年春八年级数学下册第19章四边形19.2平行四边形第4课时三角形的中位线练习课件(新版)沪科版

合集下载

精品试卷沪科版八年级数学下册第19章 四边形专项测评试题(含答案解析)

精品试卷沪科版八年级数学下册第19章 四边形专项测评试题(含答案解析)

沪科版八年级数学下册第19章 四边形专项测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在矩形ABCD 中,点O 为对角线BD 的中点,过点O 作线段EF 交AD 于F ,交BC 于E ,OB =EB ,点G 为BD 上一点,满足EG ⊥FG ,若∠DBC =30°,则∠OGE 的度数为( )A .30°B .36°C .37.5°D .45°2、如图,菱形ABCD 中,60C ∠=°,2AB =.以A 为圆心,AB 长为半径画BD ,点P 为菱形内一点,连PA ,PB ,PD .若PA PB =,且120APB ∠=︒,则图中阴影部分的面积为( )A .23y π= B .23y π= C .23y π= D .23y π=3、绿丝带是颜色丝带的一种,被用来象征许多事物,例如环境保护、大麻和解放农业等,同时绿丝带也代表健康,使人对健康的人生与生命的活力充满无限希望.某班同学在“做环保护航者”的主题班会课上制作象征“健康快乐”的绿丝带(丝带的对边平行且宽度相同),如图所示,丝带重叠部分形成的图形是( )A .矩形B .菱形C .正方形D .等腰梯形4、下列说法不正确...的是( ) A .三角形的外角大于每一个与之不相邻的内角B .四边形的内角和与外角和相等C .等边三角形是轴对称图形,对称轴只有一条D .全等三角形的周长相等,面积也相等5、在菱形ABCD 中,对角线AC 、BD 相交于点O ,AB =5,AC =6,过点D 作AC 的平行线交BC 的延长线于点E ,则△BDE 的面积为( )A .22B .24C .48D .446、如图,把矩形纸片ABCD 沿对角线折叠,若重叠部分为EBD ∆,那么下列说法错误的是( )A.EBD∆是等腰三角形B.EBA∆全等∆和EDC∠相等C.折叠后得到的图形是轴对称图形D.折叠后ABE∠和CBD7、勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要纽带.数学家欧几里得利用如图验证了勾股定理:以直角三角形ABC的三条边为边长向外作正方形ACHI,正方形ABED,正方形BCGF,连接BI,CD,过点C作CJ⊥DE于点J,交AB于点K.设正方形ACHI的面积为S1,正方形BCGF的面积为S2,长方形AKJD的面积为S3,长方形KJEB的面积为S4,下列结论:①BI=CD;②2S△ACD=S1;③S1+S4=S2+S3)A.1个B.2个C.3个D.4个8、在锐角△ABC中,∠BAC=60°,BN、CM为高,P为BC的中点,连接MN、MP、NP,则结论:①NP =MP;②AN:AB=AM:AC;③BN=2AN;④当∠ABC=60°时,MN∥BC,一定正确的有()A.①②③B.②③④C.①②④D.①④9、在平行四边形ABCD中,∠A=30°,那么∠B与∠A的度数之比为()A .4:1B .5:1C .6:1D .7:110、如图,在△ABC 中,∠ABC =90°,AC =18,BC =14,D ,E 分别是AB ,AC 的中点,连接DE ,BE ,点M 在CB 的延长线上,连接DM ,若∠MDB =∠A ,则四边形DMBE 的周长为( )A .16B .24C .32D .40第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个正多边形的每个外角都等于45°,那么这个正多边形的内角和为______度.2、如图,矩形ABCD 的两条对角线AC ,BD 交于点O ,∠AOB =60°,AB =3,则矩形的周长为 _____.3、正五边形的一个内角与一个外角的比______.4、已知一个多边形的内角和与外角和的比是2:1,则它的边数为 _____.5、如图,平面直角坐标系中,有()3,4A ,()6,0B ,()0,0O 三点,以A ,B ,O 三点为顶点的平行四边形的另一个顶点D 的坐标为______.三、解答题(5小题,每小题10分,共计50分)1、在长方形ABCD中,AB=4,BC=8,点P、Q为BC边上的两个动点(点P位于点Q的左侧,P、Q 均不与顶点重合),PQ=2(1)如图①,若点E为CD边上的中点,当Q移动到BC边上的中点时,求证:AP=QE;(2)如图②,若点E为CD边上的中点,在PQ的移动过程中,若四边形APQE的周长最小时,求BP 的长;(3)如图③,若M、N分别为AD边和CD边上的两个动点(M、N均不与顶点重合),当BP=3,且四边形PQNM的周长最小时,求此时四边形PQNM的面积.2、如图所示,折叠矩形ABCD的一边AD,使点D落在BC边上的点F处,已知AB=6,BC=10,(1)求BF的长;(2)求ECF的面积.3、在Rt ABC 中,90ACB ∠=︒,斜边4AB =,过点C 作CF AB ∥,以AB 为边作菱形ABEF ,若150BEF ∠=︒,求Rt ABC 的面积.4、如图,在△ABC 中,点D 是BC 边的中点,点E 是AD 的中点,过A 点作AF ∥BC ,且交CE 的延长线于点F ,联结BF .(1)求证:四边形AFBD 是平行四边形;(2)当AB=AC 时,求证:四边形AFBD 是矩形.5、已知一个多边形的内角和是外角和的2倍,求这个多边形的边数.-参考答案-一、单选题1、C【分析】根据矩形和平行线的性质,得30DBC BDA ∠=∠=︒;根据等腰三角形和三角形内角和性质,得∠BOE ;根据全等三角形性质,通过证明OBE ODF △∽△,得OE OF =;根据直角三角形斜边中线、等腰三角形、三角形内角和性质,推导得OFG ∠,再根据余角的性质计算,即可得到答案.【详解】∵矩形ABCD∴//AD BC∴30DBC BDA ∠=∠=︒∵OB =EB , ∴180752DBC BOE BEO ︒-∠∠=∠==︒ ∴75FOG BOE ∠=∠=︒∵点O 为对角线BD 的中点,∴OB OD =OBE △和ODF △中30DBC BDA OB OD BOE DOF ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴OBE ODF △∽△∴OE OF =∵EG ⊥FG ,即90EGF ∠=︒∴OE OF OG ∴18052.52FOG OFG OGF ︒-∠∠=∠==︒ ∴9037.5OGE OGF ∠=︒-∠=︒故选:C .【点睛】本题考查了矩形、平行线、全等三角形、等腰三角形、三角形内角和、直角三角形的知识;解题的关键是熟练掌握矩形、全等三角形、等腰三角形、直角三角形斜边中线的性质,从而完成求解.2、C【分析】过点P 作PM AB ⊥交于点M ,由菱形ABCD 得60DAB C ∠=∠=︒,2AB AD ==,由PA PB =,120APB ∠=︒得112AM AB ==,1602APM APB ∠=∠=︒,故可得30PAM ∠=︒,603030PAD DAB PAM ∠=∠-∠=︒-︒=︒,根据SAS 证明ABP ADP ≅,求出PM =ABP ADP ABD S S S S =--阴扇形.【详解】如图,过点P 作PM AB ⊥交于点M ,∵四边形ABCD 是菱形,∴60DAB C ∠=∠=︒,2AB AD ==,∵PA PB =,120APB ∠=︒, ∴112AM AB ==,1602APM APB ∠=∠=︒, ∴30PAM ∠=︒,603030PAD DAB PAM ∠=∠-∠=︒-︒=︒,在ABP △与ADP △中,AB AD PAB PAD AP AP =⎧⎪∠=∠⎨⎪=⎩, ∴()ABP ADP SAS ≅,∴ABP ADP S S =△△,在Rt AMP △中,30PAM ∠=︒,∴2AP PM =,222AP PM AM =+,即2241PM PM =+,解得:PM =∴260211222360223ABP ADPABD S S SS ππ⋅=--=-⨯⨯=阴扇形 故选:C .【点睛】 此题主要考查了菱形的性质以及求不规则图形的面积等知识,掌握扇形的面积公式是解答此题的关键.3、B【分析】首先可判断重叠部分为平行四边形,且两条丝带宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形.【详解】解:过点A 作AE ⊥BC 于E ,AF ⊥CD 于F ,因为两条彩带宽度相同,所以AB∥CD,AD∥BC,AE=AF.∴四边形ABCD是平行四边形.∵S▱ABCD=BC•AE=CD•AF.又AE=AF.∴BC=CD,∴四边形ABCD是菱形.故选:B【点睛】此题考查了菱形的判定,平行四边形的面积公式以及平行四边形的判定与性质,利用了数形结合的数学思想,其中菱形的判定方法有:一组邻边相等的平行四边形为菱形;对角线互相垂直的平行四边形为菱形;四条边相等的四边形为菱形,根据题意作出两条高AE和AF,熟练掌握菱形的判定方法是解本题的关键4、C【分析】根据三角形外角的性质,四边形内角和定理和外角和定理,等边三角形的对称性,全等三角形的性质判断即可.【详解】∵三角形的外角大于每一个与之不相邻的内角,正确,∴A不符合题意;∵四边形的内角和与外角和都是360°,∴四边形的内角和与外角和相等,正确,∴B不符合题意;∵等边三角形是轴对称图形,对称轴有三条,∴等边三角形是轴对称图形,对称轴只有一条,错误,∴C符合题意;∵全等三角形的周长相等,面积也相等,正确,∴D不符合题意;故选C.【点睛】本题考查了三角形外角的性质,四边形的内角和,外角和定理,等边三角形的对称性,全等三角形的性质,准确相关知识是解题的关键.5、B【分析】先判断出四边形ACED是平行四边形,从而得出DE的长度,根据菱形的性质求出BD的长度,利用勾股定理的逆定理可得出△BDE是直角三角形,计算出面积即可.【详解】AC=解:菱形ABCD,6,∥,3,2,5,,AD BC OA OC BD BO AB BC AD AC BD在Rt△BCO中,224,BO BC OC即可得BD=8,∥AC DE,∴四边形ACED是平行四边形,CE AD∴AC=DE=6,5,∴BE=BC+CE=10,222100,BE BD DE∴△BDE 是直角三角形,90,BDE ∠=︒∴S △BDE =12DE •BD =24.故选:B .【点睛】本题考查了菱形的性质,勾股定理的逆定理及三角形的面积,平行四边形的判定与性质,求出BD 的长度,判断△BDE 是直角三角形,是解答本题的关键.6、D【分析】根据题意结合图形可以证明EB =ED ,进而证明△ABE ≌△CDE ;此时可以判断选项A 、B 、D 是成立的,问题即可解决.【详解】解:由题意得:△BCD ≌△BFD ,∴DC =DF ,∠C =∠F =90°;∠CBD =∠FBD ,又∵四边形ABCD 为矩形,∴∠A =∠F =90°,DE ∥BF ,AB =DF ,∴∠EDB =∠FBD ,DC =AB ,∴EB=ED,△EBD为等腰三角形;在△ABE与△CDE中,∵BE DE AB CD=⎧⎨=⎩,∴△ABE≌△CDE(HL);又∵△EBD为等腰三角形,∴折叠后得到的图形是轴对称图形;综上所述,选项A、B、C成立,∴不能证明D是正确的,故说法错误的是D,故选:D.【点睛】本题主要考查了翻折变换及其应用问题;解题的关键是灵活运用翻折变换的性质,找出图中隐含的等量关系;借助矩形的性质、全等三角形的判定等几何知识来分析、判断、推理或解答.7、C【分析】根据SAS证△ABI≌△ADC即可得证①正确,过点B作BM⊥IA,交IA的延长线于点M,根据边的关系得出S△ABI=12S1,即可得出②正确,过点C作CN⊥DA交DA的延长线于点N,证S1=S3即可得证③正确,利用勾股定理可得出S1+S2=S3+S4,即能判断④不正确.【详解】解:①∵四边形ACHI和四边形ABED都是正方形,∴AI=AC,AB=AD,∠IAC=∠BAD=90°,∴∠IAC+∠CAB=∠BAD+∠CAB,在△ABI 和△ADC 中,AI AC IAB CAD AB AD =⎧⎪∠=∠⎨⎪=⎩, ∴△ABI ≌△ADC (SAS ),∴BI =CD ,故①正确;②过点B 作BM ⊥IA ,交IA 的延长线于点M ,∴∠BMA =90°,∵四边形ACHI 是正方形,∴AI =AC ,∠IAC =90°,S 1=AC 2,∴∠CAM =90°,又∵∠ACB =90°,∴∠ACB =∠CAM =∠BMA =90°,∴四边形AMBC 是矩形,∴BM =AC ,∵S △ABI =12AI •BM =12AI •AC =12AC 2=12S 1,由①知△ABI≌△ADC,∴S△ACD=S△ABI=12S1,即2S△ACD=S1,故②正确;③过点C作CN⊥DA交DA的延长线于点N,∴∠CNA=90°,∵四边形AKJD是矩形,∴∠KAD=∠AKJ=90°,S3=AD•AK,∴∠NAK=∠AKC=90°,∴∠CNA=∠NAK=∠AKC=90°,∴四边形AKCN是矩形,∴CN=AK,∴S△ACD=12AD•CN=12AD•AK=12S3,即2S△ACD=S3,由②知2S△ACD=S1,∴S1=S3,在Rt△ACB中,AB2=BC2+AC2,∴S3+S4=S1+S2,又∵S1=S3,∴S1+S4=S2+S3,即③正确;④在Rt△ACB中,BC2+AC2=AB2,∴S3+S4=S1+S2,故④错误;综上,共有3个正确的结论,故选:C.【点睛】本题主要考查勾股定理,正方形的性质,矩形性质,全等三角形的判定和性质等知识,熟练掌握勾股定理和全等三角形的判定和性质是解题的关键.8、C【分析】利用直角三角形斜边上的中线的性质即可判定①正确;利用含30度角的直角三角形的性质即可判定②正确,由勾股定理即可判定③错误;由等边三角形的判定及性质、三角形中位线定理即可判定④正确.【详解】∵CM、BN分别是高∴△CMB、△BNC均是直角三角形∵点P是BC的中点∴PM、PN分别是两个直角三角形斜边BC上的中线∴12 PM PN BC==故①正确∵∠BAC=60゜∴∠ABN=∠ACM=90゜−∠BAC=30゜∴AB=2AN,AC=2AM∴AN:AB=AM:AC=1:2即②正确在Rt△ABN中,由勾股定理得:BN=故③错误当∠ABC=60゜时,△ABC是等边三角形∵CM⊥AB,BN⊥AC∴M、N分别是AB、AC的中点∴MN是△ABC的中位线∴MN∥BC故④正确即正确的结论有①②④故选:C【点睛】本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键.9、B【分析】根据平行四边形的性质先求出∠B的度数,即可得到答案.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠B=180°-∠A=150°,∴∠B:∠A=5:1,故选B.【点睛】本题主要考查了平行四边形的性质,解题的关键在于能够熟练掌握平行四边形邻角互补.10、C【分析】BC,根据平行线的性由中点的定义可得AE=CE,AD=BD,根据三角形中位线的性质可得DE//BC,DE=12质可得∠ADE=∠ABC=90°,利用ASA可证明△MBD≌△EDA,可得MD=AE,DE=MB,即可证明四边形DMBE是平行四边形,可得MD=BE,进而可得四边形DMBE的周长为2DE+2MD=BC+AC,即可得答案.【详解】∵D,E分别是AB,AC的中点,∴AE=CE,AD=BD,DE为△ABC的中位线,BC,∴DE//BC,DE=12∵∠ABC =90°,∴∠ADE =∠ABC =90°,在△MBD 和△EDA 中,90MDB A BD AD MBD ADE ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△MBD ≌△EDA ,∴MD =AE ,DE =MB ,∵DE //MB ,∴四边形DMBE 是平行四边形,∴MD =BE ,∵AC =18,BC =14,∴四边形DMBE 的周长=2DE +2MD =BC +AC =18+14=32.故选:C .【点睛】本题考查全等三角形的判定与性质、三角形中位线的性质及平行四边形的判定与性质,三角形中位线平行于第三边且等于第三边的一半;有一组对边平行且相等的四边形是平行四边形;熟练掌握相关性质及判定定理是解题关键.二、填空题1、1080【分析】利用多边形的外角和为360°计算出这个正多边形的边数,然后再根据内角和公式进行求解即可.【详解】解:∵正多边形的每一个外角都等于45︒,∴正多边形的边数为360°÷45°=8,所有这个正多边形的内角和为(8-2)×180°=1080°.故答案为:1080.【点睛】本题考查了多边形内角与外角等知识,熟知多边形内角和定理(n﹣2)•180 °(n≥3)和多边形的外角和等于360°是解题关键.2、663##【分析】根据矩形性质得出AD=BC,AB=CD,∠BAD=90°,OA=OC=12AC,BO=OD=12BD,AC=BD,推出OA=OB=OC=OD,得出等边三角形AOB,求出BD,根据勾股定理求出AD即可.【详解】解:∵四边形ABCD是矩形,∴∠BAD=90°,OA=OC=12AC,BO=OD=12BD,AC=BD,∴OA=OB=OC=OD,∵∠AOB=60°,OB=OA,∴△AOB是等边三角形,∵AB=3,∴OA=OB=AB=3,∴BD=2OB=6,在Rt△BAD中,AB=3,BD=6,由勾股定理得:AD=∵四边形ABCD是矩形,∴AB=CD=3,AD=BC=∴矩形ABCD 的周长是AB +BC +CD +AD =故答案为:【点睛】本题考查了矩形性质,等边三角形的性质和判定,勾股定理等知识点,关键是求出AD 的长.3、32【分析】根据公式分别求出一个内角与一个外角的度数,即可得到答案.【详解】 解:正五边形的一个内角的度数为(52)1801085-⨯︒=︒,正五边形的一个外角的度数为360725︒=︒, ∴正五边形的一个内角与一个外角的比为1083722︒=︒, 故答案为:32. 【点睛】此题考查了正五边形的内角度数及外角度数,熟记多边形的内角和与外角和公式是解题的关键. 4、6【分析】根据多边形内角和公式及多边形外角和可直接进行求解.【详解】解:由题意得:()18022360n ︒⨯-=⨯︒,解得:6n =,∴该多边形的边数为6;故答案为6.【点睛】本题主要考查多边形的内角和及外角和,熟练掌握多边形内角和及外角和是解题的关键.5、(9,4)、(-3,4)、(3,-4)【分析】根据平行四边形的性质得出AD=BO=6,AD∥BO,根据平行线得出A和D的纵坐标相等,根据B的横坐标和BO的值即可求出D的横坐标.【详解】∵平行四边形ABCD的顶点A、B、O的坐标分别为(3,4)、(6,0)、(0,0),∴AD=BO=6,AD∥BO,∴D的横坐标是3+6=9,纵坐标是4,即D的坐标是(9,4),同理可得出D的坐标还有(-3,4)、(3,-4).故答案为:(9,4)、(-3,4)、(3,-4).【点睛】本题考查了坐标与图形性质和平行四边形的性质,注意:平行四边形的对边平行且相等.三、解答题1、(1)见解析(2)4(3)4【分析】(1)由“SAS”可证△ABP≌△QCE,可得AP=QE;(2)要使四边形APQE的周长最小,由于AE与PQ都是定值,只需AP+EQ的值最小即可.为此,先在BC边上确定点P、Q的位置,可在AD上截取线段AF=DE=2,作F点关于BC的对称点G,连接EG与BC 交于一点即为Q点,过A点作FQ的平行线交BC于一点,即为P点,则此时AP+EQ=EG最小,然后过G点作BC的平行线交DC的延长线于H点,那么先证明∠GEH=45°,再由CQ=EC即可求出BP的长度;(3)要使四边形PQNM的周长最小,由于PQ是定值,只需PM+MN+QN的值最小即可,作点P关于AD 的对称点F,作点Q关于CD的对称点H,连接FH,交AD于M,交CD于N,连接PM,QN,此时四边形PQNM的周长最小,由面积和差关系可求解.(1)解:证明:∵四边形ABCD是矩形,∴CD=AB=4,BC=AD=8,∵点E是CD的中点,点Q是BC的中点,∴BQ=CQ=4,CE=2,∴AB=CQ,∵PQ=2,∴BP=2,∴BP=CE,又∵∠B=∠C=90°,∴△ABP≌△QCE(SAS),∴AP=QE;(2)如图②,在AD上截取线段AF=PQ=2,作F点关于BC的对称点G,连接EG与BC交于一点即为Q点,过A点作FQ的平行线交BC于一点,即为P点,过G点作BC的平行线交DC的延长线于H点.∵GH=DF=6,EH=2+4=6,∠H=90°,∴∠GEH=45°,∴∠CEQ=45°,设BP=x,则CQ=BC-BP-PQ=8-x-2=6-x,在△CQE中,∵∠QCE=90°,∠CEQ=45°,∴CQ=EC,∴6-x=2,解得x=4,∴BP=4;(3)如图③,作点P关于AD的对称点F,作点Q关于CD的对称点H,连接FH,交AD于M,交CD于N,连接PM,QN,此时四边形PQNM的周长最小,连接FP交AD于T,∴PT=FT=4,QC=BC-BP-PQ=8-3-2=3=CH,∴PF=8,PH=8,∴PF=PH,又∵∠FPH=90°,∴∠F=∠H=45°,∵PF⊥AD,CD⊥QH,∴∠F=∠TMF=45°,∠H=∠CNH=45°,∴FT=TM=4,CN=CH=3,∴四边形PQNM的面积=12×PF×PH-12×PF×TM-12×QH×CN=12×8×8-12×8×4-12×6×3=7.【点睛】本题是四边形综合题,考查了矩形的性质,全等三角形的判定和性质,轴对称求最短距离,直角三角形的性质;通过构造平行四边形和轴对称找到点P和点Q位置是解题的关键.2、(1)8;(2)83.【分析】(1)根据矩形的性质可得AD=BC,CD=AB,根据折叠的性质可得AF=AD,利用勾股定理即可求出BF的(2)根据折叠性质可得DE =EF ,可得EF =CD CE -,根据线段的和差关系可得CF 的长,利用勾股定理可求出CE 的长,利用三角形面积公式即可得答案.【详解】(1)∵四边形ABCD 是矩形,AB =6,BC =10,∴AD =BC =10,CD =AB =6,∵折叠矩形ABCD 的一边AD ,使点D 落在BC 边上的点F 处,∴AF =AD =10,∴BF .(2)∵折叠矩形ABCD 的一边AD ,使点D 落在BC 边上的点F 处,∴DE =EF ,∴EF =CD CE -,∵BC =10,BF =8,∴CF BC BF =-=2,∵EF 2=CF 2+CE 2,∴222(6)2CE CE -=+, 解得:83CE =,∴S △ECF =12CF CE ⋅=18223⨯⨯=83. 【点睛】本题考查矩形的性质及折叠性质,矩形的对边相等,四个角都是直角;图形折叠前后,对应边相等,对应角相等;正确找出对应边和对应角是解题关键.【分析】分别过点E 、C 作EH 、CG 垂直AB ,垂足为点H 、G ,则CG 是斜边AB 上的高;在菱形ABEF 中,AB EF ∥ 利用平行线的性质不难得到CG=EH;菱形的对角相等,四条边相等,联系含30°角的直角三角形的性质求出EH,问题即可解答。

