2008年普通高等学校招生全国统一考试数学卷(天津.文)含详解

合集下载

2008年高考文科数学试题及参考答案(天津卷)

2008年高考文科数学试题及参考答案(天津卷)


2 .餐厅服务用语

(1) 当客人进入餐厅时
——早上好,先生 ( 小姐 ) ,请问共几位 ? ——请往这边走。 ——请跟我来。 ——请坐。 ——请稍候,我马上为您安排。 ——请等等,您的餐台马上就准备好。 ——请您先看一看菜单。 ——先生 ( 小姐 ) ,您还坐在这里吗 ? ——对不起,您跟那位先生合用一张餐台好吗 ? ——对不起,这里有空位吗 ? ——对不起,我可以用这把椅子吗 ?



May I order a glass of wine? I'm on a diet. 我正在节食中。 What kind of wine do you have? I have to avoid food containing fat (salt / sugar). I'd like to have some local wine. Do you have vegetarian dishes? 餐厅是否有供应素食餐? I'd like to have French red wine. How do you like your steak? Could you recommend some good wine? Well done (medium/rare), please.
12、Goodbye and hope to see you again. 再见,希望再见到您。
13、Have a nice trip! 一路平安! 14、Wish you a pleasant journey! Good luck! 祝您旅途愉快!祝您好运!
三、20句英语教你学会基本点餐说法



11、我 让 你 来 点。 I'll leave it to you. 12、我 想 来 点 清 淡 些 的,你 能 推 荐 什 么 吗 ? What would you recommend? I prefer something light. 13、今 天 有 什 么 特 色 餐 吗 ? Do you have any special meals today? 14、请给我菜单。 May I have a menu, please? 15、是否有中文菜单?Do you have a menu in Chinese? 16、在用晚餐前想喝些什么吗? Would you like something to drink before dinner? 17、餐厅有些什么开胃酒? What kind of drinks do you have for an appetizer? 18、可否让我看看酒单? May I see the wine list? 19、我可以点杯酒吗? May I order a glass of wine 20、我想要喝法国红酒。 I'd like to have French red wine.

2008年普通高等学校招生全国统一考试理科数学(天津卷)

2008年普通高等学校招生全国统一考试理科数学(天津卷)

