高等代数_矩阵的相抵合同相似
矩阵相似与合同

矩阵相似与合同1. 矩阵相似矩阵相似是线性代数中一个重要的概念,它描述了两个矩阵之间的一种关系。
在讨论矩阵相似之前,我们先来回顾一下什么是矩阵。
1.1 矩阵的定义矩阵是由m行n列的数排成的一个矩形阵列,记作A=(a ij)m×n。
其中,a ij表示矩阵A中第i行第j列的元素。
1.2 矩阵相似的定义给定两个n阶矩阵A和B,如果存在一个可逆矩阵P,使得B=P−1AP,则称矩阵A和B相似。
矩阵相似关系具有以下性质:•自反性:任意矩阵A都与自身相似,即A相似于A。
•对称性:如果矩阵A与矩阵B相似,则矩阵B与矩阵A相似。
•传递性:如果矩阵A与矩阵B相似,矩阵B与矩阵C相似,则矩阵A与矩阵C相似。
矩阵相似关系可以看作是一种矩阵之间的等价关系,它保持了矩阵之间的某些性质不变。
2. 矩阵合同矩阵合同是另一种描述矩阵之间关系的概念。
与矩阵相似类似,矩阵合同也是通过一个可逆矩阵来表示两个矩阵之间的关系。
2.1 矩阵合同的定义给定两个n阶矩阵A和B,如果存在一个可逆矩阵P,使得B=P T AP,则称矩阵A和B合同。
矩阵合同关系具有以下性质:•自反性:任意矩阵A都与自身合同,即A合同于A。
•对称性:如果矩阵A与矩阵B合同,则矩阵B与矩阵A合同。
•传递性:如果矩阵A与矩阵B合同,矩阵B与矩阵C合同,则矩阵A与矩阵C合同。
矩阵合同关系也可以看作是一种矩阵之间的等价关系,它同样保持了矩阵之间的某些性质不变。
3. 矩阵相似与矩阵合同的关系矩阵相似和矩阵合同都是描述矩阵之间关系的概念,它们之间的区别在于变换矩阵的不同。
对于矩阵相似,变换矩阵是可逆矩阵P,而对于矩阵合同,变换矩阵是可逆矩阵P的转置P T。
矩阵相似和矩阵合同之间的关系可以通过以下定理来描述:定理 1:设A为n阶矩阵,A与对角矩阵D相似,即存在可逆矩阵P,使得D=P−1AP。
则存在正交矩阵Q,使得D=Q T AQ,其中Q是P的标准正交化矩阵。
定理 2:设A为n阶矩阵,A与对称矩阵S合同,即存在可逆矩阵P,使得S=P T AP。
第5章 矩阵的相抵与相似

§5.1 等价关系与集合的划分本节只做简单介绍,考试不考此局部,在以后抽象代数 中还会讲到。
§5.2 矩阵的相抵〔也叫等价〕第一章§1已经证明,任何一个矩阵AJ 。
如果再对J那么能变成什么样的最简单的矩阵?看例子:13213213212101101124601010000A ---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=--→-→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭101011000⎛⎫ ⎪→- ⎪⎪ ⎪⎝⎭〔以上行变换〕; 再经过列变换100010000A ⎛⎫ ⎪→ ⎪⎪⎝⎭。
最后这个矩阵非常简单,把它写成分块矩阵的形式就是:2000I ⎛⎫⎪⎝⎭。
任何一个矩阵经过初等行、列变换是否都可以化成这种简单形呢?定义1 数域K 上的矩阵A 经过一系列初等行变换和初等 列变换变成矩阵B ,那么称A 与B 是相抵的或等价的,记作AB 相抵,或AB 等价。
矩阵的相抵关系满足 1°反身性:AA 相抵, 即A 与自己相抵;2°对称性:假设A B 相抵,那么B A 相抵;3°传递性:假设A B 相抵,BC 相抵, 那么A C 相抵.因此,矩阵的相抵关系是一种等价关系。
事实1 ⇔A 经过初等行变换和初等列变换变成矩阵B⇔存在K 上的s 阶初等矩阵12,,,t P P P 与n 阶初等矩阵12,,,m Q Q Q , 使得2112tm P P PAQQ Q B =〔1〕定理1 设数域K 上的s n ⨯矩阵A 的秩为r 。
如果0r >,那么A 相抵于下述形式的矩阵000rI ⎛⎫⎪⎝⎭, 〔2〕证明 如果0r >, 那么A 经过一系列初等行变换化成的 简化行阶梯形矩阵J 有r 个非零行:1210000100000100000000000000n n rn c c c J ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭再经过适当的两列互换,可以变成下述形式:111212111000010000010000000000r n r n r r rn c c c c J c c +++⎛⎫⎪ ⎪ ⎪ ⎪= ⎪⎪ ⎪ ⎪ ⎪⎝⎭,,,。
矩阵的合同,等价与相似的联系与区别

矩阵的合同,等价与相似的联系与区别一、基本概念与性质(一)等价:1、概念。
若矩阵A可以经过有限次初等变换化为B,则称矩阵A与B等价,记为A = B。
2、矩阵等价的充要条件:A厂「 A.B同型,且人r(A)=r(B)A -B := {存在可逆矩阵P和Q,使得PAQ=®立3、向量组等价,两向量组等价是指两向量组可相互表出,有此可知:两向量组的秩相同,但两向量组各自的线性相关性却不相同。