2022年精品解析沪科版八年级数学下册第19章 四边形专题攻克试题(含答案解析)

2022年精品解析沪科版八年级数学下册第19章 四边形专题攻克试题(含答案解析)

沪科版八年级数学下册第19章四边形专题攻克考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果一个多边形的外角和等于其内角和的2倍,那么这个多边形是()A.三角形B.四边形C.五边形D.六边形2、如图,点E是△ABC内一点,∠AEB=90°,D是边AB的中点,延长线段DE交边BC于点F,点F 是边BC的中点.若AB=6,EF=1,则线段AC的长为()A.7 B.152C.8 D.93、勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要纽带.数学家欧几里得利用如图验证了勾股定理:以直角三角形ABC的三条边为边长向外作正方形ACHI,正方形ABED,正方形BCGF,连接BI,CD,过点C作CJ⊥DE于点J,交AB于点K.设正方形ACHI的面积为S1,正方形BCGF的面积为S2,长方形AKJD的面积为S3,长方形KJEB的面积为S4,下列结论:①BI=CD;②2S△ACD=S1;③S1+S4=S2+S3)A .1个B .2个C .3个D .4个4、如图,长方形OABC 中,点A 在y 轴上,点C 在x 轴上.4OA BC ==,8AB OC ==.点D 在边AB 上,点E 在边OC 上,将长方形沿直线DE 折叠,使点B 与点O 重合.则点D 的坐标为( )A .()4,4B .()5,4C .()3,4D .()6,45、多边形每一个内角都等于150°,则从该多边形一个顶点出发,可引出对角线的条数为( )A .9条B .8条C .7条D .6条6、下列图形中,内角和等于外角和的是( )A .B .C .D .7、将一张长方形纸片ABCD 按如图所示的方式折叠,AE 、AF 为折痕,点B 、D 折叠后的对应点分别为B ′、D ',若B AD ∠''=10°,则∠EAF 的度数为( )A .40°B .45°C .50°D .55°8、如图,矩形ABCD 的对角线AC ,BD 相交于点O ,点P 是AD 边上的一个动点,过点P 分别作PE ⊥AC 于点E ,PF ⊥BD 于点F .若AB =6,BC =8,则PE +PF 的值为( )A .10B .9.6C .4.8D .2.49、下列命题正确的是( )A .若a b =,则33a b =B .四条边相等的四边形是正四边形C .有一组邻边相等的平行四边形是矩形D .如果2a ab =,则a b =10、下列∠A :∠B :∠C :∠D 的值中,能判定四边形ABCD 是平行四边形的是( )A .1:2:3:4B .1:4:2:3C .1:2:2:1D .3:2:3:2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,平面直角坐标系中,有()3,4A ,()6,0B ,()0,0O 三点,以A ,B ,O 三点为顶点的平行四边形的另一个顶点D 的坐标为______.2、如图,在矩形ABCD中,对角线AC,BD相交于点O,AB=6,∠DAC=60°,点F在线段AO上从点A至点O运动,连接DF,以DF为边作等边三角形DFE,点E和点A分别位于DF两侧,下列结论:①∠BDE=∠EFC;②ED=EC;③∠ADF=∠ECF;④点E运动的路程是_____.3、已知□ABCD的周长是20cm,且AB:BC=3:2,则AB=_______cm.DC .在DC上找一点E,沿直线AE把AED折叠,使D点恰好落在4、如图,在长方形ABCD中,9BC上,设这一点为F,若ABF的面积是54,则FCE△的面积=______________.5、如图,点O是平行四边形ABCD的对称中心,EF是过点O的任意一条直线,它将平行四边形分成两部分,四边形ABFE和四边形EFCD的面积分别记为S1,S2,那么S1,S2之间的关系为S1______S2.(填“>”或“=”或“<”)三、解答题(5小题,每小题10分,共计50分)1、如图,把矩形纸片OABC放入直角坐标系中,使,OA OC分别落在x轴,y轴的正半轴上,连接AC,且2==.AC OA CO(1)求AC所在直线的解析式;(2)将纸片OABC折叠,使点A与点C重合(折痕为EF),求折叠后纸片重叠部分的面积;(3)若过一定点M的任意一条直线总能把矩形OABC的面积分为相等的两部分,则点M的坐标为________.2、综合与实践(1)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,则MN,AM,CN的数量关系为.(2)如图2,在四边形ABCD中,BC∥AD,AB=BC,∠A+∠C=180°,点M、N分别在AD、CD上,若∠ABC,试探索线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明.∠MBN=12(3)如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=1∠ABC,试探究线段MN、AM、CN的数量关系为.23、在四边形ABCD中,∠A=100°,∠D=140°.(1)如图①,若∠B=∠C,则∠B=度;(2)如图②,作∠BCD的平分线CE交AB于点E.若CE∥AD,求∠B的大小.4、如图,AD//BE,AC平分BAD∠,且交BE于点C.(1)作ABE∠的角平分线交AD于点F(要求:尺规作图,不写作法和结论,保留作图痕迹);(2)根据(1)中作图,连接CF,求证:四边形ABCF是菱形.5、综合与实践问题情境:数学活动课上,同学们开展了以“矩形纸片折叠”为主题的探究活动(每个小组的矩形纸片规格相AD=.同),已知矩形纸片宽6动手实践:(1)如图1,腾飞小组将矩形纸片ABCD折叠,点A落在DC边上的点A'处,折痕为DE,连接A E',然后将纸片展平,得到四边形AEA D'.试判断四边形AEA D'的形状,并加以证明.(2)如图2,永攀小组在矩形纸片ABCD的边BC上取一点F,连接DF,使30CDF∠=︒,将CDF沿线段DF折叠,使点C正好落在AB边上的点G处.连接DG,GF,将纸片展平,①求DFG的面积;②连接CG,线段CG与线段DF交于点M,则CG=______.深度探究:DN A N'=,将(3)如图3,探究小组将图1的四边形AEA D'剪下,在边A D'上取一点N,使:1:2△,连接A D'',探究并直接写出A D''的长度.△沿线段AN折叠得到AND'AND-参考答案-一、单选题1、A【分析】多边形的外角和是360度,多边形的外角和是内角和的2倍,则多边形的内角和是180度,则这个多边形一定是三角形.【详解】解:多边形的外角和是360度,又多边形的外角和是内角和的2倍,∴多边形的内角和是180度,∴这个多边形是三角形.故选:A.【点睛】考查了多边形的外角和定理,解题的关键是掌握多边形的外角和定理.2、C【分析】根据直角三角形的性质求出DE,由EF=1,得到DF,再根据三角形中位线定理即可求出线段AC的长.【详解】解:∵∠AEB=90︒,D是边AB的中点,AB=6,AB=3,∴DE=12∵EF=1,∴DF=DE+EF=3+1=4.∵D是边AB的中点,点F是边BC的中点,∴DF是ABC的中位线,∴AC=2DF=8.故选:C.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,三角形中位线定理,求出DF 的长是解题的关键.3、C【分析】根据SAS 证△ABI ≌△ADC 即可得证①正确,过点B 作BM ⊥IA ,交IA 的延长线于点M ,根据边的关系得出S △ABI =12S 1,即可得出②正确,过点C 作CN ⊥DA 交DA 的延长线于点N ,证S 1=S 3即可得证③正确,利用勾股定理可得出S 1+S 2=S 3+S 4,即能判断④不正确.【详解】解:①∵四边形ACHI 和四边形ABED 都是正方形,∴AI =AC ,AB =AD ,∠IAC =∠BAD =90°,∴∠IAC +∠CAB =∠BAD +∠CAB ,即∠IAB =∠CAD ,在△ABI 和△ADC 中,AI AC IAB CAD AB AD =⎧⎪∠=∠⎨⎪=⎩, ∴△ABI ≌△ADC (SAS ),∴BI =CD ,故①正确;②过点B 作BM ⊥IA ,交IA 的延长线于点M ,∴∠BMA=90°,∵四边形ACHI是正方形,∴AI=AC,∠IAC=90°,S1=AC2,∴∠CAM=90°,又∵∠ACB=90°,∴∠ACB=∠CAM=∠BMA=90°,∴四边形AMBC是矩形,∴BM=AC,∵S△ABI=12AI•BM=12AI•AC=12AC2=12S1,由①知△ABI≌△ADC,∴S△ACD=S△ABI=12S1,即2S△ACD=S1,故②正确;③过点C作CN⊥DA交DA的延长线于点N,∴∠CNA=90°,∵四边形AKJD是矩形,∴∠KAD=∠AKJ=90°,S3=AD•AK,∴∠NAK=∠AKC=90°,∴∠CNA=∠NAK=∠AKC=90°,∴四边形AKCN是矩形,∴CN=AK,∴S△ACD=12AD•CN=12AD•AK=12S3,即2S△ACD=S3,由②知2S△ACD=S1,∴S1=S3,在Rt△ACB中,AB2=BC2+AC2,∴S3+S4=S1+S2,又∵S1=S3,∴S1+S4=S2+S3,即③正确;④在Rt△ACB中,BC2+AC2=AB2,∴S3+S4=S1+S2,故④错误;综上,共有3个正确的结论,故选:C.【点睛】本题主要考查勾股定理,正方形的性质,矩形性质,全等三角形的判定和性质等知识,熟练掌握勾股定理和全等三角形的判定和性质是解题的关键.4、C【分析】设AD=x,在Rt△OAD中,据勾股定理列方程求出x,即可求出点D的坐标.【详解】解:设AD=x,由折叠的性质可知,OD=BD=8-x,在Rt△OAD中,∵OA2+AD2=OD2,∴42+x2=(8-x)2,∴x=3,3,4,∴D()故选C.【点睛】本题考查了矩形的性质,勾股定理,以及折叠的性质,熟练掌握勾股定理是解答本题的关键.直角三角形两条直角边的平方和等于斜边的平方.5、A【分析】多边形从一个顶点出发的对角线共有(n-3)条.多边形的每一个内角都等于150°,多边形的内角与外角互为邻补角,则每个外角是30度,而任何多边形的外角是360°,则求得多边形的边数;再根据不相邻的两个顶点之间的连线就是对角线,则此多边形从一个顶点出发的对角线共有(n-3)条,即可求得对角线的条数.【详解】解:∵多边形的每一个内角都等于150°,∴每个外角是30°,∴多边形边数是360°÷30°=12,则此多边形从一个顶点出发的对角线共有12-3=9条.故选A.【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.6、B【分析】设n边形的内角和等于外角和,计算(n-2)×180°=360°即可得出答案;【详解】解:设n边形的内角和等于外角和(n-2)×180°=360°解得:n=4故答案选:B【点睛】本题考查了多边形内角和与外角和,熟练掌握多边形内角和计算公式是解题的关键.7、A【分析】可以设∠EAD′=α,∠FAB′=β,根据折叠可得∠DAF=∠D′AF,∠BAE=∠B′AE,用α,β表示∠DAF=10°+β,∠BAE=10°+α,根据四边形ABCD是矩形,利用∠DAB=90°,列方程10°+β+β+10°+10°+α+α=90°,求出α+β=30°即可求解.【详解】解:设∠EAD′=α,∠FAB′=β,根据折叠性质可知:∠DAF=∠D′AF,∠BAE=∠B′AE,∵∠B′AD′=10°,∴∠DAF=10°+β,∠BAE=10°+α,∵四边形ABCD是矩形∴∠DAB=90°,∴10°+β+β+10°+10°+α+α=90°,∴α+β=30°,∴∠EAF=∠B′AD′+∠D′AE+∠FAB′,=10°+α+β,=10°+30°,=40°.则∠EAF的度数为40°.故选:A.【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.8、C【分析】首先连接OP.由矩形ABCD的两边AB=6,BC=8,可求得OA=OD=5,然后由S△AOD=S△AOP+S△DOP求得答案.【详解】解:连接OP,∵矩形ABCD的两边AB=6,BC=8,∴S矩形ABCD=AB•BC=48,OA=OC,OB=OD,AC=BD,AC,∴S△AOD=14S矩形ABCD=12,OA=OD=5,∴S△AOD=S△AOP+S△DOP=12OA•PE+12OD•PF=12OA(PE+PF)=12×5×(PE+PF)=12,∴PE+PF=245=4.8.故选:C.【点睛】此题考查了矩形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.9、A【分析】利用等式的性质以及矩形、正方形、菱形的判定方法分别判断后即可确定正确的选项.【详解】解:A 、若a b =,则33a b =,故此命题正确;B 、四条边相等的四边形是菱形,故原命题不正确;C 、有一组邻边相等的平行四边形是菱形,故原命题不正确;D 、如果2a ab =,a ≠0时,则a b =,若0a =时,此命题不正确,故选:A .【点睛】本题考查了命题与定理以及等式的性质等知识,解题的关键是了解矩形及菱形的判定方法.10、D【分析】两组对角分别相等的四边形是平行四边形,所以∠A 和∠C 是对角,∠B 和∠D 是对角,对角的份数应相等.【详解】解:根据平行四边形的判定:两组对角分别相等的四边形是平行四边形,所以只有D 符合条件. 故选:D .【点睛】本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.二、填空题1、(9,4)、(-3,4)、(3,-4)【分析】根据平行四边形的性质得出AD=BO=6,AD∥BO,根据平行线得出A和D的纵坐标相等,根据B的横坐标和BO的值即可求出D的横坐标.【详解】∵平行四边形ABCD的顶点A、B、O的坐标分别为(3,4)、(6,0)、(0,0),∴AD=BO=6,AD∥BO,∴D的横坐标是3+6=9,纵坐标是4,即D的坐标是(9,4),同理可得出D的坐标还有(-3,4)、(3,-4).