高中物理牛顿第二定律——板块模型解题基本思路
轻松解决“板块”问题

知识点考纲要求题型分值牛顿第二定律的应用应用牛顿第二定律解决问题“板块”问题的一般模型与解决方法。
选择题解答题6~15分二、重难点提示理解并掌握发生相对运动时的力学特征。
“板块”问题就是通常遇到的叠放问题,由于其往往可看成由物块和木板构成的一对相互作用模型,故将其形象称为“板块”问题。
其应用的知识面较为广泛,与运动学、受力分析、动力学、功与能等有着密切联系,而且往往牵涉着临界极值问题,能够较好地考查对知常见基本问题处理方法分析物体所受的摩擦力(动力、阻力)根据物块与木板的相对运动方向来判断,摩擦力的突变时刻:物v与板v相同时板、块能一起加速运动的最大加速度板、块间达到最大静摩擦力时相对位移的计算弄清对地位移和相对位移的概念是前提。
可先由运动学公式求出某段时间内物体与传送带的对地位移,然后用“快”的减去“慢”的就是差距。
也可应用图象法或相对运动法进行求解物块不从木板上掉下去的条件物块与木板保持相对静止时物块还在木板上,弄清达到临界状态的时间和位移关系例题1 如图所示,一速率为v0=10m/s的物块冲上一置于光滑水平面上且足够长的木板上。
物块质量为m=4kg,木板质量M=6kg,物块与木板间的动摩擦因数6.0=μ,试问:物块将停在木板上何处?思路分析:物块冲上木板后相对木板向右运动,会在木板摩擦力作用下匀减速运动,木板会在摩擦力作用下匀加速运动,两者共速后,一起匀速运动。
求物块停在木板上何处,实际是在求物块与木板的相对位移大小。
方法一(基本公式法)由牛顿第二定律可知:对物块1ma mg =μ;对木板2Ma mg =μ解得 21m/s 6=a ,22m/s 4=a设两者共速时所用时间为t ,则t a t a v 210=-解得 s 1=t这段时间物块与车的位移大小分别为 m 7212101=-=t a t v x m 221222==t a x 两车的位移之差m 521=-=∆x x x故物块能停在距木板左端5m 处。
牛顿第二定律解题思路

牛顿第二定律解题思路一、高中物理研究问题,有两条最基本的途径:一是从运动和力的角度去进行研究,另一条是从功和能的角度去进行研究。
这两条途径,几乎渗透于整个高中物理的全部,其中第一条途径的核心是牛顿运动定律。
应用牛顿定律来解决问题,我们应该遵循的最基本的方法是:对象→受力→过程→模型→规律→方程→结果即首先要弄清研究的对象是哪个物体,它受到哪些力,运动的过程是怎么样的;然后建立起一个合理的动力学模型,确定所应用规律,例出方程,求得结果。
一般来说,应用牛顿定律来解决问题通常有如下二大类问题:第一类是非常重视力和加速度的因果关系。
第二类是动力学与运动学结合在一起。
二、解题方法(1)矢量合成法:若物体只受两个力作用时,应用平行四边形定则求这两个力的合力,再由牛顿第二定律求出物体的加速度的大小及方向.加速度的方向就是物体所受合外力的方向.反之,若知道加速度的方向也可应用平行四边形定则求物体所受的合力.(2)正交分解法:当物体受多个力作用时,常用正交分解法求物体的合外力.应用牛顿第二定律求加速度,在实际应用中常将受力分解,且将加速度所在的方向选为x 轴或y 轴,有时也可分解加速度,即⎩⎪⎨⎪⎧F x =ma x F y =ma y 基本(3)解题步骤:1、 确定研究对象2、 对研究对象进行受力分析3、 分析对象的运动情况(特别确定加速度的情况:包括方向和大小)4、 把物体受到的所有外力分解到加速度方向和垂直加速度方向5、 在加速度方向:利用牛顿第二定律建议程;在垂直加速度方向:利用单方向平衡建方程解题。
6、 关于加速度:利用已知条件或其它求解。
