电压互感器设计计算
V型电压互感器接线分析及计算

V型电压互感器接线分析与计算摘要:本文主要阐述了在高压电能计量中V型电压互感器与三相三线电能表所组成的计量系统的接线方式,通过对正确与错误接线的分析和计算,为公司电能的正确计量提供理论上的技术支持,同时也可为计量人员的分析提供相应的帮助,从而加快公司计量工作的进一步开展。
关键词:V型电压互感器三相有功电能表接线分析计算随着节能工作的进一步推进,计量工作成为企业管理工作中的重要组成局部,由于矿区尤其是井下能源消耗主要来自于电能,因此做好电能计量〔尤其是井下电能计量〕则是做好计量工作的关键。
我公司高压计量系统中广泛采用了V型电压互感器配感应式三相三线电能表进展计量,但在计量过程中常出现计量明显不准或电能表反转的现象。
电能表计量的工作原理:当电压线圈两端加以线路电压,电流线圈串接在电源与负载之间电流过电流时,电压元件和电流元件就产生了在空间上不同位置、相角上不同相位的电压工作磁通和电流工作磁通。
电压工作磁通与电流工作磁通在圆盘中产生的感应涡流相互作用及电流工作磁通与电压工作磁通在圆盘中产生的感应涡流相互作用,使圆盘转动并通过传动机构实现对电能消耗的记录,即电能计量。
一般来说,电能的消耗正比于表计圆盘转动。
为确保计量的准确性,在表计完好的前提下,最关键就是接线正确,尤其是电压互感器的正确接线。
则,我们应如何接线呢.由于电流互感器星形〔Y型〕互感器接线较为简单,这里,就开口角形〔V型〕电压互感器与三相三线电能表配合接线进展分析,以供参考。
一、V型电压互感器接线的高压电能计量装置与Y型电压互感器相比,V型电压互感器接线很容易接错,接线一旦错误,就会造成计量错误,因此必须接对电压互感器的极性。
V型接线实际上是开口三角形接线,即三角形的接线取去一组线圈。
三角形接线是三相绕组正极与负极连接,所以V 型接线也是一相绕组的负极与另一相绕组的正极连接,而不能同极连接,其正确接线图如图1所示。
这种接线是用两个单相互感器接成V 型接线,一次和二次绕组极性接法是对称的,且都是正极和负极连接,接线是严禁改变任何一相接线,它是V 型电压互感器正确接线的标准接线图。
电流电压互感器额定二次容量计算方法

附录C 电流互感器额定二次容量计算方法电流互感器实际二次负荷(计算负荷)按公式(1)计算:2222()I n jx l jx m k S I K R K Z R =+∑+ (1)2nI S =K ×2I S电流互感器二次回路导线截面A 与电阻值的关系如式(2)所示。
l LR A ρ= (2)式中:2I S ——电流互感器实际二次负荷(计算负荷),VA2nIS ——设计选择的电流互感器二次额定负荷,VA K ——系数,一般选择1.5~3A ——二次回路导线截面, 2mmρ——铜导电率,257m /mm )ρ=Ω,(•L ——二次回路导线单根长度,ml R ——二次回路导线电阻,Ωjx K ——二次回路导线接触系数,分相接法为2,,星形接法为1; 2jx K ——串联线圈总阻抗接线系数,不完全星形接法时如存在V 相串联线圈(如接入90,其余为1。
2nI ——电流互感器二次额定电流,A ,一般为5A 或1A 。
m Z ——计算相二次接入单个电能表电流线圈阻抗,单个三相电子式电能表一般选定为0.05Ω,三相机械表选择0.15Ω。
mZ ∑——计算相的电流互感器其二次回路所串接入的N 个电能表电流线圈总阻抗之和。
k R ——二次回路接头接触电阻,一般取0.05~0.1根据上述的设定,以二次额定电流为5A ,分相接法,4 mm ²的电缆长100米,本计量点接入2个三相电子表为例,222221.5()21001.55(120.050.1)57440I n jx l jx m k S I K R K Z R =+∑+⨯⨯⨯+⨯⨯+⨯ = =(VA)取40VA ,如电流互感器选择40VA 有困难,则应加大导线截面,选用较小容量的设备。