故答案为:(9,4)、(-3,4)、(3,-4).【点睛】本题考查了坐标与图形性质和平行四边形的性质,注意:平行四边形的对边平行且相等.2、①②③④【分析】①根据∠DAC=60°,OD=OA,得出△OAD为等边三角形,再由△DFE为等边三角形,得∠DOA=∠DEF =60°,再利用角的等量代换,即可得出结论①正确;②连接OE,利用SAS证明△DAF≌△DOE,再证明△ODE≌△OCE,即可得出结论②正确;③通过等量代换即可得出结论③正确;④延长OE至E',使OE'=OD,连接DE',通过△DAF≌△DOE,∠DOE=60°,可分析得出点F在线段AO上从点A至点O运动时,点E从点O沿线段OE'运动到E',从而得出结论④正确;【详解】解:①设DB与EF的交点为G如图所示:∵∠DAC =60°,OD =OA ,∴△OAD 为等边三角形,∴∠DOA =∠DAO =∠ADO =60°,∵△DFE 为等边三角形,∴∠DEF =60°,∴∠DOA =∠DEF =60°,∴DGF BDE DEF =+∠∠∠,DGF EFC DOA =+∠∠∠∴BDE EFC ∠∠=故结论①正确;②如图,连接OE ,在△DAF 和△DOE 中,AD OD ADF ODE DF DE =⎧⎪∠=∠⎨⎪=⎩, ∴△DAF ≌△DOE (SAS ),∴∠DOE =∠DAF =60°,∵∠COD =180°﹣∠AOD =120°,∴∠COE =∠COD ﹣∠DOE =120°﹣60°=60°,∴∠COE =∠DOE ,在△ODE 和△OCE 中,OD OC DOE COE OE OE =⎧⎪∠=∠⎨⎪=⎩, ∴△ODE ≌△OCE (SAS ),∴ED =EC ,∠OCE =∠ODE ,故结论②正确;③∵∠ODE =∠ADF ,∴∠ADF =∠OCE ,即∠ADF =∠ECF ,故结论③正确;④如图,延长OE 至E ',使OE '=OD ,连接DE ',∵△DAF ≌△DOE ,∠DOE =60°,∴点F 在线段AO 上从点A 至点O 运动时,点E 从点O 沿线段OE '运动到E ',∵90906030BDA ADB =︒-=︒-︒=︒∠∠∴2DB AD =设DA x =,则2DB x =∴在Rt ADB 中,222AD AB DB +=即2226(2)x x +=解得:x =∴OE '=OD =AD =∴点E 运动的路程是故结论④正确;故答案为:①②③④.【点睛】本题主要考查了几何综合,其中涉及到了等边三角形判定及性质,相似三角形的判定及性质,全等三角形的性质及判定,三角函数的比值关系,矩形的性质等知识点,熟悉掌握几何图形的性质合理做出辅助线是解题的关键.3、6【分析】由平行四边形ABCD 的周长为20cm ,根据平行四边形的性质,即可求得AB +BC =10cm ,又由AB :BC =3:2,即可求得答案.【详解】解:∵平行四边形ABCD 的周长为20cm ,∴AB =CD ,AD =BC ,AB +BC +CD +AD =20cm ,∴AB +BC =10cm ,∵AB :BC =3:2, ∴3=106cm 32AB ⨯=+.故答案为:6.【点睛】本题考查平行四边形的性质,解题的关键是掌握平行四边形的性质.4、6【分析】根据三角形的面积求出BF,利用勾股定理列式求出AF,再根据翻折变换的性质可得AD=AF,然后求出CF,设DE=x,表示出EF、EC,然后在Rt△CEF中,利用勾股定理列方程求解和三角形的面积公式解答即可.【详解】解:∵四边形ABCD是矩形∴AB=CD=9,BC=AD•AB•BF=54,∵12∴BF=12.在Rt△ABF中,AB=9,BF=12,由勾股定理得,15AF.∴BC=AD=AF=15,∴CF=BC-BF=15-12=3.设DE=x,则CE=9-x,EF=DE=x.则x2=(9-x)2+32,解得,x=5.∴DE=5.∴EC=DC-DE=9-5=4.∴△FCE 的面积=1122CF CE ⨯⨯=×4×3=6.【点睛】本题考查了翻折变换的性质,矩形的性质,三角形的面积,勾股定理,熟记各性质并利用勾股定理列出方程是解题的关键.5、=【分析】根据平行四边形的性质和全等三角形的判定和性质即可得到结论.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠EDO =∠FBO ,∵点O 是▱ABCD 的对称中心,∴OB =OD ,在△DEO 与△BFO 中EDO FBO OD OBDOE BOF ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△DEO ≌△BFO (ASA ),∴S △DEO =S △BFO ,∵S △ABD =S △CDB ,∴S 1=S 2.故答案为:=.【点睛】此题主要考查了中心对称,平行四边形的性质以及全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.三、解答题1、(1)142y x=-+;(2)10;(3)(4,2).【分析】(1)首先根据勾股定理求出OC=4,OA=8,然后利用待定系数法求解AC所在直线的解析式即可;(2)首先由折叠的性质得到AE=CE,然后在Rt△OCE中,根据勾股定理求出AE=CE=5,然后根据等腰三角形的性质求出CF=CE=5,最后根据三角形面积公式求解即可;(3)根据矩形的中心对称性质可得点M为矩形ABCD对角线的交点,然后根据中点坐标公式求解即可.【详解】解:(1)∵OA=2CO,设OC=x,则OA=2x在Rt△AOC中,由勾股定理可得OC2+OA2=AC2,∴x2+(2x)2=(2解得x=4(x=﹣4舍去)∴OC=4,OA=8∴A(8,0),C(0,4)设直线AC解析式为y=kx+b,∴804k bb+=⎧⎨=⎩,解得124kb⎧=-⎪⎨⎪=⎩,∴直线AC解析式为y=﹣12x+4;(2)由折叠得AE=CE,设AE=CE=y,则OE=8﹣y,在Rt△OCE中,由勾股定理可得OE2+OC2=CE2,∴(8﹣y)2+42=y2解得y=5∴AE=CE=5在矩形OABC中,∵BC OA,∴∠CFE=∠AEF,由折叠得∠AEF=∠CEF,∴∠CFE=∠CEF∴CF=CE=5∴S△CEF=12CF•OC=12×5×4=10即重叠部分的面积为10;(3)∵矩形是一个中心对称图形,对称中心是对角线的交点,∴任何一个经过对角线交点的直线都把矩形的面积平分,所以点M即为矩形ABCD对角线的交点,即M点为AC的中点,∵A(8,0),C(0,4),∴M点坐标为(4,2).【点睛】此题考查了矩形的性质,勾股定理,待定系数法求一次函数表达式等知识,,解题的关键是熟练掌握矩形的性质,勾股定理,待定系数法求一次函数表达式.2、(1)MN=AM+CN;(2)MN=AM+CN,理由见解析;(3)MN=CN-AM,理由见解析【分析】(1)把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,可得到点M'、C、N三点共线,再由∠MBN=45°,可得∠M'BN=∠MBN,从而证得△NBM≌△NBM',即可求解;(2)把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,由∠A+∠C=180°,可得点M'、C、N三点共线,再由∠MBN=1∠ABC,可得到2∠M'BN=∠MBN,从而证得△NBM≌△NBM',即可求解;(3)在NC上截取C M'=AM,连接B M',由∠ABC+∠ADC=180°,可得∠BAM=∠C,再由AB=BC,可证得△ABM≌△CB M',从而得到AM=C M',BM=B M',∠ABM=∠CB M',进而得到∠MA M'=∠ABC,再∠ABC,可得∠MBN=∠M'BN,从而得到△NBM≌△NBM',即可求解.由∠MBN=12【详解】解:(1)如图,把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,在正方形ABCD中,∠A=∠BCD=∠ABC=90°,AB=BC,∴∠BCM'+∠BCD=180°,∴点M'、C、N三点共线,∵∠MBN=45°,∴∠ABM+∠CBN=45°,∴∠M'BN=∠M'BC+∠CBN=∠ABM+∠CBN=45°,即∠M'BN=∠MBN,∵BN=BN,∴△NBM≌△NBM',∴MN= M'N,∵M'N= M'C+CN,∴MN= M'C+CN=AM+CN;(2)MN=AM+CN;理由如下:如图,把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,∵∠A+∠C=180°,∴∠BCM'+∠BCD=180°,∴点M'、C、N三点共线,∠ABC,∵∠MBN=12∴∠ABM+∠CBN=1∠ABC=∠MBN,2∴∠CBN+∠M'BC=∠MBN,即∠M'BN=∠MBN,∵BN=BN,∴△NBM≌△NBM',∴MN= M'N,∵M'N= M'C+CN,∴MN= M'C+CN=AM+CN;(3)MN=CN-AM,理由如下:如图,在NC上截取C M'=AM,连接B M',∵在四边形ABCD中,∠ABC+∠ADC=180°,∴∠C+∠BAD=180°,∵∠BAM+∠BAD=180°,∴∠BAM=∠C,∵AB=BC,∴△ABM≌△CB M',∴AM=C M',BM=B M',∠ABM=∠CB M',∴∠MA M'=∠ABC,∵∠MBN=12∠ABC,∴∠MBN=12∠MA M'=∠M'BN,∵BN=BN,∴△NBM≌△NBM',∴MN= M'N,∵M'N=CN-C M',∴MN=CN-AM.故答案是:MN=CN-AM.【点睛】本题主要考查了正方形的性质,全等三角形的性质和判定,图形的旋转,根据题意做适当辅助线,得到全等三角形是解题的关键.3、(1)60;(2)40°.【分析】(1)根据四边形内角和为360°解决问题;(2)由CE//AD推出∠DCE+∠D=180°,所以∠DCE=40°,根据CE平分∠BCD,推出∠BCD=80°,再根据四边形内角和为360°求出∠B度数;【详解】(1)∵∠A=100°,∠D=140°,∴∠B=∠C=3601001402︒︒︒--=60°,故答案为60;(2)∵CE//AD,∠DCE+∠D=180°,∴∠DCE=40°,∵CE平分∠BCD,∴∠BCD=80°,∴∠B=360°﹣(100°+140°+80°)=40°.【点睛】本题考查了多边形内角与外角以及平行线的性质,熟练运用多边形内角性质和平行线的性质是解题的关键.4、(1)见解析(2)见解析【分析】(1)根据尺规作角平分线的方法作图即可;(2)根据角平分线定义和平行线性质证明∠BAC=∠ACB,∠AFB=∠CBF,再根据三角形的等角对等边证得AF=AB=BC,然后根据平行四边形的判定和菱形的判定证明即可.(1)解:如图,射线BF即为所求作的角平分线;(2)解:∵AC平分∠BAD,BF平分∠ABE,∴∠BAC=∠FAC,∠ABF=∠CBF,∵AD ∥BE ,∴∠ACB =∠FAC ,∠AFB =∠CBF ,∴∠BAC =∠ACB ,∠AFB =∠ABF ,∴A B =BC ,AB =AF ,∴BC =AF ,又AF ∥BC ,∴四边形ABCF 是平行四边形,又∵AB =BC ,∴四边形ABCF 是菱形.【点睛】本题考查尺规作图-作角平分线、角平分线的定义、平行线的性质、等腰三角形的判定、菱形的判定,熟练掌握相关知识的联系与运用是解答的关键.5、(1)四边形AEA D '是正方形;理由见详解;(2)①=S CG =(3)A D ''=. 【分析】(1)由正方形的判定定理进行证明,即可得到结论成立;(2)①由折叠的性质,则DC =DG ,求出∠ADG =30°,利用勾股定理得到AG =,DG =再求出4CF =,由面积公式即可求出面积;②求出60CDG ∠=︒,CD DG =,则△CDG 是等边三角形,即可求出CG 的长度;(3)作PQ ∥AD ∥A E ',垂足分别为P 、Q ,先求出2DN =,4A N '=,设PD x '=,然后表示出6D Q x '=-,2AQ =,再利用勾股定理,求出65x =,然后利用勾股定理,即可求出答案.【详解】解:(1)∵四边形ABCD 是矩形,∴∠A =∠ADC =90°,由折叠的性质,则90DA E '∠=︒,AD DA '=,∴四边形AEA D '是正方形;(2)①如图,由折叠的性质,则DC =DG ,CF =FG ,∵30CDF ∠=︒,∴30GDF CDF ∠=∠=︒,∴90303030ADG ∠=︒-︒-︒=︒, ∴12AG DG =, ∴1122AG DC AB ==;由勾股定理,则222DG AG AD =+, ∴2221()62DG DG =+,∴DG =∴12AG =⨯在直角△BFG 中,由勾股定理,则 ∵BG AG ==66BF CF FG =-=-,∴222BG BF FG +=,∴222(6)FG FG +-=,∴4FG =,∴DFG 的面积为:11422S FG DG ==⨯⨯②由①可知,30GDF CDF ∠=∠=︒,DC =DG ,∴303060CDG ∠=︒+︒=︒,∴△CDG 是等边三角形, ∴CG DG ==故答案为:(3)作PQ ∥AD ∥A E ',垂足分别为P 、Q ,如图所示,∴PQ ⊥A D ',PQ ⊥AE ,由(1)可知,四边形AEA D '是正方形,∴6AD A D AE A E ''====,由折叠的性质,则6AD AD '==,∵:1:2DN A N '=,∴2DN =,4A N '=,∴2D N DN '==,设PD x '=,则PN∴4A P '=6D Q x '=-,∴4QE A P '==∴6(42AQ =-=在直角AQD '∆中,由勾股定理,则222AD AQ QD ''=+∴22(2(6)36x +-=,整理化简得:812x -+,23x -+,∴2249124x x x -=-+, 解方程,得165x =,20x =(舍去); ∴65PD '=;∴85PN ==, ∴812455A N '=-=,∴A D ''==【点睛】本题考查了折叠的性质,正方形的判定和性质,矩形的性质,勾股定理,解一元二次方程,等边三角形的判定和性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题.本题涉及的知识点综合,应用能力强,难度大,学生需要仔细分析.。