(二)合同:1、概念,两个n阶方阵A,B,若存在可逆矩阵P,使得A三B P T AP二B 成立,则称A,B合同,记作A三B该过程成为合同变换。
2、矩阵合同的充要条件:矩阵A,B均为实对称矩阵,则A二B=二次型X T A X 与X T BX有相等的E负惯性指数,即有相同的标准型。
(三)相似1、概念:n阶方阵A,B,若存在一个可逆矩阵P使得B = P4AP成立,则称矩阵A,B相似,记为A~B。
2、矩阵相似的性质:A T〜B T, A k ~ B k,A- ~ B-(前提,A, B均可逆)|XE-A |=|XE -B|即A,B有相同的特征值(反之不成立)A ~B r(A)=r(B)tr(A) =tr(B)即A,B的逆相等|A|=|B|3、矩阵相似的充分条件及充要条件:①充分条件:矩阵A,B有相同的不变因子或行列式因子。
②充要条件:A〜Bu (.E—AtCE—B)二、矩阵相等、合同、相似的关系(一)、矩阵相等与向量组等价的关系:设矩阵 A 乂i,,2,||l, n),B=C'1, -2JH, m)1、若向量组(川,d )是向量组(’1,'2,川Jn )的极大线性无关组,则有m ^n,即有两向量等价,而两向量组线性相关性却不同,钱者一定线性无关,而后者未必线性无关。
而矩阵B与A亦不同型,虽然r(A)=r(B)但不能得出A三B。
2、若m=n,两向量组('1,'2^1,'n)= ( -1, -2^1, -m )则有矩阵A,B 同型且r(A)二r(B)二 A 〜B, ALJ B, A 二 B r( A) = r (B)= Am B。
合同与相似概念区别

代数中“合同”与“相似”概念的区别辨析在《高等代数》中队与多个矩阵有“合同”与“相似”的概念,关于这两组概念在定义上有很多相似的地方(合同——'B C AC =,相似——-1B C AC =),并且在《高等代数》在讲到“(欧式空间下)实对称矩阵的标准形”时有如下的定理:因此在这里给我们一种印象,即矩阵间的合同与相似在某种条件下画了=“”,这究竟是怎么回事,为此我们应该去深入的探求矩阵“合同”与“相似”之间的联系。
这个过称是循序渐进的,在学习“双线性函数”后,又对这个问题有了更深刻的理解,并且大胆的估计,“合同”与“相似”在概念上的区别会是代数问题上的一类大问题,现在对这个问题的思考结果归纳如下让我们先从线性变换这一概念出发,我们知道在对线性空间上的线性变换的有关性质直接的进行研究是不好做的,为此我们引进了“线性变换的矩阵”这一概念,即在一个线性变换,n 维空间的一组基,一个n 阶矩阵之间建立起了一对一的关系,关系如图而我们知道同一个线性变换在不同的一组基下,它所对应的矩阵是不同的,而这些矩阵之间的关系我们把它定义为“相似”,并且我们可以知道这些相似矩阵之间有这样的关系1B X AX -=,X 为这两组基之间的过渡矩阵,回顾“相似”概念,我们可以看出,“相似”的提出时基于“线性变换”。
“相似”是同一个线性变换在不同基下的矩阵之间的关系,我们在提炼一下,“相似”的出现是同一个线性变换在不同背景之下的不同的表现形式之间的关系,这对后面区别“合同”与“相似”有很重要的意义下面我们再来看看“合同”概念。
《高等代数》在二次型的章节中对二次型化标准形的过程中首次提出了“合同“的概念。
对一个二次型进行非退化的线性替换,这样的二次型的不同矩阵之间的关系定义为“合同”,即'B C AC =。
而回顾“合同”的概念,我们可以发现,“合同”的概念是基于二次型的化简中产生的概念,而当我们学习了双线性函数的内容后就会发现“合同”的概念是基于双线性函数提出的,因此在这里我们有必要提出双线性函数的有关内容:双线性函数类比欧式空间中的线性变换是线性空间上的一种映射,所谓的“双线性”是指在固定一个自变量的情况下,另一个自变量满足“线性”的关系。
矩阵相似与合同

矩阵相似与合同引言在线性代数中,矩阵是一个重要概念,它在各个领域都有广泛的应用。
在研究矩阵时,我们经常会遇到矩阵相似和矩阵合同这两个概念。
本文将介绍矩阵相似和矩阵合同的定义、性质和应用。
矩阵相似矩阵相似是一种关系,用来描述两个矩阵之间的某种变换关系。
两个矩阵相似,意味着它们可以通过一个相似变换相互转化。
具体来说,对于给定的两个n阶矩阵A和B,如果存在一个可逆矩阵P,使得P-1AP = B,则称矩阵A和B相似。
相似关系具有以下性质:1.相似关系是一种等价关系,即自反性、对称性和传递性成立。
2.相似矩阵具有相同的特征值。
3.相似矩阵具有相同的秩、行列式、迹等性质。
矩阵相似在实际应用中具有重要意义。
例如,在线性代数中,我们经常需要对矩阵进行对角化处理,而矩阵相似关系可以帮助我们找到相似矩阵来简化计算。
矩阵合同矩阵合同是另一种矩阵之间的关系。
与矩阵相似不同,矩阵合同是通过正交变换来定义的。
