青岛版-数学-八年级上册-《逆命题和逆定理》专项练习-填空题

合集下载

八年级数学上册4 平行线的性质定理和判定定理 解读“互逆命题与互逆定理”素材 青岛

八年级数学上册4 平行线的性质定理和判定定理 解读“互逆命题与互逆定理”素材 青岛

学必求其心得,业必贵于专精解读“互逆命题与互逆定理”一、弄清互逆命题的概念观察下面两个命题:(1)同位角相等,两直线平行;(2)两直线平行,同位角相等.不难看出,第一个命题的题设是第二个命题的结论,而第二个命题的结论又是第一个命题的题设,我们把这两个命题叫做互逆命题,如果把其中一个命题叫做原命题,那么另一个叫做它的逆命题。

由互逆命题的定义可知,凡是命题,都可以写出它的逆命题,也就是说每个命题都有逆命题。

同时我们也发现一个真命题的逆命题不一定是真命题。

如原命题“对顶角相等"是真命题,它的逆命题“相等的角是对顶角”却是假命题.同样,原命题是假命题,它的逆命题不一定是假命题.如“对应角相等的三角形是全等三角形”是假命题,它的逆命题“全等三角形的对应角相等”却是真命题.互逆命题是说明两个命题之间的关系,两个命题的题设和结论可以互换,它们之中可以确定其中任何一个为原命题,但是一旦确定,另一个就是它的逆命题了。

二、弄搞清互逆定理的概念如果一个定理的逆命题经过证明是真命题,那么它也一个定理,这两个定理叫做互逆定理,其中一个叫做另一个的逆定理。

如“内错角相等,两直线平行”和“两直线平行,内错角相等"等,都是互逆定理.所有定理不一定都有逆定理,因为一个真命题的逆命题不一定也是真命题,如“对顶角相等”这个定理就没有逆定理.三、准确叙述一个命题的逆命题(1)对于一些简单的命题可直接交换它们的题设和结论,如“两直线平行,同位角相等”,直接交换它们的题设和结论就得到这个命题的逆命题。

(2)为了准确叙述,可把命题改写成“如果……,那么……"的形式,然后再把原命题的题设和结论互换,如“面积相等的两个三角形全等”,把它改写成“如果两个三角形的面积相等,那么这两个三角形全等”,然后再写出它的逆命题:“如果两个三角形全等,那么这两个三角形的面积相等”。

特别注意,在交换一个命题的题设和结论时,语言表述要准确,防止用词不当而造成错误.例如:“直角三角形的两个锐角互余”的逆命题写成“互余的两个锐角是直角三角形的两个锐角”就不恰当,而应写成“两个锐角互余的三角形是直角三角形”。

八年级数学《2.5逆命题和逆定理》基础训练(含答案)

八年级数学《2.5逆命题和逆定理》基础训练(含答案)

2.5 逆命题和逆定理1.下列说法中,正确的是(A)A. 每一个命题都有逆命题B. 假命题的逆命题一定是假命题C. 每一个定理都有逆定理D. 假命题没有逆命题2.下列命题的逆命题为真命题的是(C)A. 直角都相等B. 钝角都小于180°C. 若x2+y2=0,则x=y=0D. 同位角相等3.下列定理中,有逆定理的是(D)A. 对顶角相等B. 同角的余角相等C. 全等三角形的对应角相等D. 在一个三角形中,等边对等角4.下列命题中,其逆命题是假命题的是(B)A. 等腰三角形的两个底角相等B. 若两个数的差为正数,则这两个数都为正数C. 若ab=1,则a与b互为倒数D. 如果|a|=|b|,那么a2=b25.写出下列命题的逆命题,并判断逆命题的真假,若是假命题,请举出反例.(1)若x=y=0,则x+y=0.【解】逆命题:若x+y=0,则x=y=0.这个逆命题是假命题.反例:当x=-1,y =1时,x+y=0,但x≠0,y≠0.(2)等腰三角形的两个底角相等.【解】逆命题:有两角相等的三角形是等腰三角形.这个逆命题是真命题.6.下列定理中,哪些有逆定理?如果有逆定理,请写出逆定理.(1)同旁内角互补,两直线平行.(2)三边对应相等的两个三角形全等.【解】(1)有逆定理,逆定理是“两直线平行,同旁内角互补”.(2)有逆定理,逆定理是“如果两个三角形全等,那么这两个三角形的三边对应相等.”(第7题)7.利用线段垂直平分线性质定理及其逆定理证明以下命题.已知:如图,AB=AC,DB=DC,点E在AD上.求证:EB=E C.【解】连结B C.∵AB=AC,∴点A在线段BC的垂直平分线上.∵DB=DC,∴点D在线段BC的垂直平分线上.∴AD是线段BC的垂直平分线(两点确定一条直线).又∵点E在AD上,∴EB=E C.8.写出命题“如果一个角的两边与另一个角的两边分别垂直,那么这两个角相等”的逆命题,并判断原命题和逆命题的真假.若是假命题,请举出反例.【解】逆命题:如果两个角相等,那么其中一个角的两边与另一个角的两边分别垂直.原命题是假命题.反例:如解图①,∠CAD的两边与∠EBF的两边分别垂直,但∠CAD=45°,∠EBF=135°,即∠CAD≠∠EBF.(第8题解)逆命题是假命题.反例:如解图②,∠CAD=∠EBF,但显然AC与BE,BF都不垂直.9.写出命题“等腰三角形底边上的中点到两腰的距离相等”的逆命题,并证明该逆命题是真命题.【解】逆命题:如果一个三角形一边上的中点到另两边的距离相等,那么这个三角形是等腰三角形.已知:如解图,在△ABC中,D是BC的中点,DE⊥AB于点E,DF⊥AC于点F,且DE=DF.(第9题解)求证:△ABC为等腰三角形.证明:连结A D.∵D是BC的中点,∴S△ABD=S△AC D.∵DE⊥AB,DF⊥AC,∴S△ABD=12AB·DE,S△ACD=12AC·DF.又∵DE=DF,∴AB=AC,∴△ABC为等腰三角形.10.举反例说明定理“全等三角形的面积相等”没有逆定理.【解】逆命题:如果两个三角形的面积相等,那么这两个三角形全等.反例:如解图所示,l1∥l2,△ABC和△BCD同底等高,∴△ABC的面积等于△BCD的面积,但△ABC和△BCD不全等.故此定理没有逆定理.(第10题解)11.已知命题“等腰三角形底边上的中线与顶角的平分线重合”,写出它的逆命题,判断该逆命题的真假,并证明.【解】逆命题:一边上的中线与它所对角的平分线重合的三角形是等腰三角形,是真命题.(第11题解)已知:如解图,在△ABC中,BD=CD,AD平分∠BA C.求证:△ABC是等腰三角形.证明:延长AD到点E,使DE=AD,连结BE,CE.∵BD=CD,DE=DA,∠BDE=∠CDA,∴△BDE≌△CDA(SAS).∴BE=CA,∠BED=∠CA D.∵AD平分∠BAC,∴∠CAD=∠BA D.∴∠BAD=∠BE D.∴AB=BE.∴AB=A C.∴△ABC是等腰三角形.。

八上2.5逆命题和逆定理

八上2.5逆命题和逆定理
易得∠BPC=120°, ∠BPE=∠CPD=60°.
易证△BPE≌△BPQ,△CPD≌△CPQ,
得BQ=BE,CQ=CD,则BC=BE+CD=7.
八年级上 2.5 答案
选择填空题答案
2.5 课前检测 1-6 CDA BAD 2.5 课后检测
1-3 DDC
4. 5
5. 有
6. 两个相等的角是同位角
八上 2.5 课后 No.2
D
八上 2.5 课后 No.3
C
八上 2.5 课后 No.4
5
l P
A
B
八上 2.5 课后 No.5

八上 2.5 课后 No.6
两个相等的角是同位角
八上 Байду номын сангаас.5 课后 No.7
逆命题是:如果a2=b2,那么a=b. 这是假命题. 反例:当a=1,b=-1时,a2=b2,但 a≠b.
D C
F
3 2 S 3= AB , ∵ S1 S2 S3 4
S1
A
S2
B
S3
3 3 3 2 2 ∴ AC BC AB 2 4 4 4
E
∴ AC 2 BC 2 AB 2
∴ ∠ACB=Rt∠.
八上 2.5 课后 No.9


八上 2.5 课后 No.9
解:(1)连结BC.根据△BCD≌△CBE, 得∠ABC=∠ACB,则AB=AC
八上 2.5 课后 No.8
F
逆命题:如图,以△ABC各边 为边向外作等边三角形,若三 个等边三角形的面积S1,S2,S3
D
C
S1
A
S2
B
S3
E
满足S1+S2=S3,则∠ACB=RT∠.

逆命题和逆定理同步练习含答案

逆命题和逆定理同步练习含答案

逆命题和逆定理 同步练习【课堂训练】1.下列命题中,假命题...是( )A .两点之间,线段最短 B .角平分线上的点到这个角的两边的距离相等 C .两组对边分别平行的四边形是平行四边形 D .对角线相等的四边形是矩形 2. 下列命题中正确的是( ) A .矩形的对角线相互垂直 B .菱形的对角线相等 C .平行四边形是轴对称图形D .等腰梯形的对角线相等3. 分析下列命题:①四边形的地砖能镶嵌(密铺)地面;②不同时刻的太阳光照射同一物体,则其影长都是相等的;③若在正方形纸片四个角剪去的小正方形边长越大,则所制作的无盖长方体形盒子的容积越大. 其中真命题...的个数是( ) A .3B .2C .1D .04. 在下列命题中,是真命题的是( )A .两条对角线相等的四边形是矩形 B .两条对角线互相垂直的四边形是菱形 C .两条对角线互相平分的四边形是平行四边形 D .两条对角线互相垂直且相等的四边形是正方形5. 已知下列命题:①若00a b >>,,则0a b +>; ②若a b ≠,则22a b ≠;③角的平分线上的点到角的两边的距离相等; ④平行四边形的对角线互相平分. 其中原命题与逆命题均为真命题的个数是( ) A .1个B .2个C .3个D .4个6. 已知二次函数2y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x ,,且112x <<,与y 轴的正半轴的交点在(02),的下方.下列结论:①420a b c -+=;②0a b <<;③20a c +>;④210a b -+>.其中正确结论的个数是 个. 7. 下列命题中,正确命题的个数为( )(1)若样本数据3、6、a 、4、2的平均数是4,则其方差为2(2)“相等的角是对顶角”的逆命题 (3)对角线互相垂直的四边形是菱形(4)若二次函数23(1)y x k =-+图象上有三个点1)y ,(22y ,),1()y ,则321y y y >> A .1个B .3个C .2个D .4个8.已知命题“如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形”,写出它的逆命题: . 【课后训练】1.在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论是第二个命题的条件,那么这两个命题叫做________.2.如果一个定理的逆命题能被证明是真命题,那么就叫它是原定理的________,这两个定理叫做_________.3.每个命题都有它的________,但每个真命题的逆命题不一定是真命题. 4.线段垂直平分线性质定理的逆定理是_____________________. 5.命题“对顶角相等”的逆命题是_____________________,是_____命题. 6.下列说法中,正确的是( )A .每一个命题都有逆命题B .假命题的逆命题一定是假命题C .每一个定理都有逆定理D .假命题没有逆命题 7.下列命题的逆命题为真命题的是( )A .如果a=b ,那么a 2=b 2 B .平行四边形是中心对称图形 C .两组对角分别相等的四边形是平行四边形 D .内错角相等8.下列定理中,有逆定理的是( )A .四边形的内角和等于360°B .同角的余角相等C .全等三角形对应角相等D .在一个三角形中,等边对等角 9.写出下面命题的逆命题,并判断其真假.10.写出下列命题的逆命题,并判断逆命题的真假.如果是真命题,请给予证明;如果是假命题,请举反例说明.(1)有两边上的高相等的三角形是等腰三角形.(2)三角形的中位线平行于第三边.11.写出符合下列条件的一个原命题:(1)原命题和逆命题都是真命题.(2)原命题是假命题,但逆命题是真命题.(3)原命题是真命题,但逆命题是假命题.(4)原命题和逆命题都是假命题.12.已知在四边形ABCD中,对角线AC与BD相交于点O,①AB∥CD,②AO=CO,③,AD=BC,④∠ABC=∠ADC.(1)请从以上条件中选取两个作为命题的条件,结论为四边形ABCD是平行四边形,并使构成的命题为真命题,请对你所构造的一个真命题给予证明.(2)能否从以上条件中选取两个作为命题的条件,结论为四边形ABCD是平行四边形,并使构成的命题为假命题?若能,请写出一个满足条件的假命题,并举反例说明.参考答案1. 答案:D2. 答案:D3. 答案:C4. 答案:C5. 答案:B6. 答案:47. 答案:B8. 答案:如果一个平行四边形是菱形,那么这个平行四边形的两条对角线互相垂直参考答案:1.互逆命题2.逆定理,互逆定理3.逆命题4.到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上5.如果两个角相等,那么它们是对顶角;假6.A 7.C 8.D9.(1)真,如果x(x-2)=0,那么x=2;假(2)真,三边对应相等的两个三角形全等;真(3)真,在一个三角形中,等角对等边;真(4)真,等边三角形是等腰三角形;假(5)假,如果两个角互补,那么这两个角是同旁内角;假10.(1)等腰三角形两腰上的高相等,是真命题,证明略(2)平行于三角形一边的线段是三角形的中位线,是假命题,反例略11.略12.(1)答案不唯一,如选①和②等,证明略(2)如选①和③,反例略逆命题和逆定理同步练习一、选择题1.下列四句话中,正确的是()A、任何一个命题都有逆命题B、任何一个定理都有逆定理C、若原命题为真,则其逆命题也为真D、若原命题为假,则其逆命题也假A、假命题的逆命题定是假命题B、定理一定有逆定理C、真命题的逆命题定是真命题D、命题一定有逆命题3.下列命题中,错误的是()A、角平分线上的点到这个角的两边的距离相等B、到线段两个端点距离相等的点,在这条线段的垂直平分线上C、任何命题都有逆命题D、任何定理都有逆定理4.下列说法错误的是()A、任意一个命题都有逆命题B、定理“全等三角形的对应角相等”有逆定理C、正方形都相似是真命题D、“画平行线”不是命题5.下列说法错误的是()A、任何命题都有逆命题B、定理都有逆定理C、命题的逆命题不一定是正确的D、定理的逆定理一定是正确的6. 下列说法正确的是()A、每个命题都有逆命题B、每个定理都有逆定理C、真命题的逆命题是真命题D、真命题的逆命题是假命题7. 下列说法中正确的是()A、每个命题都有逆命题B、每个定理都有逆定理C、真命题的逆命题是真命题D、假命题的逆命题是假命题A、真命题的逆命题是真命题B、每个定理都有逆定理C、每个命题都有逆命题D、假命题的逆命题是假命题9. 下列说法正确的是()A、每个命题都有逆命题B、真命题的逆命题是真命题C、假命题的逆命题是真命题D、每个定理都有逆定理二、填空题1.请写出定理:“全等三角形三个角相等”的逆定理,并判断命题的真假.,.2.请写出定理:“等腰三角形的两个底角相等”的逆定理..3. 写出定理“角平分线上的点到这个角两边的距离相等”的逆定理是= .4. 写出你熟悉的一个定理:,写出这个定理的逆定理:.5. 是定理“两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行”的逆定理.6.命题“如果一个数能被10整除,那么这个数也一定能被5整除”的逆命题是,这个逆命题为(填“真命题”或“假命题”)7. 命题“全等三角形的对应角相等”的逆命题是,这个逆命题是命题.(填“真”或“假”)三、解答题1.请你写出命题“等腰三角形的两个底角相等”的逆命题,并判断逆命题的真假;若是真命题,请写出已知、求证、证明;若是假命题,则请举反例证明.2.已知命题“等腰三角形两腰上的高相等”.(1)写出逆命题;(2)逆命题是真命题还是假命题?如果是真命题,请画出“图形”,写出“已知”,“求证”,再进行“证明”;如果是假命题,请举反例说明.3. 请写出“全等三角形的对应角相等”的逆命题,判断此逆命题的真假性,并给出证明.参考答案一、选择题1.解:A、命题的逆命题就是把原命题的题设和结论互换,故任何命题都有逆命题,故本选项正确,B、定理,逆定理都是真命题,但定理的逆命题不一定都是真命,故本选项错误,C、若原命题为真,则其逆命题不一定为真,故本选项错误,D、若原命题为假,则其逆命题不一定为真,故本选项错误.故选A.2. 解:A、假命题的逆命题定不一定是假命题,如:两个角相等三角形是等腰三角形,它的逆命题是真命题,本选项错误;B、定理不一定有逆定理,如:全等三角形对应角相等没有逆定理,本选项错误;C、真命题的逆命题不一定是真命题,如:对顶角相等的逆命题是相等的角是对顶角,它是假命题而不是真命题,本题错误;D、命题一定有逆命题,本选项正确;故选D.3. 解:A、∵角平分线上的点到这个角的两边的距离相等,这是正确的,故本选项错误;B、到线段两个端点距离相等的点,在这条线段的垂直平分线上,这是正确的,故本选项错误;C、任何命题都有逆命题,这是正确的,故本选项错误;D、∵任何定理不一定有逆定理,这是错误的,故本选项正确.故选D.4. 解:A、命题都有题设和结论,交换题设和结论,就得到逆命题,正确;B、定理“全等三角形的对应角相等”的逆命题是对应角相等的三角形全等,错误;C、所有正方形都相似,正确;D、画平行线是作图,没有题设与结论,不是命题,正确.故选B.5. 解:A正确;B错误,正确的命题才是定理,定理的逆命题不一定是正确的,故不能说定理都有逆定理;C正确;D正确;故选B.6. 解:A、每个命题都有逆命题,故本选项正确.B、每个定理不一定都有逆定理,故本选项错误.C、真命题的逆命题不一定是真命题,故本选项错误.D、真命题的逆命题不一定是假命题,故本选项错误.故选A.7. 解:A、每个命题都有逆命题,正确;B、每个定理都有逆定理,错误,只有正确的命题才是定理,错误;C、真命题的逆命题不一定是真命题,错误;D、假命题的逆命题不一定是假命题,错误.故选A8. 解:A、真命题的逆命题不一定是真命题,故本选项错误,B、每个定理都有逆命题,故本选项错误,C、每个命题都有逆命题,故本选项正确,D、假命题的逆命题不一定是假命题,故本选项错误,故选:C.9. 解:A、正确;B、错误,不能确定;C、错误,不能确定;D、错误,不能确定.故选A.二、填空题1.解:定理:“全等三角形三个角相等”的逆定理是三个角对应相等的两个三角形全等,三个角对应相等的两个三角形不一定全等,∴该命题为假命题,故答案为:三个角对应相等的两个三角形全等,假命题.2.有两个角相等的三角形是等腰三角形.3. 到角的两边距离相等的点在角平分线上4. 两直线平行,同位角相等同位角相等,两直线平行.5. 两条平行线被第三条直线所截,同旁内角互补6. 如果一个数能被5整除,那么这个数能被10整除假命题7.对应角相等的三角形全等假三、解答题1.2.3.。