19章四边形导学案(修订版)

19章四边形导学案(修订版)

水洛中学导学案时间2013.5 学科数学年级八年级主备人谢晓斌课题19.1.1平行四边形的性质课时第一课时教学目标1..理解平行四边形的定义及有关概念。

2.能根据定义探索并掌握平行四边形的对边相等、对角相等的性质。

3.了解平行四边形在实际生活中的应用,能根据平行四边形的性质进行简单的计算和证明。

教学重难点教学重点:平行四边形的概念和性质。

教学难点:如何添加辅助线将平行四边形问题转化为三角形问题解决的思想方法(即为什么要添加对角线)教学过程一:导入现实世界中,四边形也在装点着我们的生活,宏伟的建筑物,铺满地砖的地板、别具一格的窗棂、天空飞舞的风筝……处处都有四边形的身影。

在小学,我们已经学过一些特殊的四边形,如长方形、正方形、平行四边形和梯形等,这些特殊的四边形与我们的生活关系更为密切。

在章前图中,你能找出它们吗?在本章,我们将进一步认识这些特殊的四边形,分析它们的联系与区别,探索并证明它们的性质及判定方法,进一步提高分析问题、解决问题的能力。

二:讲授新课阅读教材P83-P84内容,思考、讨论、合作交流后完成下列问题:1.什么叫做平行四边形?如何表示一个平行四边形?2.四边形与平行四边形有怎样的从属关系?你能举出生活中的平行四边形的例子吗?3.平行四边形有什么性质?你能证明吗?当堂检测题设计(具体训练题)1.教材P84练习第1,2,3题。

2.如图在平行四边形ABCD中,如果EF∥AD,GH∥CD,EF与GH相交于点O,那么图中的平行四边形一共有()A.4个 B。

5个 C。

8个 D。

9个3.在平行四边形ABCD中,AB的度数之比为5:4,则∠C等于()A.60° B.80° C.100° D.120°【拓展训练】已知任意三点A、B、C,是否存在点D,使A、B、C、D围成一个平行四边形?如果存在,请你作出平行四边形;如果不存在请说明理由。

课堂小结及作业布置小结:通过学习,本节课你学到了哪些知识?与同伴交流一下。

人教版八年级数学下册三角形的中位线练习题(含答案)

人教版八年级数学下册三角形的中位线练习题(含答案)

三角形的中位线练习题三角形中位线定义:___________________________________________符号语言:在△ ABC中,D、E分别是AB、AC的中点, 则:线段DE "ABC的,三不同点:①三角形中位线的两个端点都是三角形边的中点。

②三角形中线只有一个端点是边的中点,另一端点是三角形一个顶点相同点:都是一条线段,都有三条符号语言表述:.••。

£是/\ ABC的中位线(或AD=BD,AE=CE)二DE//% BC练习1 .连结三角形的线段叫做三角形的中位线.2 .三角形的中位线于第三边,并且等于3 .一个三角形的中位线有条.4. 如图△ ABC中,以E分别是ABAC的中点,则线段CD^A ABC的,线段。

£是左AB5、如图,以E、F分别是△ ABC各边的中点(1) 如果EF= 4cm,那么BB cm如果AA 10cm,那么DA cm(2) 中线AD与中位线EF的关系是6. 如图1所示,EF是△ ABC的中位线,若BC=8cm则EF=cm⑴(2) (3) ⑷7. 三角形的三边长分别是3cm 5cm, 6cm,则连结三边中点所围成的三角形的周长是cm.8. 在Rt △ ABC中,/ C=90° , AC=?5 ?BC=?12 ?则连结两条直角边中点的线段长为 .9. 若三角形的三条中位线长分别为2cm, 3cm, 4cm,则原三角形的周长为三角形中位线定理:( )A . 4.5cmB . 18cmC . 9cmD . 36cm10. 如图2所示,A, B两点分别位于一个池塘的两端,小聪想用绳子测量A, B间的距离,但绳子不够长,一位的长为10m 则A, B 间的距离为( ) A . 15m B . 25m C . 30m D . 20m11. 已知△ ABC 的周长为1,连结△ ABC 的三边中点构成第二个三角形,从点B 向点C 移动而点R 不动时, 那么下列结论成立的是( )A .线段EF 的长逐渐增大B .线段EF 的长逐渐减少20 C . 30 D . 4014. 如图所示, 口 ABCD 的对角线 AC, BD 相交于点 O, AE=EB 求证:OE//BC.15. 已知矩形 ABCD 中,AB=4cm, AD=10cm ,点P 在边BC 上移动,点 分别是 AB 、AP 、DP 、DC 的中点.求证:EF+GH=5cm ;16. 如图所示,在△ ABC 中,点D 在BC 上且CD=CA CF 平分Z ACB AE=EB 求证: 1EF=—BD.C .线段EF 的长不变D .线段EF 的长不能确定13.如图 4,在^ ABC 中,E, D,F 分别是AB, BC CA 的中点,AB=6, AC=4,则四边形 AEDF?勺周长是()同学帮他想了一个主意:先在地上取一个可以直接到达 A, B 的点C,找到AC, BC 的中点D, E,并且测出DE?再连结第二个三角形的三边中点构成第三个三角形,依此类推,第 2010个三角形的周长是 A 、1 20082009200822009212.如图3所示,已知四边形 ABCD R, P 分别是DC BC 上的点, E, F 分别是 AP, RP 的中点,当点 P 在BC 上217. 如图所示,已知在口ABCg, E, F分别是AD, BC的中点,求证: MM/BC.四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.EFGH是平行四边形.21.如图5,在四边形ABCD中,点E是线段AD上的任意一点(BE, BC, CE的中点.证明四边形EGFH是平行四边形;22如图,在四边形ABCD中,AD=BC,点E, F, G分别是AB , CD,图5AC的中点。

难点详解沪科版八年级数学下册第19章 四边形章节练习练习题(含详解)

难点详解沪科版八年级数学下册第19章 四边形章节练习练习题(含详解)

