一次函数图象的应用
一次函数图像及应用

一次函数图像及应用一、函数图像的定义一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图像。
二、一次函数的图像及性质三、小试身手1、画出函数y=2x-1与y=-0.5x+1的图象2、直线y=2x-3与x轴交点坐标为_______,与y轴交点坐标为_________,•图象经过第________象限,y随x增大而_________.3、分别说出满足下列条件的一次函数的图象过哪几个象限?(1)k>0 b>0 (2)k>0 b<0(3)k<0 b>0 (4)k<0 b<04、在同一直角坐标系中画出下列函数图象,并归纳y=kx+b(k、b是常数,k≠0)中b对函数图象的影响.1.y=x-1 y=x y=x+12.y=-2x+1 y=-2x y=-2x-1练习巩固1、例1 小芳以200米/分的速度起跑后,先匀加速跑5分钟,每分提高速度20米/分,又匀速跑10分钟.试写出这段时间里她跑步速度y(米/分)随跑步时间x(分)变化的函数关系式,并画出图象.2、A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡.从A城往C、D两乡运肥料费用分别为每吨20元和25元;从B城往C、D两乡运肥料费用分别为每吨15元和24元.现C乡需要肥料240吨,D乡需要肥料260吨.怎样调运总运费最少?3、从A、B两水库向甲、乙两地调水,其中甲地需水15万吨,乙地需水13万吨,A、B两水库各可调出水14万吨.从A地到甲地50千米,到乙地30千米;从B地到甲地60千米,到乙地45千米.设计一个调运方案使水的调运量(万吨·千米)最少.4、某单位急需用车,但又不准备买车,他们准备和一个体车主或一国有出租车公司其中一家签让合同.设汽车每月行驶x千米,应付给个体车主的月费用是y 1元,应付给出租车公司的月费用是y2元,y1、y2分别是x之间函数关系如下图所示.每月行驶的路程等于多少时,租两家车的费用相同,是多少元?四、课后习题1.当x <0时,函数y =-2x 的图象在A.第一象限B.第二象限C.第三象限D.第四象限2.直线x y 3-=过点(0,0)和点A.(1,-3)B.(1,3)C.(-1,-3)D.(3,-1)3.函数x y 2=与x y 3-=的共同特点是A.图象经过一、三象限B.图象经过二、四象限C.图象经过原点D.y 随着x 的增大而增大4.函数y =-x 21+1和y =x 21+1的图象交于一点,这点的坐标是A.(1,21) B.(-1,23) C.(1,0) D.(0,1)5.函数x m y )1(-=(1≠m ),y 随着x 的增大而增大,则A.m <0B.m >0C.m <1D.m >19.下面图象中,不可能是关于x 的一次函数y =mx -(m -3)的图象的是10.在同一个直角坐标系中,对于函数①y=-x-1,②y=x+1,③y=-x+1,④y=-2(x+1)的图象,下列说法正确的是A.通过点(-1,0)的是①和③B.交点在y轴上的②和④C.相互平行的是①和③D.关于x轴对称的是②和③32.某公司市场营业员销部的营销人员的个人收入与其每月的销售量成一次函数关系,其图象如图所示.由图中给出的信息可知,营销人员没有销售时的收入是A.310B.300C.290D.28033.如图,OA,BA分别表示甲、乙两名学生运动的一次函数图象,图中s和t分别表示运动路程和时间,根据图象判断快者的速度比慢者的速度每秒快A.2.5米B.2米C.1.5米D.1米34.一游泳池长90米,甲、乙二人分别在游泳池相对两边同时朝另一边游泳,甲的速度是3米/秒,乙的速度是2米/秒,图中的实线和虚线分别为甲、乙与游泳池一边的距离随游泳时间的变化而变化图象.若不计转向时间,则从开始起到3分钟止他们相遇的次数为A.2次B.3次C.4次D.5次。
4.4《一次函数图像的应用》 北师大版八年级数学上册课件

想一想
(1).一箱汽油可供摩托车行驶多少千米? (2). 摩托车每行驶100千米消耗多少升? (3). 油箱中的剩余油量小于1升时将自 动报警.行驶多少千米后,摩托车将自动报警?
(1)当 y=0时, x=500,因此一箱汽油可 供摩托车行驶500千米.
