过程中路程与时间的函数图象,两 地相距80千米。 (1)谁出发较早?早多长时间?谁较早到达B地? 早多长时间? y/千米 乙 甲 (2)两人在途中的速度分别是 多少? (3)指出在什么时段内两人均 行驶在途中(不包括两端点)? 甲行驶在乙前面;甲与乙相 遇;甲行驶在乙后面。
y/元
6000 5000
l1 l2
4000
3000 2000 1000
O
1
2
3
4
5
6
7
8
x/吨
范例讲解 例1、我边防局接到情报,近海处有一可疑船只A 正向公海方向行驶,边防局迅速派出快艇B追赶, 图中l1、l2分别表示两船相对于海岸的距离s(海里) 与追赶时间t(分)之间的关系。 (1)哪条线表示B到海岸的距离与追赶时间之间的 关系?
6000 5000 4000 3000 2000
l1
l2
1000
O
1
2
3
4
5
6
7
8
x/吨
新知探究 Ⅰ、如图,l1反映了某公司产品的销售收入与销 售量之间的关系,l2反映了该公司产品的销售成 本与销售量之间的关系,根据图意填空: (3)当销售量等于 时,销售收入等于销售 成本;
y/元
由此你能得到什么结 6000 论? 5000
80 70 60 50 40 30 20 10
O
1
2
3
4
5
6
7
8
x/时
巩固练习
3、某电机厂要印制产品宣传材料,甲印刷厂提 出:每份材料收1元印制费,另收1500元制版费; 乙厂提出:每份材料收2.5元印制费,不收制版 费。 (1)分别写出两厂的收费y(元)与印制数量x(份)之 间的关系式; (2)在同一直角坐标系内作出它们的图象; (3)根据图象回答下列问题: 印制800份宣传材料时,选择哪家印刷厂比较合 算?电视机厂拟拿出3000元用于印制宣传材料, 找哪家印刷厂印制宣传材料能多一些?
y/元
l2
6000 5000 4000 3000 2000 1000
l1
4000 你能获得什么信息? 3000 2000 1000
O
1
2
3
4
5
6
7
8
x/吨
O
1
2
3
4
5
6
7
8
x/吨
新知探究 Ⅰ、如图,l1反映了某公司产品的销售收入与销 售量之间的关系,l2反映了该公司产品的销售成 本与销售量之间的关系,根据图意填空: (1)当销售量为2吨时,销售收入= 元,销售 成本= 元;
范例讲解 例1、我边防局接到情报,近海处有一可疑船只A 正向公海方向行驶,边防局迅速派出快艇B追赶, 图中l1、l2分别表示两船相对于海岸的距离s(海里) 与追赶时间t(分)之间的关系。 (2)A、B哪个速度快?
范例讲解 例1、我边防局接到情报,近海处有一可疑船只A 正向公海方向行驶,边防局迅速派出快艇B追赶, 图中l1、l2分别表示两船相对于海岸的距离s(海里) 与追赶时间t(分)之间的关系。 (3)15分内B能否追上A?
4000 3000 2000
l1
l2
1000
O
1
2
3
4
5
6
7
8
x/吨
新知归纳
两直线交点的意义: (1)几何意义:两直线交点是它们的公共点; (2)代数意义:两直线交点的坐标同时满足两个 解析式。
新知探究 Ⅰ、如图,l1反映了某公司产品的销售收入与销 售量之间的关系,l2反映了该公司产品的销售成 本与销售量之间的关系,根据图意填空: (4)当销售量 时,该公司赢利(收入大于 成本);当销售量 时,该公司亏损(收入 y/元 l1 小于成本);
1
2
3
4
5
6
7
8
x/吨
诊断练习 2、如图,l2反映了该公司产品的销售成本与销 售量之间的关系,根据图意填空: (1)当销售量为2吨时,销售成本= 元; (2)当销售成本为5000元时,销售量= 吨。
y/元
6000 5000 4000 3000 2000 1000
l2
O
1
2
3
4
5
6
7
8
x/吨
复习旧知 图象分析方法: