线性代数易错点及重点知识点

合集下载

《线性代数》知识点归纳整理-大学线代基础知识

《线性代数》知识点归纳整理-大学线代基础知识

《线性代数》知识点归纳整理诚毅学生编01、余子式与代数余子式- 2 -02、主对角线- 2 -03、转置行列式- 2 -04、行列式的性质- 3 -05、计算行列式- 3 -06、矩阵中未写出的元素- 4 -07、几类特殊的方阵- 4 -08、矩阵的运算规则- 4 -09、矩阵多项式- 6 -10、对称矩阵- 6 -11、矩阵的分块- 6 -12、矩阵的初等变换- 6 -13、矩阵等价- 7 -14、初等矩阵- 7 -15、行阶梯形矩阵与行最简形矩阵- 7 -16、逆矩阵- 7 -17、充分性与必要性的证明题- 8 -18、伴随矩阵- 9 -19、矩阵的标准形:- 9 -20、矩阵的秩:- 9 -21、矩阵的秩的一些定理、推论- 10 -22、线性方程组概念- 10 -23、齐次线性方程组与非齐次线性方程组(不含向量)- 10 -24、行向量、列向量、零向量、负向量的概念- 12 -25、线性方程组的向量形式- 12 -26、线性相关与线性无关的概念- 12 -27、向量个数大于向量维数的向量组必然线性相关- 12 -28、线性相关、线性无关;齐次线性方程组的解;矩阵的秩这三者的关系及其例题- 12 -29、线性表示与线性组合的概念- 12 -30、线性表示;非齐次线性方程组的解;矩阵的秩这三者的关系其例题- 12 -31、线性相关(无关)与线性表示的3个定理- 13 -32、最大线性无关组与向量组的秩- 13 -33、线性方程组解的结构- 13 -01、余子式与代数余子式(1)设三阶行列式D =333231232221131211a a a a a a a a a ,则①元素11a ,12a ,13a 的余子式分别为:M 11=33322322a a a a ,M 12=33312321a a a a ,M 13=32312221a a a a对M 11的解释:划掉第1行、第1列,剩下的就是一个二阶行列式33322322a a a a ,这个行列式即元素11a 的余子式M 11。