(2).x从100增加到200时, y从8减少到6,减少了2, 因此摩托车每行驶100千米消耗2升汽油.
V/万米3
t/天
想一想
(1).干旱持续10天,蓄水量为多少?连续 干旱23天呢?
分析:干旱10天求蓄水量就是已知自变量 t=10求对应的因变量的值-----数
体现在图象上就是找一个点,使点的横坐 标是10,对应在图象上找到此点纵坐标的 值(10,V)--------形
答:持续干旱10天,储水量时1000万 立方米;持续干旱23天,储水量是750 万立方米。
V/万米3
(10,1000) (23,750)
t/天
(2).蓄水量小于400 万立方米时,将发生 严重的干旱 警报.干旱多少天后将发出 干旱警报? 干旱40天后将发出干旱警报
V/万米3
(40,400)
t/天
(3).按照这个规律,预计持续干旱多少天 水库将干涸? 60天后水库将干涸
V/万米3
60 t/天
作业布置
(100,8) (200,6)
(3).当y=1时,x=450,因此行驶了450千米 后,摩托车将自动报警.
(450,1)
如何解答实际情景函数图象的信息?
1:理解横纵坐标分别表示的的实际意义
2:分析已知(看已知的是自变量还是因 变量),通过做x轴或y轴的垂线,在图象 上找到对应的点,由点的横坐标或者纵坐 标的值读出要求的值
《一次函数图像的应用》第二课时教学课件

l2
l1
40
20
-4
-3
-2
-1 O
1
2
3
4
5
6
7
8
9
10 11 12
t /分
课堂小结
你有哪些收获?有什么困惑? 当一个坐标系中出现多个函数 图象时,你怎样处理?
作业布置 习题6.7 1、2
12 14
t /分
(5)当 A 逃到离海岸12海里的公海时,B 将 无法对其进行检查。照此速度, B 能否在 A 逃入公海前将其拦截?
从图中可以看出,l1 与 l2 交点P的纵坐标小于12,
10 8 6 4 2 O 2 4 6 8 10 12 14
s /海里
l2 A
P
l1 B
这说明在 A 逃 入公海前,我 边防快艇 B能 够追上 A。
当销售量为2吨时,销售收入= 2000 元,
y/元
6000
L1 销售收入
5000
4000
3000
2000 1000
x/吨 O
1 2 3 4 5 6
l2 反映了该公司产品的销售成本与销售量的关系, 根据图意填空:
当销售成本=4500元时,销售量= 5 吨;
y/元
6000 5000
l2 销售成本
4000
s /海里
8 6 4 2 O 2 4 6 8 10 12 1415 t
l2 A
l1 B
这表明,15 分钟时 B尚 未追上 A。
/分
(4)如果一直追下去,那么 B 能否追A?
如图延伸l1 、l2 相交于点P。
s /海里
一次函数图象的应用课件

目 录
• 一次函数图象的概述 • 一次函数图象在实际生活中的应用 • 一次函数图象与其他数学知识的结合应用 • 一次函数图象的应用实例分析 • 总结与展望
01
一次函数图象的概述
一次函数图象的定义
01
02
03
一次函数图象
一次函数y=kx+b(k≠0 )的图象是一条直线。
教学方法单一
部分教师在教授一次函数图象时 ,过于注重理论教学,缺乏实际 应用的结合,导致学生难以理解
其实际意义和应用价值。
技术应用不足
现代技术如几何画板、数学软件等 在课堂上的应用不足,限制了学生 对于函数图象动态变化的理解。
学生实践机会少
由于应试教育的影响,学生往往缺 乏实际操作和实践的机会,导致对 一次函数图象的理解停留在理论层 面。
对未来应用的展望与期待
加强技术与教学的结合
期待未来能更多地利用现代技术,使一次函数图象的教学更加生 动、形象,提高学生的学习兴趣和参与度。
注重实际应用与问题解决
希望教师在教学中能更多地引入实际问题,让学生在实际操作中理 解和掌握一次函数图象的应用。
培养学生的创新思维