而上述计量装置采用简化接线方式时,本计量点电流互感器的额定容量为:222221.5()11005(120.050.1)574I n jx l jx m k S I K R K Z R =+∑+⨯⨯⨯+⨯⨯+⨯ =1.5 =24(VA)取30VA 。
电压互感器设计计算完整版

电压互感器设计计算完整版电压互感器的设计计算需要考虑以下几个关键参数:变比(Turns Ratio)、额定电压(Rated Voltage)、额定绝缘水平(Rated Insulation Level)、额定频率(Rated Frequency)、额定输出(Secondary Rated Output)和准确度等级(Accuracy Class)。
首先,根据系统要求和设备额定功率,确定电压互感器的变比。
变比(k)的计算公式为:k=V1/V2其中,V1为高压线路的额定电压,V2为低压线路的额定电压。
根据具体要求,选择合适的变比。
其次,根据系统的额定电压和电压互感器的变比,计算电压互感器的额定电压(Un)。
额定电压一般选择高压电压阶段的最大值。
然后,确定电压互感器的额定绝缘水平(Ui)。
额定绝缘水平表示电压互感器的抗电击穿能力。
根据系统电气设备的要求,选择合适的额定绝缘水平。
接下来,确定电压互感器的额定频率(f)。
额定频率一般为50Hz或60Hz,根据系统的实际情况选择。
然后,根据电压互感器的额定电压和额定功率,计算电压互感器的额定输出(Ps)。
Ps=Un*Is其中,Un为电压互感器的额定电压,Is为电压互感器的额定输出电流。
最后,确定电压互感器的准确度等级(Accuracy Class)。
准确度等级是指电压互感器的测量误差范围。
根据具体要求,选择合适的准确度等级。
除了以上关键参数,电压互感器的设计还需要考虑安装方式、外形尺寸、绝缘材料和重要零部件的选型等。
综上所述,电压互感器的设计计算需根据系统要求和设备额定功率确定变比、根据系统的额定电压和电压互感器的变比计算额定电压、确定额定绝缘水平、选择额定频率、根据额定电压和额定功率计算额定输出、选择准确度等级等。
在设计过程中,还需要考虑安装方式、外形尺寸、绝缘材料和重要零部件的选型等因素。
仔细计算和选择,能够设计出满足系统要求的高质量电压互感器。
电压互感器设计计算完整版

电压互感器设计计算 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第六章电压互感器设计计算第一节计算依据电压互感器计算依据是:(1)额定一次电压、(2)额定二次电压(3)剩余电压绕组(如果有)额定电压(4)二次绕组准确级及额定电压,极限输出(5)剩余电压绕组(如果有)准确级及额定电压(6)额定频率(7)绝缘水平第二节铁心和绕组设计计算一、铁心设计计算1.铁心额定磁通密度选择额定磁通密度是一个选择性很强的基本设计参数。
不同的电压互感器其额定磁通密度值差别很大。
选择合适的额定磁通密度是产品设计中必须首先解决的问题之一。
额定磁通密度与互感器误差及过励磁特性直接有关,其数值选取分析如下。
(1)单相及三相不接地电压互感器通常用于测量过压、压保护,当系统发生故障时并不改变互感器相间电压或线端与中心点的电压。
因此这两种电压互感器并不承受系统故障所引起的工频电压升高。
它们可能承受的最大工频电压升高幅度一般不超过倍额定电压,是指发电机突然甩负荷而引起的飞转,长线电容效应等所引起的工频电压升高。
此时如果铁心过饱和,二次绕组感应电势中将含有较大的三次谐波分量,电压波形失真。
这种电压互感器选择磁通密度时需满足以下两点要求。
a.电压互感器在两个极限电压空载误差的差值不应过大。
b.系统出现工频电压升高时,互感器铁心不应过饱和。
这种电压互感器选取额定磁通密度应不大于。