2022-2023学年山东省高青县数学八年级第一学期期末学业质量监测试题含解析

2022-2023学年山东省高青县数学八年级第一学期期末学业质量监测试题含解析

2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每题4分,共48分)1.如图,在ABC ∆中,AB AC =,BE CD =,BD CF =,则EDF ∠的度数为( )A .1452A ︒-∠ B .1902A ︒-∠ C .90A ︒-∠ D .180A ︒-∠2.如图,已知∠AOB 的大小为α,P 是∠AOB 内部的一个定点,且OP =2,点E 、F 分别是OA 、OB 上的动点,若△PEF 周长的最小值等于2,则α=( )A .30°B .45°C .60°D .15°3.下列命题中是真命题的是( )A .平面内,过一点有且只有一条直线与已知直线平行B 1227,3.14,π,0.301001…等五个数都是无理数 C .若0m <,则点()5P m -,在第二象限 D .若三角形的边a 、b 、c 满足: ()()2a b c a b c ab +-++=,则该三角形是直角三角形4.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )A .B .C .D .5.点(2,-3)关于y 轴的对称点是( ) A .()2,3-B .()2,3C .()2,3--D .()2,3-6.A B 、两地相距200千米,甲车和乙车的平均速度之比为5:6,两辆车同时从A 地出发到B 地,乙车比甲车早到30分钟,设甲车平均速度为5x 千米/小时,则根据题意所列方程是( )A .2002003056x x -= B .2002001562x x -= C .2002001652x x -= D .2002003056x x+= 7.现用190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,而一个盒身与两个盒底配成一个盒子,设用x 张铁皮做盒身,y 张铁皮做盒底,则可列方程组为( )A .1902822x y x y +=⎧⎨⨯=⎩B .1902228x y y x +=⎧⎨⨯=⎩C .2190822y x x y +=⎧⎨=⎩D .21902822y x x y+=⎧⎨⨯=⎩8.以下关于直线24y x =-的说法正确的是( ) A .直线24y x =-与x 轴的交点的坐标为(0,-4) B .坐标为(3,3)的点不在直线24y x =-上 C .直线24y x =-不经过第四象限 D .函数24y x =-的值随x 的增大而减小 9.下列因式分解结果正确的是( ) A .24(4)x x x x -+=-+ B .224(4)(4)x y x y x y -=+-C .222(1)x y xy y y x -+=-D .234(1)(4)x x x x --=-+10.如图,在Rt △ACB 中,∠ACB=90°,∠A=25°,D 是AB 上一点.将Rt △ABC 沿CD 折叠,使B 点落在AC 边上的B′处,则∠ADB′等于( )A .25°B .30°C .35°D .40°11.如图,长方形纸片ABCD 中,AB =4,BC =6,点E 在AB 边上,将纸片沿CE 折叠,点B 落在点F 处,EF ,CF 分别交AD 于点G ,H ,且EG =GH ,则AE 的长为( )A .23B .1C .32D .212.如图,设k =乙图中阴影部分面积甲图中阴影部分面积(a >b >0),则有( )A .k >2B .1<k <2C .112k << D .102k <<二、填空题(每题4分,共24分)13.分式3221x x -+的值为零,则x 的值是_____________________. 14.要使分式22xx -有意义,则x 的取值范围是_______________.15()22144x x +-+的最小值,小明运用了“数形结合”的思想:如图所示,在平面直角坐标系中,取点()01A ,,点()4B ,-2,设点()P x ,0.那么21AP x =+()244BP x =-+借助上述信息,()22144x x +-+最小值为__________.16.三角形两边长分别是2,4,第三边长为偶数,第三边长为_______ 17.若方程组3(31)2y kx y k x =+⎧⎨=++⎩无解,则y =kx ﹣2图象不经过第_____象限.18.如图,在△ABC 中,∠ACB=90°, AC=6cm , BC=8cm ,动点P 从点C 出发,按C→B→A 的路径,以2cm 每秒的速度运动,设运动时间为t 秒.(1)当t=_____.时,线段AP 是∠CAB 的平分线;(2)当t=_____时,△ACP 是以AC 为腰的等腰三角形.三、解答题(共78分)19.(8分)有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?20.(8分)如图,已知过点B (1,0)的直线l 1与直线l 2:y =2x +4相交于点P (﹣1,a ),l 1与y 轴交于点C ,l 2与x 轴交于点A .(1)求a 的值及直线l 1的解析式. (2)求四边形PAOC 的面积.(3)在x 轴上方有一动直线平行于x 轴,分别与l 1,l 2交于点M ,N ,且点M 在点N 的右侧,x 轴上是否存在点Q ,使△MNQ 为等腰直角三角形?若存在,请直接写出满足条件的点Q 的坐标;若不存在,请说明理由.21.(8分)材料:数学兴趣一小组的同学对完全平方公式进行研究:因()20a b -≥,将左边展开得到2220a ab b -+≥,移项可得:222a b ab +≥.数学兴趣二小组受兴趣一小组的启示,继续研究发现:对于任意两个非负数m 、n ,都存在2m n mn +≥,并进一步发现,两个非负数m 、n 的和一定存在着一个最小值. 根据材料,解答下列问题: (1)()()2225x y +≥__________(0x >,0y >);221x x ⎛⎫+≥ ⎪⎝⎭___________(0x >); (2)求()5602x x x+>的最小值; (3)已知3x >,当x 为何值时,代数式92200726x x ++-有最小值,并求出这个最小值.22.(10分)如图,在平面直角坐标系xOy 中,点 A ,B ,C 都在小正方形的顶点上,且每个小正方形的边长为1.(1)分别写出A ,B ,C 三点的坐标.(2)在图中作出ABC ∆关于y 轴的对称图形'''A B C ∆. (3)求出ABC ∆的面积.(直接写出结果)23.(10分) [建立模型](1)如图1.等腰Rt ABC 中, 90ACB ∠=︒, CB CA =,直线ED 经过点C ,过点A 作AD ED ⊥于点D ,过点B 作BE ED ⊥于点E ,求证: BEC CDA ≌; [模型应用](2)如图2.已知直线13:32l y x =+与x 轴交于点A ,与y 轴交于点B ,将直线1l 绕点A 逆时针旋转45'°至直线2l ,求直线2l 的函数表达式:(3)如图3,平面直角坐标系内有一点()3,4B -,过点B 作BA x ⊥轴于点A ,BC ⊥y BC y ⊥轴于点C ,点P 是线段AB 上的动点,点D 是直线21y x =-+上的动点且在第四象限内.试探究CPD △能否成为等腰直角三角形?若能,求出点D 的坐标,若不能,请说明理由.24.(10分)如图,在平面直角坐标系中,直线4:3AB y x b=-+交y轴于点()0,4A,交x轴于点B,以AB为边作正方形ABCD,请解决下列问题:(1)求点B和点D的坐标;(2)求直线BC的解析式;(3)在直线BC上是否存在点P,使PCD∆为等腰三角形?若存在,请直接写出点P 的坐标;若不存在,说明理由.25.(12分)如图,在平面直角坐标系中,已知A(a,1),B(b,1),其中a,b满足|a+2|+(b﹣4)2=1.(1)填空:a=_____,b=_____;(2)如果在第三象限内有一点M(﹣3,m),请用含m的式子表示△ABM的面积;(3)在(2)条件下,当m=﹣3时,在y轴上有一点P,使得△ABP的面积与△ABM 的面积相等,请求出点P的坐标.26.尺规作图:如图,已知ABC∆.(1)作A∠的平分线;(2)作边AC 的垂直平分线,垂足为E .(要求:不写作法,保留作图痕迹) .参考答案一、选择题(每题4分,共48分) 1、B【分析】由题中条件可得BDE CFD ∆≅∆,即∠=∠BDE CFD ,EDF ∠可由180︒与BDE ∠、CDF ∠的差表示,进而求解即可.【详解】∵AB AC =, ∴B C ∠=∠, 在BDE ∆和CFD ∆中BD CF B C BE CD =⎧⎪∠=∠⎨⎪=⎩∴BDE CFD ∆≅∆(SAS ), ∴∠=∠BDE CFD ,()180EDF BDE CDF ∠=︒-∠+∠()()180180180CFD CDF C =︒-∠+∠=︒-︒-∠C =∠,∵180A B C ∠+∠+∠=︒. ∴2180A EDF ∠+∠=︒, ∴1902EDF A ∠=︒-∠. 故选B . 【点睛】考查了全等三角形的判定及性质,解题关键是熟记其判定和性质,并灵活运用解题问题. 2、A【分析】设点P关于OA的对称点为C,关于OB的对称点为D,当点E、F在CD上时,△PEF的周长为PE+EF+FP=CD,此时周长最小,根据CD=2可求出α的度数.【详解】如图,作点P关于OA的对称点C,关于OB的对称点D,连接CD,交OA 于E,OB于F.此时,△PEF的周长最小.连接OC,OD,PE,PF.∵点P与点C关于OA对称,∴OA垂直平分PC,∴∠COA=∠AOP,PE=CE,OC=OP,同理,可得∠DOB=∠BOP,PF=DF,OD=OP.∴∠COA+∠DOB=∠AOP+∠BOP=∠AOB=α,OC=OD=OP=2,∴∠COD=2α.又∵△PEF的周长=PE+EF+FP=CE+EF+FD=CD=2,∴OC=OD=CD=2,∴△COD是等边三角形,∴2α=60°,∴α=30°.故选A.【点睛】本题找到点E和F的位置是解题的关键.要使△PEF的周长最小,通常是把三边的和转化为一条线段,运用三角形三边关系解决.3、D【分析】根据平行公理、无理数的概念、点坐标特征、勾股定理的逆定理判断即可. 