2008年普通高等学校招生全国统一考试理科数学(天津卷)学校:___________姓名:___________班级:___________考号:___________一、单选题1.i 是虚数单位,()=-+113i i i (A) 1- (B) 1 (C) i - (D) i2.设变量满足约束条件,则目标函数的最大值为A .2B .3C .4D .53.设函数()R x x x f ∈⎪⎭⎫⎝⎛-=,22sin π,则()x f 是 (A) 最小正周期为π的奇函数 (B) 最小正周期为π的偶函数(C) 最小正周期为2π的奇函数 (D) 最小正周期为2π的偶函数 4.设是两条直线,是两个平面,则的一个充分条件是 A . B . C .D .5.设椭圆上一点P 到其左焦点的距离为3,到右焦点的距离为1,则P 点到右准线的距离为 A .6B .2C .D .6.设集合,则的取值范围是A .B .C .或D .或7.设函数的反函数为,则A .在其定义域上是增函数且最大值为1B .在其定义域上是减函数且最小值为0C .在其定义域上是减函数且最大值为1D .在其定义域上是增函数且最小值为08.已知函数,则不等式的解集是A .B .C .D .9.已知函数是R 上的偶函数,且在区间上是增函数.令,则A .B .C .D .10.有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有中间行的两张卡片上的数字之和为5,则不同的排法共有 A .1344种 B .1248种 C .1056种 D .960种二、填空题 11.的二项展开式中,的系数是 (用数字作答).12.一个正方体的各顶点均在同一球的球面上,若该球的体积为,则该正方体的表面积为 .13.已知圆C 的圆心与抛物线x y 42=的焦点关于直线x y =对称,直线0234=--y x 与圆C 相交于B A ,两点,且6=AB ,则圆C 的方程为 .14.如图,在平行四边形ABCD 中,()()2,3,2,1-==BD AC ,则=⋅AC AD .15.已知数列{}n a 中,()*31,1111N n a a a n n n ∈=-=++,则=∞→nn a lim .16.设,若仅有一个常数c使得对于任意的,都有满足方程,这时,的取值的集合为.三、解答题17.(本小题满分12分)已知.(Ⅰ)求的值;(Ⅱ)求的值.18.甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为与,且乙投球2次均未命中的概率为.(Ⅰ)求乙投球的命中率;(Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为,求的分布列和数学期望. 19.如图,在四棱锥中,底面是矩形.已知.(Ⅰ)证明平面;(Ⅱ)求异面直线与所成的角的大小;(Ⅲ)求二面角的大小.20.已知函数,其中.(Ⅰ)若曲线在点处的切线方程为,求函数的解析式;(Ⅱ)讨论函数的单调性;(Ⅲ)若对于任意的,不等式在上恒成立,求的取值范围. 21.已知中心在原点的双曲线C的一个焦点是,一条渐近线的方程是.(Ⅰ)求双曲线C的方程;(Ⅱ)若以为斜率的直线与双曲线C相交于两个不同的点M,N,线段MN的垂直平分线与两坐标轴围成的三角形的面积为,求的取值范围.22.在数列与中,,数列的前项和满足,为与的等比中项,.(Ⅰ)求的值;(Ⅱ)求数列与的通项公式;(Ⅲ)设.证明.参考答案【答案】A【解析】()31(1)11111i i i i ii i i +-+-===----,选A . 2.D 【解析】如图,由图象可知目标函数过点(1,0)A 时z 取得最大值,max 5z =,选D .3.B【解析】()cos 2f x x =-是周期为π的偶函数,选B . 4.C 【解析】A 、B 、D 直线,a b 可能平行,选C . 5.B 【解析】由椭圆第一定义知2a =,所以24m =,椭圆方程为22111432x y e d +=⇒==所以2d =,选B . 6.A 【解析】{|15}S x x x =-或,所以1{3185a a a <-⇒-<<-+>,选A . 7.D【解析】1y =为减函数,由复合函数单调性知()f x 为增函数,所以()1f x -单调递增,排除B 、C ;又()1f x -的值域为()f x 的定义域,所以()1f x -最小值为0.视频 8.C 【解析】 依题意得1010{{(1)()1(1)1x x x x x x x x +<+≥++-≤++≤或所以11{{111111x x x x x x Rx ≥-<-⇒<--≤≤⇒≤∈≤≤或或,选C .9.A【解析】52(cos)(cos )77b f f ππ=-=,52(tan )(tan )77c f f ππ=-= 因为2472πππ<<,所以2220cos sin 1tan 777πππ<<<<,所以b a c <<,选A .10.B【解析】首先确定中间行的数字只能为1,4或2,3,共有12224C A =种排法.然后确定其余4个数字的排法数.用总数46360A =去掉不合题意的情况数:中间行数字和为5,还有一行数字和为5,有4种排法,余下两个数字有2412A =种排法.所以此时余下的这4个数字共有360412312-⨯=种方法.由乘法原理可知共有43121248⨯=种不同的排法,选B .视频 11.40 【解析】3552155((2)r r rr r rr T C xC x --+==-,所以2r,系数为225(2)40C -=.12.24 【解析】试题分析:设正方体的外接球的半径为R ,由:343R π=,解得:R 设该正方体的边长为a ,根据223412a R ==解得2a =,所以正方体的表面积为:266424a =⨯=,所以答案为24.考点:1.求的体积公式;2.正方体的外接球;3.球的表面积和体积公式.13.22(1)10x y +-=【解析】抛物线的焦点为(1,0),所以圆心坐标为(0,1),2222(032)3105r --=+=,圆C 的方程为22(1)10x y +-=. 14.3【解析】令AB a =,AD b =,则(1,2)(2,0),(1,2)(3,2)a b a b a b ⎧+=⎪⇒==-⎨-+=-⎪⎩ 所以()3AD AC b a b ⋅=⋅+=. 15.76【解析】22111211111()13())33(n n n n n n n a a a a a a a a ----+-+=+++=-++++所以2173lim 11613n n a →∞=+=-.16.{}2 【解析】由已知得ca y x=,单调递减,所以当[,2]x a a ∈时,所以1122log 2{{23c a c a a aa a a --≥+≥⇒≤≤,因为有且只有一个常数c 符合题意,所以2log 23a +=,解得2a =,所以的取值的集合为{}2.17.(Ⅰ)4sin 5x =(Ⅱ)sin 23x π⎛⎫+= ⎪⎝⎭【解析】(Ⅰ)因为,所以,于是(Ⅱ)因为,故所以18.(Ⅰ)(Ⅱ)的分布列为的数学期望2E ξ= 【详解】试题分析:对于问题(I )由题目条件并结合间接法,即可求出乙投球的命中率p ;对于问题(II ),首先列出两人共命中的次数ξ的所有可能的取值情况,再根据题目条件分别求出ξ取各个值时所对应的概率,就可得到ξ的分布列.试题解析:(I )设“甲投球一次命中”为事件A ,“乙投球一次命中”为事件B . 由题意得221(1())(1)16P B p -=-=解得34p =或54(舍去),所以乙投球的命中率为34.(II )由题设知(I )知1()2P A =,1()2P A =,3()4P B =,1()4P B =, ξ可能取值为0,1,2,3故2111(0)()()()2432P P A P B B ξ==⋅=⨯=, 12(1)()()()()()P P A P B B C P B P B P A ξ==⋅+⋅⋅2113117()22444232=⨯+⨯⨯⨯=, 2139(3)()()()2432P P A P B B ξ==⋅=⨯=15(2)1(0)(1)(3)32P P P P ξξξξ==-=-=-==ξ的分布列为171590123232323232E ξ=⨯+⨯+⨯+⨯= 考点:1、概率;2、离散型随机变量及其分布列.19.(Ⅰ)证明见解析. (Ⅱ)(Ⅲ)【解析】 (Ⅰ)证明:在中,由题设可得于是.在矩形中,.又,所以平面.(Ⅱ)由题设,,所以(或其补角)是异面直线与所成的角.在中,由余弦定理得由(Ⅰ)知平面,平面,所以,因而,于是是直角三角形,故所以异面直线与所成的角的大小为.(Ⅲ)解:过点P做于H,过点H做于E,连结PE因为平面,平面,所以.又,因而平面,故HE为PE再平面ABCD内的射影.由三垂线定理可知,,从而是二面角的平面角.由题设可得,于是再中,所以二面角的大小为.20.(Ⅰ)8()9f x xx=-+(Ⅱ)见详解(Ⅲ)7(,]4【详解】本小题主要考查导数的几何意义、利用导数研究函数的单调性、解不等式等基础知识,考查运算能力、综合分析和解决问题的能力.(Ⅰ)解:2()1af x x'=-,由导数的几何意义得(2)3f '=,于是8a =-. 由切点(2,(2))P f 在直线31yx 上可得27b -+=,解得9b =.所以函数()f x 的解析式为8()9f x x x=-+. (Ⅱ)解:2()1a f x x '=-. 当0a ≤时,显然()0f x '>(0x ≠).这时()f x 在(,0)-∞,(0,)+∞上内是增函数. 当0a >时,令()0f x '=,解得x =当x 变化时,()f x ',()f x 的变化情况如下表:所以()f x 在(,-∞,)+∞内是增函数,在(,内是减函数. 综上,当0a ≤时,()f x 在(,0)-∞,(0,)+∞上内是增函数;当0a >时,()f x 在(,-∞,)+∞内是增函数,在(,内是减函数.(Ⅲ)解:由(Ⅱ)知,()f x 在1[,1]4上的最大值为1()4f 与(1)f 的较大者,对于任意的1[,2]2a ∈,不等式()10f x ≤在1[,1]4上恒成立,当且仅当1()104(1)10f f ⎧≤⎪⎨⎪≤⎩,即39449b a b a⎧≤-⎪⎨⎪≤-⎩,对任意的1[,2]2a ∈成立.从而得74b ≤,所以满足条件的b 的取值范围是7(,]4. 21.(Ⅰ)22145x y -=(Ⅱ)55(,)((0,(,)4224-∞-⋃-⋃⋃+∞ 【解析】试题分析:(1)因为中心在原点的双曲线C 的一个焦点是F 1(一3,0),一条渐近线的方程是,两个条件即可求出双曲线的方程.(2)依题意可得通过假设直线l 的方程,联立双曲线方程消去y ,即可得到一个关于x 的二次方程,运用韦达定理以及判别式要大于零,即可写出线段MN 的中垂线的直线方程,从而求出直线与两坐标轴的交点,即可表示出所求的三角形的面积,从而得到一个等式结合判别式的关系式,即可得到结论.试题解析:(1)设双曲线C 的方程为22221(00)x y a b a b,-=>>,由题设得229{a b b a +==,解得224{ 5.a b ==,,所以双曲线C 的方程为22145x y -=; (2)设直线l 的方程为(0)y kx m k =+≠,点11()M x y ,,22()N x y ,的坐标满足方程组22 { 1. 45y kx m x y =+-=,①②,将①式代入②式,得22()145x kx m +-=,整理得222(54)84200k x kmx m ----=,此方程有两个不等实根,于是2540k -≠, 且222(8)4(54)(420)0km k m ∆=-+-+>,整理得22540m k +->.③ 由根与系数的关系可知线段MN 的中点坐标00()x y ,满足:12024254x x km x k +==-,002554my kx m k =+=-,从而线段MN 的垂直平分线的方程为225145454m km y x k k k ⎛⎫-=-- ⎪--⎝⎭,此直线与x 轴,y 轴的交点坐标分别为29054km k ⎛⎫ ⎪-⎝⎭,,29054m k⎛⎫⎪-⎝⎭,, 由题设可得2219981·254542km m k k =--,整理得222(54)k m k-=,0k ≠, 将上式代入③式得222(54)540k k k-+->,整理得22(45)(45)0k k k --->,0k ≠,解得0k <<54k >, 所以k 的取值范围是55004224⎛⎫⎛⎛⎫⎛⎫-∞-⋃-⋃⋃+∞ ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭,,,. 考点:1.待定系数的应用.2.直线与圆锥曲线的位置关系.3.三角形的面积的表示方法.4.韦达定理.5.代数的运算能力.22.(Ⅰ)23a =,29b = (Ⅱ)(1)2n n n a +=,2(1)n b n =+ (Ⅲ)证明见解析. 【解析】本小题主要考查等差数列的概念、通项公式及前n 项和公式、等比数列的概念、等比中项、不等式证明、数学归纳等基础知识,考查运算能力和推理论证能力及分类讨论的思想方法.满分14分(Ⅰ)解:由题设有,,解得14b =.由题设又有,,解得11a =. (Ⅱ)解法一:由题设,,,及14b =,11a =,进一步可得,425b =,,,猜想,,*n N ∈.先证,*n N ∈.当2n ≥时,,等式成立.当时用数学归纳法证明如下:(1当n k =时,,等式成立.(2)假设2k ≥时等式成立,即,.由题设,①的两边分别减去②的两边,整理得,从而 .这就是说,当时等式也成立.根据(1)和(2)可知,等式对任何的成立. 综上所述,等式对任何的*n N ∈都成立再用数学归纳法证明,*n N ∈. (1)当2n ≥时,,等式成立.(2)假设当2k ≥时等式成立,即,那么.这就是说,当时等式也成立.根据(1)和(2)可知,等式对任何的*n N ∈都成立.解法二:由题设1(3)n n nS n S +=+1(1)(2)n n n S n S --=+①的两边分别减去②的两边,整理得1(2)n n na n a +=+,.所以3224a a =, 4335a a =,……1(1)(1)n n n a n a +-=+,3n ≥.将以上各式左右两端分别相乘,得2(1)!(1)!6n n n a a +-=, 由(Ⅰ)并化简得2(1)(1)62n n n n n a a ++==,3n ≥. 止式对1,2n =也成立.由题设有2114n n n b b a ++=,所以221(2)(1)n n b b n n +=++,即1221(1)(2)n n b b n n +⋅=++,*n N ∈. 令2(1)n n b x n =+,则11n n x x +=,即11n n x x +=.由11x =得1n x =,1n ≥.所以21(1)nb n =+,即,1n ≥.解法三:由题设有1(3)n n nS n S +=+,*n N ∈,所以214S S =, 3225S S =,……1(1)(2)n n n S n S --=+,.将以上各式左右两端分别相乘,得112(1)45(2)n n S n S ⨯⨯⨯-=⨯⨯⨯+,化简得1(1)(2)(1)(2)236n n n n n n n S a ++++==⨯,3n ≥.由(Ⅰ),上式对1,2n =也成立.所以1(1)2n n n n n a S S -+=-=,. 上式对2n ≥时也成立. 以下同解法二,可得,1n ≥.(Ⅲ)证明:12(1)222212(1)(1)(1)23(1)(1)nn n a a a n n T b b b n +=-+-++-=--++-+.当4n k =,*k N ∈时,222222222345(42)(41)(4)(41)n T k k k k =--++-----+++.注意到2222(42)(41)(4)(41)324k k k k k ----+++=-,故(1)32(12)43242n k k T k k k +=⨯+++-=⨯-224(44)4(4)343k k k k k n n =+-=+⨯=+.当41n k =-,*k N ∈时,2222(4)34(41)(1)3(1)(2)n T k k k n n n n =+⨯-+=+++-+= 当42n k =-,*k N ∈时,22222(4)34(41)(4)3(2)(3)33n T k k k k n n n n =+⨯-+-=+-+=---.当43n k =-,*k N ∈时,222234(41)(41)3(3)(4)(2)3n T k k k n n n n =⨯-++-=+-+++=--.所以.从而3n ≥时,有222132,5,9,13,3312,6,10,14,{12,3,7,11,312,4,8,12,n n n n n T n nnn n n n+<=++<==<=+<=总之,当3n ≥时有22n T n <,即22n T n <.。