期待未来的一次函数图象教学能够更加注重培养学生的创新思维和 解决问题的能力,而不仅仅是知识的灌输。
们的位置。
ቤተ መጻሕፍቲ ባይዱ
连线
用直线将这些点连接起 来,形成一次函数的图
象。
验证
根据题目要求或实际应 用需要,验证所绘制的 图象是否符合实际情况
。
02
一次函数图象在实际生活 中的应用
一次函数图象在物理中的应用
总结词
物理现象的数学描述
详细描述
一次函数的函数图像与方程解析解的实际应用

一次函数的函数图像与方程解析解的实际应用一次函数是数学中常见的一种函数类型,它可以表示为y = ax + b的形式,其中a和b为已知值,x和y为自变量和因变量。
在这篇文章中,我们将讨论一次函数的函数图像以及如何使用方程解析解来解决实际应用问题。
一、一次函数的函数图像一次函数的函数图像是一条直线,其斜率确定了直线的倾斜程度,截距则决定了直线与y轴的交点。
根据斜率的正负,可以判断直线是上升还是下降。
下面我们来看几个具体的例子。
1. 实例一:y = 2x + 1这个函数表示了一个斜率为2,截距为1的直线。
根据斜率的正值,我们知道这条直线上升。
当x增加1个单位时,y增加2个单位。
当x减小1个单位时,y减小2个单位。
通过这些关系,我们可以画出该函数的函数图像。
2. 实例二:y = -3x + 2这个函数表示了一个斜率为-3,截距为2的直线。
根据斜率的负值,我们知道这条直线下降。
当x增加1个单位时,y减小3个单位。
当x减小1个单位时,y增加3个单位。
同样地,我们可以通过这些关系画出该函数的函数图像。
通过观察这些例子,我们可以发现直线的倾斜程度(斜率)以及它与y轴的交点(截距)等信息可以从一次函数的解析解中推导出来。
这样,我们可以在解析解的基础上直观地了解一次函数的函数图像。
二、一次函数方程解析解的实际应用一次函数的解析解除了可以用来绘制函数图像之外,还可以应用于解决实际问题。
我们将通过以下两个实际应用问题来说明。
1. 实例一:销售收入问题假设一个公司以每件产品x销售价y的方式进行销售。
已知该公司每个月的固定成本是1000元,每件产品的可变成本是30元。
我们希望找到销售多少件产品时,公司能够实现盈亏平衡。
根据以上信息,我们可以写出一次函数的方程:总收入 = 总成本根据题意,总收入为yx,总成本为1000 + 30x。
将它们相等并整理方程,可得:yx = 1000 + 30x解这个一次方程,我们可以求得x的解析解。
八年级数学一次函数图像的应用详解

1、某植物t天后的高度为ycm,图中的l 反映了y与t 之间的关系,根据图象回答下列问题:
1)植物刚栽的时候多高?9cm
2)3天后该植物多高? 12cm
3)几天后该植物高度可达21cm 12天
Y/cm
24
l
21
(12,21)
18
15
12
(3,12)
9
6
3
2 4 6 8 1012 14 t/天
把(0,10),(250,0)代入得
10=b
1
0=250k+b 把∴ 1y代入 21得xk=10
2
1 25
当x=0时2,5 y=10
当x=100时,y=6
10-6=4升
∴摩托车每行驶100千米消耗4升汽油
变式练习
1、看图填空:
⑴当y=0时,x=__-_2___
⑵直线对应的函数表达式为_y_=__0_.5_x_+_1_____
30千克
⑵超过30千克后,每 千克需付多少元?
0.2元
30
4:弹簧的长度y (cm)与所挂物体的质量x (kg)的关系是 一次函数,图象如左图所示,观察图象回答: (1)弹簧不挂物体时的长度是多少?从图中还可知道什 么?
(2) y与x之间的函数关系式? (3)弹簧的长度是24cm时,所挂物体的质量是多少?
某股市变化情况
生活中的图象
学习目标
1.能通过函数图象获取信息. 2.能利用函数图象解决简单的
实际问题. 3.初步体会方程与函数的关系.