沪科版八年级数学下册第19章四边形章节练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若一个正多边形的每一个外角都等于36°,则这个正多边形的边数是()A.7 B.8 C.9 D.102、如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.2.5 B.C D3、如图,小明从点A出发沿直线前进10m到达点B,向左转30,后又沿直线前进10m到达点C,再向左转30°后沿直线前进10m到达点...照这样走下去,小明第一次回到出发点A,一共走了()米.A.80 B.100 C.120 D.1404、一个多边形纸片剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A.14或15或16 B.15或16或17 C.15或16 D.16或175、在Rt△ABC中,∠C=90°,若D为斜边AB上的中点,AB的长为10,则DC的长为()A.5 B.4 C.3 D.26、平行四边形ABCD中,60∠=︒,则CA∠的度数是()A.30B.60︒C.90︒D.120︒∠+∠的度数是()7、如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中αβA.180°B.220°C.240°D.260°8、一个多边形每个外角都等于36°,则这个多边形是几边形()A.7 B.8 C.9 D.109、在菱形ABCD中,对角线AC、BD相交于点O,AB=5,AC=6,过点D作AC的平行线交BC的延长线于点E,则△BDE的面积为()A.22 B.24 C.48 D.4410、绿丝带是颜色丝带的一种,被用来象征许多事物,例如环境保护、大麻和解放农业等,同时绿丝带也代表健康,使人对健康的人生与生命的活力充满无限希望.某班同学在“做环保护航者”的主题班会课上制作象征“健康快乐”的绿丝带(丝带的对边平行且宽度相同),如图所示,丝带重叠部分形成的图形是()A.矩形B.菱形C.正方形D.等腰梯形第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在矩形ABCD中,AB=3,BC=4,点P是对角线AC上一点,若点P、A、B组成一个等腰三角形时,△PAB的面积为___________.2、一个矩形的两条对角线所夹的锐角是60°,这个角所对的边长为10cm,则该矩形的面积为_______.3、如图在正方形ABCD中,∠EAF的两边分别交CB、DC延长线于E、F点且∠EAF=45°,如果BE=1,DF=7,则EF=__.4、正方形的一条对角线长为4,则这个正方形面积是_________.5、如图,正方形ABCD内有一等边三角形BCE,直线DE交AB于点H,过点E作直线GF⊥DH交BC于点G,交AD于点F.以下结论:①∠CEG=15°;②AF=DF;③BH=3AH BE=HE+GE;正确的有_________.(填序号)三、解答题(5小题,每小题10分,共计50分)1、如图,矩形ABCD中,E、F是BC上的点,∠DAE=∠ADF.求证:BF=CE.2、如图,在△ABC中,点D是BC边的中点,点E是AD的中点,过A点作AF∥BC,且交CE的延长线于点F ,联结BF .(1)求证:四边形AFBD 是平行四边形;(2)当AB=AC 时,求证:四边形AFBD 是矩形.3、如图,ABCD 的对角线AC 与BD 相交于点O ,过点B 作BP ∥AC ,过点C 作CP ∥BD ,BP 与CP 相交于点P .(1)试判断四边形BPCO 的形状,并说明理由;(2)若将ABCD 改为矩形ABCD ,且6,8AB BC ==,其他条件不变,求四边形BPCO 的面积;(3)要得到矩形BPCO ,ABCD 应满足的条件是_________(填上一个即可).4、如图,矩形OABC 在平面直角坐标系中,OB ,OC 是x 2﹣12x +32=0的两根,OC >OA ,(1)求B 点的坐标.(2)把ABC 沿AC 对折,点B 落在点B '处,线段AB '与x 轴交于点D ,在平面上是否存在点P ,使D 、C 、B 、P 四点形成的四边形为平行四边形?若存在,请直接写出P 点坐标;若不存在,请说明理由.5、如图,四边形ABCD 中,AD BC ∥,90A D ∠=∠=︒,点E 是AD 的中点,连接BE ,将△ABE 沿BE 折叠后得到△GBE ,且点G 在四边形ABCD 内部,延长BG 交DC 于点F ,连接EF .(1)求证:四边形ABCD 是矩形;(2)求证:GF DF =;(3)若点6AB =,8BC =,求DF 的长.-参考答案-一、单选题1、D【分析】根据多边形外角和定理求出正多边形的边数.【详解】∵正多边形的每一个外角都等于36°, ∴正多边形的边数=36036=10. 故选:D .【点睛】本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.2、D【分析】利用矩形的性质,求证明90OAB ∠=︒,进而在Rt AOB ∆中利用勾股定理求出OB 的长度,弧长就是OB 的长度,利用数轴上的点表示,求出弧与数轴交点表示的实数即可.【详解】 解:四边形OABC 是矩形,∴90OAB ∠=︒, 在Rt AOB ∆中,由勾股定理可知:222OB OA AB =+,OB ∴==∴故选:D .【点睛】本题主要是考查了矩形的性质、勾股定理解三角形以及数轴上的点的表示,熟练利用矩形性质,得到直角三角形,然后通过勾股定理求边长,是解决该类问题的关键.3、C【分析】由小明第一次回到出发点A,则小明走过的路程刚好是一个多边形的周长,由多边形的外角和为360︒,每次的转向的角度的大小刚好是多边形的一个外角,则先求解多边形的边数,从而可得答案. 【详解】解:由360=12,30可得:小明第一次回到出发点A,一个要走1210=120⨯米,故选C【点睛】本题考查的是多边形的外角和的应用,掌握“由多边形的外角和为360︒得到一共要走12个10米”是解本题的关键.4、A【分析】由题意先根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论即可.【详解】解:设新多边形的边数为n,则(n-2)•180°=2340°,解得:n=15,①若截去一个角后边数增加1,则原多边形边数为14,②若截去一个角后边数不变,则原多边形边数为15,③若截去一个角后边数减少1,则原多边形边数为16,所以多边形的边数可以为14,15或16.故选:A.【点睛】本题考查多边形内角与外角,熟练掌握多边形的内角和公式(n-2)•180°(n为边数)是解题的关键.5、A【分析】利用直角三角形斜边的中线的性质可得答案.【详解】解:∵∠C=90°,若D为斜边AB上的中点,AB,∴CD=12∵AB的长为10,∴DC=5,故选:A.【点睛】此题主要考查了直角三角形斜边的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.6、B【分析】根据平行四边形对角相等,即可求出C的度数.【详解】解:如图所示,∵四边形ABCD是平行四边形,∴A C ∠=∠,∴60A ∠=︒,∴60C ∠=°.故:B .【点睛】本题考查了平行四边形的性质,解题的关键是掌握平行四边形的性质.7、C【分析】根据四边形内角和为360°及等边三角形的性质可直接进行求解.【详解】解:由题意得:等边三角形的三个内角都为60°,四边形内角和为360°,∴3606060240αβ∠+∠=︒-︒-︒=︒;故选C .【点睛】本题主要考查多边形内角和及等边三角形的性质,熟练掌握多边形内角和及等边三角形的性质是解题的关键.8、D【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【详解】解:∵360°÷36°=10,∴这个多边形的边数是10.故选D .【点睛】本题考查了多边形内角与外角,外角和的大小与多边形的边数无关,熟练掌握多边形内角与外角是解题关键.9、B【分析】先判断出四边形ACED 是平行四边形,从而得出DE 的长度,根据菱形的性质求出BD 的长度,利用勾股定理的逆定理可得出△BDE 是直角三角形,计算出面积即可.【详解】 解: 菱形ABCD ,6,AC =,3,2,5,,AD BC OA OC BD BO AB BC AD AC BD ∥在Rt △BCO 中,224,BOBC OC 即可得BD =8,,AC DE ∥ ∴四边形ACED 是平行四边形,∴AC =DE =6,5,CE AD∴ BE =BC +CE =10,222100,BE BD DE∴△BDE 是直角三角形,90,BDE ∠=︒∴S △BDE =12DE •BD =24.故选:B .【点睛】本题考查了菱形的性质,勾股定理的逆定理及三角形的面积,平行四边形的判定与性质,求出BD 的长度,判断△BDE是直角三角形,是解答本题的关键.10、B【分析】首先可判断重叠部分为平行四边形,且两条丝带宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形.【详解】解:过点A作AE⊥BC于E,AF⊥CD于F,因为两条彩带宽度相同,所以AB∥CD,AD∥BC,AE=AF.∴四边形ABCD是平行四边形.∵S▱ABCD=BC•AE=CD•AF.又AE=AF.∴BC=CD,∴四边形ABCD是菱形.故选:B【点睛】此题考查了菱形的判定,平行四边形的面积公式以及平行四边形的判定与性质,利用了数形结合的数学思想,其中菱形的判定方法有:一组邻边相等的平行四边形为菱形;对角线互相垂直的平行四边形为菱形;四条边相等的四边形为菱形,根据题意作出两条高AE和AF,熟练掌握菱形的判定方法是解本题的关键二、填空题1、10825或185或3【分析】过B作BM⊥AC于M,根据矩形的性质得出∠ABC=90°,根据勾股定理求出AC,根据三角形的面积公式求出高BM,分为三种情况:①AB=BP=3,②AB=AP=3,③AP=BP,分别画出图形,再求出面积即可.【详解】解:∵四边形ABCD是矩形,∴∠ABC=90°,由勾股定理得:5AC,有三种情况:①当AB=BP=3时,如图1,过B作BM⊥AC于M,S△ABC=1122AB BC AC BM⋅=⋅,1134=5 22BM∴⨯⨯⨯⨯,解得:125 MB=,∵AB=BP=3,BM⊥AC,∴95 AM PM===,∴AP=AM+PM=185,∴△PAB的面积=111812108 225525 AP BM⋅=⨯⨯=;②当AB=AP=3时,如图2,∵BM=125,∴△PAB的面积S=11121832255 AP BM⋅=⨯⨯=;③作AB的垂直平分线NQ,交AB于N,交AC于P,如图3,则AP=BP,BN=AN=13322=⨯,∵四边形ABCD是矩形,NQ⊥AC,∴PN∥BC,∵AN=BN,∴AP=CP,∴122PN BC==,∴△PAB的面积11323 22S AB NP=⋅=⨯⨯=;即△PAB 的面积为10825或185或3. 故答案为:10825或185或3. 【点睛】 本题主要是考查了矩形的性质、等腰三角形的判定以及勾股定理求边长,熟练掌握矩形的性质,利用等腰三角形的判定,分成三种情况讨论,是解决本题的关键.2、2【分析】先根据矩形的性质证明△ABC 是等边三角形,得到10cm AO AB ==,则20cm AC =,然后根据勾股定理求出BC ==,最后根据矩形面积公式求解即可.【详解】:如图所示,在矩形ABCD 中,∠AOB =60°,10cm AB =,∵四边形ABCD 是矩形,∴∠ABC =90°,1122OB OA AC BD ===, ∴△ABC 是等边三角形,∴10cm AO AB ==,∴20cm AC =,∴BC ==,∴2=ABCD S AB BC ⋅=,故答案为:2.【点睛】本题主要考查了矩形的性质,勾股定理,等边三角形的性质与判定,解题的关键在于能够熟练掌握矩形的性质.3、6【分析】根据题意把△ABE绕点A逆时针旋转90°到AD,交CD于点G,证明△AEF≌△AGF即可求得EF=DF﹣BE=7﹣1=6.【详解】解:如图,把△ABE绕点A逆时针旋转90°到DA,交CD于点G,由旋转的性质可知,AG=AE,DG=BE,∠DAG=∠BAE,∵∠EAF=45°,∴∠DAG+∠BAF=45°,又∵∠BAD=90°,∴∠GAF=45°,在△AEF 和△AGF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩, ∴△AEF ≌△AGF (SAS )∴EF =GF ,∵BE =1,DF =7,∴EF =GF =DF ﹣DG =DF ﹣BE =7﹣1=6.故答案为:6.【点睛】本题主要考查正方形的性质及全等三角形的判定和性质,构造全等三角形是解题的关键,注意旋转性质的应用.4、8【分析】正方形边长相等设为a ,对角线长已知,利用勾股定理求解边长的平方,即为正方形的面积.【详解】解:设边长为a ,对角线为4 24a =+28a ∴=故答案为:8.【点睛】本题考察了正方形的性质以及勾股定理.解题的关键在于求解正方形的边长.5、①【分析】由正方形的性质和等边三角形的性质可得CD CE =,30ECD ∠=︒,可得75CED ∠=︒,可求15CEG ∠=︒,故①正确;由“SAS “可证ABE DCE ∆≅∆,可得AE DE =,可证EH ED =,由线段垂直平分线的性质可得HF FD AF =>,故②错误;设2AB BC BE a ===,由等边三角形的性质和三角形中位线定理分别求出AH ,BH 的长,可判断③,通过证明点B ,点G ,点E ,点H 四点共圆,可得45BHG BEG ∠=∠=︒,可证HG =,由三角形三边关系可判断④,即可求解.【详解】 解:四边形ABCD 是正方形,AB BC CD AD ∴===,90DAB ADC ABC BCD ∠=∠=∠=∠=︒,BCE ∆是等边三角形,BE CE BC ∴==,60BCE EBC ∠=︒=∠,CD CE ∴=,30ECD ∠=︒,75CED ∴∠=︒,15CEG ∴∠=︒,故①正确;如图,连接AE ,过点E 作直线MN AD ⊥于N ,交BC 于M ,连接EH ,30ABE ABC EBC ∠=∠-∠=︒,ABE DCE ∴∠=∠,又AB CD =,BE CE =,()ABE DCE SAS ∴∆≅∆,AE DE∴=,∴∠=∠,EAD EDA∴∠=∠,EAH EHA∴=,AE EH∴=,EH ED又FG DH⊥,∴=,FH FD>,FH AF∴>,故②错误;FD AF设2===,AB BC BE aMN AD⊥,90∠=∠=∠=∠=︒,DAB ADC ABC BCD∴四边形ABMN是矩形,⊥,∴=,2AN BM==,MN BCMN AB a⊥,∆是等边三角形,MN BCEBC∴==,EM,BM MC a==,2∴=,AN DN aEN a又EH HD=,AH EN a∴==-,24BH AB AH a∴=-=-,2∴≠,故③错误;BH AH3如图,连接HG,∠=︒,60CEG15∠=︒,BEC∴∠=︒,BEG45∠+∠=︒,180ABC GEH∴点B,点G,点E,点H四点共圆,BHG BEG∴∠=∠=︒,45∴∠=∠=︒,BGH BHG45∴=,BH BG∴=,HG+>,EH EG HG∴+,故④错误;EH EG故答案为:①.【点睛】本题是四边形综合题,考查了全等三角形的判定和性质,等边三角形的性质,正方形的性质,勾股定理等知识,解题的关键是灵活运用这些性质解决问题.三、解答题1、见解析【分析】先证明=∠∠,然后证明△ABE≌△DCF,再根据全等三角形的性质得出结论.AEB DFC【详解】解:∵四边形ABCD 是矩形,∴AB CD =,90B C ∠=∠=︒,AD ∥BC ,∴∠ADF =∠CFD ,∠DAE =∠AEB ,∵=DAE ADF ∠∠,∴=AEB DFC ∠∠.在ABE △和DCF 中,=AEB DFC B CAB DC ∠∠⎧⎪∠=∠⎨⎪=⎩, ∴()ABE DCF AAS △≌△,∴BE CF =,∴BE -FE =CF -EF ,即BF =CE .【点睛】本题主要考查了矩形的性质,全等三角形的性质与判定,熟知全等三角形的性质与判定条件是解题的关键.2、(1)见解析(2)见解析【分析】(1)首先证明△AEF ≌△DEC (AAS ),得出AF =DC ,进而利用AF ∥B D 、AF =BD 得出答案;(2)利用等腰三角形的性质,结合矩形的判定方法得出答案.【小题1】解:证明:(1)∵AF ∥BC ,∴∠AFC =∠FC D .在△AFE 和△DCE 中,AEF DEC AFE DCE AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AEF ≌△DEC (AAS ).∴AF =DC ,∵BD =DC ,∴AF =BD ,∴四边形AFBD 是平行四边形;【小题2】∵AB =AC ,BD =DC ,∴AD ⊥B C .∴∠ADB =90°.∵四边形AFBD 是平行四边形,∴四边形AFBD 是矩形.【点睛】此题主要考查了平行四边形的判定以及矩形的判定方法、全等三角形的判定与性质,正确掌握平行四边形的判定方法是解题关键.3、(1)平行四边形,理由见解析;(2)四边形BPCO的面积为24;(3)AB=BC或AC⊥BD等(答案不唯一)【分析】(1)利用平行四边形的判定:两组对边分别平行的四边形是平行四边形,即可证明.(2)利用矩形的性质,得到对角线互相平分,进而证明四边形BPCO是菱形,分别求出菱形的对角线长度,利用对角线乘积的一半,求解面积即可.(3)添加的条件只要可以证明AC BD即可得到矩形BPCO.【详解】解:(1)四边形BPCO是平行四边形,∵BP∥AC,CP∥BD,∴四边形BPCO是平行四边形.(2)连接OP.∵四边形ABCD是矩形,∴OB=12BD,OC=12AC,AC=BD,∠ABC=90°,∴OB=OC.又四边形BPCO是平行四边形,∴□BPCO是菱形.∴OP⊥BC.又∵AB⊥BC,∴OP∥AB.又∵AC∥BP,∴四边形ABPO是平行四边形,∴OP=AB=6.∴S菱形BPCO=118624 22BC OP⨯=⨯⨯=.(3)AB=BC或AC⊥BD等(答案不唯一).当AB=BC时,ABCD为菱形,此时有:AC BD⊥,利用含有90︒的平行四边形为矩形,即可得到矩形BPCO,当AC⊥BD时,利用含有90︒的平行四边形为矩形,即可得到矩形BPCO.【点睛】本题主要是考查了平行四边形、矩形和菱形的判定和性质,熟练掌握特殊四边形的判定和性质,是求解该类问题的关键.4、(1)B(8,4);(2)存在,P1(3,4),P2(13,4),P3(3,-4)【分析】(1)x2﹣12x+32=0,解得x1=4,x2=8,OC>OA,故OA=4,OC=8,故B(8,4).(2)由对折可知,∠DAC=∠BAC,故∠DAC=∠ACO,AD=CD,设AD=x,则OD=8-x,在Rt OAD中,满足222+=,解得x=5,故D点坐标为(3,0),由平行四边形性质可知P1(3,4),P2(13,OA OD AD4),P3(3,-4)时D、C、B、P四点形成的四边形为平行四边形.【详解】(1)x2﹣12x+32=0,解得x1=4,x2=8,∵OC>OA,∴OA=4,OC=8,故B点坐标为(8,4)(2)由对折可知,∠DAC=∠BAC,又∵四边形OABC为矩形,∴AB//OC,∠BAC=∠ACO∴∠DAC=∠ACO,∴AD=CD,设AD=x,则OD=8-x,在Rt OAD中,满足222+=有OA OD AD2224(8)x x+-=化简得22+-+=166416x x x解得x=5,故OD=8-5=3故D点坐标为(3,0)由平行四边形性质可知P1(3,4),P2(13,4),P3(3,-4)时D、C、B、P四点形成的四边形为平行四边形.【点睛】本题考查了勾股定理,矩形的性质,平行四边形的性质,求出D点坐标,再根据平行四边形两对边分别平行且相等即可求得P点坐标.5、(1)证明见解析;(2)证明见解析;(3)83 DF【分析】(1)利用平行线的性质可得∠C=90°,再根据三个角是直角的四边形是矩形即可判定;(2)根据折叠的性质和中点的定义得出EG=ED,再用HL定理证明Rt△EGF≌Rt△EDF即可;(3)利用DF分别表示BF和FC,再在Rt△BCF中利用勾股定理求解即可.(1)证明:∵AD BC ∥,∴∠D +∠C =180°,∵90A D ∠=∠=︒,∴90C A D ∠=∠=∠=︒,∴四边形ABCD 为矩形;(2)证明:∵将△ABE 沿BE 折叠后得到△GBE ,∴△ABE ≌△GBE ,∴∠BGE =∠A ,AE =GE ,∵∠A =∠D =90°,∴∠EGF =∠D =90°,∵点E 是AD 的中点,∴EA =ED ,∴EG =ED ,在Rt △EGF 和Rt △EDF 中,EF EF EG ED=⎧⎨=⎩, ∴Rt △EGF ≌Rt △EDF (HL );∴GF DF =;(3)解:∵四边形ABCD 为矩形,△ABE ≌△GBE ,∴∠C =90°,BG =CD =AB =6,∵GF DF =;∴6BF BG GF DF =+=+,6CF DC DF DF =-=-,∴在Rt △BCF 中,根据勾股定理,222BF CF BC =+,即222(6)(6)8DF DF +=-+, 解得83DF =. 即83DF =.【点睛】本题考查矩形的性质和判定,全等三角形的判定定理,折叠的性质,勾股定理等.(1)掌握矩形的判定定理是解题关键;(2)能结合重点和折叠的性质得出EG =ED 是解题关键;(3)中能利用DF 正确表示Rt △BCF 中,BF 和CF 的长度是解题关键.。