2008天津高考数学理科试卷及答案

2008天津高考数学理科试卷及答案

2008年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分.考试用时120分钟.第I 卷1至2页,第II 卷3至10页.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第I 卷注意事项: 1.答第I 卷前,考生务必将自己的姓名、准考号、科目涂写在答题卡上.并在规定位置粘贴考试用条形码. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试卷上的无效. 3.本卷共10小题,每小题5分,共50分. 参考公式: 如果事件A B ,互斥,那么球的表面积公式24πS R =()()()P A B P A P B +=+球的体积公式34π3V R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,3i (i 1)i 1+=-( ) A .1-B .1C .i -D .i2.设变量x y ,满足约束条件012 1.x y x y x y -⎧⎪+⎨⎪+⎩≥,≤,≥则目标函数5z x y =+的最大值为( )A .2B .3C .4D .53.设函数()sin 22f x x x π⎛⎫=-∈ ⎪⎝⎭R ,,则()f x 是( ) A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数 D .最小正周期为π2的偶函数 4.设a b ,是两条直线,αβ,是两个平面,则a b ⊥的一个充分条件是( ) A .a b αβαβ⊥⊥,∥, B .a b αβαβ⊥⊥,,∥ C .a b αβαβ⊂⊥,,∥D .a b αβαβ⊂⊥,∥,5.设椭圆22221(1)1x y m m m +=>-上一点P 到其左焦点的距离为3,到右焦点的距离为1,则P 到右准线的距离为( ) A .6B .2C .12D6.设集合{}23S x x =->,{}8T x a x a =<<+,S T =R ,则a 的取值范围是( )A .31a -<<-B .31a --≤≤C .3a -≤或1a -≥D .3a <-或1a >-7.设函数()1)f x x =<≤的反函数为1()f x -,则( D )A .1()f x -在其定义域上是增函数且最大值为1B .1()f x -在其定义域上是减函数且最小值为0C .1()f x -在其定义域上是减函数且最大值为1D .1()f x -在其定义域上是增函数且最小值为0 8.已知函数10()10x x f x x x -+<⎧=⎨-⎩,,,≥,则不等式(1)(1)1x x f x +++≤的解集是( )A.{}11x x -≤B .{}1x x ≤C.{}1x xD.{}11x x ≤9.已知函数()f x 是定义在R 上的偶函数,且在区间[)0+,∞上是增函数.令2sin 7a f π⎛⎫= ⎪⎝⎭,5cos 7b f π⎛⎫= ⎪⎝⎭,5tan 7c f π⎛⎫= ⎪⎝⎭,则( )A .b a c <<B .c b a <<C .b c a <<D .a b c <<10.有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有..中间行的两张卡片上的数字之和为5,则不同的排法共有( ) A .1344种 B .1248种C .1056种D .960种2008年普通高等学校招生全国统一考试(天津卷)数学(理工类)第Ⅱ卷注意事项:1.答卷前将密封线内的项目填写清楚. 2.用钢笔或圆珠笔直接答在试卷上. 3.本卷共12小题,共100分.二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.5x ⎛- ⎝的二项展开式中2x 的系数是 (用数字作答). 12.一个正方体的各顶点均在同一球的球面上,若该球的体积为,则该正方体的表面积为 .13.已知圆C 的圆心与抛物线24y x =的焦点关于直线y x =对称,直线4320x y --=与圆C 相交于A B ,两点,且6AB =,则圆C 的方程为 .14.如图,在平行四边形ABCD 中,(12)AC =,,(32)BD =-,,。