三:应用举例:例1:11.如图6-2-2所示,位于水平面上的质量为M 的小木块,在大小为F 、方向与水平方向成α角的拉力作用下沿地面做加速运动.若木块与地面之间的动摩擦因数为μ,则木块的加速度为[ ] 图6-2-2A F/MB .Fcos α/MC .(Fcos α-μMg)/M D.[Fcos α-μ(Mg-Fsin α)]/M 例2:如图所示,车内绳AB 与绳BC 拴住一小球,BC 绳水平,车由静止向右作匀加速直线运动,小球仍处于图中所示位置,则[ ]A .AB 绳拉力变大,BC 绳拉力变大 B .AB 绳拉力变大,BC 绳拉力变小C .AB 绳拉力变大,BC 绳拉力不变D .AB 绳拉力不变,BC 绳拉力变大例3. 如图所示,质量为m 2的物体2放在正沿平直轨道向右行驶的车厢底板上,并用竖直细绳通过光滑定滑轮连接质量为m 1的物体l ,与物体l 相连接的绳与竖直方向成θ角,则( )A. 车厢的加速度为gsin θB. 绳对物体1的拉力为m 1g /cos θC. 底板对物体2的支持力为(m 2-m 1)gD. 物体2所受底板的摩擦力为m 2gtan θ例4:风洞实验中可产生水平方向的、大小可调节的风力,现将一套有小球的细直杆放入风洞实验室,小球孔径略大于细杆直径,如图1所示。
高中物理牛顿第二定律——板块模型解题基本思路.pdf

现对物块施加一外力 F ,板块间动摩擦因数为
,
F
m 的物块,
假设长板与物块无相对运动一起加速,所以我们可以采用整体法来进行求解:
4
F (M m)a
当外力 F 增大时,整体的加速度 a 增大,说明长板和物块的加速度同时增大,
但对于 m :由于受到外力 F 的作用作为动力来源,所以 m 的加速度无最大值。
假设长板与物块无相对运动一起加速,所以我们可以采用整体法来进行求解:
F (M m)a 当外力 F 增大时,整体的加速度 a 增大,说明长板和物块的加速度同时增大, 但对于 m :由于加速度的来源是 M 施加的静摩擦力产生,二者间的静摩擦力存在最大值, 所以当二者间静摩擦力达到最大值是 m 的加速度也就存在着对应的最大值。 但对于 M :由于受到外力 F 的作用作为动力来源,所以 m 的加速度无最大值。
但对于 M :由于加速度的来源是 m 施加的静摩擦力产生,二者间的静摩擦力存在最大值,
所以当二者间静摩擦力达到最大值时 M 的加速度也就存在着对应的最大值,
即: mg 解得: F 当0 F
Ma ,将 a
mg
带入上式,
M
m( M m)g
为一临界值。
M
m( M m) g 时,板块间无相对滑动,一起匀以共同的加速度匀加速运动 M
5
即: mg ma ,将 a g 带入上式, 解得: F ( M m) g 为一临界值。
当 0 F ( M m) g 时,板块间无相对滑动,一起匀以共同的加速度匀加速运动 F 增大,二者间的静摩擦力增大。 当 F (M m)g 时,板块间发生相对滑动, am aM F 增大,二者间的滑动摩擦力不变为 f mg , aM 增大, am 不变
牛顿第二定律的综合应用——动力学中的“板块”和“传送带”模型

动力学中的“板块”和“传送带”模型一.“滑块—滑板”模型1. 模型特点:上下叠放两个物体,在摩擦力的相互作用下发生相对滑动。
2. 两种位移关系①物体的位移:各个物体对地的位移,即物体的实际位移。
②相对位移:一物体相对另一的物体的位移。
两种情况。
(1)滑块和滑板同向运动时,相对位移等两物体位移之差,即.21x x x -=∆相 (2)滑块和滑板反向运动时,相对位移等两物体位移之和,即.21x x x +=∆相 这是计算摩擦热的主要依据,.相滑x f Q ∆=3. 解题思路:(1)初始阶段必对各物体受力分析,目的判断以后两物体的运动情况。
(2)二者共速时必对各物体受力分析,目的判断以后两物体的运动情况。