【详解】解:A、在同一平面内,过直线外一点有且只有一条直线与已知直线平行,本选项说法是假命题;B1227,3.14,π,0.301001…中只有π,0.301001…两个数是无理数,本选项说法是假命题;C 、若0m <,则点()5P m -,在第一象限,本选项说法是假命题; D 、()()2a b c a b c ab +-++=,化简得222=a b c +,则该三角形是直角三角形,本选项说法是真命题; 故选D. 【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理. 4、B【分析】结合轴对称图形的概念进行求解即可. 【详解】解:根据轴对称图形的概念可知: A 、不是轴对称图形,故本选项错误; B 、是轴对称图形,故本选项错误; C 、不是轴对称图形,故本选项错误; D 、不是轴对称图形,故本选项正确. 故选B . 【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 5、C【解析】让两点的横坐标互为相反数,纵坐标不变可得所求点的坐标. 【详解】解:∵所求点与点A (2,–3)关于y 轴对称, ∴所求点的横坐标为–2,纵坐标为–3,∴点A (2,–3)关于y 轴的对称点是(–2,–3). 故选C . 【点睛】本题考查两点关于y 轴对称的知识;用到的知识点为:两点关于y 轴对称,横坐标互为相反数,纵坐标相同. 6、B【分析】设甲车平均速度为5x 千米/小时,则乙车平均速度为6x 千米/小时,根据两车同时从A 地出发到B 地,乙车比甲车早到30分钟列出方程即可.【详解】解:设甲车平均速度为5x 千米/小时,则乙车平均速度为6x 千米/小时,根据题意得2002001562x x-=.故选B.【点睛】本题考查了列分式方程解实际问题的运用及分式方程的解法的运用,解答时根据条件建立方程是关键,解答时对求出的根必须检验,这是解分式方程的必要步骤.7、A【分析】此题中的等量关系有:①共有190张铁皮;②做的盒底数等于盒身数的2倍时才能正好配套.由此可得答案.【详解】解:根据共有190张铁皮,得方程x+y=190;根据做的盒底数等于盒身数的2倍时才能正好配套,得方程2×8x=22y.列方程组为190 2822x yx y+=⎧⎨⨯=⎩.故选:A.【点睛】本题考查的是二元一次方程组的应用,找准等量关系是解应用题的关键.8、B【分析】利用一次函数图象上点的坐标特征可得出结论A错误,把(3,3)代入函数解析式可得结论B正确;利用一次函数图象与系数的关系可得出结论C错误;利用一次函数的性质可得出结论D错误.【详解】解:A、当y=0时,2x-4=0,解得:x=2,∴直线y=2x-4与x轴的交点的坐标为(2,0),选项A不符合题意;B、当x=3时,y=2x-4=2,∴坐标为(3,3)的点不在直线y=2x-4上,选项B符合题意;C、∵k=2>0,b=-4<0,∴直线y=2x-4经过第一、三、四象限,选项C不符合题意;D、∵k=2>0,∴函数y=2x-4的值随x的增大而增大,选项D不符合题意.故选:B.【点睛】本题考查了一次函数图象上点的坐标特征、一次函数图象与系数的关系以及一次函数的性质,逐一判定四个选项的正误是解题的关键.9、C【分析】根据因式分解的概念,用提公因式法,公式法,十字相乘法,把整式的加减化为整式的乘法运算.【详解】A. 24(4)x x x x -+=--,故此选项错误,B. 224(2)(2)x y x y x y -=+-,故此选项错误,C. 222(1)x y xy y y x -+=-,故此选项正确,D. 234(1)(4)x x x x --=+-,故此选项错误.故选:C .【点睛】考查因式分解的方法,有提公因式法,公式法,十字相乘法,熟记这些方法步骤是解题的关键.10、D【解析】∵在Rt △ACB 中,∠ACB=90°,∠A=25°,∴∠B=90°﹣25°=65°.∵△CDB′由△CDB 反折而成,∴∠CB′D=∠B=65°.∵∠CB′D 是△AB′D 的外角,∴∠ADB′=∠CB′D ﹣∠A=65°﹣25°=40°.故选D .11、B【分析】根据折叠的性质得到∠F=∠B=∠A=90°,BE=EF ,根据全等三角形的性质得到FH=AE ,GF=AG ,得到AH=BE=EF ,设AE=x ,则AH=BE=EF=4-x ,根据勾股定理即可得到结论.【详解】∵将△CBE 沿CE 翻折至△CFE ,∴∠F=∠B=∠A=90°,BE=EF ,在△AGE 与△FGH 中,A F AGE FGH EG GH ∠∠⎧⎪∠∠⎨⎪⎩=== ,∴△AGE ≌△FGH (AAS ),∴FH=AE ,GF=AG ,∴AH=BE=EF ,设AE=x ,则AH=BE=EF=4-x∴DH=x+2,CH=6-x ,∵CD 2+DH 2=CH 2,∴42+(2+x )2=(6-x )2,∴x=1,∴AE=1,故选B .【点睛】考查了翻折变换,矩形的性质,全等三角形的判定和性质,熟练掌握折叠的性质是解题的关键.12、C 【解析】由题意可得:22()()()()a a b a a b a k a b a b a b a b--===-+-+, ∴11a b b k a a+==+, 又∵0a b >>, ∴112k<<, ∴12k k <<,即112k <<. 故选C.二、填空题(每题4分,共24分)13、23【分析】根据分式值为0的条件:分子为0,分母不为0可得关于x 的方程,解方程即得答案.【详解】解:根据题意,得:320x -=且210x +≠,解得:23x =. 故答案为:23. 【点睛】本题考查了分式值为0的条件,属于基础题型,熟练掌握基本知识是解题关键. 14、2x ≠【解析】根据分式有意义的条件,则:20.x -≠解得: 2.x ≠故答案为 2.x ≠【点睛】分式有意义的条件:分母不为零.15、5【分析】要求出()22144x x ++-+最小值,即求AP+PB 长度的最小值;根据两点之间线段最短可知AP+PB 的最小值就是线段AB 的长度,求出线段AB 长即可.【详解】连接AB ,如图:由题意可知:点()01A ,,点()4B ,-2,点()P x ,0∴21x +,()244x -+ ()22144x x +-+最小值,即求AP PB +长度的最小值,据两点之间线段最短可知求AP PB +的最小值就是线段AB 的长度.()0A ,1,点()42B -,,22435AB ∴=+=.故答案为:5.【点睛】本题主要考查了最短路线问题、两点间的距离公式以及勾股定理应用,利用了数形结合的思想,利用两点间的距离公式求解是解题关键.16、2【解析】试题解析:设第三边为a ,根据三角形的三边关系知,2-1<a <2+1. 即1<a <6,由周长为偶数,则a 为2.17、一【分析】根据两直线平行没有公共点得到k =3k +1,解得k =﹣12,则一次函数y =kx ﹣2为y =﹣12x ﹣2,然后根据一次函数的性质解决问题. 【详解】解:∵方程组()3312y kx y k x =+⎧⎪⎨=++⎪⎩无解, ∴k =3k +1,解得k =﹣12,∴一次函数y =kx ﹣2为y =﹣12x ﹣2, 一次函数y =﹣12x ﹣2经过第二、三、四象限,不经过第一象限. 故答案为一.【点睛】 本题考查一次函数与二元一次方程组的关系、一次函数图像与系数的关系,解题的关键是求出k 的值.18、32s , 3或275s 或6s 【分析】(1)过P 作PE ⊥AB 于E ,根据角平分线的性质可得PE=CP=2t ,AE=AC=6,进而求得BE 、BP ,再根据勾股定理列方程即可解答;(2)根据题意分AC=CP 、AC=AP 情况进行讨论求解.【详解】(1)在△ABC 中,∵∠ACB=90°, AC=6cm , BC=8cm ,∴AB=10cm ,如图,过P 作PE ⊥AB 于E ,∵线段AP 是∠CAB 的平分线,∠ACB=90°,∴PE=CP=2t,AE=AC=6cm ,∴BP=(8-2t)cm ,BE=10-6=4cm ,在Rt △PEB 中,由勾股定理得:222(82)(2)4t t -=+, 解得:t=32, 故答案为:32s ;(2)∵△ACP 是以AC 为腰的等腰三角形,∴分下列情况讨论,当AC=CP=6时,如图1,t=62=3s ; 当AC=CP=6时,如图2,过C 作CM ⊥AB 于M ,则AM=PM ,CM=6824105⨯=, ∵AP=10+8-2t=18-2t ,∴AM=12AP=9-t , 在Rt △AMC 中,由勾股定理得:222246()(9)5t =+-, 解得:t=275s 或t=635s , ∵0﹤2t ﹤8+10=18,∴0﹤t ﹤9,∴t=275s ; 当AC=AP=6时,如图3,PB=10-6=4,t=842+=6s , 故答案为:3s 或275s 或6s .【点睛】本题考查了角平分线的性质、等腰三角形的判定与性质、勾股定理,难度适中,熟练掌握角平分线的性质,利用分类讨论的思想是解答的关键,三、解答题(共78分)19、规定日期是6天. 【解析】本题的等量关系为:甲工作2天完成的工作量+乙规定日期完成的工作量=1,把相应数值代入即可求解.【详解】解:设工作总量为1,规定日期为x 天,则若单独做,甲队需x 天,乙队需x+3天,根据题意列方程得1122133x x x x -⎛⎫++= ⎪++⎝⎭解方程可得x=6,经检验x=6是分式方程的解.答:规定日期是6天.20、(1)a =2,y =﹣x +1;(2)四边形PAOC 的面积为52;(3)点Q 的坐标为7,05⎛⎫- ⎪⎝⎭或1,05⎛⎫- ⎪⎝⎭或(﹣67,0).【分析】(1)将点P的坐标代入直线l2解析式,即可得出a的值,然后将点B和点P 的坐标代入直线l1的解析式即可得解;(2)作PE⊥OA于点E,作PF⊥y轴,然后由△PAB和△OBC的面积即可得出四边形PAOC的面积;(3)分类讨论:①当MN=NQ时,②当MN=MQ时,③当MQ=NQ时,分别根据等腰直角三角形的性质,结合坐标即可得解.【详解】(1)∵y=2x+4过点P(﹣1,a),∴a=2,∵直线l1过点B(1,0)和点P(﹣1,2),设线段BP所表示的函数表达式y=kx+b并解得:函数的表达式y=﹣x+1;(2)过点P作PE⊥OA于点E,作PF⊥y轴交y轴于点F,由(1)知,AB=3,PE=2,OB=1,点C在直线l1上,∴点C坐标为(0,1),∴OC=1则1153211222 PAB OBCS S S=-=⨯⨯-⨯⨯=;(3)存在,理由如下:假设存在,如图,设M(1﹣a,a),点N4,2aa-⎛⎫ ⎪⎝⎭,①当MN =NQ 时,412a a a ---= ∴65a = ∴17,05Q ⎛⎫- ⎪⎝⎭, ②当MN =MQ 时, ∴611155a -=-=- ∴21,05Q ⎛⎫- ⎪⎝⎭,③当MQ =NQ 时,4122a a a ---=, ∴67a =, ∴36,07Q ⎛⎫- ⎪⎝⎭. 