《线性代数》知识点归纳整理

《线性代数》知识点归纳整理

《线性代数》知识点归纳整理线性代数是一门研究向量空间和线性映射的数学学科,是数学中的一个重要分支。

它的应用范围非常广泛,包括物理学、工程学、计算机科学、经济学等等。

下面是对线性代数的一些重要知识点的归纳整理。

1.向量和向量空间:-向量的定义和性质:向量是有方向和大小的量,可以进行加法和数乘运算。

-向量空间的定义和性质:向量空间是一组向量的集合,满足加法和数乘运算的封闭性、结合律、交换律、零向量存在性等性质。

2.矩阵和矩阵运算:-矩阵的定义和性质:矩阵是一个由数构成的矩形阵列,可以进行加法和数乘运算。

-矩阵的乘法和转置:矩阵可以进行乘法运算,满足结合律和分配律;矩阵的转置是将矩阵的行和列互换得到的新矩阵。

3.线性方程组和矩阵求解:-线性方程组的解的存在性和唯一性:线性方程组的解存在的条件是系数矩阵的秩等于增广矩阵的秩;解的唯一性与线性方程组的自由变量有关。

-矩阵求解线性方程组的方法:高斯消元法、矩阵的逆、克拉默法则等。

4.线性映射和线性变换:-线性映射的定义和性质:线性映射是一种保持向量空间的加法和数乘运算的映射,满足线性性质。

-线性变换的矩阵表示:线性变换可以用矩阵表示,矩阵的列向量是线性变换作用在基向量上的结果。

5.特征值和特征向量:-特征值和特征向量的定义和性质:对于一个线性变换,特征向量是指在这个变换下保持方向不变的向量,特征值是对应特征向量的缩放因子。

-特征值分解:特征值分解是将一个矩阵分解成特征向量和特征值的形式。

6.内积和正交性:-内积的定义和性质:内积是一种度量向量之间夹角的方法,满足对称性、线性性和正定性等性质。

-正交性和正交基:正交向量是指两个向量的内积为零,正交基是一组两两正交的向量。

7.线性相关和线性无关:-线性相关和线性无关的定义和性质:一组向量中,如果存在不全为零的线性组合等于零向量,则称这组向量线性相关;否则称线性无关。

-维数和基:一组线性无关的向量可以作为向量空间的基,基的个数称为向量空间的维数。

线性代数知识重难点和常考题型汇总

线性代数知识重难点和常考题型汇总

②、

a11 a21

a12
a22

a1 n a2 n



x1
x2



b1
b2


Ax
b
(向量方程,
A为mn
矩阵, m
个方程, n 个未知数)
am1
am 2

amn xm
bm
⑦、 r( AB) min(r( A), r(B)) ;(※)⑧、如果 A 是 m n 矩阵, B 是 n s 矩阵,且 AB 0 ,则:(※) Ⅰ、 B 的列向量全部是齐次方程组 AX 0 解(转置运算后的结论); 3
Ⅱ、 r( A) r(B) n ⑨、若 A 、 B 均为 n 阶方阵,则 r( AB) r( A) r(B) n ;
③、 a1
a2



an


x1
x2



(全部按列分块,其中



b1 b2




);



xn
bn
④、 a1 x1 a2 x2 an xn (线性表出)
⑤、有解的充要条件: r( A) r( A, ) n ( n 为未知数的个数或维数)
③、某行(列)的元素乘以该行(列)元素的代数余子式为 A ;
3,代数余子式和余子式的关系:
M ij (1)i j Aij
Aij (1)i j M ij
4,设 n 行列式 D :
n ( n 1)

完整版线性代数知识点总结

完整版线性代数知识点总结

完整版线性代数知识点总结线性代数是数学的一个分支,研究向量空间及其上的线性变换。

它在各个领域中都有广泛的应用,包括物理学、计算机科学、工程学等。

以下是线性代数的一些重要知识点总结:1.向量和向量空间:向量是有方向和大小的量,可以用来表示力、速度、位移等。

向量空间是向量的集合,具有加法和标量乘法运算,同时满足一定的性质。

2.线性方程组和矩阵:线性方程组是一组线性方程的集合,研究其解的性质和求解方法。

矩阵是一个由数构成的矩形数组,可以用来表示线性方程组中的系数和常数。

3.矩阵的运算:包括矩阵的加法、减法和乘法运算。

矩阵乘法是一种重要的运算,可以用来表示线性变换和复合变换。

4.行列式和特征值:行列式是一个标量,表示矩阵的一些性质,如可逆性和面积/体积的变换。

特征值是矩阵对应的线性变换中特殊的值,表示该变换在一些方向上的伸缩程度。

5.向量的内积和正交性:向量的内积是一种二元运算,可以用来表示向量之间的夹角和长度。

正交向量是指内积为零的向量,可以用来表示正交补空间等概念。

6.向量的投影和正交分解:向量的投影是一个向量在另一个向量上的投影,可以用来表示向量的分解。

正交分解是将一个向量分解为与另一个向量正交和平行的两个向量之和。

7.线性变换和线性映射:线性变换是指保持向量加法和标量乘法运算的变换。

线性映射是向量空间之间的函数,具有保持线性运算的性质。

8.特征值和特征向量:特征值和特征向量是线性变换或矩阵中一个重要的概念,用于描述变换的性质和方向。

9.正交矩阵和对称矩阵:正交矩阵是一个方阵,其列向量组成的矩阵是正交的。

对称矩阵是一个方阵,其转置等于自身。

10.奇异值分解:奇异值分解(SVD)是一种矩阵的分解方法,用来将一个矩阵分解为三个矩阵的乘积。

SVD在数据压缩、图像处理和机器学习等领域有广泛的应用。

11.最小二乘法:最小二乘法是一种数学优化方法,用来找到一条曲线或超平面,使得这些数据点到该曲线或超平面的距离平方和最小。

(完整)线性代数知识点总结汇总,推荐文档

(完整)线性代数知识点总结汇总,推荐文档

线性代数知识点总结1 行列式(一)行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:(用于化简行列式)(1)行列互换(转置),行列式的值不变(2)两行(列)互换,行列式变号(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k乘此行列式(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。