二者等速是滑块和滑板间摩擦力发生突变的临界条件,是二者相对位移最大的临界点。
(3)物体速度减小到0时,受力分析,判断两物体以后是相对滑动还是相对静止。
相对静止二者的加速度a 相同;相对滑动二者的加速度a 不同。
(4)明确速度关系:弄清各物体的速度大小和方向,判断两物体的相对运动方向,从而弄清摩擦力的方向,正确对物体受力分析。
例.如图,两个滑块A 和B 的质量分别为m A =1 kg 和m B =5 kg ,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m =4 kg ,与地面间的动摩擦因数为μ2=0.1.某时刻A 、B 两滑块开始相向滑动,初速度大小均为v 0=3 m/s.A 、B 相遇时,A 与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g =10 m/s 2.求:(1)B 与木板相对静止时,木板的速度; (2)A 、B 开始运动时,两者之间的距离.〖思路指导〗(1)AB 开始运动时,相向均做减速运动,二者初速等大,加速度等大,则经历相等时间,v ∆相等.即相同时刻速度等大.对A 、B 、木板分析B 和木板同向向右运动,A 和木板反向运动,故B 和木板先相对静止,A 减速到0后,反向加速再与木板共速. (2)B 和木板共速后是相对滑动还是相对静止,假设法讨论.相对静止的条件:f<f max . 解析:(1)B 和木板共速前,AB 加速度分别为a A 、a B ,木板加速度为a 1.经t 1木板和B 共速. 对A 向左减速,加速度大小:../5,211向右解得s m a a m g m A A A ==μ 对B 向右减速,加速度大小:.m /s 5,21==B B B B a a m g m 解得μ对木板,由于g m m m g m g B A A B )(m 211++>-μμμ,则合外力向右,向右加速运动../5.2,)(-m 211211s m a ma g m m m g m g B A A B ==++-解得μμμB 和木板共速有:,1110t a t a v B =-解得t 1=0.4s../110s m t a v v B B =-=0.8m.t 2v v x 1Bo B =+= A 的速度大小v A =v B =1m/s.(2)设B 和木板共速后相对静止,对B 和木板:./m 35,)m 22212s a a m m g m g m m B A B A =+=+++解得)((μμ向右减速运动. 对B 有,木板和A相对静止.假设正确,设再经t g,m μN 320a m f 2B 12B B <== A 全程加速度不变.对B 和木板:,222t a v v B -=对A 有:,222t a v v A +-=解得t 2=0.3s.v 2=0.5m/s.0.225m,m 409t 2v v x 22B /B ==+=0.875m.)t (t a 21)t (t v x 221A 210A =+-+= 故 1.9m.x x x L /B B A =++= 练习1. (水平面光滑的“滑块—滑板”模)如图所示,质量M =8 kg 的小车静止在光滑水平面上,在小车右端施加一水平拉力F =8 N .当小车速度达到1.5 m/s 时,在小车的右端由静止轻放一大小不计、质量m =2 kg 的物体,物体与小车间的动摩擦因数μ=0.2,小车足够长.从物体放上小车开始经t =1.5 s 的时间,物体相对地面的位移为(g 取10 m/s 2)( )A .1 mB .2.1 mC .2.25 mD .3.1 m解析:(1)刚放上物体时,对物体:.2m/s解得a ,ma μmg 211== 对小车:,/5.0,222s m a Ma mg F ==-解得μv 0=1.5m/s.