(2)供中性点有效接地系统使用的单相接地电压互感器,主要用于测量及单相接地保护。
互感器一次绕组连接在相与地间,它除了承受幅度一般不超过倍额定电压的工频电压升高外,还要承受接地短路引起的工频过电压,其幅度一般不超过倍额定电压。
这两种过电压都是瞬时的,选择这种互感器额定磁通密度时,需满足以下三点要求。
a.测量用绕组在两个极限电压下空载误差的差值不应过大。
b.系统出现工频电压升高时,互感器铁心不应过饱和。
c.系统发生单相接地短路时,互感器铁心不应过饱和。
互感器设计其它知识

电压互感器的设计1、铁芯截面积计算铁心截面积(S)=铁芯切面的长×宽图1该铁芯截面积为60×25+50×16+40×10+30×6=28.8cm22、匝数计算首先要知道二次电压是多少,一般有100V和100/√3V,100/√3就是57.73672V,约58V,剩余绕组为100/3V,就是33.3V,我们在设计时只考虑主绕组的100V和100/√3V,同时要考虑铁芯的磁通密度,一般二次输出100V的电压互感器磁通密度定在1.1-1.15特斯拉,100/√3V的电压互感器磁通密度定在0.7-0.8特斯拉之间,如磁通密度过高铁芯容易发热,严重时会发生爆炸,影响供电。
根据公式可知:匝数=二次电压(100或58V)×10000/222/0.96(叠片系数)/磁通密度/铁芯截面积2.1 如果二次输出为100V,按照图1举例说明:匝数=100×10000/222/0.96(叠片系数)/1.1/28.8匝数=1482.2 如果二次输出为100/√3V,按照图1举例说明:匝数=58×10000/222/0.96(叠片系数)/0.75/28.8匝数=1232.3 不管你设计的是10KV还是35KV产品,给你一个切面的铁芯,那就决定了这台互感的二次匝数,(根据设计思路的不同,所取的磁通密度也会因人而异,二次匝数偏差一般不会超出10%)其它部分的几何尺寸设计就要按照理论计算来确定,或者借助于计算机用制图软件来虚拟描绘,确定最终铁芯规格。
2.4 二次匝数得出后怎么计算一次匝数呢?根据公式得出:一次匝数/二次匝数= 一次电压/二次电压即一次匝数=二次匝数×一次电压/二次电压但是在实际制造过程中由于铁芯有磁滞损耗特性,所以要考虑误差补偿,一般采用一次匝数补偿法,就是在一次线圈上增减数匝到数十匝来补偿误差成绩。
3、剩余绕组的计算3.1 压变在实际使用中线路上如出现单相接地故障,而为了保护其它电器设备的安全,及时反馈故障到保护电路,所以在电压互感器上设计有剩余绕组也称之为保护绕组。
电流、电压互感器额定二次容量计算方法

电流、电压互感器额定二次容量计算方法-CAL-FENGHAI.-(YICAI)-Company One1附录C 电流互感器额定二次容量计算方法电流互感器实际二次负荷(计算负荷)按公式(1)计算:2222()I n jx l jx m k S I K R K Z R =+∑+ (1)2nI S =K ×2I S电流互感器二次回路导线截面A 与电阻值的关系如式(2)所示。
l LR A ρ= (2)式中:2I S ——电流互感器实际二次负荷(计算负荷),VA2nIS ——设计选择的电流互感器二次额定负荷,VA K ——系数,一般选择~3A ——二次回路导线截面, 2mmρ——铜导电率,257m /mm )ρ=Ω,(•L ——二次回路导线单根长度,ml R ——二次回路导线电阻,ΩjxK ——二次回路导线接触系数,分相接法为2星形接法为1;2jx K ——串联线圈总阻抗接线系数,不完全星形接法时如存在V 相串联线圈(如接入90o 1。
2nI ——电流互感器二次额定电流,A ,一般为5A 或1A 。
m Z ——计算相二次接入单个电能表电流线圈阻抗,单个三相电子式电能表一般选定为Ω,三相机械表选择Ω。
m Z ∑——计算相的电流互感器其二次回路所串接入的N 个电能表电流线圈总阻抗之和。