对于给定的两个n阶矩阵A和B,如果存在一个正交矩阵P,使得PTAP = B,则称矩阵A和B合同。
合同关系具有以下性质:1.合同关系是一种等价关系,即自反性、对称性和传递性成立。
2.合同矩阵具有相同的正惯性指数和负惯性指数。
矩阵合同在实际应用中也具有重要意义。
例如,在数值计算中,我们经常需要将矩阵进行对称化处理,而矩阵合同关系可以帮助我们找到合同矩阵来简化计算。
相似与合同的关系矩阵相似和矩阵合同之间存在着一定的联系。
具体来说,如果两个矩阵相似,则它们一定是合同的。
这是因为如果矩阵A和B相似,即存在可逆矩阵P,使得P-1AP = B,那么我们可以取正交矩阵Q等于P-1,则有QTAQ = B,即A和B是合同的。
然而,矩阵合同并不一定意味着矩阵相似。
换句话说,合同关系是相似关系的一个子集。
这是因为矩阵相似要求相似变换是可逆的,而矩阵合同要求正交变换是可逆的。
正交矩阵是一类特殊的矩阵,其逆矩阵等于其转置矩阵,因此正交变换一定是可逆的。
浅谈矩阵的等价、合同与相似之间的关系

1 、引 言矩阵的相似与合同及其等价三者在线性代数中是很重要的概念,在线性代数的学习中,矩阵的相似与合同作为研究工具,得到广泛的应用,起着非常重要的作用,能够把要处理的问题简单化,本文对矩阵的等价,合同,相似进行了简单的介绍 ,对矩阵的应用学习有一定的帮助.2、矩阵的等价,相似,合同2.1矩阵的等价2.1.1矩阵等价的定义:矩阵等价用矩阵乘法表示出来就是,如果有两个m ×n 阶矩阵A 和B ,而且这两个矩阵满足B=QAP ,其中P 是n ×n 阶可逆矩阵,Q 是m ×m 阶可逆矩阵,那么这两个矩阵是等价的。
即,矩阵A 经过有限次的初等变换得到矩阵B2.1.2初等变换(1)换法变换:对调矩阵的两行(列),得初等矩阵E(i,j).用m 阶初等矩阵),mj i E (左乘nm ij a A ⨯=)(,相等于对矩阵A 实行第一种矩阵初等行变换,把A 的第i 行与第j 行对调,记作(r r j i ↔)类似的,用n 阶初等矩阵()j i E n ,右乘矩阵n m ij a ⨯=)(A ,相当于都矩阵A 实行第一种矩阵初等列变换,把A 的第i 列与第j 列对调,记作)c c j i ↔( (2)倍法变换:以数K ≠0乘某一行(列)中的全部元素,得初等矩阵))((K i E 。
用))((K i m E 左乘矩阵A ,相当于以数K 乘A 的第i 行,记作(K r i ⨯)。
用))((K i nE 右乘矩阵A ,相当于以数K 乘A 的第i 列,记作(K ⨯c i )。
(3)消法变换: 以数K 乘某行(列)加到另一行(列)上去,得初等矩阵))((K E ij ,以))((K E ij m 左乘矩阵A ,相当于把A 的第j 行乘以K 加到第i 行上,记作(r r j i K +)。
以))((K E ij n右乘矩阵A ,相当于把A 的第i 列乘以K 加到第j 列上,记作(c c i j K +)。
丘维声高等代数第五章1
=
⎛ ⎜ ⎝
I3 0
0⎞
0
⎟ ⎠
▌
⎜ ⎝
0
0
0
0ቤተ መጻሕፍቲ ባይዱ
0
⎟ ⎠
定理 同型矩阵 A 与 B 相抵的充分必要条件是 rank(A) = rank(B)
8
注 (1)作为 K m×n上的等价关系,相抵把 K m×n分成 了若干个相抵等价类; (2)同一相抵类中的矩阵有相同的秩; (3)相抵标准形恰是各相抵类中形式最简单的 矩阵; (4)矩阵的秩是相抵关系下的完全不变量。
第五章 矩阵的相抵与相似
§5.1 等价关系与集合的划分
定义 设 S, M 是两个集合,称下述集合
{ 〈a, b〉 | a ∈ S, b ∈ M }
是 S 与 M 的 Descartes 积(或有序积),记为 S×M。 Descartes 积中的元素〈a, b〉称为序偶(或有序
对)。对任意两个序偶 〈a, b〉, 〈c, d〉 ,有 〈a,b〉 = 〈c,d〉 ⇔ a = c, b = d
S (n) = {0, 1, 2, , n − 1 }
4
§5.2 矩阵的相抵
定义 设 A 和 B 是两个同型矩阵。若 A 可通过 有限次初等变换化为 B,则称 A 相抵于 B,记为
相抵
A~ B 或 A≅B
定理 设 A 与 B 是两个 m×n 矩阵,则 A 相抵于 B 的充分必要条件是:存在 m 级可逆矩阵 P 与 n 级 可逆矩阵 Q,使 PAQ = B。
1 2
1⎞
−
2
⎟ ⎟
⎜0 0 0 0 0 ⎟
⎜ ⎝
0
0
0 −4
4
⎟ ⎠
⎛1 1 2 1 1 ⎞
矩阵的等价,规定合同,相似的联系与区别
证明:设 与 的特征根均为 因为 与 阶实对称矩阵,则一定存在一个 阶正交矩阵Q使得 同理,一定能找到一个正交矩阵 使得 从而有
将上式两边左乘 和右乘 ,得
由于 , ,
有 ,所以, 是正交矩阵,由定理8知 与 相似.