综上,点Q 的坐标为:7,05⎛⎫-⎪⎝⎭或1,05⎛⎫- ⎪⎝⎭或(﹣67,0). 【点睛】此题主要考查一次函数的几何问题、解析式求解以及动直线的综合应用,熟练掌握,即可解题.21、(1)20xy ,2;(2)15(3)当92x =时,代数式92200726x x ++-的最小值为1.【分析】(1)根据阅读材料即可得出结论;(2)根据阅读材料介绍的方法即可得出结论;(3)把已知代数式变为926201326x x -++-,再利用阅读材料介绍的方法,即可得到结论.【详解】(1)∵0x >,0y >,∴()()222522520x y x y xy +≥⨯⋅=,∵0x >, ∴221122x x x x ⎛⎫+≥⋅= ⎪⎝⎭; (2)当x 0>时,2x ,52x均为正数,∴562x x +≥=所以,562x x+的最小值为 (3)当x 3>时,2x ,926x -,2x-6均为正数, ∴92200726x x ++- 92x 6201326x =-++-20132013≥= 2019= 由()20a b -≥可知,当且仅当a b =时,22a b +取最小值, ∴当92626x x -=-,即92x =时,有最小值. ∵x 3> 故当92x =时,代数式92200726x x ++-的最小值为1. 【点睛】本题考查了完全平方公式的变形应用,解答本题的关键是理解阅读材料所介绍的方法.22、(1)A (1,4),B (-1,0),C (3,2);(2)作图见解析;(3)2.【分析】(1)根据点在坐标系中的位置即可写出坐标;(2)作出A 、B 、C 关于y 轴对称点A '、B ′、C '即可;(3)理由分割法求ABC ∆的面积即可;【详解】(1)由图象可知A (1,4),B (-1,0),C (3,2);(2)如图△A'B'C'即为所求;(3)S △ABC =12-12×4×2-12×2×2-12×2×4=2. 【点睛】 本题考查轴对称变换,解题时根据是理解题意,熟练掌握基本知识,属于中考常考题型.23、(1)见解析;(2)直线l 2的函数表达式为:y =−5x−10;(3)点D 的坐标为(113,193-)或(4,−7)或(83,133-). 【解析】(1)由垂直的定义得∠ADC =∠CEB =90°,由同角的余角的相等得∠DAC =∠ECB ,然后利用角角边证明△BEC ≌△CDA 即可;(2)过点B 作BC ⊥AB 交AC 于点C ,CD ⊥y 轴交y 轴于点D ,由(1)可得△ABO ≌△BCD(AAS ),求出点C 的坐标为(−3,5),然后利用待定系数法求直线l 2的解析式即可; (3)分情况讨论:①若点P 为直角时,②若点C 为直角时,③若点D 为直角时,分别建立(1)中全等三角形模型,表示出点D 坐标,然后根据点D 在直线y =−2x +1上进行求解.【详解】解:(1)∵AD ⊥ED ,BE ⊥ED ,∴∠ADC =∠CEB =90°,∵∠ACB =90°,∴∠ACD +∠ECB =∠ACD +∠DAC =90°,∴∠DAC =∠ECB ,在△CDA 和△BEC 中,ADC CEB DAC ECB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BEC ≌△CDA (AAS );(2)过点B 作BC ⊥AB 交AC 于点C ,CD ⊥y 轴交y 轴于点D ,如图2所示:∵CD⊥y轴,∴∠CDB=∠BOA=90°,又∵BC⊥AB,∴∠ABC=90°,又∵∠BAC=45°,∴AB=CB,由[建立模型]可知:△ABO≌△BCD(AAS),∴AO=BD,BO=CD,又∵直线l1:332y x=+与x轴交于点A,与y轴交于点B,∴点A、B的坐标分别为(−2,0),(0,3),∴AO=2,BO=3,∴BD=2,CD=3,∴点C的坐标为(−3,5),设l2的函数表达式为y=kx+b(k≠0),代入A、C两点坐标得:20 35k bk b-+=⎧⎨-+=⎩解得:510 kb=-⎧⎨=-⎩,∴直线l2的函数表达式为:y=−5x−10;(3)能成为等腰直角三角形,①若点P为直角时,如图3-1所示,过点P作PM⊥OC于M,过点D作DH垂直于MP的延长线于H,设点P的坐标为(3,m),则PB的长为4+m,∵∠CPD=90°,CP=PD,∠PMC=∠DHP=90°,∴由[建立模型]可得:△MCP≌△HPD(AAS),∴CM=PH,PM=DH,∴PH=CM=PB=4+m,PM=DH=3,∴点D的坐标为(7+m,−3+m),又∵点D在直线y=−2x+1上,∴−2(7+m)+1=−3+m,解得:m=103 -,∴点D的坐标为(113,193-);②若点C为直角时,如图3-2所示,过点D作DH⊥OC交OC于H,PM⊥OC于M,设点P的坐标为(3,n),则PB的长为4+n,∵∠PCD=90°,CP=CD,∠PMC=∠DHC=90°,由[建立模型]可得:△PCM≌△CDH(AAS),∴PM=CH,MC=HD,∴PM=CH=3,HD=MC=PB=4+n,∴点D的坐标为(4+n,−7),又∵点D在直线y=−2x+1上,∴−2(4+n)+1=−7,解得:n=0,∴点P与点A重合,点M与点O重合,点D的坐标为(4,−7);③若点D为直角时,如图3-3所示,过点D作DM⊥OC于M,延长PB交MD延长线于Q,则∠Q=90°,设点P的坐标为(3,k),则PB的长为4+k,∵∠PDC=90°,PD=CD,∠PQD=∠DMC=90°,由[建立模型]可得:△CDM≌△DPQ(AAS),∴MD=PQ,MC=DQ,∴MC=DQ=BQ,∴3-DQ=4+k+DQ,∴DQ=12k,∴点D的坐标为(72k,72k),又∵点D在直线y=−2x+1上,∴772122k k,解得:k=53 -,∴点D的坐标为(83,133-);综合所述,点D的坐标为(113,193-)或(4,−7)或(83,133-).【点睛】本题综合考查了全等三角形的判定与性质,一次函数图象上点的坐标特征,待定系数法求函数解析式等知识点,重点掌握在平面直角坐标系内一次函数的求法,难点是构造符合题意的全等三角形.24、(1)点()3,0B ,点()4,7D ;(2)3944y x =-;(3)点()13,0P ,点()211,6P . 【分析】(1)根据待定系数法,可得直线AB 的解析式是:443y x =-+,进而求出()3,0B ,过点D 作DE y ⊥轴于点E ,易证()DAE ABO AAS ∆≅∆,从而求出点D 的坐标;(2)过点C 作CM x ⊥轴于点M ,证得:BCM ABO ∆≅∆,进而得()7,3C ,根据待定系数法,即可得到答案;(3)分两种情况:点P 与点B 重合时, 点P 与点B 关于点C 中心对称时,分别求出点P 的坐标,即可.【详解】(1)43y x b =-+经过点()0,4A , 4b ∴=,∴直线AB 的解析式是:443y x =-+, 当0y =时,4043x =-+,解得:3x =, ∴点()3,0B ,过点D 作DE y ⊥轴于点E ,在正方形ABCD 中,AD AB =,90DAB ∠=︒,DAE AB ∠+∠O =90︒,∠ABO +∠OAB =90︒,ABO DAE ∴∠=∠,DE AE ⊥,90AED AOB ∴=︒=∠,在DAE ∆和ABO ∆中,∵90ABO DAE AED ABO AB AD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,()DAE ABO AAS ∴∆≅∆∴43DE OA AE OB ====,,,7OE ∴=,∴点()4,7D ;(2)过点C 作CM x ⊥轴于点M ,同上可证得:BCM ABO ∆≅∆,∴CM=OB=3,BM=OA=4,OB=3+4=7,∴()7,3C ,设直线BC 得解析式为:y kx b =+(0,,k k b ≠为常数),代入点()()3,0,7,3B C 得:7330k b k b +=⎧⎨+=⎩,解得:3494k b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴直线BC 的解析式是:3944y x =-; (3)存在,理由如下:点P 与点B 重合时,点()3,0P ;点P 与点B 关于点C 中心对称时,过点P 作PN ⊥x 轴,则点C 是BP 的中点,CM //PN ,∴CM 是BPN △的中位线,∴PN=2CM=6,BN=2BM=8,∴ON=3+8=11,∴点()11,6P综上所述:在直线BC 上存在点P ,使PCD ∆为等腰三角形,坐标为:()13,0P ,()211,6P .【点睛】本题主要考查一次函数与几何图形的综合,添加辅助线,构造全等三角形,是解题的关键,体现了数形结合思想.25、(1).﹣2,4; (2).﹣3m ;(3).(1,﹣3)或(1,3).【分析】(1)由绝对值和平方的非负性可求得a+2=1,b﹣4=1,即可求出a、b的值;(2)作MC⊥x轴交x轴于点C,,分别求出AB、MC的长度,由三角形面积公式表示出△ABM的面积即可;(3)求出当m=﹣3时,△ABM的面积,设P(1,a),将△ABP 的面积表示出来,列方程求解即可.【详解】(1)由题意得:a+2=1,b﹣4=4,∴a=﹣2,b=4;(2)作MC⊥x轴交x轴于点C,∵A(﹣2,1),B(4,1),∴AB=6,∵MC=﹣m,∴S△ABM=12AB·MC=12×6×(﹣m)=﹣3m;(3)m=﹣3时,S△ABM=﹣3×(﹣3)=9,设P(1,a),OP= |a|,∴S△ABP=12AB·OP=12×6×|a|=3 |a|,∴3 |a|=9,解得a=±3,∴P(1,3)或(1,﹣3).【点睛】本题主要考查非负数的性质、点的坐标以及三角形的面积公式,点的坐标转化为点到坐标轴的距离时注意符号问题.26、(1)图见解析;(2)图见解析【分析】(1)根据角平分线的尺规作图方法即可;(2)根据线段垂直平分线的尺规作图方法即可.【详解】(1)AF为∠BAC的平分线;(2)MN为AC的垂直平分线,点E为垂足.【点睛】本题考查了角平分线及线段垂直平分线的尺规作图方法,解题的关键是掌握相应的尺规作图.。