k R ——二次回路接头接触电阻,一般取~根据上述的设定,以二次额定电流为5A ,分相接法,4 mm2的电缆长100米,本计量点接入2个三相电子表为例,222221.5()21001.55(120.050.1)57440I n jx l jx m k S I K R K Z R =+∑+⨯⨯⨯+⨯⨯+⨯ = =(VA)取40VA ,如电流互感器选择40VA 有困难,则应加大导线截面,选用较小容量的设备。
而上述计量装置采用简化接线方式时,本计量点电流互感器的额定容量为:222221.5()11005(120.050.1)574I n jx l jx m k S I K R K Z R =+∑+⨯⨯⨯+⨯⨯+⨯ =1.5 =24(VA)取30VA 。
电压互感器相关设计与计算

电压互感器相关设计与计算一、电压互感器的工作原理1.高压绕组:高压绕组通过与高电压设备的电路相连,感应该设备的电势,高压端的电势通过高压绕组传导到互感器的低压端。
2.低压绕组:低压绕组是用来输出互感器的低电压信号的绕组,它的线圈匝数较高,通常为几千匝。
低电压信号可以用于电力测量、保护和继电器等应用。
3.铁芯:铁芯是电压互感器的重要组成部分,它通过磁耦合的方式将高电压的电势传导到低电压绕组。
铁芯的质量和导磁特性对电压互感器的精度和性能有着重要影响。
二、电压互感器的设计要点在设计电压互感器时,需要考虑以下要点:1.额定电压:根据应用要求和电力系统的额定电压,确定电压互感器的额定电压值。
额定电压是互感器设计的基本参考参数。
2.检定准确度等级:根据使用要求和国家标准,选择电压互感器的检定准确度等级。
检定准确度等级决定了电压互感器的测量精度。
3.绝缘水平:电压互感器需要具备良好的绝缘性能,以确保安全可靠的运行。
绝缘材料的选择和绝缘水平的确定是设计过程中的重要考虑因素。
4.负载特性:电压互感器在不同负载条件下的输出特性需要进行分析和计算。
通常要求电压互感器在负载变化范围内具有较好的线性性能。
5.频率响应:电压互感器需要具备较好的频率响应特性,能够在不同频率下稳定输出信号。
频率响应的计算和分析可以根据电力系统的工作频率来确定。
三、电压互感器的计算方法根据电压互感器的设计要点,可以采用以下计算方法进行设计:1.高压绕组的匝数计算:根据高压绕组的匝数和高压绕组与低压绕组的变比关系,可以计算出低压绕组的匝数。
2.铁芯和铁芯材料的选取:铁芯的尺寸和材料的选择对电压互感器的性能有着重要的影响。
通过计算和分析,可以确定合适的铁芯尺寸和材料。
3.绝缘材料的选取:根据绝缘水平的要求和电压互感器的使用环境,选择合适的绝缘材料,确保电压互感器的安全可靠运行。
4.负载特性的计算:根据电压互感器的设计要求和应用需求,计算和分析电压互感器在不同负载条件下的输出特性。
电流、电压互感器额定二次容量计算方法

附录C 电流互感器额定二次容量计算方法电流互感器实际二次负荷(计算负荷)按公式(1)计算:2222()I n jx l jx m k S I K R K Z R =+∑+ (1) 2nI S =K ×2I S电流互感器二次回路导线截面A 与电阻值的关系如式(2)所示。
l L R A ρ= (2)式中:2I S ——电流互感器实际二次负荷(计算负荷),VA2nIS ——设计选择的电流互感器二次额定负荷,VA K ——系数,一般选择1.5~3A ——二次回路导线截面, 2mm ρ——铜导电率,257m /m m )ρ=Ω,(•L ——二次回路导线单根长度,m lR ——二次回路导线电阻,Ωjx K——二次回路导线接触系数,分相接法为2,不完全星形接法为星形接法为1; 2jx K ——串联线圈总阻抗接线系数,不完全星形接法时如存在V 相串联线圈(如接入901。
2nI ——电流互感器二次额定电流,A ,一般为5A 或1A 。