(5)一行(列)乘k加到另一行(列),行列式的值不变。

(6)两行成比例,行列式的值为0。

(二)重要行列式4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积5、副对角线行列式的值等于副对角线元素的乘积乘6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则7、n阶(n≥2)范德蒙德行列式数学归纳法证明★8、对角线的元素为a,其余元素为b的行列式的值:(三)按行(列)展开9、按行展开定理:(1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0(四)行列式公式10、行列式七大公式:(1)|kA|=k n|A|(2)|AB|=|A|·|B|(3)|A T|=|A|(4)|A-1|=|A|-1(5)|A*|=|A|n-1(6)若A的特征值λ1、λ2、……λn,则(7)若A与B相似,则|A|=|B|(五)克莱姆法则11、克莱姆法则:(1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0(3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。

2 矩阵(一)矩阵的运算1、矩阵乘法注意事项:(1)矩阵乘法要求前列后行一致;(2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律)(3)AB=O不能推出A=O或B=O。

线性代数中常见的难题,易错题目解析

线性代数中常见的难题,易错题目解析

线性代数中常见的难题,易错题目解析
1、代数精度:在数值分析中,精度指的是数值计算中所得结果的可靠性,也就是说计算结果是否正确取决于数值计算的精度。

此题目可能会难以回答,要求学生根据自身的数学定义和知识框架来理解和作答,其中的考点是数值计算的精度与数值计算成果的可靠性之间的关系。

2、矩阵的秩:矩阵的秩是矩阵的数学定义,它表示某个矩阵的列数减去它的0行的数目,考察学生对该数学概念的理解程度。

因此,求解矩阵的秩需要对矩阵中的元素进行运算,并判断结果来计算矩阵的秩。

3、线性方程组的系数矩阵:系数矩阵是一个线性方程组的重要概念,表示该线性方程组的解的性质。

系数矩阵的求解主要是根据矩阵操作的行列式计算方法、决定系统的可解性来确定系数矩阵的结构。

4、矩阵乘法:矩阵乘法是线性代数最重要的基本概念之一,它以秩、矩阵维数和矩阵中元素的乘法计算来表示两个矩阵的乘积结果。

矩阵乘法可以有效地解决实际问题,是解决线性方程组最常用的工具之一。

5、矩阵求逆:矩阵求逆是线性代数中常见的概念,它表示将矩阵转换成单位矩阵的变换。

考生在面对本题时,除了熟悉矩阵求逆的基本概念外,还需要掌握大量的乘法和除法运算,以及应用消元法计算矩阵求逆的过程。

6、行列式:行列式是一种矩阵形式的数形式,它由矩阵中各元素的行列式代数计算所构成的一种数字的结果。

通过行列式可以判断矩阵的可逆性、行列式的值与矩阵元素有关。

学生在解答本题时,要掌握行列式的基本概念和行列式的计算方法,以及应用行列式来确定矩阵的可逆性的过程。

线性代数中常见的难题、易错题目解析

线性代数中常见的难题、易错题目解析

线性代数中常见的难题、易错题目解析线性代数是数学的一个重要分支,包括线性方程组、矩阵论、特征值分解等内容,已经成为许多学科的必备的基础知识。

随着学科的发展,线性代数也成为了一门杂而乱的学科,其中很多难题和易错题目都会困扰学习者。

本文将从难题、易错题的解析的角度,介绍如何解决线性代数中常见的难题和易错题目。

一、难题1、求解方程组求解方程组是一个具有挑战性的问题,如果把它当做一个整体去理解和求解,那么将是一个棘手的问题。

一般来说,可以用矩阵的乘法法则进行求解,或者用换元法来求解,或者用逐步求解法求解,最后结合容易理解的思想,来解决更加复杂的多元方程组。

2、求矩阵的特征值、特征向量矩阵的特征值和特征向量非常重要,求解特征值和特征向量十分困难。

特征值是矩阵行列式的解,而特征向量则是将特征值代入矩阵方程来求解,这两个问题会有一定的耦合性,有时候也不容易像前者一样能够得出精确的解。

因此,对矩阵的特征值和特征向量求解,一般来说要尽可能的用矩阵的几何性质,来解决相关的问题。

3、找到向量的基础向量的基础是要证明一组给定的向量可以线性表示其他所有的向量,也就是说,它们能够形成一个若干个线性无关向量的基础。

但是在找到向量的基础时,有时会出现向量冗余的情况,我们要在构造基础时尽可能消除冗余,使用一些四元数计算可以大大减少搜索时间,然后在手动检查和调整时,来增强搜索的精确性和准确性。