定理10若 阶矩阵 与 中只要有一个正交矩阵,则 与 相似且合同.
反过来,对于矩阵 , 等价,但是 与 并不相似,即等价矩阵未必相似.
定理6对于 阶方阵 ,若存在 阶可逆矩阵 使 ,(即 与 等价),且 ( 为 阶单位矩阵),则 与 相似.
证明:设对于 阶方阵 与 ,若存在 阶可逆矩阵 ,使 ,即 与 等价.又知 ,若记 ,那么 ,也即 ,则矩阵 也相似.
定理7合同矩阵必为等价矩阵,等价矩阵未必为合同矩阵.
(1) 矩阵 与 不仅为同型矩阵,而且是方阵.
(2) 存在数域 上的 阶矩阵 ,
性质2
(1)反身性:任意矩阵 都与自身合同.
(2)对称性:如果 与 合同,那么 也与 合同.
(3)传递性:如果 与 合同, 又与 合同,那么 与 合同.
因此矩阵的合同关系也是等价关系,而且由定义可以直接推得:合同矩阵的秩等.
(7) 相似矩阵有相同的秩,而且,如果 为满秩矩阵,那么 .
即满秩矩阵如果相似,那么它们的逆矩阵也相似.
(8)相似的矩阵有相同的行列式;
因为如果 ,则有:
(9)相似的矩阵或者都可逆,或者都不可逆;并且当它们可逆时,它们的逆矩阵相似;
设 ,若 可逆,则 从而 可逆.且 与 相似.
若 不可逆,则 不可逆,即 也不可逆.
证明:不妨设 是正交矩阵,则 可逆,取 ,有 ,则 与 相似,又知 是正交阵,所以 与 既相似又合同.
矩阵合同和相似
矩阵合同和相似引言矩阵是线性代数中的重要概念,广泛应用于各个领域。
在线性代数中,矩阵合同和相似是两个常见的关系,它们在矩阵的性质和应用中起到了关键作用。
本文将对矩阵合同和相似进行介绍和讨论。
矩阵合同矩阵合同是指两个矩阵具有相同的秩、特征多项式以及特征值的多重性。
具体而言,设A和B是n阶矩阵,如果存在非奇异矩阵P,使得PTAP = B,则称矩阵A和B是合同的。
矩阵合同的性质矩阵合同具有以下性质: - 对于任意n阶矩阵,矩阵与自身合同。
- 若矩阵A与矩阵B合同,则矩阵B与矩阵A合同。
- 若矩阵A与矩阵B合同,且矩阵B与矩阵C合同,则矩阵A与矩阵C合同。
矩阵合同的应用矩阵合同在实际应用中具有广泛的应用,例如: - 物体的正交变换:在三维几何中,通过正交矩阵对物体进行旋转、平移和缩放等变换。
这些变换可以表示为合同关系,通过合同矩阵可以实现物体的坐标变换。
- 矩阵的相似性:矩阵合同是矩阵相似性的一种特殊情况。
在线性代数中,矩阵相似是一种重要的关系,它描述了矩阵在不同基下的表示和性质。
矩阵相似矩阵相似是指两个矩阵具有相同的特征值。
具体而言,设A和B是n阶矩阵,如果存在非奇异矩阵P,使得P-1AP = B,则称矩阵A和B是相似的。
矩阵相似的性质矩阵相似具有以下性质: - 对于任意n阶矩阵,矩阵与自身相似。
- 若矩阵A与矩阵B相似,则矩阵B与矩阵A相似。
- 若矩阵A与矩阵B相似,且矩阵B与矩阵C相似,则矩阵A与矩阵C相似。
矩阵相似的应用矩阵相似在实际应用中具有广泛的应用,例如: - 矩阵对角化:通过相似变换将矩阵对角化,可以简化矩阵的运算和求解。
对角化后的矩阵具有简洁的形式,更容易研究和分析。
- 矩阵的特征值问题:矩阵相似性与特征值问题密切相关。
通过矩阵相似变换,可以将复杂的特征值问题转化为简化的形式,从而更容易求解。
结论矩阵合同和相似是矩阵理论中的两个重要概念,它们在矩阵的性质和应用中起到了关键作用。
矩阵的等价,合同,相似的联系与区别
目录摘要 (I)引言 (1)1矩阵间的三种关系 (1)1.1 矩阵的等价关系 (1)1.2 矩阵的合同关系 (1)1.3. 矩阵的相似关系 (2)2 矩阵的等价、合同和相似之间的联系 (3)3矩阵的等价、合同和相似之间的区别 (5)结束语 (6)参考文献 (6)摘要:等价、合同和相似是矩阵中的三种等价关系,在矩阵这一知识块中占有举足轻重的地位.矩阵可逆性、矩阵的对角化问题、求矩阵特征根与特征向量、化二次型的标准形等诸多问题的解决都要依赖于这三种等价关系. 根据等价、合同和相似的联系的研究的结论是其一可利用等价矩阵的性质来确定相似矩阵或合同矩阵的性质.其二可利用正交相似与正交合同的一致性,得到二者间彼此的转化.关键词:矩阵的等价;矩阵的相似;矩阵的合同;等价条件引言:在高等代数中,讨论了矩阵的三种不同关系,它们分别为矩阵的等价、矩阵的相似和矩阵的合同等关系.本文首先介绍了这三种关系以及每种关系的定义,性质,相关定理及各自存在的条件,然后给出了这三种矩阵关系间的联系,即相似矩阵、合同矩阵必为等价矩阵,相似为正交相似,合同为正交合同时,相似与合同一致.还有矩阵的相似与合同之等价条件.并对这些结论作了相应的理论证明,最后给出了他们的区别和不变量.1矩阵间的三种关系1.1 矩阵的等价关系定义1 两个s n ⨯矩阵,A B 等价的充要条件为:存在可逆的s 阶矩阵p 与可逆的 n 阶矩阵Q ,使B PAQ =由矩阵的等价关系,可以得到矩阵A 与B 等价必须具备的两个条件:(1)矩阵A 与B 必为同型矩阵(不要求是方阵).