m Z ——计算相二次接入单个电能表电流线圈阻抗,单个三相电子式电能表一般选定为0.05Ω,三相机械表选择0.15Ω。
m Z ∑——计算相的电流互感器其二次回路所串接入的N 个电能表电流线圈总阻抗之和。
k R ——二次回路接头接触电阻,一般取0.05~0.1根据上述的设定,以二次额定电流为5A ,分相接法,4 mm ²的电缆长100米,本计量点接入2个三相电子表为例,222221.5()21001.55(120.050.1)57440I n jx l jx m k S I K R KZ R =+∑+⨯⨯⨯+⨯⨯+⨯ = =(VA)取40VA ,如电流互感器选择40VA 有困难,则应加大导线截面,选用较小容量的设备。
而上述计量装置采用简化接线方式时,本计量点电流互感器的额定容量为:222221.5()11005(120.050.1)574I n jx l jx m k S I K R KZ R =+∑+⨯⨯⨯+⨯⨯+⨯ =1.5 =24(VA)取30VA 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章电压互感器设计计算第一节计算依据电压互感器计算依据是:(1)额定一次电压、(2)额定二次电压(3)剩余电压绕组(如果有)额定电压(4)二次绕组准确级及额定电压,极限输出(5)剩余电压绕组(如果有)准确级及额定电压(6)额定频率(7)绝缘水平第二节铁心和绕组设计计算一、铁心设计计算1.铁心额定磁通密度选择额定磁通密度是一个选择性很强的基本设计参数。
不同的电压互感器其额定磁通密度值差别很大。
选择合适的额定磁通密度是产品设计中必须首先解决的问题之一。
额定磁通密度与互感器误差及过励磁特性直接有关,其数值选取分析如下。
(1)单相及三相不接地电压互感器通常用于测量过压、压保护,当系统发生故障时并不改变互感器相间电压或线端与中心点的电压。
因此这两种电压互感器并不承受系统故障所引起的工频电压升高。
它们可能承受的最大工频电压升高幅度一般不超过1.3倍额定电压,是指发电机突然甩负荷而引起的飞转,长线电容效应等所引起的工频电压升高。
此时如果铁心过饱和,二次绕组感应电势中将含有较大的三次谐波分量,电压波形失真。
这种电压互感器选择磁通密度时需满足以下两点要求。
a.电压互感器在两个极限电压空载误差的差值不应过大。
b.系统出现工频电压升高时,互感器铁心不应过饱和。
这种电压互感器选取额定磁通密度应不大于1.2T。
(2)供中性点有效接地系统使用的单相接地电压互感器,主要用于测量及单相接地保护。
互感器一次绕组连接在相与地间,它除了承受幅度一般不超过1.3倍额定电压的工频电压升高外,还要承受接地短路引起的工频过电压,其幅度一般不超过1.5倍额定电压。
这两种过电压都是瞬时的,选择这种互感器额定磁通密度时,需满足以下三点要求。
a.测量用绕组在两个极限电压下空载误差的差值不应过大。
b.系统出现工频电压升高时,互感器铁心不应过饱和。
c.系统发生单相接地短路时,互感器铁心不应过饱和。
三点要求中起决定性作用的是c点。
这种电压互感器选取额定磁通密度时应不大于1T。
(3)供中性点非有效接地系统使用的单相电压互感器和三相电压感器,它们所承受的过电压也有两种。
1.3倍额定电压的工频电压升高和单相接地短路引起的工频过电压,其幅度一般不超过1.9倍额定电压。
前一种过电压是瞬时的,而后一种过电压可持续数小时。
另外,中性点非有效接地系统中互感器可能引起并联铁磁谐振,仅以铁磁谐振要求,铁心额定磁通密度愈小愈好。
选取这种电压互感器额定磁通密度时,需满足以下四点要求。
a.测量用绕组在两个极限电压下空载误差的差值不应过大。
b.系统出现工频电压升高时,互感器铁心不应过饱和。
c.系统发生单相接地短路时,互感器铁心不应过饱和。
d.互感器具有良好的过励磁特性,以尽量防止并联铁磁谐振发生。