干旱造成的灾情
由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而
减少.干旱持续时间 t( 天)与蓄水量V(万米3) 的关系如图所示,
一次函数的图象(描点)
一次函数的表示方法
01
02
03
点斜式
通过已知的点$(x_1, y_1)$和斜率$k$,可以表 示为$y-y_1=k(x-x_1)$。
两点式
通过已知的两个点$(x_1, y_1)$和$(x_2, y_2)$,可 以表示为$frac{y-y_1}{xx_1}=frac{y_2-y_1}{x_2x_1}$。
一般式
一次函数的标准形式为 $y=kx+b$,其中$k$和 $b$是常数,且$k neq 0$。
02 一次函数的图象
一次函数图象的形状
线性形状
一次函数的图像是一条直线,这是因为一次函数的一般形式为y=kx+b,其中k 和b为常数,k不为0。
斜率与截距
一次函数的图像有确定的斜率和截距,斜率是k,截距是b。斜率决定了图像的 倾斜程度,截距决定了图像与y轴的交点位置。
实际问题举例
一次函数图象在经济学、物理学、工程学等领域都有广泛的应用。例如,在经济学中, 消费和收入之间的关系可以用一次函数来表示,通过分析这种关系可以了解消费者的消
费习惯和预测未来的消费趋势。
应用价值
一次函数图象能够直观地表示两个变量之间的线性关系,帮助人们更好地理解和分析实 际问题。
对未来研究的展望
一次函数图象可以用来描述物体在恒力作用下的匀速直线运 动,如速度与时间的关系。
弹簧问题
弹簧的伸长量与作用力之间的关系也可以用一次函数来表示 ,通过图象可以直观地分析弹簧的弹力与形变量之间的关系 。
一次函数图象在数学问题中的应用
线性规划
一次函数图象可以用来表示线性规划 问题中的约束条件和目标函数,通过 图象可以直观地分析最优解。
一次函数的图象(描点)
利用一次函数解决问题
利用一次函数解决问题一次函数(也称为线性函数)是数学中常见且重要的函数类型之一。
它的表达式为 y = ax + b,其中 a 和 b 是常数,且a ≠ 0。
一次函数的图像是一条直线,具有许多应用领域。
本文将介绍如何利用一次函数解决问题。
一、利用一次函数解决实际问题一次函数在实际问题中的应用非常广泛。
它可以描述物体的直线运动、收入与支出的关系、成本与产量的关系等。
下面举例说明:例1:小明每天骑自行车上学,他发现骑行的时间与距离之间存在一定的关系。
他测量了两天的数据,如下所示:时间(分钟):10 20 30 40距离(千米):1 2 3 4小明想要知道骑行 50 分钟可以骑多远,他可以利用一次函数解决这个问题。
解:我们可以先通过已知数据构建一个一次函数。
选择时间作为自变量 x,距离作为因变量 y。
现在我们来求解 a 和 b 的值。
已知点 A (10, 1) 和点 B (20, 2),可以利用两点间的斜率公式计算 a的值:a = (yB - yA) / (xB - xA) = (2 - 1) / (20 - 10) = 1 / 10 = 0.1接下来,我们可以代入其中一点的坐标和已知的 a 值,求解 b 的值:1 = 0.1 * 10 + bb = 1 - 1 = 0所以,一次函数为 y = 0.1x + 0。
现在可以利用求得的一次函数来解决问题。
当 x = 50 时,我们可以通过函数表达式求得对应的 y 值:y = 0.1 * 50 + 0 = 5因此,小明骑行 50 分钟可以骑行 5 千米。
二、利用一次函数解决图像问题一次函数的图像是一条直线,通过直线的性质,我们可以解决一些与图像相关的问题。
下面举例说明:例2:某公司生产零件,每天生产数量与花费的时间之间呈一次函数的关系。
已知当生产数量为 1000 时,需要 4 小时。
而当生产数量为2000 时,需要 8 小时。
现在需要求解该函数的表达式并计算生产 3000 个零件所需的时间。
初中数学 一次函数在艺术中的应用有哪些
初中数学一次函数在艺术中的应用有哪些一次函数在艺术中有许多应用,它们可以帮助我们分析和解决与艺术相关的问题。
以下是一次函数在艺术中的一些应用:1. 绘画中的透视关系:一次函数可以用来描述绘画中的透视关系。
在绘画中,透视是指将三维物体表现在二维画面上的技巧。