设经t 1二者等速v 1.则2m/s.1s,v 解得t ,t a v t a v 11120111==+==此时物体运动:1m.t v 21x 111==故A 错.(2)共速后,设二者相对静止,整体:.0.8m/s,解得a m)a (M F 233=+= 对物体:μmg,<1.6N =ma =f 3假设正确.再经0.5s 物体运动:.1.2,1.12121223212m x x x m t a t v x =+==+=故故B 对CD 错.2. (水平面粗糙的“滑块—滑板”模型)如图所示,一长木板在水平地面上运动,在某时刻(t =0)将一相对于地面静止的物块轻放到木板上.已知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上.在物块放到木板上之后,木板运动的速度—时间图象可能是图中的( )解析:(1)物体刚放上木板,对木板:.a ,mg g )1121向左,减速运动(Ma M m =++μμ (2)共速后若二者相对静止:错,,则(BC a a Ma g M 2121,)m >=+μ 由于地面有摩擦,共速后木板做减速运动,故D 错。
板块模型的解题思路及技巧

板块模型的解题思路及技巧
板块模型的解题思路及技巧:1、“圆周运动”:关键是“找到向心力的来源”;2、“平抛运动”:关键是两个矢量三角形(位移三角形、速度三角形);3、“类平抛运动”:合力与速度方向垂直,并且合力是恒力。
4、“绳拉物问题”:关键是速度的分解,分解哪个速度。
(“实际速度”就是“合速度”,合速度应该位于平行四边形的对角线上,即应该分解合速度)
5、“万有引力定律”:关键就是“两小思路”。
f万=mg适用于于任何情况,特别注意如果就是“卫星”或“类卫星”的物体则g必须就是卫星所在处的g;f万=fn只适用于于“卫星”或“类卫星”。
6、万有引力定律变轨问题:通过离心、向心来理解。
(关键字眼:加速,减速,喷火)。
高中物理牛顿第二定律——板块模型解题基本思路

高中物理基本模型解题思路——板块模型(一)本模型难点:(1)长板下表面是否存在摩擦力,摩擦力的种类;静摩擦力还是滑动摩擦力,如滑动摩擦力,N F 的计算(2)物块和长板间是否存在摩擦力,摩擦力的种类:静摩擦力还是滑动摩擦力。
(3)长板上下表面摩擦力的大小。
(二)在题干中寻找注意已知条件:(1)板的上下两表面是否粗糙或光滑(2)初始时刻板块间是否发生相对运动(3)板块是否受到外力F ,如受外力F 观察作用在哪个物体上(4)初始时刻物块放于长板的位置(5)长板的长度是否存在限定一、光滑的水平面上,静止放置一质量为M ,长度为L 的长板,一质量为m 的物块,以速度0v 从长板的一段滑向另一段,已知板块间动摩擦因数为μ。
首先受力分析:对于m :由于板块间发生相对运动,所以物块所受长板向左的滑动摩擦力, 即:⎪⎩⎪⎨⎧===m N N ma f F f mg F 动动μg a m μ= (方向水平向左)由于物块的初速度向右,加速度水平向左,所以物块将水平向右做匀减速运动。
对于M :由于板块间发生相对运动,所以长板上表面所受物块向右的滑动摩擦力,但下表面由于光滑不受地面作用的摩擦力。
即:动f N F N F '⎪⎩⎪⎨⎧==+='M N N N Ma f F f F Mg F 动动μM mg a M μ= (方向水平向右) 由于长板初速度为零,加速度水平向右,所以物块将水平向右做匀加速运动。
假设当M m v v=时,由于板块间无相对运动或相对运动趋势,所以板块间的滑动摩擦力会突然消失。
则物块和长板将保持该速度一起匀速运动。
关于运动图像可以用t v -图像表示运动状态:公式计算:设经过时间 t 板块共速,共同速度为共v 。