初中数学浙教版八年级上册《2.5逆命题和逆定理》练习题

初中数学浙教版八年级上册《2.5逆命题和逆定理》练习题

逆命题与逆定理班级:___________姓名:___________得分:__________一、选择题1、下列判断是正确的是()A.真命题的逆命题是假命题B.假命题的逆命题是真命题C.定理逆命题的逆命题是真命题D.真命题都是定理2.已知下列命题:①若a≤0,则|a|=-a;②若ma²>na²,则m>n;③同位角相等,两直线平行;④对顶角相等.其中原命题与逆命题均为真命题的个数是()A.1 个B.2 个C.3 个D.4 个3.下列命题的逆命题是真命题的是()A.对顶角相等B.如果两个角是直角那么这两个角相等C.全等三角形的对应角等D.两直线平行,内错角相等4.下列命题中,逆命题不正确的是()A.两直线平行,同旁内角互补B.直角三角形的两个锐角互余C.全等三角形对应角相等D.直角三角形斜边上的中线等于斜边的一半5.下列命题中,其逆命题成立的是()A.如果a>0,b>0,那么ab>0B.两直线平行,内错角相等C.能被9整除的数,也能被3整除D.如果a=0,b=0,那么ab=0二、填空题1、“若x+y=0,则x、y互为相反数.”的逆命题是______.2. 下列命题:①全等三角形的面积相等;②平行四边形的对角线互相平分;③同旁内角互补,两直线平行.其中逆命题为真命题的有:______(请填上所有符合题意的序号).3. 请写出定理:“等腰三角形的两个底角相等”的逆定理______.4. 已知命题“线段垂直平分线上的任意一点到这条线段两个端点的距离相等”,用“如果…,那么…”的形式写出它的逆命题,并判断其真假.逆命题:______.这个逆命题是______ 命题(填“真”或“假”).5. 在《证明二》一章中,我们学习了很多定理,例如:①直角三角形两条直角边的平方和等于斜边的平方;②全等三角形的对应角相等;③等腰三角形的两个底角相等;④线段垂直平分线上的点到这条线段两个端点的距离相等;⑤角平分线上的点到这个角两边的距离相等、在上述定理中,存在逆定理的是______(填序号)三、解答题1. 写出下列两个定理的逆命题,并判断真假(1)在一个三角形中,等角对等边.(2)四边形的内角和等于360°.2. 写出下列命题的逆命题:(1)两条直线被第三条直线所截,如果有一对同位角相等,那么这两条直线平行;(2)角平分线上的点到角的两边的距离相等;(3)若r²=a,则r叫a的平方根;(4)如果a≥0,那么√a²=a.四、证明题请你写出命题“等腰三角形的两个底角相等”的逆命题,并判断逆命题的真假;若是真命题,请写出已知、求证、证明;若是假命题,则请举反例证明.参考答案一、选择题2、B【解析】①若a≤0,则|a|=-a,是真命题,逆命题是若|a|=-a则a≤0,是真命题,②若ma2>na2,则m>n,是真命题,逆命题是若m>n,则ma2>na2,是假命题,③同位角相等,两直线平行,是真命题,逆命题是两直线平行,同位角相等,是真命题,④对顶角相等,是真命题,逆命题是相等的角是对顶角,是假命题,原命题与逆命题均为真命题的个数是2个;故选B.3、D【解析】A、对顶角相等的逆命题为“相等的角为对顶角”,此命题为假命题,故本选项错误;B、如果两个角是直角那么这两个角相等的逆命题为“如果两个角相等,那么这两个角为直角”,此命题为假命题,故本选项错误;C、全等三角形的对应角等的逆命题为“对应角相等的三角形是全等三角形”,此命题为假命题,故本选项错误;D、两直线平行,内错角相等的逆命题为“如果内错角相等,那么两直线平行”,此命题为真命题,故本选项正确;故选D.4.C【解析】A、两直线平行,同旁内角互补的逆命题是同旁内角互补,两直线平行,正确;B、直角三角形的两个锐角互余的逆命题是两个锐角互余的三角形是直角三角形,正确;C、全等三角形对应角相等的逆命题是对应角相等的三角形是全等三角形,错误;D、直角三角形斜边上的中线等于斜边的一半的逆命题是斜边上的中线等于斜边的一半的三角形是直角三角形,正确;故选C.5. B【解析】A、如果a>0,b>0,那么ab>0,其逆命题为如果ab>0,则a>0,b>0,此逆命题为假命题,所以A选项错误;B、两直线平行,内错角相等的逆命题为内错角相等,内错角相等,此逆命题为真命题,所以B选项正确;C、能被9整除的数,也能被3整除的逆命题为能被3整除,也能被9整除的数,此逆命题为假命题,所C选项错误;D、如果a=0,b=0,那么ab=0的逆命题为如果ab=0,则a=0,b=0,此逆命题为假命题,所以D选项错误.故选B.二、填空题1、若x,y互为相反数,则x+y=0.【解析】“若x+y=0,则x、y互为相反数.”的逆命题是:若x,y互为相反数,则x+y=0”.故答案为:若x,y互为相反数,则x+y=0.2、②③【解析】①全等三角形的面积相等,逆命题是面积相等是三角形是全等三角形,是假命题;②平行四边形的对角线互相平分,逆命题是对角线互相平分的四边形是平行四边形,是真命题;③同旁内角互补,两直线平行,逆命题是两直线平行,同旁内角互补,是真命题.综上所述,逆命题为真命题的有②③.故答案为:②③.3、有两个角相等的三角形是等腰三角形【解析】根据等角对等边知,“等腰三角形的两个底角相等”的逆定理:有两个角相等的三角形是等腰三角形.4. 如果一个点到线段的两端点的距离相等,那么这个点在线段的垂直平分线上,真【解析】命题“线段垂直平分线上的任意一点到这条线段两个端点的距离相等”其逆命题是:如果一个点到线段的两端点的距离相等,那么这个点在线段的垂直平分线上,为真命题,故答案为:如果一个点到线段的两端点的距离相等,那么这个点在线段的垂直平分线上,真.5. ①③④⑤【解析】①中,即是勾股定理,存在逆定理,故正确;②中,三个角对应相等的两个三角形不一定是全等三角形,所以不存在逆定理,故错误;③中,即等腰三角形的性质定理,存在逆定理,即等角对等边,故正确;④中,即线段垂直平分线的性质,存在逆定理,即到线段两个端点的距离相等的点在线段的垂直平分线上,故正确;⑤中,即角平分线的性质定理,存在逆定理,即到角两边距离相等的点在角的平分线上.故填①③④⑤.三、解答题1.【解析】(1)逆命题:在一个三角形中,等边对等角.真命题.(2)内角和等于360°的多边形是四边形.真命题.2. 【解析】(1)两条平行线被第三条直线所截,同位角相等;(2)到角的两边的距离相等的点在角平分线上;(3)若r是a的平方根,那么r²=a;(4)如果√a²=a,那么a≥0.四、证明题【解析】因为原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,所以命题“等腰三角形的两个底角相等”的逆命题是“有两个角相等三角形是等腰三角形”.已知:△ABC中,∠B=∠C,求证:△ABC是等腰三角形.证明:过点A作AH⊥BC于点H,则∠AHB=∠AHC=90°,在△ABH和△ACH中,∵∠B=∠C ∠BHA=∠AHC AH=AH ,∴△ABH≌△ACH(AAS),∴AB=AC,∴△ABC是等腰三角形.。