我们可以使用一次函数来计算不同透视点下的绘画比例,并预测未来的透视效果。
这有助于我们理解绘画技巧、构图原理和空间感知。
2. 摄影中的光学畸变:一次函数可以用来描述摄影中的光学畸变。
在摄影中,光学畸变是指由于光路不同而导致的图像失真现象。
我们可以使用一次函数来计算不同光路下的图像畸变,并预测未来的光学补偿。
这有助于我们理解摄影技术、光学原理和图像处理。
3. 音乐中的节奏变化:一次函数可以用来描述音乐中的节奏变化。
在音乐中,节奏是指音符之间的时间关系。
我们可以使用一次函数来计算不同音符之间的时间间隔,并预测未来的节奏变化。
这有助于我们理解音乐理论、编曲技巧和音乐创作。
4. 影视中的镜头运动:一次函数可以用来描述影视中的镜头运动。
在影视制作中,镜头运动是指摄影机在拍摄时的移动方式。
我们可以使用一次函数来计算不同镜头位置下的拍摄比例,并预测未来的运动轨迹。
这有助于我们理解影视制作、镜头运用和视觉效果。
5. 舞蹈中的动作变化:一次函数可以用来描述舞蹈中的动作变化。
在舞蹈中,动作是指身体在特定节奏下的运动方式。
我们可以使用一次函数来计算不同动作之间的时间间隔,并预测未来的舞蹈效果。
这有助于我们理解舞蹈技巧、身体表达和舞蹈创作。
以上是一次函数在艺术中的一些应用。
一次函数的线性关系使得它在艺术分析中具有广泛的应用,帮助我们理解和解决与艺术相关的问题。
希望以上内容能够帮助你了解一次函数在艺术中的应用。
一次函数的图像课件
图像是一条直线,其上每一个点 的坐标 $(x, y)$ 都满足该函数的 解析式。
解析式中参数对图像的影响
$k$ 的影响
当 $k > 0$ 时,图像为上升直线;当 $k < 0$ 时,图像为下降直线。
$b$ 的影响
当 $b > 0$ 时,图像与 $y$ 轴交于 正半轴;当 $b < 0$ 时,图像与 $y$ 轴交于负半轴。
如果将一次函数的x替换 为x+h(h>0),则图 像向左移动h个单位。
如果将一次函数的x替换 为x-h(h>0),则图像
向右移动h个单位。
03 一次函数的应用
一次函数在实际生活中的应用
一次函数在经济学中的应用
一次函数可以用来描述经济活动中的关系,例如成本与产量的关 系、价格与需求的关系等。
一次函数在物理学中的应用
截距
一次函数的截距为b,表示函数图像 与y轴的交点。当b>0时,交点在y轴 的正半轴上;当b<0时,交点在y轴的 负半轴上。
一次函数图像的平移
上平移
下平移
左平移
右平移
如果一次函数的b值增加 (即向上平移),则图 像向上移动相应的距离。
如果一次函数的b值减小 (即向下平移),则图 像向下移动相应的距离。
在物理学中,一次函数可以用来描述线性关系,例如速度与时间的 关系、力与位移的关系等。
一次函数在统计学中的应用
在统计学中,一次函数可以用来拟合数据,例如线性回归分析等。
一次函数在数学题目中的应用
一次函数在代数题中的应用
在代数题目中,一次函数可以用来解决方程和不等式问题,例如求解一元一次方 程、一元一次不等式等。
描点,最后将这些点连接成一条直线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数图象的应用
一.知识与技能目标:
1.能通过函数图象获取信息,解决简单的实际问题;
2.在解决问题过程中,初步体会方程与函数的关系,建立各种知识的联系。
过程与方法目标:
1.通过对函数图象的观察与分析,培养学生数形结合的意识,发展形象思维;
2.通过具体问题的解决,培养学生的数学应用能力;
3.引导学生从事观察、操作、交流、归纳等探索活动,使学生初步形成多样的学习方式.
情感与态度目标:
1.在具体的案例中,培养学生良好的环保意识和对生活的热爱等.
教学重点
一次函数图象的应用.
教学难点
正确地根据图象获取信息,并解决现实生活中的有关问题.
教学过程
第一环节复习
.怎样应用一次函数的图象和性质来解决现实生活中的实际问
题,是我们这节课的主要内容.首先,想一想一次函数具有什么性质?
在一次函数y kx b =+中
当0k >时,y 随x 的增大而增大,
当0b >时,直线交y 轴于正半轴,必过一、二、三象限;
当0b <时,直线交y 轴于负半轴,必过一、三、四象限.