人教版初中数学八年级下册同步练习题18.1.2平行四边形的判定(4)——三角形的中位线

人教版初中数学八年级下册同步练习题18.1.2平行四边形的判定(4)——三角形的中位线

18.1.2平行四边形的判定(4)一一三角形的中位线课堂学习检测一、填空题:1.(1)三角形的中位线的定义:连结三角形两边叫做三角形的中位线.(2)三角形的中位线定理是三角形的中位线三边,并且等于2.如图,△43。

的周长为64,E、F、G分别为WA AC.■的中点,』'、6'、C分别为研EG、GF的中点,△/'B'C的周长为.如果及7、4EFG、△』'B'C分别为第1个、第2个、第3个三角形,按照上述方法继续作三角形,那么第〃个三角形的周长是•3.中,D、E分别为45、"。

的中点,若座=4,AD=3,AE=2,则■的周长为—二、解答题4.已知:如图,四边形/列中,E、F、G、日分别是/以Ba CD、以的中点.求证:四边形麽诳是平行四边形.5.已知:网的中线初、堡交于点。

F、G分别是缪、%的中点.求证:四边形力碰是平行四边形.综合、运用、诊断6.已知:如图,E为6BCD中庞'边的延长线上的一点,代CE=DC,连结如'分别交应;刃于点尺G,连结4C交初于。

连结必求证:AB=20F.7.已知:如图,在曲时中,£是⑦的中点,尸是/的中点,FC与BE交于G.求证:GF=GC.E CAD.8.已知:如图,在四边形曲%中,AD=BC, E 、尸分别是力C 、/边的中点,死'的延长线分别与如、BC的延长线交于〃、G 点.求证:/AHF=/BGF.拓展、探究、思考9.已知:如图,网中,力是此'边的中点,北'平分ZBAC, BELAE 于E 点,若AB=5, AC=7,求应Z 10.如图在中,D 、E 分别为』弥上的点,巨BD=CE, < "分别是庞、,的中点.过刎的直线交AB 于P,交如于。

线段#、40相等吗?为什么?A参考答案1.(1)中点的线段;(2)平行于三角形的,第三边的一半.2.16,64X(-)71-1.3.18.24.提示:可连结刃(或AC).5.略.6.连结庞CE』ABnUABECnBF=FC.DABCD=>AO=OC,:.AB=20F.7.提示:取座的中点R证明四边形庭烈'是平行四边形.8.提示:连结』G取』C的中点M再分别连结依MF,可得£¥=成9.ED=\,提示:延长冏?,交/C于尸点.10.提示:AP^AQ,取网的中点&连接洌NH.证明zMW是等腰三角形,进而证明/AP4ZAQP.最新人教版八年级数学下册期中综合检测卷考试用时:120分钟,试卷满分:120分一、选择题(每小题3分,共30分)1.若式子后3在实数范围内有意义,则x的取值范围是()A.xN3B.xW3C.x>3D.x<32.下列各组数中,能构成直角三角形的是()A.4,5,6B.l,1,a/2C.6,8,11D.5,12,233.下列各式是最简二次根式的是()A.炯B.V7C.a/20D,V034.下列运算正确的是()A.yfs-=B.=2?C.-'Jl=^2D.』(2一赃V=2-sf55.方程I 4x-8 I +Jx-y-m=O,当y>0时,m 的取值范围是()A.O<m<lB.mN2C.mW2D.m<26.若一个三角形的三边长为6,8, x,则此三角形是直角三角形时,x 的值是()A.8 B.10 C.2a /7 D.10 或 2妗7. 将直角三角形的各边都缩小或扩大同样的倍数后,得到的三角形( )A.可能是锐角三角形B.不可能是直角三角形C.仍然是直角三角形D.可能是钝角三角形8. 能判定四边形ABCD 为平行四边形的题设是( )A.AB〃CD, AD=BCB.AB=CD, AD=BCC.ZA=ZB, ZC=ZDD.AB=AD, CB=CD 9.如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是()A.当AB=BC 时,它是菱形C.当ZABC=90°时,它是矩形 B.当ACLBD 时,它是菱形D.当AC=BD 时,它是正方形第9题图 第10题图第13题图 第15题图10.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF, AE 、BF 相交于点O, 下列结论:(1)AE=BF ; (2) AE±BF ; (3) AO=OE ; (4)S aaob =S 四边形 deof 中正确的有( )A.4个B.3个C.2个D.1个二、填空题(每小题3分,共24分)11.已知最简二次根式』4a+3b与'刈2a-b+6可以合并,则ab=.12.若直角三角形的两直角边长为a、b,且满足V«2-6a+9+I b-4I=0,则该直角三角形的斜边长为.2513.如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积S1=—n,8S2=2n,则S3=.14.四边形ABCD的对角线AC,BD相交于点O,AC±BD,且OB=OD,请你添加一个适当的条件,使四边形ABCD成为菱形(只需添加一个即可).15.如图,^ABC在正方形网格中,若小方格边长为1,则^ABC的形状是16.已知菱形ABCD中,对角线AC与BD相交于点O,ZBAD=120°,AC=4,则该菱形的面积是•17.AABC中,若AB=15,AC=13,高AD=12,则AABC的周长是.18.如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A,C的坐标分别为A(10,0),C(0,4),点D是OA的中点,点P为线段BC上的点.小明同学写出了一个以OD为腰的等腰三角形ODP的顶点P的坐标(3,4),请你写出其余所有符合这个条件的P 点坐标■三、解答题(共66分)19.(8分)计算下列各题:(1)(a/48-4J-)-(3J--2^5);(2)(2—迅严比•(2+V3)2016-2X|-^|-(-V3)°.220.(8分)如图是一块地,已知AD=4m,CD=3m,AB=13m,BC=12m,且CD±AD,求这块地的面积.21.(8分)已知9+血与9—应的小数部分分别为a,b,试求ab~3a+4b~7的值.22.(10分)如图,在等腰直角三角形ABC中,ZABC=90°,D为AC边上中点,过D点作DEXDF,交AB于E,交BC于F,若AE=4,FC=3,求EF的长.23.(10分)如图,^ABC是直角三角形,且ZABC=90°,四边形BCDE是平行四边形, E为AC的中点,BD平分ZABC,点F在AB上,且BF=BC.求证:(1)DF=AE;(2)DF±AC.24.(10分)如图,四边形ABCD是一个菱形绿地,其周长为402m,ZABC=120°,在其内部有一个四边形花坛EFGH,其四个顶点恰好在菱形ABCD各边的中点,现在准备在花坛中种植茉莉花,其单价为10元/r^,请问需投资金多少元?(结果保留整数)25.(12分)(1)如图①,已知△ABC,以AB、AC为边向^ABC外作等边AABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写作法,保留作图痕迹)(2)如图②,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE 和CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图③,要测量池塘两岸相对的两点B,E的距离,已经测得ZABC=45°CAE=90°,AB=BC=100米,AC=AE,求BE的长.最新人教版八年级数学下册期末综合检测卷一、选择题(每小题3分,共30分)1.二次根式而i 、屈、应、Jx + 2、j40f 、J/ +》2中,最简二次根式有()A.1个B.2个C.3个D.4个2.若式子目有意义,则x 的取值范围为()A.xN4B.x 尹 3C.x34 或 x 乂3D.x34 且 x 尹33.下列计算正确的是( )A.a /4 X ^/6=4a /6B 疝+痴=应C.何:屁22 D.J(-15)2=-154.在 RtAABC 中,ZACB=90° , AC=9, BC=12,则点 C 到 AB 的距离是( )A 36「12A,—— B.—5 25厂 9、30C. — D.----4 45.平行四边形ABCD 中,ZB=4ZA,则ZC=()A.18° B.36° C.72° D.144°6.如图,菱形ABCD 的两条对角线相交于O,菱形的周长是20 cm, AC : BD=4 : 3,则菱形的面积是()A.12 cm 2 B.24 cm 2 C.48 cm 2 D.96 cm 2第6题图第8题图第10题图X =-17.若方程组(2工+*=3的解是.贝I直线y=—2x+b与y=x—a\x-y=a的交点坐标是()A.(-l,3)B.(l,-3)C.(3,-1)D.(3,1)8.甲、乙两人在一次百米赛跑中,路程s(m)与赛跑时间t(s)的关系如图所示,则下列说法正确的是()A.甲、乙两人的速度相同B.甲先到达终点C.乙用的时间短D.乙比甲跑的路程多9.在我市举行的中学生春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩(m) 1.50 1.60 1.65 1.70 1.75 1.80人数124332这些运动员跳高成绩的中位数和众数分别是()A.1.70, 1.65B.1.70, 1.70C.1.65, 1.70D.3,410.如图,在^ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE±AB于E,PF±AC 于F,M为EF中点,则AM的最小值为()二、填空题(每小题3分,共24分)11.当x=时,二次根式x+1有最小值,最小值为12.已知a,b,c是^ABC的三边长,且满足关系式yjc2-a2-b2+\a-b\=O,则Z^ABC的形状为13.平行四边形ABCD的两条对角线AC、BD相交于点O,AB=13,AC=10,DB=24,则四边形ABCD的周长为.14.如图,一次函数"灯x+bi y2=k2x+b2的图象相交于A(3,2),则不等式(k2—/ci)x+b2 -bi>0的解集为第14题图第16题图第18题图15.在数据一1,0,3,5,8中插入一个数据X,使得该组数据的中位数为3,则x的值为16.如图,3XBCD中,E、F分别在CD和BC的延长线上,ZECF=60°,AE〃BD,EF1BC, EF=2,则AB的长是.17.(山东临沂中考)某中学随机抽查了50名学生,了解他们一周的课外阅读时间,结果如下表所示:时间(小时)4567人数1020155则这50名学生一周的平均课外阅读时间是小时.18.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD 上,下列结论:①CE=CF,②ZAEB=75°,③BE+DF=EF,④S正方形ABCD=2+0,其中正确的序号是.(把你认为正确的都填上)三、解答题(共66分)19.(8分)计算下列各题:(1)12V2-31-+a/18(2)先化简,再求值:"+。

2022年精品解析沪科版八年级数学下册第19章 四边形专题攻克试题(含详细解析)