四点要求中起决定性作用的是c、d两点,这种电压互感器选取的额定磁通密度应不大于0.8T。
必须指出,三相铁心不对称,三相励磁特性不相同,这对防止铁磁谐振不利。
为此,三相磁路不对称的三相接地电压互感器,额定磁通密度还应适当降低,选取应不大于0.7T。
2.铁心截面确定(1)按磁通密度确定铁心截面根据选定的磁通密度,初步计算 电压互感器铁心直径确定的原理和方法与变压器相似。
为了 出所需要的心柱及铁轭的截面积。
为了确定铁心D 必须选取合适的磁通密度B N 与每匝电势e t 。
心柱截面积:c t c fB e A 44.4104⨯= , 2cm FC N t K B e D 57.7=铁轭截面积:y t y fB e A 44.4104⨯=, 2cm 如:86.015.13.257.7⨯=D =11.54cm式中 e t ------ 绕组的每匝电压,V /匝, 取D=115mm (标准直径) e t----每匝电压,V f ------ 额定频率, H Z N B ---- 额定磁通密度,TB C ------ 铁心柱磁通密度,T FC K ---- 心柱空间利用系数,初步可取0.84~0.88 B y ------ 铁轭磁通密度, T (经验值取0.86) (2)按心柱及铁轭尺寸计算截面积叠片铁心的心柱叠装成呈外接圆型的多级形状,级数愈多,心柱填充绕线筒内孔空间的填充 系数愈大,填充系数α=外接圆面积/铁心柱截面积。
用积分方法计算出不同级数时,填充系数最大时 的各级铁心片宽,如图6-1所示。
为了便于生产管理,硅钢片合理剪裁,使铁心片宽标准化,片宽取整 数且为5mm 进级,如片宽为20、25、30、35、40mm 等等。
按图6-1计算出的片宽大多数不是标准值,此时应取与其数值相近的标准片宽,每级厚度也应尽量取成整数。
根据按图6-1确定的尺寸计算铁心柱的有效截面积。
〔第一级(厚度×片宽)+第二级(厚度×片宽)+第三级(厚度×片宽级)+第四级……〕 ×叠片系数叠片系数是铁心柱或铁轭有效截面积与其几何截面积的比值。
硅钢片厚度一定时,叠片系数与铁 心叠片的波浪度,绝缘厚度与铁心夹紧程度有关。
对于0.35mm 厚冷轧硅钢片叠片系数为0.94~0.95, 对于0.35mm 厚热轧硅钢片叠片系数为0.91~0.92。
矩形卷铁心,“c”型铁心及叠片铁心的铁轭多为 矩形截面,其有效截面为: 铁心片宽×铁心厚度×叠片系数 铁心片宽应取标准尺寸。
(3)根据需要的A C 和A y ,选取心柱及铁轭标准尺寸。
如果A C 、A y 与标准尺寸的截面积有差别, 应调整B C 、B y 使二着截面积相同,但标准尺寸的截面积应不小于A C 、A y 。
通常A y 应大于A C 5%~10%。
3.铁心尺寸确定根据绕组的高度、直径,绕组到铁心各部分的绝缘距离以及绕组之间的绝缘距离,来确定铁心总的尺寸。
确定铁心尺寸还应考虑油箱形状及产品选型的要求。
(补充说明的资料)铁心柱及铁轭磁密的确定:对单相双柱铁心和三相三柱铁心(忽略三相磁路不对称的影响。
)心柱磁密(T ) ct c fA e B π2104⨯= 铁轭磁密(T )B e = A C B C /A e 单相单柱带双旁轭铁心,铁轭截面积按心柱的1/2再适当放大;而三相三柱带双旁轭铁心,铁轭截 面则按心柱截面的1/3再作适当放大。