(38)2008年高考理科数学试题(天津卷)及参考答案

(38)2008年高考理科数学试题(天津卷)及参考答案

2008年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分.考试用时120分钟.第I 卷1至2页,第II 卷3至10页.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第I 卷注意事项: 1.答第I 卷前,考生务必将自己的姓名、准考号、科目涂写在答题卡上.并在规定位置粘贴考试用条形码. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试卷上的无效. 3.本卷共10小题,每小题5分,共50分. 参考公式: 如果事件互斥,那么球的表面积公式球的体积公式 如果事件相互独立,那么 其中表示球的半径一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.是虚数单位,( ) A .B .C .D .2.设变量满足约束条件则目标函数的最大值为( )A .2B .3C .4D .53.设函数,则是( ) A .最小正周期为的奇函数B .最小正周期为的偶函数C .最小正周期为的奇函数 D .最小正周期为的偶函数 4.设是两条直线,是两个平面,则的一个充分条件是( )A .B .C .D .5.设椭圆上一点到其左焦点的距离为3,到右焦点的距离为1,则到右准线的距离为( ) A .6B .2C .D6.设集合,,,则的取值范围是( )A .B .C .或D .或7.设函数的反函数为,则( )A .在其定义域上是增函数且最大值为1B .在其定义域上是减函数且最小值为0C .在其定义域上是减函数且最大值为1D .在其定义域上是增函数且最小值为08.已知函数则不等式的解集是()A .B .C .D .9.已知函数是定义在上的偶函数,且在区间上是增函数.令,,,则( )A .B .C .D .10.有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有..中间行的两张卡片上的数字之和为5,则不同的排法共有()A B ,24πS R =()()()P A B P A P B +=+34π3V R =A B ,R ()()()P A B P A P B =i 3i (i 1)i 1+=-1-1i -i x y ,012 1.x y x y x y -⎧⎪+⎨⎪+⎩≥,≤,≥5z x y =+()sin 22f x x x π⎛⎫=-∈ ⎪⎝⎭R ,()f x πππ2π2a b ,αβ,a b ⊥a b αβαβ⊥⊥,∥,a b αβαβ⊥⊥,,∥a b αβαβ⊂⊥,,∥a b αβαβ⊂⊥,∥,22221(1)1x y m m m +=>-P P 12{}23S x x =->{}8T x a x a =<<+S T =R a 31a -<<-31a --≤≤3a -≤1a -≥3a <-1a >-()1)f x x =<≤1()f x -1()f x -1()f x -1()f x -1()fx -10()10x x f x x x -+<⎧=⎨-⎩,,,≥,(1)(1)1x x f x +++≤{}11x x -≤{}1x x ≤{}1x x {}11x x ≤()f x R [)0+,∞2sin7a f π⎛⎫= ⎪⎝⎭5cos 7b f π⎛⎫= ⎪⎝⎭5tan 7c f π⎛⎫= ⎪⎝⎭b a c <<c b a <<b c a <<a b c <<A .1344种B .1248种C .1056种D .960种2008年普通高等学校招生全国统一考试(天津卷)数学(理工类)第Ⅱ卷注意事项:1.答卷前将密封线内的项目填写清楚. 2.用钢笔或圆珠笔直接答在试卷上. 3.本卷共12小题,共100分.二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.的二项展开式中的系数是 (用数字作答). 12.一个正方体的各顶点均在同一球的球面上,若该球的体积为,则该正方体的表面积为 . 13.已知圆的圆心与抛物线的焦点关于直线对称,直线与圆相交于两点,且,则圆的方程为 .14.如图,在平行四边形中,,, 则 .15.已知数列中,,,则 . 16.设,若仅有一个常数使得对于任意的,都有满足方程,这时的取值的集合为 .三、解答题:本大题共6小题,共76分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 已知,. (Ⅰ)求的值; (Ⅱ)求的值. 18.(本小题满分12分)甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为与,且乙投球2次均未命中的概率为. (Ⅰ)求乙投球的命中率;(Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为,求的分布列和数学期望. 19.(本小题满分12分)如图,在四棱锥中,底面是矩形.已知,,,,.(Ⅰ)证明平面;(Ⅱ)求异面直线与所成的角的大小;(Ⅲ)求二面角的大小. 20.(本小题满分12分) 已知函数,其中. (Ⅰ)若曲线在点处的切线方程为,求函数的解析式;(Ⅱ)讨论函数的单调性;(Ⅲ)若对于任意的,不等式在上恒成立,求的取值范围.21.(本小题满分14分)已知中心在原点的双曲线的一个焦点是,一条渐近线的方程是. (Ⅰ)求双曲线的方程;(Ⅱ)若以为斜率的直线与双曲线相交于两个不同的点,且线段的垂直平分线与两坐52x x ⎛⎫- ⎪⎝⎭2x 43πC 24y x =y x =4320x y --=C A B ,6AB =C ABCD (12)AC =,(32)BD =-,AD AC ={}n a 11a =111()3n n n a a n ++-=∈*N lim n n a →∞=1a >c []2x a a ∈,2y a a ⎡⎤∈⎣⎦,log log a a x y c +=a 2cos 410x π⎛⎫-= ⎪⎝⎭324x ππ⎛⎫∈ ⎪⎝⎭,sin x sin 23x π⎛⎫+⎪⎝⎭12p 116p ξξP ABCD -ABCD 3AB =2AD =2PA =22PD =60PAB =∠AD ⊥PAB PC AD P BD A --()(0)af x x b x x=++≠a b ∈R ,()y f x =(2(2))P f ,31y x =+()f x ()f x 122a ⎡⎤∈⎢⎥⎣⎦,()10f x ≤114⎡⎤⎢⎥⎣⎦,b C 1(30)F -,520x y -=C (0)k k ≠l C M N ,MN A BCDP BACD标轴围成的三角形的面积为,求的取值范围.22.(本小题满分14分)在数列与中,,,数列的前项和满足,为与的等比中项,.(Ⅰ)求,的值;(Ⅱ)求数列与的通项公式;(Ⅲ)设,证明.2008年普通高等学校招生全国统一考试(天津卷)数学(理工类)参考解答一、选择题:本题考查基本知识和基本运算.每小题5分,满分50分.1.A2.D3.B4.C5.B6.A7.D8.C9.A10.B二、填空题:本题考查基本知识和基本运算.每小题4分,满分24分.11.4012.2413.14.315.16.三、解答题17.本小题主要考查同角三角函数的基本关系式、特殊角三角函数值、两角和的正弦、两角差的余弦、二倍角的正弦与余弦等基础知识,考查基本运算能力.满分12分.(Ⅰ)解法一:因为,所以,于是..,即.又,从而,解得或.因为,所以.(Ⅱ)解:因为,故.,.所以,.18.本小题主要考查随机事件、互斥事件、相互独立事件的概率,离散型随机变量的分布列和数学期望等基础知识,考查运用概率知识解决实际问题的能力.满分12分.(Ⅰ)解:设“甲投球一次命中”为事件,“乙投球一次命中”为事件,由题意得,解得或(舍去),所以乙投球的命中率为.(Ⅱ)解:由题设和(Ⅰ)知,,,.可能的取值为0,1,2,3,故812k{}na{}n b11a=14b={}n a n n S1(3)0n nnS n S+-+=12na+nb1nb+n∈*N2a2b{}na{}n b1212(1)(1)(1)n aa an nT b b b n=-+-++-∈*N…,223nT n n<,≥22(1)10x y+-=76{}2324xππ⎛⎫∈ ⎪⎝⎭,442xπππ⎛⎫-∈ ⎪⎝⎭,sin410xπ⎛⎫-==⎪⎝⎭sin sin sin cos cos sin444444x x x x⎛ππ⎫ππππ⎛⎫⎛⎫⎛⎫=-+=-+-⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭41021025=+=x x=1cos sin5x x+=22sin cos1x x+=225sin5sin120x x--=4sin5x=3sin5x=-324xππ⎛⎫∈ ⎪⎝⎭,4sin5x=324xππ⎛⎫∈ ⎪⎝⎭,3cos5x===-24sin22sin cos25x x x==-27cos22cos125x x=-=-sin2sin2cos cos2sin333x x xπππ⎛⎫+=+=⎪⎝⎭A B221(1())(1)16P B p-=-=34p=54p=341()2P A=1()2P A=3()4P B=1()4P B=ξ,, ,. 的分布列为的数学期望. 19.本小题主要考查直线和平面垂直、异面直线所成的角、二面角等基础知识,考查空间想象能力、运算能力和推理论证能力.满分12分.(Ⅰ)证明:在中,由题设,,,可得,于是.在矩形中,,又,所以平面.(Ⅱ)解:由题设,,所以(或其补角)是异面直线与所成的角. 在中,由余弦定理得 .由(Ⅰ)知平面,平面,所以,因而,于是是直角三角形, 故. 所以异面直线与所成的角的大小为.(Ⅲ)解:过点作于,过点作于,连结. 因为平面,平面,所以.又,因而平面,故为在平面内的射影.由三垂线定理可知,.从而是二面角的平面角.由题设可得,,,,,. 于是在中,. 所以二面角的大小为. 20.本小题主要考查导数的几何意义、利用导数研究函数的单调性、解不等式等基础知识,考查运算能力、综合分析和解决问题的能力.满分12分. (Ⅰ)解:,由导数的几何意义得,于是. 由切点在直线上可得,解得. 所以函数的解析式为. (Ⅱ)解:. 当时,显然,这时在,内是增函数. 当时,令,解得. 当变化时,,的变化情况如下表:2111(0)()()2432P P A P B B ξ⎛⎫===⨯= ⎪⎝⎭12(1)()()()()()P P A P B B C P B P B P A ξ==+211311722444232⎛⎫=⨯+⨯⨯⨯= ⎪⎝⎭2139(3)()()2432P P A P B B ξ⎛⎫===⨯= ⎪⎝⎭15(2)1(0)(1)(3)32P P P P ξξξξ==-=-=-==ξξ0123P 1327321532932ξ171590123232323232E ξ=⨯+⨯+⨯+⨯=PAD △2PA =2AD =22PD =222PA AD PD +=AD PA ⊥ABCD AD AB ⊥PA AB A =AD ⊥PAB BC AD ∥PCB ∠PC AD PAB △222cos 7PB PA AB PA AB PAB =+-=AD ⊥PAB PB ⊂PAB AD PB ⊥BC PB ⊥PBC △7tan 2PB PCB BC ==PC AD 7arctan 2P PH AB ⊥H H HE BD ⊥E PE AD ⊥PAB PH ⊂PAB AD PH ⊥ADAB A =PH ⊥ABCD HEPE ABCD BD PE ⊥PEH ∠P BD A --sin 603PH PA ==cos601AH PA ==2BH AB AH =-=2213BD AB AD =+=413AD HE BH BD ==Rt PHE △39tan 4PH PEH HE ==P BD A --39arctan42()1af x x'=-(2)3f '=8a =-(2(2))P f ,31y x =+27b -+=9b =()f x 8()9f x x x=-+2()1af x x'=-0a ≤()0(0)f x x '>≠()f x (0)-∞,(0)+,∞0a >()0f x '=x a =±x ()f x '()f x x ()a --∞,a -(0)a -,(0)a ,a ()a +,∞()f x '+0--0+AB CDPHE所以在,内是增函数,在,内是减函数. (Ⅲ)解:由(Ⅱ)知,在上的最大值为与中的较大者,对于任意的,不等式在上恒成立,当且仅当 即 对任意的成立. 从而得,所以满足条件的的取值范围是.21.本小题主要考查双曲线的标准方程和几何性质、直线方程、两条直线垂直、线段的定比分点等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理、运算能力.满分14分.(Ⅰ)解:设双曲线的方程为,由题设得解得 所以双曲线的方程为. (Ⅱ)解:设直线的方程为,点,的坐标满足方程组将①式代入②式,得,整理得 .此方程有两个不等实根,于是,且.整理得. ③由根与系数的关系可知线段的中点坐标满足,. 从而线段的垂直平分线的方程为.此直线与轴,轴的交点坐标分别为,.由题设可得.整理得,.将上式代入③式得, 整理得,.解得或. 所以的取值范围是. 22.本小题主要考查等差数列的概念、通项公式及前项和公式、等比数列的概念、等比中项、不等式证明、数学归纳法等基础知识,考查运算能力和推理论证能力及分类讨论的思想方法.满分14分.()f x (--∞,+∞((0()f x 114⎡⎤⎢⎥⎣⎦,14f ⎛⎫ ⎪⎝⎭(1)f 122a ⎡⎤∈⎢⎥⎣⎦,()10f x ≤114⎡⎤⎢⎥⎣⎦,1104(1)10f f ⎧⎛⎫⎪ ⎪⎝⎭⎨⎪⎩≤,≤,39449b a b a ⎧-⎪⎨⎪-⎩≤,≤122a ⎡⎤∈⎢⎥⎣⎦,74b ≤b 74⎛⎤- ⎥⎝⎦∞,C 22221(00)x y a b a b-=>>,229a b b a⎧+=⎪⎨=⎪⎩,2245.a b ⎧=⎪⎨=⎪⎩,C 22145x y -=l (0)y kx m k =+≠11()M x y ,22()N x y ,221.45y kx m x y =+⎧⎪⎨-=⎪⎩,① ②22()145x kx m +-=222(54)84200k x kmx m ----=2540k -≠222(8)4(54)(420)0km k m ∆=-+-+>22540m k +->MN 00()x y ,12024254x x km x k +==-002554my kx m k =+=-MN 225145454m km y x k k k ⎛⎫-=-- ⎪--⎝⎭x y 29054km k ⎛⎫⎪-⎝⎭,29054m k ⎛⎫ ⎪-⎝⎭,2219981254542km m k k =--222(54)k m k-=0k ≠222(54)540k k k-+->22(45)(45)0k k k --->0k ≠0k <<54k >k 5555004224⎛⎫⎛⎫⎛⎫⎛⎫---+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∞,,,,∞n(Ⅰ)解:由题设有,,解得.