2022年精品解析沪科版八年级数学下册第19章 四边形专题攻克试题(含详细解析)

沪科版八年级数学下册第19章 四边形专题攻克考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,矩形ABCD 中,两条对角线AC 与BD 相交于点O ,AB =6,OA =4.则这个矩形的面积为( )A .24B .48C .D .2、下列测量方案中,能确定四边形门框为矩形的是( )A .测量对角线是否互相平分B .测量两组对边是否分别相等C .测量对角线是否相等D .测量对角线交点到四个顶点的距离是否都相等3、如图,已知在正方形ABCD 中,10AB BC CD AD ====厘米,90A B C D ∠=∠=∠=∠=︒,点E 在边AB 上,且4AE =厘米,如果点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CD 上以a 厘米/秒的速度由C 点向D 点运动,设运动时间为t 秒.若存在a 与t 的值,使BPE与CQP全等时,则t的值为()A.2 B.2或1.5 C.2.5 D.2.5或24、如图所示,公路AC、BC互相垂直,点M为公路AB的中点,为测量湖泊两侧C、M两点间的距离,若测得AB的长为6km,则M、C两点间的距离为()A.2.5km B.4.5km C.5km D.3km5、四边形的内角和与外角和的数量关系,正确的是()A.内角和比外角和大180°B.外角和比内角和大180°C.内角和比外角和大360°D.内角和与外角和相等6、如图,在△ABC中,∠ABC=90°,AC=18,BC=14,D,E分别是AB,AC的中点,连接DE,BE,点M在CB的延长线上,连接DM,若∠MDB=∠A,则四边形DMBE的周长为()A.16 B.24 C.32 D.407、下列正多边形中,能够铺满地面的是()A.正方形B.正五边形C.正七边形D.正九边形8、在菱形ABCD中,对角线AC、BD相交于点O,AB=5,AC=6,过点D作AC的平行线交BC的延长线于点E,则△BDE的面积为()A.22 B.24 C.48 D.449、一个多边形每个外角都等于36°,则这个多边形是几边形()A.7 B.8 C.9 D.1010、如图,在ABCD中,对角线AC,BD相交于点O,且AC⊥BC,ABCD的面积为48,OA=3,则BC的长为()A.6 B.8 C.12 D.13第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在□ABCD中,AC与BD相交于点O,∠AOB=60°,BD=4,将△ABC沿直线AC翻折后,点B落在点B′处,那么DB′的长为_________2、已知一个多边形内角和1800度,则这个多边形的边数_____.3、如图,在矩形ABCD中,AB=3,BC=4,点P是对角线AC上一点,若点P、A、B组成一个等腰三角形时,△PAB的面积为___________.4、在边长为4dm的正方形纸片(厚度不计)上,按如图的实线裁剪,将阴影部分按虚线折叠成一个有盖的正方体盒子,则这个盒子的容积为______3dm.5、如图在正方形ABCD中,∠EAF的两边分别交CB、DC延长线于E、F点且∠EAF=45°,如果BE=1,DF=7,则EF=__.三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC中,BD,CE分别是AC,AB边上的高,F是BC的中点.(1)求证:DEF是等腰三角形;(2)若60∠=︒,2ADE=,求BC的长.2、如图,将□ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F,连接AC、BE.(1)求证:四边形ABEC是平行四边形;(2)若∠AFC=2∠ADC,求证:四边形ABEC是矩形.3、如图,AM//BN,C是BN上一点,BD平分∠ABN且过AC的中点O,交AM于点D, DE⊥BD,交BN 于点E.(1)求证:四边形ABCD是菱形.(2)若DE=AB=2,求菱形ABCD的面积.4、(1)先化简,再求值:(a+b)(a﹣b)﹣a(a﹣2b),其中a=1,b=2;(2)如图,菱形ABCD中,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.证明:四边形AECF 是矩形.5、“三等分一个任意角”是数学史上一个著名问题.今天人们已经知道,仅用圆规和直尺是不可能作出的.有人曾利用如图所示的图形进行探索,其中ABCD 是长方形,F 是DA 延长线上一点,G 是CF 上一点,且∠ACG =∠AGC ,∠GAF =∠F .请写出∠ECB 和∠ACB 的数量关系,并说明理由.-参考答案-一、单选题1、C【分析】根据矩形的性质,对角线相等且互相平分,可得28AC OA ==,进而勾股定理求得BC ,再根据AB BC ⨯即可求得矩形的面积.【详解】 解:四边形ABCD 是矩形,12OA AC ∴=,90ABC ∠=︒ AB =6,OA =4BC ∴∴矩形ABCD 的面积为:6AB BC ⨯=⨯故选C【点睛】本题考查了矩形的性质,勾股定理,掌握矩形的性质是解题的关键.2、D【分析】由平行四边形的判定与性质、矩形的判定分别对各个选项进行判断即可.【详解】解:A、∵对角线互相平分的四边形是平行四边形,∴对角线互相平分且相等的四边形才是矩形,∴选项A不符合题意;B、∵两组对边分别相等是平行四边形,∴选项B不符合题意;C、∵对角线互相平分且相等的四边形才是矩形,∴对角线相等的四边形不是矩形,∴选项C不符合题意;D、∵对角线交点到四个顶点的距离都相等,∴对角线互相平分且相等,∵对角线互相平分且相等的四边形是矩形,∴选项D符合题意;故选:D.【点睛】本题考查了矩形的判定、平行四边形的判定与性质、解题的关键是熟记矩形的判定定理.3、D【分析】根据题意分两种情况讨论若△BPE≌△CQP,则BP=CQ,BE=CP;若△BPE≌△CPQ,则BP=CP=5厘米,BE=CQ=6厘米进行求解即可.【详解】a=,即点Q的运动速度与点P的运动速度都是2厘米/秒,若△BPE≌△CQP,则BP=CQ,解:当2BE=CP,∵AB=BC=10厘米,AE=4厘米,∴BE=CP=6厘米,∴BP=10-6=4厘米,∴运动时间t=4÷2=2(秒);当2a≠,即点Q的运动速度与点P的运动速度不相等,∴BP≠CQ,∵∠B=∠C=90°,∴要使△BPE与△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.BP÷=÷=(秒).∴点P,Q运动的时间t=252 2.5综上t的值为2.5或2.故选:D.【点睛】本题主要考查正方形的性质以及全等三角形的判定,解决问题的关键是掌握正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等.同时要注意分类思想的运用.4、D【详解】AB,即可求出CM.根据直角三角形斜边上的中线性质得出CM=12【解答】解:∵公路AC,BC互相垂直,∴∠ACB=90°,∵M为AB的中点,AB,∴CM=12∵AB=6km,∴CM=3km,即M,C两点间的距离为3km,故选:D.【点睛】本题考查了直角三角形的性质,解题关键是掌握直角三角形斜边上的中线的性质:直角三角形斜边上的中线等于斜边的一半.5、D【分析】直接利用多边形内角和定理分别分析得出答案.【详解】解:A.四边形的内角和与外角和相等,都等于360°,故本选项表述错误;B.四边形的内角和与外角和相等,都等于360°,故本选项表述错误;C.六四边形的内角和与外角和相等,都等于360°,故本选项表述错误;D.四边形的内角和与外角和相等,都等于360°,故本选项表述正确.故选:D.【点睛】本题考查了四边形内角和和外角和,解题关键是熟记四边形内角和与外角和都是360°.6、C【分析】由中点的定义可得AE =CE ,AD =BD ,根据三角形中位线的性质可得DE //BC ,DE =12BC ,根据平行线的性质可得∠ADE =∠ABC =90°,利用ASA 可证明△MBD ≌△EDA ,可得MD =AE ,DE =MB ,即可证明四边形DMBE 是平行四边形,可得MD =BE ,进而可得四边形DMBE 的周长为2DE +2MD =BC +AC ,即可得答案.【详解】∵D ,E 分别是AB ,AC 的中点,∴AE =CE ,AD =BD ,DE 为△ABC 的中位线,∴DE //BC ,DE =12BC ,∵∠ABC =90°,∴∠ADE =∠ABC =90°,在△MBD 和△EDA 中,90MDB A BD AD MBD ADE ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△MBD ≌△EDA ,∴MD =AE ,DE =MB ,∵DE //MB ,∴四边形DMBE 是平行四边形,∴MD =BE ,∵AC =18,BC =14,∴四边形DMBE 的周长=2DE +2MD =BC +AC =18+14=32.故选:C .【点睛】本题考查全等三角形的判定与性质、三角形中位线的性质及平行四边形的判定与性质,三角形中位线平行于第三边且等于第三边的一半;有一组对边平行且相等的四边形是平行四边形;熟练掌握相关性质及判定定理是解题关键.7、A【分析】根据使用给定的某种正多边形,当围绕一点拼在一起的几个内角加在一起恰好组成一个周角时,就可以铺满地面,即可求解.【详解】解:A、∵正方形的内角和为360︒,∴正方形的每个内角为90°,而904=360︒⨯︒,∴正方形能够铺满地面,故本选项符合题意;B、正五边形的每个内角为()521801085-⨯︒=︒,不能被360°整除,所以不能够铺满地面,故本选项不符合题意;C、正七边形的每个内角为()7218090077-⨯︒⎛⎫=︒⎪⎝⎭,不能被360°整除,所以不能够铺满地面,故本选项不符合题意;D、正九边形的每个内角为()921801409-⨯︒=︒,不能被360°整除,所以不能够铺满地面,故本选项不符合题意;故选:A【点睛】本题主要考查了用正多边形铺设地面,熟练掌握给定的某种正多边形,当围绕一点拼在一起的几个内角加在一起恰好组成一个周角时,就可以铺满地面是解题的关键.8、B【分析】先判断出四边形ACED是平行四边形,从而得出DE的长度,根据菱形的性质求出BD的长度,利用勾股定理的逆定理可得出△BDE是直角三角形,计算出面积即可.解: 菱形ABCD ,6,AC =,3,2,5,,AD BC OA OC BD BO AB BC AD AC BD ∥在Rt △BCO 中,224,BOBC OC 即可得BD =8,,AC DE ∥ ∴四边形ACED 是平行四边形,∴AC =DE =6,5,CE AD∴ BE =BC +CE =10,222100,BE BD DE∴△BDE 是直角三角形,90,BDE ∠=︒∴S △BDE =12DE •BD =24.故选:B .【点睛】本题考查了菱形的性质,勾股定理的逆定理及三角形的面积,平行四边形的判定与性质,求出BD 的长度,判断△BDE 是直角三角形,是解答本题的关键.9、D【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【详解】解:∵360°÷36°=10,∴这个多边形的边数是10.【点睛】本题考查了多边形内角与外角,外角和的大小与多边形的边数无关,熟练掌握多边形内角与外角是解题关键.10、B【分析】由平行四边形对角线互相平分得到AC 的值,由AC ⊥BC ,可得ABCD SAC BC =⋅,代入即可求出BC 边长.【详解】解:∵在ABCD 中,对角线AC ,BD 相交于点O ,∴OA =OC ,∵OA =3,∴AC =2OA =6,∵AC ⊥BC ,∴648ABCDS AC BC BC =⋅==, ∴BC =8.故选:B【点睛】此题考查平行四边形的性质和平行四边形的面积,掌握平行四边形对角线互相平分的性质是解答此题的关键.二、填空题1、2【分析】BD=2.连接B′O.证明△B′OD是等边三角形,即可求得B′D=OD=12【详解】解:如图,连接B′O.∵∠AOB=∠B′OA=60°,∴∠B′OD=60°,∵OB=OB′=OD,∴△B′OD是等边三角形,BD=2,∴B′D=OD=12故答案为:2.【点睛】本题考查了折叠变换的性质、平行四边形的性质以及等边三角形的判定和性质;熟练掌握翻折变换和平行四边形的性质是解题的关键.2、12【分析】n-⨯︒=︒,然后解方程即可.设这个多边形的边数为n,根据多边形的内角和定理得到()21801800【详解】解:设这个多边形的边数是n,依题意得()21801800n-⨯︒=︒,∴210n-=,∴12n=.故答案为:12.【点睛】考查了多边形的内角和定理,关键是根据n边形的内角和为()2180n-⨯︒解答.3、10825或185或3【分析】过B作BM⊥AC于M,根据矩形的性质得出∠ABC=90°,根据勾股定理求出AC,根据三角形的面积公式求出高BM,分为三种情况:①AB=BP=3,②AB=AP=3,③AP=BP,分别画出图形,再求出面积即可.【详解】解:∵四边形ABCD是矩形,∴∠ABC=90°,由勾股定理得:5AC,有三种情况:①当AB=BP=3时,如图1,过B作BM⊥AC于M,S △ABC=1122AB BC AC BM⋅=⋅,1134=5 22BM∴⨯⨯⨯⨯,解得:125 MB=,∵AB=BP=3,BM⊥AC,∴95 AM PM===,∴AP=AM+PM=185,∴△PAB的面积=111812108 225525 AP BM⋅=⨯⨯=;②当AB=AP=3时,如图2,∵BM=125,∴△PAB的面积S=11121832255 AP BM⋅=⨯⨯=;③作AB的垂直平分线NQ,交AB于N,交AC于P,如图3,则AP=BP,BN=AN=13322=⨯,∵四边形ABCD 是矩形,NQ ⊥AC ,∴PN ∥BC ,∵AN =BN ,∴AP =CP , ∴122PN BC ==, ∴△PAB 的面积1132322S AB NP =⋅=⨯⨯=; 即△PAB 的面积为10825或185或3. 故答案为:10825或185或3. 【点睛】 本题主要是考查了矩形的性质、等腰三角形的判定以及勾股定理求边长,熟练掌握矩形的性质,利用等腰三角形的判定,分成三种情况讨论,是解决本题的关键.4、【分析】根据题意可得,设正方体的棱长为a dm ,则减去的部分为2个边长为a dm 的正方形,将阴影部分按虚线折叠成一个有盖的正方体盒子,则四个角折叠后刚好凑成1个边长为a dm 的正方形,据此列一元二次方程求解,进而即可求得正方体的容积【详解】解:设正方体的棱长为a dm ()0a >,则222426a a -=解得a ∴这个盒子的容积为3dm故答案为:【点睛】本题考查了一元二次方程的应用,立方体展开图,正方形的性质,根据题意列出一元二次方程是解题的关键.5、6【分析】根据题意把△ABE 绕点A 逆时针旋转90°到AD ,交CD 于点G ,证明△AEF ≌△AGF 即可求得EF =DF ﹣BE =7﹣1=6.【详解】解:如图,把△ABE 绕点A 逆时针旋转90°到DA ,交CD 于点G ,由旋转的性质可知,AG =AE ,DG =BE ,∠DAG =∠BAE ,∵∠EAF =45°,∴∠DAG +∠BAF =45°,又∵∠BAD =90°,∴∠GAF =45°,在△AEF 和△AGF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△AGF (SAS )∴EF =GF ,∵BE =1,DF =7,∴EF =GF =DF ﹣DG =DF ﹣BE =7﹣1=6.故答案为:6.【点睛】本题主要考查正方形的性质及全等三角形的判定和性质,构造全等三角形是解题的关键,注意旋转性质的应用.三、解答题1、(1)见解析;(2)4【分析】(1)根据直角三角形斜边上的中线等于斜边的一半和等腰三角形的判定解答即可;(2)根据等腰三角形的性质和三角形的内角和定理证得1802BFE EBF ∠=︒-∠,1802DFC DCF ∠=︒-∠,进而证得DFE ∠=60°,则△DEF 是等边三角形,根据等边三角形的性质求得2DE DF EF ===即可求解.【详解】(1)证明:∵BD ,CE 分别是AB 、AC 边上的高,∴90BDC BEC ∠=∠=︒,∵点F 是BC 中点, ∴12EF BC =,12DF BC =,12BF CF BC == ∴EF DF BF CF ===,∴DEF 是等腰三角形;(2)解:∵EF DF BF CF ===,∴EBF BEF ∠=∠,FDC DCF ∠=∠∴1802BFE EBF ∠=︒-∠,同理1802DFC DCF ∠=︒-∠,∵180BAC ABC ACB ∠+∠+∠=︒,60A ∠=︒,∴180120ABF ACF A ∠+∠=︒-∠=︒,∴()180DFE BFE DFC ∠=︒-∠+∠()18036022EBF DCF =︒-︒-∠-∠218060EBF DCF =∠+∠-︒=︒()又DEF 是等腰三角形,∴DEF 是等边三角形.∴2DE DF EF ===,∴24BC EF ==.【点睛】本题考查直角三角形斜边上的中线性质、等腰三角形的判定与性质、等边三角形的判定与性质、三角形的内角和定理等知识,熟练掌握相关知识的联系与运用是解答的关键.2、(1)证明见解析;(2)证明见解析;【分析】(1)根据平行四边形的性质得到AB CD ∥,AB =CD ,然后根据CE =DC ,得到AB =EC ,AB EC ∥,利用“一组对边平行且相等的四边形是平行四边形”判断即可;(2)由(1)得的结论得四边形ABEC 是平行四边形,再通过角的关系得出FA =FE =FB =FC ,AE =BC ,可得结论.【详解】证明:(1)∵四边形ABCD 是平行四边形,∴AB CD ∥,AB =CD ,∵CE =DC ,∴AB =EC ,AB EC ∥,∴四边形ABEC 是平行四边形;(2)∵由(1)知,四边形ABEC 是平行四边形,∴FA =FE ,FB =FC .∵四边形ABCD 是平行四边形,∴∠ABC =∠D .又∵∠AFC =2∠ADC ,∴∠AFC =2∠ABC .∵∠AFC =∠ABC +∠BAF ,∴∠ABC =∠BAF ,∴FA =FB ,∴FA =FE =FB =FC ,∴AE =BC ,∴四边形ABEC 是矩形.【点睛】本题考查的是平行四边形的判定与性质及矩形的判定,关键是先由平行四边形的性质证三角形全等,然后推出平行四边形,再通过角的关系证矩形.3、(1)见解析(2)【分析】(1)由ASA 可证明△ADO ≌△CBO ,再证明四边形ABCD 是平行四边形,再证明AD =AB ,即可得出结论;(2)由菱形的性质得出AC ⊥BD ,证明四边形ACED 是平行四边形,得出AC =DE =2,AD =EC ,由菱形的性质得出EC =CB =AB =2,得出EB =4,由勾股定理得BD=【小题1】解:证明:∵点O 是AC 的中点,∴AO =CO ,∵AM ∥BN ,∴∠DAC =∠ACB ,在△AOD 和△COB 中,DAO BCO AO COAOD COB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADO ≌△CBO (ASA ),∴AD =CB ,又∵AM ∥BN ,∴四边形ABCD 是平行四边形,∵AM ∥BN ,∴∠ADB =∠CBD ,∵BD 平分∠ABN ,∴∠ABD =∠CBD ,∴∠ABD =∠ADB ,∴AD =AB ,∴平行四边形ABCD 是菱形;【小题2】由(1)得四边形ABCD 是菱形,∴AC ⊥BD ,AD =CB ,又DE ⊥BD ,∴AC ∥DE ,∵AM ∥BN ,∴四边形ACED 是平行四边形,∴AC =DE =2,AD =EC ,∴EC =CB ,∵四边形ABCD 是菱形,∴EC =CB =AB =2,∴EB =4,在Rt △DEB 中,由勾股定理得BD=∴S 菱形ABCD =12AC •BD =122⨯⨯ 【点睛】本题考查了菱形的判定与性质、全等三角形的判定与性质、平行四边形的判定与性质、等腰三角形的判定与性质、勾股定理等知识;熟练掌握菱形的判定与性质是解题的关键.4、(1)22b ab -+,0;(2)证明见解析.【分析】(1)根据整式的乘法运算法则先去括号,然后合并同类项化简,然后代入求解即可;(2)首先根据菱形的性质得到AD BC ∥,AD BC =,然后根据E 、F 分别是BC 、AD 的中点,得出AF CE =,根据一组对边平行且相等证明出四边形AECF 是平行四边形,然后根据等腰三角形三线合一的性质得出AE BC ⊥,即可证明出四边形AECF 是矩形.【详解】(1)(a +b )(a ﹣b )﹣a (a ﹣2b )222222a b a abb ab =--+=-+将a =1,b =2代入得:原式=222120-+⨯⨯=;(2)如图所示,∵四边形ABCD 是菱形,∴AD BC ∥,且AD BC =,又∵E 、F 分别是BC 、AD 的中点,∴AF CE =,∴四边形AECF 是平行四边形,∵AB =AC ,E 是BC 的中点,∴AE BC ⊥,即90AEC ∠=︒,∴平行四边形AECF 是矩形.【点睛】此题考查了整式的混合运算,代数式求值问题,菱形的性质和矩形的判定,解题的关键是熟练掌握整式的混合运算法则,菱形的性质和矩形的判定定理.5、∠ACB =3∠ECB ,见解析.【分析】由矩形的对边平行可得∠F =∠ECB ,由外角等于和它不相邻的两个内角的和可得∠AGC =2∠F ,那么∠ECB =∠F ,所以∠ACB =3∠ECB .【详解】解:∠ACB =3∠ECB .理由如下:在△AGF 中,∠AGC =∠F +∠GAF =2∠F .∵∠ACG =∠AGC ,∴∠ACG =2∠F .∵AD//BC ,∴∠ECB =∠F .∴∠ACB =∠ACG +∠BCE =3∠F .故∠ACB =3∠ECB .【点睛】本题考查了矩形的性质,用到的知识点为:矩形的对边平行;两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和.。