4.铁心重量计算(1)单相双柱铁心 见图6-2,其重量计算如下: 铁心柱重量:G c =2HA C g γ×10-3 , kg铁轭重量:G y =2MO A y g γ×10-3+2H y A C g γ×10-3, kg 铁心重量:G= G c +G y , kg 式中g γ---硅钢片比重,g/cm 3(2) 单相三柱铁心 见图6-3,其重量计算如下: 铁心柱重量:G c =HA C g γ×10-3 , kg铁轭重量:G y =(MB+H +2H y )A y g γ×10-3, kg 铁心重量:G= G c +G y , kg 式中g γ---硅钢片比重,g/cm 3(3) 三相三柱铁心 见图6-4,其重量计算如下: 铁心柱重量:G c =HA C g γ×10-3 , kg铁轭重量:G y =2MO A y g γ×10-3+H y A C g γ×10-3, kg 铁心重量:G= 3G c +2G y , kg 式中g γ---硅钢片比重,g/cm 3(4) 三相五柱铁心 见图6-5,其重量计算如下: 铁心柱重量:G c =2HA C g γ×10-3 , kg主铁轭重量:G y =2MO A y g γ×10-3 , kg旁铁轭重量:G b =(2MO b +H+H b )A b g γ×10-3 , kg铁心重量:G= 3G c +2G y +2G b , kg 式中A b ---旁轭截面积, cm 2二、绕组设计计算1.一次绕组(1) 匝数确定首先需要选取合理的每匝电压e t。
e t值直接影响产品的误差性能和经济指标。
在确定磁通密度已经确定的情况下,e t值愈大铁心愈大,硅钢片用量多,空载误差大,e t值愈小绕组匝数愈多,导线用量多,绕组阻抗压降大,误差大。
用多方案计算比较,以求得到最佳每匝电压值。
选择e t值还应使二次绕组为整数匝,剩余电压绕组、保护绕组和其它二次绕组亦应尽量为整数匝,以减少因非整数匝所造成的误差。
根据以往的经验,开始计算时可先按表6-1选择e t值。
互感器额定电压,KV 10及以下35 110及以下每匝电压et,V/匝0.4~1 0.7~1.3 1.8~3一次绕组额定匝数计算公式为N1n=U1n/e t ,匝。
在选择每匝电压时,要特别注意使输出侧的二次绕组和三次绕组的匝数都接近整数匝,以减少匝数比的误差。
在输出容量和准确定给定(约束条件)时,最佳变量的组合可获得成本最低和重量最轻的最优方案;而在几何尺寸和准确度给定时,则可获得输出容量最大的最佳方案。
(2) 导线选择电压互感器一次绕组采用漆包圆铜线,因额定负荷及极限输出都很小,不能完全根据温升限值选择导尺寸。
应着重考虑导线的机械强度和短路电流。
一般导线直径不小于0.2mm.线径过细绕线时容易拉断,或在绕线过程线径变细而影响产品性能。
如果有性能良好的绕线设备,也可以选择线径更小的导线,但在二次短路时铜导线的电流密度不应大于160/mm2.导线截面积计算:S1=πr12,mm2r1—导线半径,mm.(3) 一次绕组设计与绝缘计算电压互感器大都采用多层同心圆筒式绕组。
根据造型需要,一次绕组可以布置成轴向尺寸大于径向尺寸,也可以使径向尺寸大于轴向尺寸。
径向尺寸大的绕组其导线电阻及漏电抗较大。
为了增加绕组至主铁轭的距离,一次绕组也可布置成截面为宝塔形状。
总之,需要综合考虑各种因素而设计绕组形状。
计算多层同心圆筒绕组尺寸,首先选定每层线匝数,再计算导线层数及层间绝缘,最后计算绕组轴向和径向尺寸。
调整每层匝数,改变绕组轴向和径向尺寸,直到满足要求为止。
设计一次绕组应进行下列计算:a.线层高度计算一次绕组加静电屏补偿后,一般情况下,QQ-2型缩醛漆包线和QZ-2型聚酯漆包线可以满足各种电压互感器一、二次绕组匝间绝缘的要求。
有时二次绕组及剩余电压绕组采用截面大的纸包线,纸包线的绝缘厚度δ为0.3、0.45、0.8、1.2 mm等。
根据绕组匝间绝缘要求选用不同的纸层厚度。
如果绕组直径很大或漆包线针孔较多,还应在漆包线外增加丝包绝缘层或纱包绝缘层。
每层导线高度= 导线绝缘直径×(每层匝数+1)×胀包系数式中的胀包系数与导线的绝缘直径有关,φ0.5mm及以下导线胀包系数为1.06~1.08,φ0.5mm 以上导线胀包系数为1.04~1.06。
对于浇注互感器及干式互感器,线层高度应尽可能小,树脂或绝缘漆容易充满绕组线层之间。