二、易错题1、矩阵相乘的几何意义很多学生常常弄混矩阵的相乘的几何意义,将它和普通的算术乘法混为一谈。

实际上,矩阵的相乘有重要的几何意义,也就是图像的变换,图像可以用平移、旋转、缩放等形式来表示,而所有的变换就是矩阵乘法的几何意义。

2、判断一个矩阵是否是对称矩阵对称矩阵是比较常见的一类矩阵,但是给出一个矩阵之后数学家要判断它是否是对称矩阵,也是一个相当难的问题。

其实并不难,只要把它乘自身的转置就可以得到判断的答案,如果转置之后的矩阵和原矩阵相同,那么它就是一个对称矩阵,反之则不是。

《线性代数》知识点_归纳整理

《线性代数》知识点_归纳整理

《线性代数》知识点_归纳整理线性代数是数学的一个重要分支,研究向量空间及其上的线性映射、线性方程组和矩阵等基本概念和性质。

它在数学、物理、工程、计算机科学等领域都有广泛的应用。

下面将对线性代数的一些重要知识点进行归纳整理。

1.向量空间:向量空间是线性代数的核心概念,它是一组向量的集合,满足加法和数乘运算的封闭性、结合律、交换律和分配律等性质。

向量空间的例子包括实数空间R^n、矩阵空间M(m,n)等。

2.线性映射:线性映射是指一个向量空间到另一个向量空间的映射,满足保持加法和数乘运算的性质。

线性映射可以表示为矩阵乘法的形式,其中矩阵的每一列对应于一个基向量在映射后的值。

3.线性方程组:线性方程组是由一组线性方程组成的方程组,其中每个方程都是关于未知数的线性表达式。

解线性方程组的方法包括高斯消元法、矩阵求逆法和克拉默法则等。

4.矩阵:矩阵是由数按矩形排列成的数组,是线性代数的重要工具。

矩阵可以表示线性映射、线性方程组和向量空间的基等。

矩阵的运算包括加法、数乘、矩阵乘法和转置等。

5.行列式:行列式是一个标量,它由矩阵的元素按一定规则计算得到。

行列式可以用于判断方阵的可逆性、计算线性映射的缩放因子和求解线性方程组等。

6.特征值和特征向量:特征值和特征向量是矩阵的重要性质。

特征值是一个标量,特征向量是一个非零向量,它们满足A*v=lambda*v的关系式,其中A是矩阵,v是特征向量,lambda是特征值。

特征值和特征向量可以用于矩阵的对角化和矩阵的谱分解等。

7.正交性:正交性是指向量之间的垂直关系。

在内积空间中,如果两个向量的内积为零,则它们是正交的。

正交向量组和正交矩阵是线性代数中常见的概念,它们在解线性方程组和进行特征值分解等方面具有重要作用。

8.线性相关性和线性无关性:线性相关性和线性无关性是向量组的重要性质。

如果一个向量可以由其他向量线性表示,则称这个向量与其他向量线性相关;如果一个向量不能由其他向量线性表示,则称这个向量与其他向量线性无关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数易错及重点知识点 翔翔总结,不晓得大家看得懂不
3
24712432的余子式是327134722412,而不是23271 上三角和下三角行列式都是a1a2a3.....an=A
反三角行列式为A*(-1)^n(n-1)/2
行列式的一行的代数余子式分别乘以另一行元素,值为零。