沪科版八年级数学下第19章《四边形》测试题(含答案)

沪科版八年级数学下第19章《四边形》测试题(含答案)

第19章四边形测试题一、选择题(本大题共6小题,每小题4分,共24分;在每小题列出的四个选项中,只有一项符合题意)1.已知一个多边形的内角和是540°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形2.若一个正多边形的每个外角都等于45°,则它是()A.正六边形B.正八边形C.正十边形D.正十二边形3.若一个多边形的每一个内角都等于150°,则从此多边形一个顶点出发引出的对角线有()A.7条B.8条C.9条D.10条4.如图2-G-1所示,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B 两点间的距离,但绳子不够长.一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10 m,则A,B间的距离为()图2-G-1A.15 mB.20 mC.25 mD.30 m5.如图2-G-2,在四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()图2-G-2A.AB∥DC,AD∥BCB.AB=DC,AD=BCC.AO=CO,BO=DOD.AB∥DC,AD=BC6.如图2-G-3所示,在▱ABCD中,CE⊥AB,E为垂足.若∠A=125°,则∠BCE图2-G-3A.55°B.35°C.30°D.25°二、填空题(本大题共6小题,每小题4分,共24分)7.如果一个多边形的内角和等于外角和的3倍,那么这个多边形的边数n=__________.8.如果一个四边形三个内角度数之比为2∶1∶3,第四个内角为60°,那么这三个内角的度数分别为______________________.9.正八边形一个内角的度数为________.10.如图2-G-4所示,若▱ABCD与▱EBCF关于BC所在的直线对称,∠ABE=90°,则∠F=________.图2-G-411.如图2-G-5,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等________.图2-G-512.如图2-G-6,点D,E,F分别是△ABC各边的中点,连接DE,EF,DF.若△ABC 的周长为10,则△DEF的周长为________.图2-G-6三、解答题(本大题共5小题,共52分)13.(6分)如果某个多边形的各个内角都相等,且它的每个内角比其外角大100°,那么这个多边形的边数是多少?14.(10分)如图2-G-7所示,△ABC的中线BD,CE相交于点O,F,G分别是BO,求证:四边形DEFG是平行四边形.图2-G-715.(10分)如图2-G-8,在▱ABCD中,点E,F在对角线BD上,且BE=DF.求证:(1)AE=CF;(2)四边形AECF是平行四边形.图2-G-816.(12分)如图2-G-9,在▱ABCD中,点E,F分别在AB,DC上,且ED⊥DB,FB ⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.图2-G-917.(14分)(1)如图2-G-10①,在△ABC中,D,E分别为AB,AC的中点.请说明DE与BC的数量关系;(不必说明理由)图2-G-10(2)如图2-G-10②,点O是△ABC所在平面内一动点,连接OB,OC,并将AB,OB,OC,AC的中点D,E,F,G依次连接.如果点D,E,F,G能构成四边形,根据问题(1)的结论,判断四边形DEFG是否为平行四边形,请说明理由;(3)当点O移动到△ABC外时,(2)中的结论是否仍然成立?画出图形,不必说明理由.详答1.B[解析] 本题主要考查n边形的内角和公式(n-2)·180°,由(n-2)·180°=540°,得n =5.本题也用到方程的解题思想.2.B3.C [解析] 由题意求得该多边形的每一个外角为180°-150°=30°,所以这个多边形的边数为360°÷30°=12,所以从一个顶点出发引出的对角线有12-3=9(条).4.B5.D [解析] A 项,由“AB ∥DC ,AD ∥BC ”可知,四边形ABCD 的两组对边互相平行,所以该四边形是平行四边形.故本选项不符合题意;B 项,由“AB =DC ,AD =BC ”可知,四边形ABCD 的两组对边分别相等,所以该四边形是平行四边形.故本选项不符合题意;C 项,由“AO =CO ,BO =DO ”可知,四边形ABCD 的两条对角线互相平分,所以该四边形是平行四边形.故本选项不符合题意;D 项,由“AB ∥DC ,AD =BC ”可知,四边形ABCD 的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意.故选D .6.B [解析] 根据平行四边形的性质得∠B =180°-∠A =55°.在Rt △BCE 中,∠BCE =90°-∠B =35°.故选B.7.8 [解析] 由题意,得(n -2)·180°=360°×3,解得n =8.8.100°,50°,150° [解析] 设这三个内角的度数分别为2x ,x ,3x ,则有2x +x +3x =360°-60°,解得x =50°,则2x =100°,3x =150°. 故答案为100°,50°,150°.9.135° [解析] 正八边形的内角和为(8-2)×180°=1080°,每一个内角的度数为18×1080°=135°.10.45° [解析] 根据轴对称的性质,得∠EBC =∠ABC =45°,因为平行四边形的对角相等,所以∠F =∠EBC =45°.11.20 [解析] ∵四边形ABCD 为平行四边形,∴AE ∥BC ,AD =BC ,AB =CD ,∴∠AEB =∠EBC .∵BE 平分∠ABC ,∴∠ABE =∠EBC ,∴∠ABE =∠AEB ,∴AB =AE ,∴AE +DE =AD =BC =6,∴AE =4,∴AB =CD =4,∴▱ABCD 的周长=4+4+6+6=20.12.5 [解析] ∵D ,E 分别是AB ,BC 的中点,∴DE 是△ABC 的中位线,∴DE =12AC ,同理有EF =12AB ,DF =12BC ,∴△DEF 的周长=12(AC +BC +AB )=12×10=5.13.解:设每个内角的度数为x ,边数为n . 则x -(180°-x )=100°,解得x =140°. ∴(n -2)·180°=140°·n ,解得n =9. 即这个多边形的边数是9.14.证明:∵E ,D 分别是AB ,AC 的中点, ∴DE 是△ABC 的中位线,∴DE ∥BC ,DE =12BC .又∵F ,G 分别是OB ,OC 的中点, ∴FG 是△OBC 的中位线,∴FG ∥BC ,FG =12BC .∴DE ∥FG ,DE =FG ,∴四边形DEFG 是平行四边形.15.证明:(1)∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD , ∴∠ABE =∠CDF .在△ABE 和△CDF 中,⎩⎨⎧AB =CD ,∠ABE =∠CDF ,BE =DF ,∴△ABE ≌△CDF (SAS ), ∴AE =CF .(2)∵△ABE ≌△CDF , ∴∠AEB =∠CFD , ∴∠AEF =∠CFE , ∴AE ∥CF . ∵AE =CF ,∴四边形AECF 是平行四边形.16.证明:(1)∵四边形ABCD 是平行四边形, ∴AD =CB ,∠A =∠C ,AD ∥CB , ∴∠ADB =∠CBD .∵ED ⊥DB ,FB ⊥BD , ∴∠EDB =∠FBD =90°, ∴∠ADE =∠CBF ,在△AED 和△CFB 中,⎩⎨⎧∠ADE =∠CBF ,AD =CB ,∠A =∠C ,∴△AED ≌△CFB (ASA ). (2)作DH ⊥AB ,垂足为H ,在Rt △ADH 中,∠A =30°,∴AD =2DH . 在Rt △DEB 中,∠DEB =45°, ∴EB =2DH ,∴AD =EB . ∵△AED ≌△CFB , ∴DE =BF .∵∠EDB =∠DBF =90˚, ∴ED ∥BF ,∴四边形EBFD 为平行四边形, ∴FD =EB ,∴DA =DF .17.解:(1)根据三角形的中位线定理得DE =12BC .(2)四边形DEFG 是平行四边形.理由如下:∵D ,G 分别为AB ,AC 的中点, ∴DG 是△ABC 的中位线,∴DG ∥BC 且DG =12BC .∵E ,F 分别为OB ,OC 的中点, ∴EF 是△OBC 的中位线,∴EF ∥BC 且EF =12BC ,∴DG ∥EF 且DG =EF ,∴四边形DEFG 是平行四边形.(3)(2)中的结论仍然成立,如图所示.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档