(2)存在s 阶可逆矩阵p 和n 阶可逆矩阵Q , 使得B PAQ =.性质1(1)反身性:即A A ≅.(2)对称性:若A B ≅,则B A ≅(3)传递性:即若A B ≅,B C ≅,则A C ≅定理1 若A 为m n ⨯矩阵,且()r A r =,则一定存在可逆矩阵P (m 阶)和Q (n 阶),使得000r m nI PAQ B ⨯⎛⎫== ⎪⎝⎭.其中r I 为r 阶单位矩阵. 推论1 设A B 、是两m n ⨯矩阵,则A B ≅当且仅当()()r A r B =.1.2 矩阵的合同关系定义2 设,A B 均为数域p 上的n 阶方阵,若存在数域p 上的n 阶可逆矩阵p ,使得T P AP B =,则称矩阵为合同矩阵(若数域p 上n 阶可逆矩阵p 为正交矩阵),由矩阵的合同关系,不难得出矩阵A 与B 合同必须同时具备的两个条件:(1) 矩阵A 与B 不仅为同型矩阵,而且是方阵.(2) 存在数域p 上的n 阶矩阵p ,T P AP B =性质2(1)反身性:任意矩阵A 都与自身合同.(2)对称性:如果B 与A 合同,那么A 也与B 合同.(3)传递性:如果B 与A 合同,C 又与B 合同,那么C 与A 合同.因此矩阵的合同关系也是等价关系,而且由定义可以直接推得:合同矩阵的秩等.定理2 数域F 上两个二次型等价的充要条件是它们的矩阵合同.定理3 复数域上秩为r 的二次型,可以用适当的满秩线性变换化为标准形:22212r f y y y =++ 1.3. 矩阵的相似关系定义3 设,A B 均为数域p 上n 阶方阵,若存在数域p 上n 阶可逆矩阵p 使得B AP P =-1,则称矩阵A 与B 为相似矩阵(若n 级可逆矩阵p 为正交阵,则称A 与B 为正交相似矩阵)由矩阵的相似关系,不难得到矩阵A 与B 相似,必须同时具备两个条件(1) 矩阵A 与B 不仅为同型矩阵,而且是方阵(2) 在数域p 上n 阶可逆矩阵P ,使得B AP P =-1性质3(1)反身性 T A E AE = ;(2)对称性 由T B C AC =即得()11T A C BC --=;(3)传递性 111T A C AC =和2212T A C AC =即得 ()()21212T A C C A C C总之,合同是一种矩阵之间的等价关系,而且经过非退化的线性替换,新二次型的矩阵与原二次型矩阵是合同的.(4) 11111221122()P k A k A P k P A P k P A P ---+=+(其中12,k k 是任意常数); (5)1111212()()()P A A P P A P P A P ---=;(6)若A 与B 相似,则m A 与m B 相似(m 为正整数);(7) 相似矩阵有相同的秩,而且,如果1B P AP -=为满秩矩阵,那么11111()B P AP P A P -----==.即满秩矩阵如果相似,那么它们的逆矩阵也相似.(8)相似的矩阵有相同的行列式;因为如果1B P AP -=,则有:11B P AP P A P A --===(9)相似的矩阵或者都可逆,或者都不可逆;并且当它们可逆时,它们的逆矩阵相似;设1B P AP -=,若B 可逆,则11111()B P AP PA P -----==从而A 可逆.且1B -与1A -相似.若B 不可逆,则1()P AP -不可逆,即A 也不可逆.下面这个性质是一个重要的结论,因此我们把它写成以下定理定理4 相似矩阵的特征值相同.推论3 相似矩阵有相同的迹.2 矩阵的等价、合同和相似之间的联系(1) 由以上三种矩阵间的关系的定义,可以知道每一种矩阵关系存在所必须具备的条件,但是这三种关系彼此间存在着密切的联系定理5 相似矩阵必为等价矩阵,等价矩阵未必为相似矩阵.证明: 设n 阶方阵,A B 相似,由定义3知存在n 阶可逆矩阵1P ,使得111P AP B -=,此时若记11P P -=,1Q P = ,则有PAQ B =,因此由定义1得到n 阶方阵,A B 等价反过来,对于矩阵100010A ⎛⎫= ⎪⎝⎭,121010B ⎛⎫= ⎪⎝⎭等价,但是A 与B 并不相似,即等价矩阵未必相似.定理 6 对于n 阶方阵,A B ,若存在n 阶可逆矩阵,P Q 使PAQ B =,(即A 与B等价),且PQ E = (E 为n 阶单位矩阵),则A 与B 相似.证明: 设对于n 阶方阵A 与B ,若存在n 阶可逆矩阵,P Q ,使PAQ B =,即A 与B 等价.又知PQ E =,若记11P P -= ,那么1Q P =,也即111P AP B -=,则矩阵,A B 也相似.定理7 合同矩阵必为等价矩阵,等价矩阵未必为合同矩阵.