八年级数学《勾股定理的逆定理》练习题含答案

八年级数学《勾股定理的逆定理》练习题含答案

八年级数学《勾股定理的逆定理》练习题一、填空题1.如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是______三角形,我们把这个定理叫做勾股定理的______.2.在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做____________;如果把其中一个命题叫做原命题,那么另一个命题叫做它的____________.3.分别以下列四组数为一个三角形的边长:(1)6、8、10,(2)5、12、13,(3)8、15、17,(4)4、5、6,其中能构成直角三角形的有____________.(填序号)4.在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,①若a 2+b 2>c 2,则∠c 为____________;②若a 2+b 2=c 2,则∠c 为____________;③若a 2+b 2<c 2,则∠c 为____________.5.若△ABC 中,(b -a )(b +a )=c 2,则∠B =____________;6.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC 是______三角形.7.若一个三角形的三边长分别为1、a 、8(其中a 为正整数),则以a -2、a 、a +2为边的三角形的面积为______.8.△ABC 的两边a ,b 分别为5,12,另一边c 为奇数,且a +b +c 是3的倍数,则c 应为______,此三角形为______.二、选择题9.下列线段不能组成直角三角形的是( ).(A)a =6,b =8,c =10 (B)3,2,1===c b a (C)43,1,45===c b a (D)6,3,2===c b a 10.下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的是( ).(A)1∶1∶2 (B)1∶3∶4 (C)9∶25∶26 (D)25∶144∶16911.已知三角形的三边长为n 、n +1、m (其中m 2=2n +1),则此三角形( ).(A)一定是等边三角形 (B)一定是等腰三角形 (C)一定是直角三角形 (D)形状无法确定综合、运用、诊断一、解答题12.如图,在△ABC 中,D 为BC 边上的一点,已知AB =13,AD =12,AC =15,BD =5,求CD 的长.13.已知:如图,四边形ABCD 中,AB ⊥BC ,AB =1,BC =2,CD =2,AD =3,求四边形ABCD 的面积.14.已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点且CE =CB 41,求证:AF ⊥FE .15.在B 港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M 岛,乙船到P 岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?拓展、探究、思考16.已知△ABC 中,a 2+b 2+c 2=10a +24b +26c -338,试判定△ABC 的形状,并说明你的理由.17.已知a 、b 、c 是△ABC 的三边,且a 2c 2-b 2c 2=a 4-b 4,试判断三角形的形状.18.观察下列各式:32+42=52,82+62=102,152+82=172,242+102=262,…,你有没有发现其中的规律?请用含n 的代数式表示此规律并证明,再根据规律写出接下来的式子.勾股定理的逆定理1.直角,逆定理.2.互逆命题,逆命题.3.(1)(2)(3).4.①锐角;②直角;③钝角.5.90°.6.直角.7.24.提示:7<a<9,∴a=8.8.13,直角三角形.提示:7<c<17.9.D.10.C.11.C.112.CD=9.13..514.提示:连结AE,设正方形的边长为4a,计算得出AF,EF,AE的长,由AF2+EF2=AE2得结论.15.南偏东30°.16.直角三角形.提示:原式变为(a-5)2+(b-12)2+(c-13)2=0.17.等腰三角形或直角三角形.提示:原式可变形为(a2-b2)(a2+b2-c2)=0.18.352+122=372,[(n+1)2-1]2+[2(n+1)]2=[(n+1)2+1]2.(n≥1且n为整数)。