由题设又有,,解得. (Ⅱ)解法一:由题设,,,及,, 进一步可得,,,,猜想,,. 先证,. 当时,,等式成立.当时用数学归纳法证明如下: (1)当时,,等式成立. (2)假设当时等式成立,即,.由题设,, ① .②①的两边分别减去②的两边,整理得,从而.这就是说,当时等式也成立.根据(1)和(2)可知,等式对任何的成立. 综上所述,等式对任何的都成立. 再用数学归纳法证明,. (1)当时,,等式成立.(2)假设当时等式成立,即,那么. 这就是说,当时等式也成立.根据(1)和(2)可知,等式对任何的都成立.解法二:由题设, ①. ②①的两边分别减去②的两边,整理得,,所以,,……,.将以上各式左右两端分别相乘,得, 由(Ⅰ)并化简得,. 上式对,也成立.由题设有,所以,即,. 令,则,即.由得,.所以 .即 ,.12140a a a +-=11a =23a =22214a b b =14b =29b =1(3)0n n nS n S +-+=11a =14b =23a =29b =36a =316b =410a =425b =(1)2n n n a +=2(1)n b n =+n ∈*N (1)2n n n a +=n ∈*N 1n =11(11)2a ⨯+=2n ≥2n =22(21)2a ⨯+=n k =(1)2k k k a +=2k ≥1(3)k k kS k S +=+1(1)(2)k k k S k S --=+1(2)k k ka k a +=+[]1(1)(1)122(1)22k k k k k k k k a a k k +++++++===1n k =+(1)2n n n a +=2n ≥(1)2n n n a +=n ∈*N 2(1)n b n =+n ∈*N 1n =21(11)b =+n k =2(1)k b k =+[]22221124(1)(2)(1)1(1)k k k a k k b k b k ++++===+++1n k =+2(1)n b n =+n ∈*N 1(3)n n nS n S +=+1(1)(2)n n n S n S --=+1(2)n n na n a +=+2n ≥3224a a =4335a a =1(1)(1)n n n a n a --=+3n ≥2(1)!(1)!6n n n a a +-=2(1)(1)62n n n n n a a ++==3n ≥1n =22114n n n b b a ++=221(2)(1)n n b b n n +=++1221(1)(2)n n b b n n +=++n ∈*N 2(1)nn b x n =+11n n x x +=11n n x x +=11x =1n x =1n ≥21(1)nb n =+2(1)n b n =+1n ≥解法三:由题设有,,所以, ,……,.将以上各式左右两端分别相乘,得,化简得,.由(Ⅰ),上式对,也成立.所以,. 上式对也成立.以下同解法二,可得,.(Ⅲ)证明:.当,时,.注意到,故.当,时,.当,时,.当,时,.所以,从而时,有总之,当时有,即.选择填空解析2008年天津市高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分) 1.(5分)(2008•天津)i 是虚数单位,=( )A .﹣1B .1C .﹣iD .i1(3)n n nS n S +=+n ∈*N 214S S =3225S S =1(1)(2)n n n S n S --=+2n ≥112(1)45(2)n n S n S ⨯⨯⨯-=⨯⨯⨯+……1(1)(2)(1)(2)236n n n n n n n S a ++++==⨯3n ≥1n =21(1)2n n n n n a S S -+=-=2n ≥1n =2(1)n b n =+1n ≥1212(1)(1)(1)n aa a n n Tb b b =-+-++-…(1)222223(1)(1)n n n +=--++-+…4n k =k ∈*N 222222222345(42)(41)(4)(41)n T k k k k =--++-----+++ (2)222(42)(41)(4)(41)324k k k k k ----+++=-(1)32(12)43242n k k T k k k +=⨯+++-=⨯-…224(44)4(4)343k k k k k n n =+-=+⨯=+41n k =-k ∈*N 22222(4)34(41)(1)3(1)(2)n T k k k n n n n =+⨯-+=+++-+=42n k =-k ∈*N 22222(4)34(41)(4)3(2)(3)33n T k k k k n n n n =+⨯-+-=+-+=---43n k =-k ∈*N 222234(41)(41)3(3)(4)(2)3n T k k k n n n n =⨯-++-=+-+++=--2234333424134n n n k n n n k T k n n k n n n k --=-⎧⎪---=-⎪=∈⎨=-⎪⎪+=⎩*N ,,,,,,, ,3n ≥22213259133312610141237113124812n n n n n T n n n n n n n⎧+<=⎪⎪⎪++<=⎪=⎨⎪<=⎪⎪⎪+<=⎩,,,,…,, ,,,…,, ,,,…,, ,,,….3n ≥22n T n<22n T n <【考点】复数代数形式的混合运算.【分析】复数的分子复杂,先化简,然后再化简整个复数,可得到结果.【解答】解:,故选A.【点评】本题考查复数的代数形式的运算,i的幂的运算,是基础题.2.(5分)(2008•天津)设变量x,y满足约束条件,则目标函数z=5x+y的最大值为()A.2B.3C.4D.5【考点】简单线性规划的应用.【专题】计算题.【分析】本题主要考查线性规划的基本知识,先画出约束条件的可行域,再求出可行域中各角点的坐标,将各点坐标代入目标函数的解析式,分析后易得目标函数Z=5x+y的最小值.【解答】解:满足约束条件的可行域如图,由图象可知:目标函数z=5x+y过点A(1,0)时z取得最大值,z max=5,故选D.【点评】在解决线性规划的问题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.3.(5分)(2008•天津)设函数,则函数f(x)是()A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为的奇函数D.最小正周期为的偶函数【考点】二倍角的余弦;三角函数的周期性及其求法;余弦函数的奇偶性.【分析】首先利用余弦的二倍角公式把原函数转化为y=Asinωx的形式,然后由y=Asinωx的性质得出相应的结论.【解答】解:f(x)==﹣=﹣sin2x所以T=π,且为奇函数.故选A.【点评】本题考查余弦的二倍角公式及函数y=Asinωx的性质.4.(5分)(2008•天津)设a,b是两条直线,α,β是两个平面,则a⊥b的一个充分条件是()A.a⊥α,b⊥β,α⊥βB.a⊥α,b⊥β,α⊥βC.a⊂α,b⊥β,α⊥βD.a⊂α,b⊥β,α⊥β【考点】空间中直线与直线之间的位置关系;必要条件、充分条件与充要条件的判断.【分析】根据题意分别画出错误选项的反例图形即可.【解答】解:A、B、D的反例如图.故选C.【点评】本题考查线面垂直、平行的性质及面面垂直、平行的性质,同时考查充分条件的含义及空间想象能力.5.(5分)(2008•天津)设椭圆上一点P到其左焦点的距离为3,到右焦点的距离为1,则P点到右准线的距离为()A.6B.2C.D.【考点】椭圆的简单性质.【专题】计算题.【分析】根据椭圆定义,求出m,利用第二定义求出到右准线的距离,注意右焦点右准线的对应关系.【解答】解:由椭圆第一定义知a=2,所以m2=4,椭圆方程为所以d=2,故选B【点评】本题考查了椭圆的第一定义以及第二定义的应用6.(5分)(2008•天津)设集合S={x||x﹣2|>3},T={x|a<x<a+8},S⊥T=R,则a的取值范围是()A.﹣3<a<﹣1B.﹣3≤a≤﹣1C.a≤﹣3或a≥﹣1D.a<﹣3或a>﹣1【考点】集合的包含关系判断及应用.【分析】根据题意,易得S={x|x<﹣1或x>5},又有S⊥T=R,可得不等式组,解可得答案.【解答】解:根据题意,S={x||x﹣2|>3}={x|x<﹣1或x>5},又有S⊥T=R,所以,故选A.【点评】本题考查集合间的相互包含关系及运算,应注意不等式的正确求解,并结合数轴判断集合间的关系.7.(5分)(2008•天津)设函数的反函数为f﹣1(x),则()A.f﹣1(x)在其定义域上是增函数且最大值为1B.f﹣1(x)在其定义域上是减函数且最小值为0C.f﹣1(x)在其定义域上是减函数且最大值为1D.f﹣1(x)在其定义域上是增函数且最小值为0【考点】反函数.【分析】根据本题所给出的选项,利用排除法比较方便,这样可以简化直接求解带来的繁琐.【解答】解:⊥为减函数,由复合函数单调性知f(x)为增函数,⊥f﹣1(x)单调递增,排除B、C;又f﹣1(x)的值域为f(x)的定义域,⊥f﹣1(x)最小值为0故选D【点评】本题很好的利用了排除法,显得小巧灵活,如果求出反函数再去研究,就会麻烦多了,可以比较一下感受感受,所以筛选法、排除法、验证法都是很好的解题方法,平时要用.8.(5分)(2008•天津)已知函数,则不等式x+(x+1)f(x+1)≤1的解集是()A.B.{x|x≤1}C.D.【考点】分段函数的解析式求法及其图象的作法.【分析】对f(x+1)中的x分两类,即当x+1<0,和x+1≥0时分别解不等式可得结果.【解答】解:依题意得所以故选:C.【点评】本题考查分断函数,不等式组的解法,分类讨论的数学思想,是基础题.9.(5分)(2008•天津)已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上是增函数.令a=f(sin),b=f(cos),c=f(tan),则()A.b<a<c B.c<b<a C.b<c<a D.a<b<c【考点】偶函数;不等式比较大小.【专题】压轴题.【分析】通过奇偶性将自变量调整到同一单调区间内,根据单调性比较a、b、c的大小.【解答】解:,因为,又由函数在区间[0,+∞)上是增函数,所以,所以b<a<c,故选A【点评】本题属于单调性与增减性的综合应用,解决此类题型要注意:(1)通过周期性、对称性、奇偶性等性质将自变量调整到同一单调区间内,再比较大小.(2)培养数形结合的思想方法.10.(5分)(2008•天津)有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有中间行的两张卡片上的数字之和为5,则不同的排法共有()A.1344种B.1248种C.1056种D.960种【考点】排列、组合的实际应用.【专题】计算题;压轴题.【分析】根据题意,分2步进行,首先确定中间行的数字只能为1,4或2,3,然后确定其余4个数字的排法数,使用排除法,用总数减去不合题意的情况数,可得其情况数目,由乘法原理计算可得答案.【解答】解:根据题意,要求3行中仅有中间行的两张卡片上的数字之和为5,则中间行的数字只能为1,4或2,3,共有C21A22=4种排法,然后确定其余4个数字,其排法总数为A64=360,其中不合题意的有:中间行数字和为5,还有一行数字和为5,有4种排法,余下两个数字有A42=12种排法,所以此时余下的这4个数字共有360﹣4×12=312种方法;由乘法原理可知共有4×312=1248种不同的排法,故选B.【点评】本题考查排列、组合的综合应用,注意特殊方法的使用,如排除法.二、填空题(共6小题,每小题4分,满分24分)11.(4分)(2008•天津)的二项展开式中,x2的系数是40(用数字作答).【考点】二项式定理.【专题】计算题.【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为2求出x2的系数.【解答】解:,令所以r=2,所以x2的系数为(﹣2)2C52=40.故答案为40【点评】本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.12.(4分)(2008•天津)一个正方体的各顶点均在同一球的球面上,若该球的体积为,则该正方体的表面积为24.【考点】棱柱、棱锥、棱台的体积;球的体积和表面积.【专题】计算题;综合题.【分析】由题意球的直径等于正方体的体对角线的长,求出球的半径,再求正方体的棱长,然后求正方体的表面积.【解答】解:设球的半径为R,由得,所以a=2,表面积为6a2=24.故答案为:24【点评】本题考查球的内接体,球的表面积,考查空间想象能力,计算能力,是基础题.13.(4分)(2008•天津)已知圆C的圆心与抛物线y2=4x的焦点关于直线y=x对称.直线4x﹣3y﹣2=0与圆C 相交于A 、B 两点,且|AB|=6,则圆C的方程为x2+(y ﹣1)2=10.【考点】抛物线的应用;圆的标准方程;直线和圆的方程的应用.【专题】计算题.【分析】先根据抛物线方程求得焦点坐标,进而求得圆心,进而求得圆心到直线4x﹣3y﹣2=0的距离,根据勾股定理求得圆的半径.则圆的方程可得.【解答】解:依题意可知抛物线的焦点为(1,0),⊥圆C的圆心与抛物线y2=4x的焦点关于直线y=x对称.所以圆心坐标为(0,1),⊥,圆C的方程为x2+(y﹣1)2=10故答案为x2+(y﹣1)2=10【点评】本题主要考查了抛物线的应用.涉及了圆的基本性质,对称性问题,点到直线的距离,数形结合思想等问题.14.(4分)(2008•天津)如图,在平行四边形ABCD中,,则=3.【考点】平面向量数量积的运算.【分析】选一对不共线的向量做基底,在平行四边形中一般选择以最左下角定点为起点的一对边做基底,把基底的坐标求出来,代入数量积的坐标公式进行运算,得到结果.【解答】解:令,,则⊥.故答案为:3【点评】用基底表示向量,然后进行运算,比较困难.要启发学生在理解数量积的运算特点的基础上,逐步把握数量积的运算律,引导学生注意数量积性质的相关问题的特点,以熟练地应用数量积的性质.15.(4分)(2008•天津)已知数列{a n}中,,则=.【考点】数列的求和;极限及其运算.【专题】计算题;压轴题.【分析】首先由求a n可以猜想到用错位相加法把中间项消去,即可得到a n的表达式,再求极限即可.【解答】解:因为所以a n是一个等比数列的前n项和,所以,且q=2.代入,所以.所以答案为【点评】此题主要考查数列的求和问题,用到错位相加法的思想,需要注意.16.(4分)(2008•天津)设a>1,若仅有一个常数c使得对于任意的x∈[a,2a],都有y∈[a,a2]满足方程log a x+log a y=c,这时a的取值的集合为{2}.【考点】对数的运算性质;函数单调性的性质.【专题】计算题;压轴题.【分析】由log a x+log a y=c可以用x表达出y,转化为函数的值域问题求解.【解答】解:⊥log a x+log a y=c,⊥=c⊥xy=a c得,单调递减,所以当x∈[a,2a]时,所以,因为有且只有一个常数c符合题意,所以2+log a2=3,解得a=2,所以a的取值的集合为{2}.故答案为:{2}【点评】本题考查函数与方程思想,需要有较强的转化问题的能力.。