证明: 设n 阶方阵,A B 合同,由定义2有,存在n 阶可逆矩阵1P ,使得11TP AP B =,若记1TP P =,1Q P =,则有PAQ B =因此由定义1得到n 阶方阵,A B 等价反过来对于矩阵1001A ⎛⎫= ⎪⎝⎭,1201B ⎛⎫= ⎪⎝⎭等价,但是A 与B 并不合同,即等价矩阵未必合同.定理8 正交相似矩阵必为合同矩阵,正交合同矩阵必为相似矩阵.证明:若存在一个正交矩阵P ,即T P P E =使得1P AP B -=即~A B ,则有1T B P AP P AP -==,即A 与B 合同.同理,若存在一个正交矩阵P ,即T P P E =使得T P AP B =即A 与B 合同,则有1~T B P AP P AP A B -==⇒由此可得1.相似阵、合同阵必为等价阵,但过来必成立2.相似阵为正交相似,合同阵为正交合同时,相似与合同一致.(2)但相似矩阵与合同矩阵有着一定的内在联系,如果两者都具有反身性、对称性和传递性,即两者都是等价关系.另外,在一定条件下,两者是等价的.若矩阵A 与B 正交相似,则它们既是相似也是合同的.对于相似与合同矩阵之等价条件有以下定理,定理9 如果A 与B 都是n 阶实对称矩阵,且有相同的特征根.则A 与B 既相似又合同.证明:设A 与B 的特征根均为n λλλ ,,21因为A 与n 阶实对称矩阵,则一定存在一个n 阶正交矩阵 Q 使得⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-n AQ Q λλλ..211同理,一定能找到一个正交矩阵P 使得⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-n BP P λλλ..211从而有BP P AQ Q 11--= 将上式两边左乘P 和右乘1-P ,得()()()1111111-------===QP A QP QP AQP PQ B 由于T Q Q E =,T P P E =,1P P E -=有()()()()1111111T T T T QP QP P Q QP P EP PP E -------====,所以,1-P Q 是正交矩阵,由定理8知A 与B 相似.定理10 若n 阶矩阵A 与B 中只要有一个正交矩阵,则AB 与BA 相似且合同. 证明:不妨设A 是正交矩阵,则A 可逆,取U A =,有()()111U ABU A ABA A A BA BA ---===,则AB 与BA 相似,又知A 是正交阵,所以AB 与BA 既相似又合同.定理11 若A 与B 相似且又合同,C 与D 相似也合同,则有⎪⎪⎭⎫ ⎝⎛C A 00与⎪⎪⎭⎫ ⎝⎛D B 00 既相似又合同. 证明: 因为A 与B ,C 与D 相似,故存在可逆矩阵1P ,2P ,使111122,P AP B P CP D --==,令1200P P P ⎛⎫= ⎪⎝⎭,则1111200P P P ---⎛⎫= ⎪⎝⎭且10000A B P P C D -⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,故⎪⎪⎭⎫ ⎝⎛C A 00与⎪⎪⎭⎫ ⎝⎛D B 00相似. 又因为A 与B 合同,C 与D 合同,故存在可逆矩阵12,Q Q , 122,T T Q AQ B Q CQ D ==令1200Q Q Q ⎛⎫= ⎪⎝⎭而1200T T T Q Q Q ⎛⎫= ⎪⎝⎭11112222000000000000T T T T T Q Q A A Q Q A Q Q Q Q C C Q Q C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 11220000T T B Q AQ D Q CQ ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭故⎪⎪⎭⎫ ⎝⎛C A 00与⎪⎪⎭⎫ ⎝⎛D B 00合同. 3矩阵的等价、合同和相似之间的区别1、矩阵等价:a.同型矩阵而言b.一般与初等变换有关c.秩是矩阵等价的不变量,其次,两同型矩阵相似的本质是秩相等2、矩阵相似:a.针对方阵而言b.秩相等是必要条件c.本质是二者有相等的不变因子3、矩阵合同:a.针对方阵而言,一般是对称矩阵b.秩相等是必需条件c.本质是秩相等且正惯性指数相等,即标准型相同由以上知,秩是矩阵等价的不变量;不变因子是矩阵相似的不变量;特征值是可对角化矩阵相似的不变量,正负惯性指数是对称矩阵合同的不变量,等价关系最弱、合同与相似是特殊的等价关系.由相似和合同一定可以推出等价,而反之不成立.相似与合同不可互推,需要一定的条件.而且等价是经过有限次初等变换变得;相似不一定会都与对角阵相似,相似矩阵可看作是同一线性变换在不同基下的矩阵;合同可以通过二次型的非退化的线性替换来理解.