逆命题和逆定理同步练习含答案

逆命题和逆定理同步练习含答案

逆命题和逆定理同步练习含答案It was last revised on January 2, 2021逆命题和逆定理 同步练习【课堂训练】1.下列命题中,假命题...是( )A .两点之间,线段最短 B .角平分线上的点到这个角的两边的距离相等 C .两组对边分别平行的四边形是平行四边形 D .对角线相等的四边形是矩形 2. 下列命题中正确的是( ) A .矩形的对角线相互垂直B .菱形的对角线相等C .平行四边形是轴对称图形D .等腰梯形的对角线相等3. 分析下列命题:①四边形的地砖能镶嵌(密铺)地面;②不同时刻的太阳光照射同一物体,则其影长都是相等的;③若在正方形纸片四个角剪去的小正方形边长越大,则所制作的无盖长方体形盒子的容积越大. 其中真命题...的个数是( ) A .3B .2C .1D .04. 在下列命题中,是真命题的是( )A .两条对角线相等的四边形是矩形 B .两条对角线互相垂直的四边形是菱形C .两条对角线互相平分的四边形是平行四边形D .两条对角线互相垂直且相等的四边形是正方形5. 已知下列命题:①若00a b >>,,则0a b +>; ②若a b ≠,则22a b ≠;③角的平分线上的点到角的两边的距离相等; ④平行四边形的对角线互相平分. 其中原命题与逆命题均为真命题的个数是( ) A .1个B .2个C .3个D .4个6. 已知二次函数2y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x ,,且112x <<,与y 轴的正半轴的交点在(02),的下方.下列结论:①420a b c -+=;②0a b <<;③20a c +>;④210a b -+>.其中正确结论的个数是 个. 7. 下列命题中,正确命题的个数为( )(1)若样本数据3、6、a 、4、2的平均数是4,则其方差为2(2)“相等的角是对顶角”的逆命题 (3)对角线互相垂直的四边形是菱形(4)若二次函数23(1)y x k =-+图象上有三个点1)y ,(22y ,),1()y ,则321y y y >>A .1个B .3个C .2个D .4个8.已知命题“如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形”,写出它的逆命题: . 【课后训练】1.在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论是第二个命题的条件,那么这两个命题叫做________.2.如果一个定理的逆命题能被证明是真命题,那么就叫它是原定理的________,这两个定理叫做_________.3.每个命题都有它的________,但每个真命题的逆命题不一定是真命题. 4.线段垂直平分线性质定理的逆定理是_____________________. 5.命题“对顶角相等”的逆命题是_____________________,是_____命题. 6.下列说法中,正确的是( )A .每一个命题都有逆命题B .假命题的逆命题一定是假命题C .每一个定理都有逆定理D .假命题没有逆命题 7.下列命题的逆命题为真命题的是( )A .如果a=b ,那么a 2=b 2 B .平行四边形是中心对称图形 C .两组对角分别相等的四边形是平行四边形 D .内错角相等8.下列定理中,有逆定理的是( )A .四边形的内角和等于360°B .同角的余角相等C .全等三角形对应角相等D .在一个三角形中,等边对等角 9.写出下面命题的逆命题,并判断其真假.10.写出下列命题的逆命题,并判断逆命题的真假.如果是真命题,请给予证明;如果是假命题,请举反例说明.(1)有两边上的高相等的三角形是等腰三角形.(2)三角形的中位线平行于第三边.11.写出符合下列条件的一个原命题:(1)原命题和逆命题都是真命题.(2)原命题是假命题,但逆命题是真命题.(3)原命题是真命题,但逆命题是假命题.(4)原命题和逆命题都是假命题.12.已知在四边形ABCD中,对角线AC与BD相交于点O,①AB∥CD,②AO=CO,③,AD=BC,④∠ABC=∠ADC.(1)请从以上条件中选取两个作为命题的条件,结论为四边形ABCD是平行四边形,并使构成的命题为真命题,请对你所构造的一个真命题给予证明.(2)能否从以上条件中选取两个作为命题的条件,结论为四边形ABCD是平行四边形,并使构成的命题为假命题?若能,请写出一个满足条件的假命题,并举反例说明.参考答案1. 答案:D2. 答案:D3. 答案:C4. 答案:C5. 答案:B6. 答案:47. 答案:B8. 答案:如果一个平行四边形是菱形,那么这个平行四边形的两条对角线互相垂直参考答案:1.互逆命题 2.逆定理,互逆定理 3.逆命题4.到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上5.如果两个角相等,那么它们是对顶角;假6.A 7.C 8.D9.(1)真,如果x(x-2)=0,那么x=2;假(2)真,三边对应相等的两个三角形全等;真(3)真,在一个三角形中,等角对等边;真(4)真,等边三角形是等腰三角形;假(5)假,如果两个角互补,那么这两个角是同旁内角;假10.(1)等腰三角形两腰上的高相等,是真命题,证明略(2)平行于三角形一边的线段是三角形的中位线,是假命题,反例略11.略12.(1)答案不唯一,如选①和②等,证明略(2)如选①和③,反例略逆命题和逆定理同步练习一、选择题1.下列四句话中,正确的是()A、任何一个命题都有逆命题B、任何一个定理都有逆定理C、若原命题为真,则其逆命题也为真D、若原命题为假,则其逆命题也假A、假命题的逆命题定是假命题B、定理一定有逆定理C、真命题的逆命题定是真命题D、命题一定有逆命题3.下列命题中,错误的是()A、角平分线上的点到这个角的两边的距离相等B、到线段两个端点距离相等的点,在这条线段的垂直平分线上C、任何命题都有逆命题D、任何定理都有逆定理4.下列说法错误的是()A、任意一个命题都有逆命题B、定理“全等三角形的对应角相等”有逆定理C、正方形都相似是真命题D、“画平行线”不是命题5.下列说法错误的是()A、任何命题都有逆命题B、定理都有逆定理C、命题的逆命题不一定是正确的D、定理的逆定理一定是正确的6. 下列说法正确的是()A、每个命题都有逆命题B、每个定理都有逆定理C、真命题的逆命题是真命题D、真命题的逆命题是假命题7. 下列说法中正确的是()A、每个命题都有逆命题B、每个定理都有逆定理C、真命题的逆命题是真命题D、假命题的逆命题是假命题A、真命题的逆命题是真命题B、每个定理都有逆定理C、每个命题都有逆命题D、假命题的逆命题是假命题9. 下列说法正确的是()A、每个命题都有逆命题B、真命题的逆命题是真命题C、假命题的逆命题是真命题D、每个定理都有逆定理二、填空题1.请写出定理:“全等三角形三个角相等”的逆定理,并判断命题的真假., .2.请写出定理:“等腰三角形的两个底角相等”的逆定理..3. 写出定理“角平分线上的点到这个角两边的距离相等”的逆定理是 = .4. 写出你熟悉的一个定理:,写出这个定理的逆定理:.5. 是定理“两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行”的逆定理.6.命题“如果一个数能被10整除,那么这个数也一定能被5整除”的逆命题是,这个逆命题为(填“真命题”或“假命题”)7. 命题“全等三角形的对应角相等”的逆命题是,这个逆命题是命题.(填“真”或“假”)三、解答题1.请你写出命题“等腰三角形的两个底角相等”的逆命题,并判断逆命题的真假;若是真命题,请写出已知、求证、证明;若是假命题,则请举反例证明.2.已知命题“等腰三角形两腰上的高相等”.(1)写出逆命题;(2)逆命题是真命题还是假命题?如果是真命题,请画出“图形”,写出“已知”,“求证”,再进行“证明”;如果是假命题,请举反例说明.3. 请写出“全等三角形的对应角相等”的逆命题,判断此逆命题的真假性,并给出证明.参考答案一、选择题1.解:A、命题的逆命题就是把原命题的题设和结论互换,故任何命题都有逆命题,故本选项正确,B、定理,逆定理都是真命题,但定理的逆命题不一定都是真命,故本选项错误,C、若原命题为真,则其逆命题不一定为真,故本选项错误,D、若原命题为假,则其逆命题不一定为真,故本选项错误.故选A.2. 解:A、假命题的逆命题定不一定是假命题,如:两个角相等三角形是等腰三角形,它的逆命题是真命题,本选项错误;B、定理不一定有逆定理,如:全等三角形对应角相等没有逆定理,本选项错误;C、真命题的逆命题不一定是真命题,如:对顶角相等的逆命题是相等的角是对顶角,它是假命题而不是真命题,本题错误;D、命题一定有逆命题,本选项正确;故选D.3. 解:A、∵角平分线上的点到这个角的两边的距离相等,这是正确的,故本选项错误;B、到线段两个端点距离相等的点,在这条线段的垂直平分线上,这是正确的,故本选项错误;C、任何命题都有逆命题,这是正确的,故本选项错误;D、∵任何定理不一定有逆定理,这是错误的,故本选项正确.故选D.4. 解:A、命题都有题设和结论,交换题设和结论,就得到逆命题,正确;B、定理“全等三角形的对应角相等”的逆命题是对应角相等的三角形全等,错误;C、所有正方形都相似,正确;D、画平行线是作图,没有题设与结论,不是命题,正确.故选B.5. 解:A正确;B错误,正确的命题才是定理,定理的逆命题不一定是正确的,故不能说定理都有逆定理;C正确;D正确;故选B.6. 解:A、每个命题都有逆命题,故本选项正确.B、每个定理不一定都有逆定理,故本选项错误.C、真命题的逆命题不一定是真命题,故本选项错误.D、真命题的逆命题不一定是假命题,故本选项错误.故选A.7. 解:A、每个命题都有逆命题,正确;B、每个定理都有逆定理,错误,只有正确的命题才是定理,错误;C、真命题的逆命题不一定是真命题,错误;D、假命题的逆命题不一定是假命题,错误.故选A8. 解:A、真命题的逆命题不一定是真命题,故本选项错误,B、每个定理都有逆命题,故本选项错误,C、每个命题都有逆命题,故本选项正确,D、假命题的逆命题不一定是假命题,故本选项错误,故选:C.9. 解:A、正确;B、错误,不能确定;C、错误,不能确定;D、错误,不能确定.故选A.二、填空题1.解:定理:“全等三角形三个角相等”的逆定理是三个角对应相等的两个三角形全等,三个角对应相等的两个三角形不一定全等,∴该命题为假命题,故答案为:三个角对应相等的两个三角形全等,假命题.2.有两个角相等的三角形是等腰三角形.3. 到角的两边距离相等的点在角平分线上4. 两直线平行,同位角相等同位角相等,两直线平行.5. 两条平行线被第三条直线所截,同旁内角互补6. 如果一个数能被5整除,那么这个数能被10整除假命题7.对应角相等的三角形全等假三、解答题1.2.3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《逆命题和逆定理》专项练习-填空题
1.请写出定理:“全等三角形三个角相等”的逆定理,并判断命题的真假.
,.
2.请写出定理:“等腰三角形的两个底角相等”的逆定理.
.
3. 写出定理“角平分线上的点到这个角两边的距离相等”的逆定理是= .
4. 写出你熟悉的一个定理:,写出这个定理的逆定理:.
5. 是定理“两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行”的逆定理.
6.命题“如果一个数能被10整除,那么这个数也一定能被5整除”的逆命题是,这个逆命题为(填“真命题”或“假命题”)
7. 命题“全等三角形的对应角相等”的逆命题是,这个逆命题是命题.(填“真”或“假”)
参考答案
1.解:定理:“全等三角形三个角相等”的逆定理是三个角对应相等的两个三角形全等,三个角对应相等的两个三角形不一定全等,
∴该命题为假命题,
故答案为:三个角对应相等的两个三角形全等,假命题.
2.有两个角相等的三角形是等腰三角形.
3. 到角的两边距离相等的点在角平分线上
4. 两直线平行,同位角相等同位角相等,两直线平行.
5. 两条平行线被第三条直线所截,同旁内角互补
6. 如果一个数能被5整除,那么这个数能被10整除假命题
7.对应角相等的三角形全等假。

相关文档
最新文档