【高考数学】2008年真题试卷及答案解析--天津理科

【高考数学】2008年真题试卷及答案解析--天津理科

绝密 ★ 启用前2008年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至10页。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的.(1)i 是虚数单位,()=-+113i i i (A) 1- (B) 1 (C) i - (D) i(2)设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x ,则目标函数y x z +=5的最大值为(A) 2 (B) 3 (C) 4 (D) 5 (3)设函数()R x x x f ∈⎪⎭⎫⎝⎛-=,22sin π,则()x f 是 (A) 最小正周期为π的奇函数 (B) 最小正周期为π的偶函数(C) 最小正周期为2π的奇函数 (D) 最小正周期为2π的偶函数 (4)设b a ,是两条直线,βα,是两个平面,则b a ⊥的一个充分条件是(A) βαβα⊥⊥,//,b a (B) βαβα//,,⊥⊥b a (C) βαβα//,,⊥⊂b a (D) βαβα⊥⊂,//,b a(5)设椭圆()1112222>=-+m m y m x 上一点P 到其左焦点的距离为3,到右焦点的距离为1,则P 点到右准线的距离为 (A) 6 (B) 2 (C)21 (D) 772 (6)设集合{}{}R T S a x a x T x x S =+<<=>-= ,8|,32|,则a 的取值范围是(A) 13-<<-a (B) 13-≤≤-a(C) 3-≤a 或1-≥a (D) 3-<a 或1->a(7)设函数()()1011<≤-=x xx f 的反函数为()x f 1-,则(A) ()x f 1-在其定义域上是增函数且最大值为1 (B) ()x f 1-在其定义域上是减函数且最小值为0 (C) ()x f 1-在其定义域上是减函数且最大值为1 (D) ()x f1-在其定义域上是增函数且最小值为0(8)已知函数()⎩⎨⎧≥-<+-=011x x x x x f ,则不等式()()111≤+++x f x x 的解集是 (A) {}121|-≤≤-x x (B) {}1|≤x x(C) {}12|-≤x x (D) {}1212|-≤≤--x x(9)已知函数()x f 是R 上的偶函数,且在区间[)+∞,0上是增函数.令⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=75tan,75cos,72sinπππf c f b f a ,则 (A) c a b << (B) a b c << (C) a c b << (D) c b a <<(10)有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有中间行的两张卡片上的数字之和为5,则不同的排法共有 (A) 1344种 (B) 1248种 (C) 1056种 (D) 960种第Ⅱ卷注意事项: 1.答卷前将密封线内的项目填写清楚。

2008年高考文科数学试题及参考答案(天津卷)

2008年高考文科数学试题及参考答案(天津卷)

(一)人伦情感单元1、《诗经》:作品分类;艺术手法;现实主义精神。

作品分类:《诗经》,又称《诗》、《诗三百》、《三百篇》,是中国最早的诗歌总集。

按照音乐性质的不同,可以分为“风”、“雅”、“颂”。

《风》包括了十五个地方的民歌,包括今天山西、陕西、河南、河北、山东一些地方(齐、韩、赵、魏、秦),大部分是黄河流域的民间乐歌,多半是经过润色后的民间歌谣叫“十五国风”,有160篇,是《诗经》中的核心内容。

“风”的意思是土风、风谣。

《雅》分为《小雅》(74篇)和《大雅》(31篇),是宫廷乐歌,共105篇。

“雅”是“正”的意思,即正声雅乐,主要是贵族享宴或诸侯朝会时的乐歌。

按音乐的布局又分“大雅”、“小雅”,有诗105篇,其中大雅31篇,小雅74篇。

固然多半是士大夫的作品,但小雅中也不少类似风谣的劳人思辞,如黄鸟、我行其野、谷风、何草不黄等。

《颂》包括《周颂》(31篇),《鲁颂》(4篇),和《商颂》(5篇),是宗庙用于祭祀的乐歌和舞歌,共40篇。

艺术手法:赋、比、兴。

“赋”就是铺陈叙述,“比”就是打比方,“兴”就是借助于其他事物引出诗歌真正要表达的内容。

具体见课本:第一页和第十三页现实主义精神:现实主义的基本原则,是按照生活的实际样式再现生活,并通过对生活真实的、具体的、形象的描写,表达作者的思想情感,反映社会生活的本质或本质的某些方面。

《诗经》的现实主义情怀:《诗经》是我国文学现实主义长河的初源①。

民间文学,尤其民间诗歌一直循着这条道路前进着。

《诗经》中的著作有的表达了尖锐的社会矛盾与阶级对立,如《豳风·七月》、《小雅·黄鸟》、《小雅·苕之华》《魏风·伐檀》、《魏风·硕鼠》等;有的表达人民对劳役、兵役的痛苦与反感,如《唐风·鸨羽》、《小雅·采薇》等;有的描写妇女的命运和生活问题,如《卫风·氓》、《郑风·将仲子》、《召南·行露》等;有的描写爱情生活的恋歌,如《蒹葭》、《桑中》、《女曰鸡鸣》等。