结束语:矩阵中的这三种关系,在高等代数中是至关重要的,他们既包含着联系,又蕴涵着差别.相似矩阵、合同矩阵必为等价矩阵,等价矩阵不一定是相似矩阵也不一定是合同矩阵;相似为正交相似,合同为正交合同时,相似与合同一致;秩是矩阵等价的不变量;不变因子是矩阵相似的不变量,特征值是可对角化矩阵相似的不变量,正负惯性指数是对称矩阵合同的不变量.参考文献:[1]张禾瑞.高等代数[M].北京:高等教育出版社,1983.[2]姚慕生.高等代数学[M].复旦:复旦大学出版社,1999.[3]北大数学系几何与代数教研室代数小组.高等代数[M].北京:高等教育出版社,1988 .[4]李志惠,李永明.高等代数中的典型问题与方法[M].北京:科学出版社,2006.[5]同济大学教研室. 线性代数[M].北京:高等教育出版社.,2001.[6]阎家灏.线性代数[M].重庆:重庆大学出版社.,1994.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( A1 , A2 ,
于是
An ) (1 ,2 , n ) B, , n )] X ( A1 , A 2 ,
( A1 ,A 2 , An ) A ( 1 , 2 ,n A ) [(1 , 2 , [ A(1 , 2 ,
(1 , 2 ,
D ( ( 及D 都是首一的多项式,因此必有 D 。证毕 ( ( D i ) i ) i ) i )
定理 3 两个复数对称矩阵合同的充要条件是它们的秩相同。 证明: 由于任意一个复系数的二次型经过一适当的非退化线性替换 可以变成规范形,且规范形是唯一的。换个说法既是,任一复数的对 称矩阵合同于一个形式为
代入〈5〉式经整理得:
R( A) ( B ) [N (1 ) Q ( ) ( A
)〈 ] 7〉
〈7〉式的左边是一次的矩阵多项式,因此〈7〉式中括号内的部分必 须是零次的,也即必是一个常数矩阵,设为 P 。于是
R( A) ( B) P
〈8〉式又可整理为 ( R P) RA BP
M ( )( A) N ( ) B
〈4〉
其中 M ( ) 与 N ( ) 都是有限个初等矩阵之积,因而都是可逆阵。因 此可将〈4〉式写为:
M ( )( A) ( B) N ( )1
又可设
〈5〉 〈6〉
M ( ) ( B ) Q ( ) R
' ' ' ' '' ' '
易看出矩阵 C AC 也是对称的,事实上 (C AC ) C AC C AC 由此,即得 B C AC
'
这就是前后两个二次型的矩阵的关系,与之相应,我们引入 定义 4
[1]
数域 P 上 n n 矩阵 A, B 成为合同的,如果有数域上可逆
'
的 n n 矩阵 C ,使 B C AC 。 合同是矩阵之间的一个关系,不难看出合同关系具有 <1>反身性
由此即得
n ) AX (1 ,2 , n ) X 1 AX
B X1 A X .
由此我们引进相似的定义 定义 5
[1]
设 A, 如果可以找到数域 P 上 B 为数域 P 上两个 n 级方阵,
1
的 n 级可逆矩阵 X , 使得 B X AX , 就说 A 相似于 B 。 记作 A ~ B 。 相似是矩阵之间的一种关系,这种关系具有下面三个性质: <1>反身性
则 A 与 B 相似的充要条件是 矩阵 A 与 B 相抵”证毕
3 基于上述几个定理,进一步探讨矩阵的相抵、合同、相似之间的一
些联系及差别。 (1)为了把数域上矩阵的相似关系归结为 矩阵的相抵关系,先介绍 一个定理。 定理 5
[4]
设 A ,B 是数域 K 上的矩阵,则 A 与 B 相似的充分必要条
莆田学院数学系 “高等代数选讲”课程论文
题目: 矩阵的相抵、合同、相似
一些关于这三种等价关系的联系、差别和不变量
姓名:
阮超英
学号:21041132 数学系 2002 级本科(1)班 2005 年 6 月 23 日
矩阵的相抵、合同、相似 一些关于这三种等价关系的联系、差别和不变量
[摘要]
矩阵的相抵、 合同、 相似这三种等价关系之间既包含着联系,
[1]
设:
f ( x1 , x2 ,
, xn ) X ' AX , A A ' 〈1〉
是一个二次型,作非退化线性替换 X CY 〈2〉 我们得到一个 y1 , y2 ,
yn 的二次型
现在来看矩阵 B 与 A 的关系 把〈2〉带入〈1〉 ,有
f ( x1 , x2 ,
'
, xn ) X ' AX (CY )' A(CY ) Y 'C ' ACY Y ' (C ' AC )Y Y ' BY
() () 第三种情形。设 Bi 为 B 的 i 阶子式,相应的 A 的 i 阶子式
记为 Ai ,则由行列式性质得
Bi Ai ( f ) Ai