正反三角行列式如果不记得公式了,可以通过上下换行的形式变成正三角行列式。

克莱姆法则D=222112
11a a a a ,D1=22
2121a b a b D2=22211211a a a a x1=D1/D 同理x2=D2/D 范德蒙法则:行列式的值=(x n -x n-1)(x n -x n-2)……(x n -x 1)(x n-1-x n-2……)(x 2-x 1)
若一个线性方程组有非零解,则它的行列式式值等于零。

行列式中行叫c ,列叫r
写行列式变换过程中要在等号上写变换方法,如c2-c3.不然老师看不懂步骤,无法给分 化三角行列式先化第一列,在化第二列,按顺序来化,这样才不会出现问题。

n 维向量分横向量和列向量。

写向量时一定要记得在上面加箭头
任意一个n 维向量都能由n 个n 维单位向量线性表示
如果b1=k1a1+k2a2+k3a3,线性表示不一定要求k1,k2,k3不全为零。

如果一个向量a 线性相关,则a=0
由一个非零向量构成的向量组一定线性无关。

即a ≠0则a 这个向量组线性无关。

含有零向量的向量组一定线性相关
例a1=(1,1)a2=(2,3)求这两个向量组是否线性相关
解:k1a1+k2a2=0 k1(1,1)+k2(2,3)=0
K1+2k2=0 k1+3k2=0 3
121≠0所以k 全是零解,所以线性无关 a3=a1+a2,则a1,a2,a3线性相关
一个向量组中的一个向量可由其他向量线性表示,那么这个向量组线性相关,能线性表示不一定要k 不全为零,但是线性相关一定要不全为零
两个向量线性相关除非他们对应分量成比例。

如果一个向量组一部分向量线性相关,则,整个向量组线性相关。

一个向量组线性无关,那么它的一部分也线性无关
向量组线性相关,减少其中几维一样线性相关,向量组线性无关,增加几维向量一样无关。

应用:要证线性相关,则增加维,如果增加后相关,则原向量组相关。

要证线性无关,则减少维,如果减少后无关,则原向量组无关。

要证线性相关,则增加向量个数,如果增加后相关,则原向量组相关。

要证线性无关,则减少向量个数,如果减少后无关,则原向量组无关。

向量个数大于维数一定线性相关
一个向量组的每个最大线性无关组中的向量个数一定相等
向量空间:线性无关组ab ……n 若a+b ……n 属于v Ramada a 属于v 则v 为向量空间v 的维数就是向量组的秩,a b ……n 称为空间的基
数和矩阵的乘法和数和行列式的乘法是不同的,行列式是乘到一行里,矩阵是乘到每个元素里
⎥⎦⎤⎢⎣⎡2322211312a11a a a a a *⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡323122211211b b b b b b =
⎥⎦
⎤⎢⎣⎡++++++++322322221221312321221121321322121211311321121111b a b a b a b a b a b a b a b a b a b a b a b a A m*n *B n*j =C m*j
矩阵乘矩阵没有交换率,但有结合率
A+B 的转置矩阵等于A,B 的转置矩阵相加
AB=B ’A ’
矩阵的乘法有分配率,无论是数还是矩阵都有,唯有AB ≠BA 对称矩阵是除主对角线外以主对角线对称的矩阵A=A ’
行等于列的矩阵称为方阵
只有方阵才有幂
(A+B )2≠A 2+B 2+2AB
因为AB ≠BA
A 乘以单位矩阵E 还是A
非奇异矩阵即矩阵的行列式值不等于零的矩阵
B A AB =
若A*B=E 则B 是A 的逆阵,B=A -1
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231232221131211a a a a a a a a a 的逆阵位⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231232221131211A A A A A A A A A /33
3231232221131211a a a a a a a a a 其中A11,A12为a11,a12的代数余子式
单位矩阵E 2=E
要想求一个矩阵的逆矩阵,一种是用上三行的那种方法,对于是字母的就凑个B 让他们乘积等于E
矩阵的秩等于它列向量组的最大无关线性组的个数
矩阵补行补列找它秩原理和向量原理相同
矩阵找它的秩只要画网格,网格交叉的元素若值不等于零,则它的竖线个数就是矩阵的秩 矩阵只能进行行变换,行加减变换和行列式一样
矩阵化阶梯矩阵
例题。

相关文档
最新文档