2008年普通高等学校招生全国统一考试天津卷文

2008年普通高等学校招生全国统一考试天津卷文

2008年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分,考试用时120分钟.第I 卷参考公式:如果事件A B ,互斥,那么球的表面积公式24πS R = ()()()P A B P A P B +=+球的体积公式34π3V R =如果事件A B ,相互独立,那么 其中R 表示球的半径 )()()(B P A P B A P ⋅=⋅一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}08U x x =∈<N ≤,{}1245S =,,,,{}357T =,,,则=⋂)(T C S U ( ) A .{}124,,B .{}123457,,,,,C .{}12,D .{}124568,,,,,2.设变量x y ,满足约束条件012 1.x y x y x y -⎧⎪+⎨⎪+⎩≥,≤,≥则目标函数5z x y =+的最大值为( )A .2B .3C .4D .53.函数14)y x =≤≤的反函数是( )A .2(1)(13)y x x =-≤≤ B .2(1)(04)y x x =-≤≤ C .21(13)y x x =-≤≤D .21(04)y x x =-≤≤4.若等差数列{}n a 的前5项和525S =,且23a =,则7a =( ) A .12B .13C .14D .155.设a b ,是两条直线,αβ,是两个平面,则a b ⊥的一个充分条件是( ) A .a b αβαβ⊥⊥,∥, B .a b αβαβ⊥⊥,,∥ C .a b αβαβ⊂⊥,,∥D .a b αβαβ⊂⊥,∥,6.把函数sin ()y x x =∈R 的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( ) A .sin 23y x x π⎛⎫=-∈ ⎪⎝⎭R , B .sin 26x y x π⎛⎫=+∈⎪⎝⎭R , C .sin 23y x x π⎛⎫=+∈ ⎪⎝⎭R , D .sin 23y x x 2π⎛⎫=+∈ ⎪⎝⎭R , 7.设椭圆22221(00)x y m n m n +=>>,的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为( )A .2211216x y += B .2211612x y += C .2214864x y += D .2216448x y += 8.已知函数20()20x x f x x x +⎧=⎨-+>⎩,≤,,,则不等式2()f x x ≥的解集为( )A .[]11-,B .[]22-,C .[]21-,D .[]12-,9.设5sin7a π=,2cos 7b π=,2tan 7c π=,则( ) A .a b c <<B .a c b <<C .b c a <<D .b a c <<10.设1a >,若对于任意的[]2x a a ∈,,都有2y a a ⎡⎤∈⎣⎦,满足方程log log 3a a x y +=,这时a 的取值的集合为( ) A .{}12a a <≤B .{}2a a ≥C .{}23a a ≤≤D .{}23,第Ⅱ卷二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上. 11.一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工 人.12.52x x ⎛⎫+ ⎪⎝⎭的二项展开式中3x 的系数为 (用数字作答).13.若一个球的体积为,则它的表面积为 .14.已知平面向量)4,2(=→a ,)2,1(-=→b ,若→→→→→⋅-=b b a a c )(,则→c = . 15.已知圆C 的圆心与点(21)P -,关于直线1y x =+对称.直线34110x y +-=与圆C 相交于A B ,两点,且6AB =,则圆C 的方程为 .16.有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标的数字之和等于10,则不同的排法共有 种(用数字作答).三、解答题:本大题共6小题,共76分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知函数2()2cos 2sin cos 1(0)f x x x x x ωωωω=++∈R >,的最小正周期是2π. (Ⅰ)求ω的值;(Ⅱ)求函数()f x 的最大值,并且求使()f x 取得最大值的x 的集合. 18.(本小题满分12分)甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为12与p ,且乙投球2次均未命中的概率为116. (Ⅰ)求乙投球的命中率p ;(Ⅱ)求甲投球2次,至少命中1次的概率;(Ⅲ)若甲、乙两人各投球2次,求两人共命中2次的概率. 19.(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 是矩形.已知3AB =,2AD =,2PA =,PD =60PAB =∠.(Ⅰ)证明AD ⊥平面PAB ;(Ⅱ)求异面直线PC 与AD 所成的角的大小;(Ⅲ)求二面角P BD A --的大小. 20.(本小题满分12分)已知数列{}n a 中,11a =,22a =,且11(1)n n n a q a qa +-=+-(20)n q ≠≥,.(Ⅰ)设1()n n n b a a n +=-∈*N ,证明{}n b 是等比数列;(Ⅱ)求数列{}n a 的通项公式;(Ⅲ)若3a 是6a 与9a 的等差中项,求q 的值,并证明:对任意的n ∈*N ,n a 是3n a +与6n a +的等差中项.21.(本小题满分14分)设函数432()2()f x x ax x b x =+++∈R ,其中a b ∈R ,. (Ⅰ)当103a =-时,讨论函数()f x 的单调性; (Ⅱ)若函数()f x 仅在0x =处有极值,求a 的取值范围;(Ⅲ)若对于任意的[]22a ∈-,,不等式()1f x ≤在[]11-,上恒成立,求b 的取值范围. 22.(本小题满分14分)已知中心在原点的双曲线C 的一个焦点是1(30)F -,,一条渐近线的方程是20y -=.(Ⅰ)求双曲线C 的方程;(Ⅱ)若以(0)k k ≠为斜率的直线l 与双曲线C 相交于两个不同的点M N ,,且线段MN 的垂直平分线与两坐标轴围成的三角形的面积为812,求k 的取值范围.。

2008高考天津数学理科试卷含详细解答(全word版)

2008高考天津数学理科试卷含详细解答(全word版)

绝密 ★ 启用前2008年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至10页。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、科目涂写在答题卡上,并在规定位置粘贴考试用条形码。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

答在试卷上的无效。

3.本卷共10小题,每小题5分,共50分。

参考公式:·如果时间A ,B 互斥,那么·球的表面积公式P (A+B )=P (A )+P (B )24S R π=.·如果事件A ,B 相互独立,那么其中R 表示球的半径.P (A·B )=P (A )·P (B )一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的.(1)i 是虚数单位,()=-+113i i i (A) 1- (B) 1 (C) i - (D) i解析:()31(1)11111i i i i ii i i +-+-===----,选A . (2)设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x ,则目标函数y x z +=5的最大值为(A) 2 (B) 3 (C) 4 (D) 5解析:如图,由图象可知目标函数y x z +=5过点(1,0)A 时z 取得最大值,max 5z =,选D .(3)设函数()R x x x f ∈⎪⎭⎫⎝⎛-=,22sin π,则()x f 是 (A) 最小正周期为π的奇函数 (B) 最小正周期为π的偶函数(C) 最小正周期为2π的奇函数 (D) 最小正周期为2π的偶函数 解析:()cos 2f x x =-是周期为π的偶函数,选B .(4)设b a ,是两条直线,βα,是两个平面,则b a ⊥的一个充分条件是(A) βαβα⊥⊥,//,b a (B) βαβα//,,⊥⊥b a (C) βαβα//,,⊥⊂b a (D) βαβα⊥⊂,//,b a 解析:A 、B 、D 直线,a b 可能平行,选C .(5)设椭圆()1112222>=-+m m y m x 上一点P 到其左焦点的距离为3,到右焦点的距离为1,则P 点到右准线的距离为(A) 6 (B) 2 (C)21(D) 772解析:由椭圆第一定义知2a =,所以24m =,椭圆方程为22111432x y e d +=⇒== 所以2d =,选B .(6)设集合{}{}R T S a x a x T x x S =+<<=>-= ,8|,32|,则a 的取值范围是(A) 13-<<-a (B) 13-≤≤-a(C) 3-≤a 或1-≥a (D) 3-<a 或1->a 解析:{|15}S x x x =<->或,所以13185a a a <-⎧⇒-<<-⎨+>⎩,选A .(7)设函数()()1011<≤-=x xx f 的反函数为()x f 1-,则(A) ()x f 1-在其定义域上是增函数且最大值为1 (B) ()x f1-在其定义域上是减函数且最小值为0(C) ()x f 1-在其定义域上是减函数且最大值为1 (D) ()x f1-在其定义域上是增函数且最小值为0解析:1y =为减函数,由复合函数单调性知()f x 为增函数,所以1()f x -单调递增,排除B 、C ;又1()f x -的值域为()f x 的定义域,所以1()f x -最小值为0.(8)已知函数()⎩⎨⎧≥-<+-=0101x x x x x f ,则不等式()()111≤+++x f x x 的解集是(A) {}121|-≤≤-x x (B) {}1|≤x x(C) {}12|-≤x x (D) {}1212|-≤≤--x x解析:依题意得11010(1)()(1)1x x x x x x x x +<+⎧⎧⎨⎨++-++⎩≥≤⎩≤或所以11111111x x x x x x R x ⎧≥-≤≤⇒≤∈≤≤<-⎧⎪⇒<--⎨⎨⎪⎩⎩或或,选C . (9)已知函数()x f 是R 上的偶函数,且在区间[)+∞,0上是增函数.令⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=75tan ,75cos ,72sin πππf c f b f a ,则(A) c a b << (B) a b c << (C) a c b << (D) c b a <<解析:5(cos)(c 2os )77b f f ππ=-=,5(tan )(t 2an )77c f f ππ=-= 因为2472πππ<<,所以220cos sin 1tan7772πππ<<<<,所以b a c <<,选A . (10)有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有中间行的两张卡片上的数字之和为5,则不同的排法共有(A) 1344种 (B) 1248种 (C) 1056种 (D) 960种解析:首先确定中间行的数字只能为1,4或2,3,共有12224C A =种排法.然后确定其余4个数字的排法数.用总数46360A =去掉不合题意的情况数:中间行数字和为5,还有一行数字和为5,有4种排法,余下两个数字有2412A =种排法.所以此时余下的这4个数字共有360412312-⨯=种方法.由乘法原理可知共有31248412⨯=种不同的排法,选B .第Ⅱ卷注意事项: 1.答卷前将密封线内的项目填写清楚。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试卷上的无效.
3.本卷共10小题,每小题5分,共50分.
参考公式:
·如果事件 互斥,那么·球的表面积公式
球的体积公式
·如果事件 相互独立,那么其中 表示球的半径
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设集合 , , ,则 ()
A. B. C. D.
2.设变量 满足约束条件 则目标函数 的最大值为()
A.2B.3C.4D.5
3.函数 的反函数是()
A. B.
C. D.
4.若等差数列 的前5项和 ,且 ,则 ()
A.12B.13C.14D.15
5.设 是两条直线, 是两个平面,则 的一个充分条件是()
(Ⅰ)求乙投球的命中率 ;
(Ⅱ)求甲投球2次,至少命中1次的概率;
(Ⅲ)若甲、乙两人各投球2次,求两人共命中2次的概率.
19.(本小题满分12分)
如图,在四棱锥 中,底面 是矩形.已知 , , , , .
(Ⅰ)证明 平面 ;
(Ⅱ)求异面直线 与 所成的角的大小;
(Ⅲ)求二面角 的大小.
20.(本小题满分12分)
13.若一个球的体积为 ,则它的表面积为.
14.已知平面向量 , ,若 ,则 .
15.已知圆 的圆心与点 关于直线 对称.直线 与圆 相交于 两点,且 ,则圆 的方程为.
16.有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标的数字之和等于10,则不同的排法共有种(用数字作答).
2008年普通高等学校招生全国统一考试(天津卷)
数学(文史类)
本试卷分第I卷(选择题)和第II卷(非选择题)两部分,共150分,考试用时120分钟.第I卷至2页,第II卷3至10页.考试结束后,将本试卷和答题卡一并交回.
祝各位考生考试顺利!
第I卷
注意事项:
1.答第I卷前,考生务必将自己的姓名、准考号、科目涂写在答题卡上,并在规定位置粘贴考试用条形码.
22.(本小题满分14分)
已知中心在原点的双曲线 的一个焦点是 ,一条渐近线的方程是 .
(Ⅰ)求双曲线 的方程;
(Ⅱ)若以 为斜率的直线 与双曲线 相交于两个不同的点 ,且线段 的垂直平分线与两坐标轴围成的三角形的面积为 ,求 的取值范围.
2008年普通高等学校招生全国统一考试(天津卷)
数学(文史类)参考解答
(Ⅱ)解: ,显然 不是方程 的根.
为使 仅在 处有极值,必须 恒成立,即有 .
解此不等式,得 .这时, 是唯一极值.
因此满足条件的 的取值范围是 .
(Ⅲ)解:由条件 可知 ,从而 恒成立.
当 时, ;当 时, .
因此函数 在 上的最大值是 与 两者中的较大者.
为使对任意的 ,不等式 在 上恒成立,当且仅当
当 ,即 时, 取得最大值1,所以函数 的最大值是 ,此时 的集合为 .
18.本小题主要考查随机事件、互斥事件、相互独立事件等概率的基础知识,考查运用概率知识解决实际问题的能力.满分12分.
(Ⅰ)解法一:设“甲投球一次命中”为事件 ,“乙投球一次命中”为事件 ,由题意得