其中 Ai 由 A 的 i 行与 i 列组成, 因此它与 A 的 i 阶子式最多差一 () () 个符号。 ( 是乘以某一行的那个多项式,于是 A 的行列式因 f ) () 子D | Ai , D | Ai ,故 D | Bi ,这说明 D 可整除 B ( ( ( ( () i ) i ) i ) i ) 的所有 i 阶子式,因此 D 可整除 B 的 i 阶行列式因子 D 。 ( () ( i ) i ) 但B 也可用第三种初等变换变成 A ,于是 D |D ,由于 ( () () ( i ) i )
1 1 1 1 1
2 一些关于矩阵的相抵、合同、相似的充要条件及其证明
定理 2
[4]
与B 相抵当且仅当二者的行列式因子组 () () 矩阵 A
相同或者不变因子组相同。 证明:我们只需证行列式因子在任意一种初等变换下不变就可以了。
1 对第一种初等变换, ○ 变换 矩阵 A 的任两行, 显然 A 的i 阶 () ()
A E' A E ;
'
<2>对称性 由 B C AC 即得 A (C ) BC ;
1 '
1
<3>传递性 A1 C1 ' AC1和A2 C2 AC 1 2即得A2 (C1C2 ) A(C1C2 )
' '
因之, 合同是一种矩阵之间的等价关系, 而且经过非退化的线性替换, 新二次型的矩阵与原二次型矩阵是合同的。 1.3 矩阵的相似 引入: 定理 1 设线性空间 V 中线性变换 A 在两组基
<2> 反身性 若 A 和 A 本身相抵; 因为: Qt Qt
1 1 Q11Q1 APP 1 1
<3> 传递性 若 A 和 B 相抵, B 和 C 相抵,则 A 和 C 相抵。 由于:
Ps Gu
P 1 AQ1 G1 BR1
G 1 P s
Qt B Rv C
P ) ( A 1 Q Q 1R ) R C
件是 A 矩阵与 B 相抵。 证明:若 A 与 B 相似,则存在 K 上非异阵 P 使 B P AP 于是
1
P 1 ( A) P P 1 AP B
〈 3〉
把 P 看成是常数 矩阵, 〈3〉式表明 A 与 B 相抵。 反过来,若 A 与 B 相抵,即存在 M ( ) 及 N ( ) ,使
A ~ A ,这是因为
<2>对称性 如果 A ~ B ,那么 B ~ A 。如果 A ~ B ,那么有 X 使
B X 1 AX ,令 Y X 1 ,就有 A XBX 1 Y 1BY ,
所以 B ~ A 。 <3>传递性 如果 A ~ B , B ~ X AX , C Y BY , 令 Z XY , 就有 C Y X AXY Z AZ ,
1 p (i, j )
1 0 1 1 1 0 1 1
1
2 把矩阵的 i 行乘以一非零数 c ( c 为数域 p 中数) ○
1 p (i (c)) 1
1 c 1
3 把矩阵 E 的 j 行的 k 倍加到 i 行,有 ○
1 p (i, j (k ))
1
k 1
1
同样可以得到与列变换相应的初等矩阵,不难看出,初等矩阵是可逆 的,且逆矩阵还是初等矩阵。
定义 2 矩阵 A 与 B 相抵( equivalent 记为 A ~ B 或称为等价)是指 对 A 进行行和列的有限次的初等变换后可得到 B , 亦即存在初等矩阵
() () 〈2〉 B 子式中的一行(或一列)等于 A 中相应子式的同一行
(列)加上该子式中某一行(列)与某个多项式之积;
() () 〈3〉 B 子式的某一行 (或列) 等于 A 中相应子式的同一行 (列)
加上不在该子式中的某一行与某一个多项式之积。在前面两种 情形,行列式的值不变,因此不影响行列式因子,现在来讨论
1
1 0
0
的对角阵,从而有,两个复数对称矩阵合同的充分必要条件是它们的 秩相同。 定理 4
[4]
数域 K 上的 n 阶矩阵,则 A 与 B 相似的充要条件是它们的
特征矩阵 A 与 B 具有相同的行列式因子或不变因子。 证明:显然不变因子被行列式因子唯一确定,反之,行列式因子也被 不变因子唯一确定, 由定理 2 及定理: “设 A ,B 是数域 K 上的矩阵,
子式最多改变一个符号,因此行列式因子不变。
2 对第二种初等变换, A ○ 的 i 阶子式与变换后矩阵的 i 阶子式最多 ()
差一个非零常数,因此行列式因子也不改变。
3 对第三种初等变换,记变换后的矩阵为 B () () () ○ ,则 B 与A 的
i 阶子式可能出现以下 3 种情形:
〈1〉 子式完全相同;
〈8〉
再次比较次数得
R P, RA BP
现只须证明 P 是一个非异阵即可。由假设
P N ( )1 Q( )( A)
将上式两边右乘 N ( ) 并移项得: PN ( ) Q( )( A) N ( ) 但 因此 又设
P 1,
, Ps , Q1 ,
, Qt , 使得
Ps
P 1 AQ 1
Qt B
显然,矩阵的相抵是一种等价关系,它满足 <1> 对称性 若 A 与 B 相抵,则 B 与 A 相抵; 因为由定义 2,有: Ps 这样可得到: A P 1