由 共v v v M m == 可得: m 做匀减速直线运动: t a v v m -=0共M 做初速度为零的匀加速直线运动:t a v M M =可计算解得时间: t a t a v M m =-0物块和长板位移关系:m : 2021t a t v x m m -= M : 221t a x M M = 相对位移:M m x x x -=∆v v二、粗糙的水平面上,静止放置一质量为M ,一质量为m 的物块,以速度0v 从长板的一段滑向另一段,已知板块间动摩擦因数为1μ,长板和地面间的动摩擦因数为2μ,长板足够长。
高中物理板块模型解题思路

高中物理板块模型解题思路
高中物理板块模型解题思路可以概括为以下几个步骤:确定研究系统:首先明确题目中涉及到的板块模型,并确定需要研究的是哪个系统或物体。
分析受力情况:对所研究的系统或物体进行受力分析,包括重力、支持力、摩擦力等。
同时需要注意区分内力和外力。
确定运动状态:根据题目描述和受力情况,确定系统或物体的运动状态,如静止、匀速直线运动、匀加速运动等。
建立物理模型:根据运动状态和受力情况,建立相应的物理模型,如牛顿第二定律、动量守恒定律等。
进行数学运算:根据建立的物理模型,列出相应的数学方程或表达式,并进行求解。
得出结论:根据数学运算的结果,得出系统或物体的运动规律或状态,并进行分析和解释。
在解题过程中需要注意以下几点:
板块模型中经常涉及到摩擦力的情况,需要注意摩擦力的方向和大小。
板块模型中有时需要考虑多个物体之间的相互作用,需要分别对每个物体进行受力分析。
板块模型中有时需要考虑动量守恒定律的应用,特别是在碰撞、爆炸等过程中。
板块模型中有时需要考虑能量守恒定律的应用,特别是在涉及能量损失、转化等情况时。
总之,解决板块模型问题需要全面考虑物理规律和数学运算,同时注意细节和特殊情况的处理。
(完整)高中物理牛顿第二定律——板块模型解题基本思路

高中物理基本模型解题思路——板块模型(一)本模型难点:(1)长板下表面是否存在摩擦力,摩擦力的种类;静摩擦力还是滑动摩擦力,如滑动摩擦力,N F 的计算(2)物块和长板间是否存在摩擦力,摩擦力的种类:静摩擦力还是滑动摩擦力。
(3)长板上下表面摩擦力的大小。
(二)在题干中寻找注意已知条件:(1)板的上下两表面是否粗糙或光滑(2)初始时刻板块间是否发生相对运动(3)板块是否受到外力F ,如受外力F 观察作用在哪个物体上(4)初始时刻物块放于长板的位置(5)长板的长度是否存在限定一、光滑的水平面上,静止放置一质量为M ,长度为L 的长板,一质量为m 的物块,以速度0v 从长板的一段滑向另一段,已知板块间动摩擦因数为μ。
首先受力分析:对于m :由于板块间发生相对运动,所以物块所受长板向左的滑动摩擦力, 即:⎪⎩⎪⎨⎧===m N N ma f F f mg F 动动μg a m μ= (方向水平向左)由于物块的初速度向右,加速度水平向左,所以物块将水平向右做匀减速运动。
对于M :由于板块间发生相对运动,所以长板上表面所受物块向右的滑动摩擦力,但下表面由于光滑不受地面作用的摩擦力。
即:动f N F N F '⎪⎩⎪⎨⎧==+='M N N N Ma f F f F Mg F 动动μM mg a M μ= (方向水平向右) 由于长板初速度为零,加速度水平向右,所以物块将水平向右做匀加速运动。
假设当M m v v=时,由于板块间无相对运动或相对运动趋势,所以板块间的滑动摩擦力会突然消失。
则物块和长板将保持该速度一起匀速运动。
关于运动图像可以用t v -图像表示运动状态:公式计算:设经过时间 t 板块共速,共同速度为共v 。