解得 或 (舍去),所以乙投球的命中率为 .
解析:依题意知抽取超过45岁的职工为 .
(12) 的二项展开式中, 的系数是________________(用数字作答).
解析: , ,所以系数为10.
(13)若一个球的体积为 ,则它的表面积为________________.
解析:由 得 ,所以 .
(14)已知平面向量 , .若 ,则 _____________.
甲、乙两人各投球2次,共命中2次有三种情况:甲、乙两人各中一次;甲中2次,乙2次均不中;甲2次均不中,乙中2次.概率分别为



所以甲、乙两人各投球2次,共命中2次的概率为

19.本小题主要考查直线和平面垂直、异面直线所成的角、二面角等基础知识,考查空间相角能力、运算能力和推理论证能力.满分12分.
(A) , (B) ,
(C) , (D) ,
解析:选C,

(7)设椭圆 ( , )的右焦点与抛物线 的焦点相同,离心率为 ,则此椭圆的方程为
(A) (B) (C) (D)
解析:抛物线的焦点为 ,椭圆焦点在 轴上,排除A、C,由 排除D,选B.
(8)已知函数 ,则不等式 的解集是
(A) (B) (C) (D)

在 上恒成立.
所以 ,因此满足条件的 的取值范围是 .
22.本小题主要考查双曲线的标准方程和几何性质、直线方程、两条直线垂直、线段的定比分点等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理、运算能力.满分14分.
(Ⅰ)解:设双曲线 的方程为 ,由题设得
解得
所以双曲线 的方程为 .
3.本卷共12小题,共100分.
二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.
11.一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工人.
12. 的二项展开式中 的系数为(用数字作答).
解析:数字之和为10的情况有4,4,1,1、4,3,2,1、3,3,2,2.
所以共有 种不同排法.
三、解答题
17.本小题主要考查特殊角三角函数值、两角和的正弦、二倍角的正弦和余弦、函数 的性质等基础知识,考查基本运算能力.满分12分.
(Ⅰ)解:

由题设,函数 的最小正周期是 ,可得 ,所以 .
(Ⅱ)解:由(Ⅰ)知, .
一、选择题:本题考查基本知识和基本运算.每小题5分,满分50分.
1.A2.D3.A4.B5.C6.C7.B8.A9.D10.B
二、填空题:本题考查基本知识和基本运算.每小题4分,满分24分.
11.1012.1013. 14.
15. 16.432
(1)设集合 , , ,则
(A) (B) (C) (D)
已知数列 中, , ,且 .
(Ⅰ)设 ,证明 是等比数列;
(Ⅱ)求数列 的通项公式;
(Ⅲ)若 是 与 的等差中项,求 的值,并证明:对任意的 , 是 与 的等差中项.
21.(本小题满分14分)
设函数 ,其中 .
(Ⅰ)当 时,讨论函数 的单调性;
(Ⅱ)若函数 仅在 处有极值,求 的取值范围;
(Ⅲ)若对于任意的 ,不等式 在 上恒成立,求 的取值范围.
(Ⅰ)证明:在 中,由题设 , , ,可得 ,于是 .在矩形 中, ,又 ,所以 平面 .
(Ⅱ)解:由题设, ,所以 (或其补角)是异面直线 与 所成的角.
在 中,由余弦定理得

由(Ⅰ)知 平面 , 平面 ,
所以 ,因而 ,于是 是直角三角形,
故 .
所以异面直线 与 所成的角的大小为 .
(Ⅲ)解:过点 作 于 ,过点 作 于 ,连结 .
解析:因为 ,所以 .
(15)已知圆C的圆心与点 关于直线 对称.直线 与圆C相交于 两点,且 ,则圆C的方程为_______________________.
解析:圆心的坐标为 ,所以 ,圆的方程为 .
(16)有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法共有________________种(用数字作答).
(Ⅱ)解:设直线 的方程为 ,点 , 的坐标满足方程组
将①式代入②式,得 ,整理得

此方程有两个不等实根,于是 ,且
.整理得
.③
由根与系数的关系可知线段 的中点坐标 满足
, .
从而线段 的垂直平分线的方程为

此直线与 轴, 轴的交点坐标分别为 , .由题设可得

整理得
, .
将上式代入③式得 ,
整理得
解析:因为 ,所以 ,选A.
(2)设变量 满足约束条件 ,则目标函数 的最大值为
(A)2(B)3(C)4(D)5
解析:如图,由图象可知目标函数 过点 时 取得最大值, ,选D.
(3)函数 ( )的反函数是
(A) ( )(B) ( )
(C) ( )(D) ( )
解析:当 时, ,解 得 ,选A.
(4)若等差数列 的前5项和 ,且 ,则
, .
解得 或 .
所以 的取值范围是 .
因为 平面 , 垂线定理可知, .从而 是二面角 的平面角.
由题设可得,
, ,
, ,

于是在 中, .
所以二面角 的大小为 .
20.本小题主要考查等差数列、等比数列的概念、等比数列的通项公式及前 项和公式,考查运算能力和推理论证能力及分类讨论的思想方法.满分12分.
三、解答题:本大题共6小题,共76分.解答应写出文字说明,证明过程或演算步骤.
17.(本小题满分12分)
已知函数 的最小正周期是 .
(Ⅰ)求 的值;
(Ⅱ)求函数 的最大值,并且求使 取得最大值的 的集合.
18.(本小题满分12分)
甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为 与 ,且乙投球2次均未命中的概率为 .
解析:依题意得 ,选A.
(9)设 , , ,则
(A) (B) (C) (D)
解析: ,因为 ,所以 ,选D.
(10)设 ,若对于任意的 ,都有 满足方程 ,这时 的取值集合为
相关文档
最新文档