当0<k 时,y 随x 的增大而减小,
当0b >时,直线交y 轴于正半轴,必过一、二、四象限;
当0b <时,直线交y 轴于负半轴,必过二、三、四象限.
在前面的学习中我们已得到一次函数的图象是一条直线,并且讨论了k 、b 的正负对图象的影响.通过对上节课学习内容的回顾,为进一步研究一次函数图象和性质的应用做好铺垫.
第二环节 自主学习
由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少.干旱持续时间t (天)与蓄水量V (万米3)的关系如下图所示,回答下列问题:
(1)干旱持续10天后,蓄水量为多
少?连续干旱23天后呢?
(2)蓄水量小于400万米3时,将发
生严重干旱警报.干旱多少天后将发出
严重干旱警报?
(3)按照这个规律,预计持续干旱多少天水库将干涸?
(根据图象回答问题,有困难的可以互相交流.)
第三环节 反馈练习:
当得知周边地区的
干旱情况
后,育才学校的小明意识到节约用
水的重要性.当天在班上倡议节约
用水,得到全班同学乃至全校师生的积极响应.从宣传活动开始,假设每天参加该活动的家庭数增加数量相同,最后全校师生都参加了活动,并且参加该活动的家庭数S (户)与宣传时间t (天)的函数关系如图所示.
根据图象回答下列问题:
(1)活动开始当天,全校有多少户家庭参加了该活动?
(2)全校师生共有多少户?该活动持续了几天?
(3)你知道平均每天增加了多少户?
(4)活动第几天时,参加该活动的家庭数达到800户?
(5)写出参加活动的家庭数S 与活动时间t 之间的函数关系式
第四环节 合作交流
1.看图填空
(1)当0y =时,______x =;
(2)直线对应的函数表达式是
________________.
2.议一议
一元一次方程0.510x +=与一次函数0.51y x =+有什么联系?(请大家根据刚做的练习来进行解答.)
第五环节:展示讲解
全国每年都有大量土地被沙
漠吞没,改造沙漠,保护土地资源已经成为一项十分紧迫的任务,某
地区现有土地面积100万千米2,沙漠面积200万千米2,土地沙漠化的变化情况如下图所示.
(1)如果不采取任何措施,那么到第5年底,该地区沙漠面积将增加多少万千米2?
(2)如果该地区沙漠的面积继续按此趋势扩大,那么从现在开始,第几年底后,该地区将丧失土地资源?
(3)如果从现在开始采取植树造林措施,每年改造4万千米2沙漠,那么到第几年底,该地区的沙漠面积能减少到176万千米2.
第六环节:达标检测
(续前一问题)当得知周边地区的干旱情况后,育才学校的小明意识到节约用水的重要性,当天在班上倡议节约用水,得到全班同学乃至全校师生的积极响应.从宣传活动开始,假设每天参加该活动的家庭数增加数量相同,最后都参加了活动,并且参加该活动的家庭数S (户)与宣传时间t(天)的函数关系如图所示.
根据图象回答下列问题:
(6)若每户每天节约用水0.1吨,那么活动第20天可节约多少吨水?
(7)写出活动开展的第t天节约的水量Y与天数t的函数关系.
第七环节课堂小结
本节课主要应掌握以下内容:
1.能通过函数图象获取信息.
2.能利用函数图象解决简单的实际问题.
3.初步体会方程与函数的关系.
第八环节布置作业
2.课外作业习题5.6
七、教学设计反思
(1)设计理念
一次函数是刻画现实世界变量间关系的最为简单的模型,其应用比比皆是.在教学设计中,争取选用最具有现实生活背景,与学生生活密切相关的问题,一方面力求让学生体会数学的广泛运用,另一方面,在学科教育中渗透德育教育.
(2)评价方式
在教学活动中教师应尊重学生的个体差异,满足多样化的学习需要,关注学生对图象的识图能力和解决问题的过程,应关注学生对基本知识技能的掌握情况和对一次函数与方程之间的关系的理解.教学过程中可通过学生对“议一议”、“想一想”的探究情况和学生对反馈练习的完成情况分析学生的认识状况,对于学生的回答,只要学生的方法有道理,教师应给予鼓励和恰当的评价,帮助学生认识自我,建立自信,真正在教学的过程中发挥评价的教育功能.。