由 共v v v M m == 可得: m 做匀减速直线运动: t a v v m -=0共M 做初速度为零的匀加速直线运动:t a v M M =可计算解得时间: t a t a v M m =-0物块和长板位移关系:m : 2021t a t v x m m -= M : 221t a x M M = 相对位移:M m x x x -=∆v v二、粗糙的水平面上,静止放置一质量为M ,一质量为m 的物块,以速度0v 从长板的一段滑向另一段,已知板块间动摩擦因数为1μ,长板和地面间的动摩擦因数为2μ,长板足够长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理基本模型解题思路
——板块模型
(一)本模型难点:
(1)长板下表面是否存在摩擦力,摩擦力的种类;静摩擦力还是滑动摩擦力,如滑动摩擦力,N F 的计算
(2)物块和长板间是否存在摩擦力,摩擦力的种类:静摩擦力还是滑动摩擦力。
(3)长板上下表面摩擦力的大小。
(二)在题干中寻找注意已知条件:
(1)板的上下两表面是否粗糙或光滑
(2)初始时刻板块间是否发生相对运动
(3)板块是否受到外力F ,如受外力F 观察作用在哪个物体上
(4)…
(5)初始时刻物块放于长板的位置
(6)长板的长度是否存在限定
一、光滑的水平面上,静止放置一质量为M ,长度为L 的长板,一质量为m 的物块,以速度0v 从长板的一段滑向另一段,已知板块间动摩擦因数为μ。
首先受力分析:
对于m :由于板块间发生相对运动,所以物块所受长板向左的滑动摩擦力, —
即:
⎪⎩⎪⎨⎧===m N N ma f F f mg F 动
动μ g a m μ= (方向水平向左)
由于物块的初速度向右,加速度水平向左,所以物块将水平向右做匀减速运动。
对于M :由于板块间发生相对运动,所以长板上表面所受物块向右的滑动摩擦力,但下表面由于光滑不受地面作用的摩擦力。
即: 动
f N
F N
F 'Mg
)
⎪⎩⎪⎨⎧==+='M N N N Ma f F f F Mg F 动
动μ
M mg a M μ= (方向水平向右)
由于长板初速度为零,加速度水平向右,所以物块将水平向右做匀加速运动。
假设当M m v v =时,由于板块间无相对运动或相对运动趋势,所以板块间的滑动摩擦力会突然消失。
则物块和长板将保持该速度一起匀速运动。
关于运动图像可以用t v -图像表示运动状态:
!
公式计算:
设经过时间 t 板块共速,共同速度为共v 。
由 共v v v M m == 可得: m 做匀减速直线运动: t a v v m -=0共
M 做初速度为零的匀加速直线运动:t a v M M =
可计算解得时间: t a t a v M m =-0
物块和长板位移关系:
v v
m : 202
1t a t v x m m -= /
M : 22
1t a x M M =
相对位移: M m x x x -=∆
二、粗糙的水平面上,静止放置一质量为M ,一质量为m 的物块,以速度0v 从长板的一段滑向另一段,已知板块间动摩擦因数为1μ,长板和地面间的动摩擦因数为2μ,长板足够长。
首先受力分析:
对于m :由于板块间发生相对运动,所以物块所受长板向左的滑动摩擦力,
即:
&
⎪⎩⎪⎨⎧===m N N ma f F f mg F 动
动μ g a m 1μ= (方向水平向左)
由于物块的初速度向右,加速度水平向左,所以物块将水平向右做匀减速运动。
对于M :由于板块间发生相对运动,所以长板上表面所受物块向右的滑动摩擦力,下表面受到地面施加方向向左的摩擦力f 的作用。
即:
由于长板所受的上表面向右的滑动摩擦力mg 1μ和下表面地面所施加的最大静摩擦力大小关系未知,这里我们认为最大静摩擦力等于滑动摩擦力,所以我们要进行讨论:
(1)》
N N
F N F 'Mg
mg 1μf
(2)当g m M mg )(21+≤μμ时:
M 仍然保持静止不动, m 以加速度m a 做匀减速直线运动。
(3)当g m M mg )(21+>μμ时:
M 则产生一定的加速度: M Ma g m M mg =+-)(21μμ ,
可求得M 的加速度M a ,方向向右。
所以M 将做初速度为零,加速度M a 的匀加速直线运动,
设经过时间1t 二者速度相等,即共v v v M m ==
解得时间: 110t a t a v M m =-
解得二者共同的速度:共v
m 位移:21102
1t a t v x m m -= ,
M 位移:212
1t a x M M = 二者在此过程中发生的相对位移:M m x x x -=∆
当二者速度相同时,无相对运动,所以二者间滑动摩擦力突然消失,但由于长板下表面
为粗糙,假设二者可以一起匀减速运动:
M m +:共a m M g m M )()(2+=+μ 解得:g a 2μ=共
由于 g g 12μμ<,所以假设成立。
当二者速度相同时,二者共同以加速度共a 做匀减
速运动,不再发生相对运动。
共同匀减速时间:共共
a v t =2
关于运动图像可以用t v -图像表示运动状态:
·
v 1
三、光滑的水平面上,静止放置一质量为M 的长板,长板上静止放置一质量为m 的物块,现对物块施加一外力F ,板块间动摩擦因数为μ,
假设长板与物块无相对运动一起加速,所以我们可以采用整体法来进行求解: a m M F )(
+=
¥
当外力F 增大时,整体的加速度a 增大,说明长板和物块的加速度同时增大,
但对于m :由于受到外力F 的作用作为动力来源,所以m 的加速度无最大值。
但对于M :由于加速度的来源是m 施加的静摩擦力产生,二者间的静摩擦力存在最大值,所以当二者间静摩擦力达到最大值时M 的加速度也就存在着对应的最大值,
即: Ma mg =μ,将M mg a μ=
带入上式, 解得:M
g
m M m F )(+=μ 为一临界值。
当 M g m M m F )(0+≤<μ 时,板块间无相对滑动,一起匀以共同的加速度匀加速运动 F 增大,二者间的静摩擦力增大。
当M g
m M m F )(+>μ 时,板块间发生相对滑动,M m a a >
F 增大,二者间的滑动摩擦力不变为mg f μ= ,m a 增大,M a 不变
^
a
四、光滑的水平面上,静止放置一质量为M 的长板,长板上静止放置一质量为m 的物块,现对长板施加一外力F ,板块间动摩擦因数为μ,
假设长板与物块无相对运动一起加速,所以我们可以采用整体法来进行求解: a m M F )(
+=
;
当外力F 增大时,整体的加速度a 增大,说明长板和物块的加速度同时增大,
但对于m :由于加速度的来源是M 施加的静摩擦力产生,二者间的静摩擦力存在最大值, 所以当二者间静摩擦力达到最大值是m 的加速度也就存在着对应的最大值。
但对于M :由于受到外力F 的作用作为动力来源,所以m 的加速度无最大值。
即: ma mg =μ,将g a μ=带入上式,
解得:g m M F )(+=μ 为一临界值。
当 g m M F )(0+≤<μ 时,板块间无相对滑动,一起匀以共同的加速度匀加速运动 F 增大,二者间的静摩擦力增大。
当g m M F )(+>μ 时,板块间发生相对滑动,M m a a <
F 增大,二者间的滑动摩擦力不变为mg f μ= ,M a 增大,m a 不变
{
从以上几例我们可以看到,无论物体的运动情景如何复杂,这类问题的解答有一个基本技巧和方法:在物体运动的每一个过程中,若两个物体的初速度不同,则两物体必然相对滑动;若两个物体的初速度相同(包括初速为0),则要先判定两个物体是否发生相对滑动,其方a
法是求出不受外力F作用的那个物体的最大临界加速度并用假设法求出在外力F作用下整体的加速度,比较二者的大小即可得出结论。
(。