5.3.1同角三角比的关系和诱导公式(7)
同角三角比的关系和诱导公式

一、 同角三角比的关系式: 1、已知角α终边上一点),(y x P ,22y x r +=,则角α的六个三角比分别是什么?y rx r x y y x r x r y ======ααααααcsc ;sec ;cot ;tan ;cos ;sin2、讨论角α的六个三角比之间有什么关系? (1)倒数关系(2)商数关系(3)平方关系 由三角比的定义,我们可以得到以下关系:1cos sin 22=+αα理论证明:(采用定义)αααππαααααtan cos sin )(221cos sin cos ,sin 122222==⨯=÷=∈+≠=+∴===+x yx r r y r x r y Z k k rxr y r y x 时,当且(1)倒数关系:(2)商数关系:(3)平方关系:[说明]①注意“同角”,至于角的形式无关重要,如14cos 4sin 22=+αα,2tan 2cos 2sinααα=等;②注意这些关系式都是对于使它们有意义的角而言的,如),2(1cot tan Z k k ∈≠=⋅πααα;③对这些关系式不仅要牢固掌握,还要能灵活运用(正用、反用、变形用),如:αα2sin 1cos -±=,αα22cos 1sin-=,αααtan sin cos =等。
④据此,由一个角的任一三角函数值可求出这个角的另两个三角函数值,且因为利用“平方关系”公式,最终需求平方根,会出现两解,因此应尽可能少用(实际上,至多只要用一次)。
⎪⎩⎪⎨⎧=⋅=⋅=⋅1cot tan 1sec cos 1csc sin αααααα⎪⎪⎩⎪⎪⎨⎧==ααααααsin cos cot cos sin tan ⎪⎩⎪⎨⎧=+=+=+αααααα222222csc cot 1sec tan 11cos sin二.公式的应用例题1:已知,54cos =α且α为第四象限的角,求α的其他三角比的值;解:α 为第四象限的角,sin 0α∴<35csc ,45sec ,34cot ,43sin tan 53cos 1sin 2-==-=-==-=--=∴ααααααααcoa提问:如果去掉α为第四象限的角这个条件,应如何求α的其他三角比的值?例题2:已知125tan =α,求ααcos sin 、和αcot ;解:512tan 1cot ==αα∵αα22sec tan1=+,∴222)1312(tan 11cos =+=αα ∵0125tan >=α,∴α是第一或第三象限角当α是第一象限角时,0cos ,0sin >>αα135cos 1sin ,1312cos 2=-==ααα当α是第三象限角时,0cos ,0sin <<αα135sin ,1312cos -=-=αα[说明]已知一个角的某一个三角比的值,便可运用基本关系式求出其它三角比的值。
三角恒等式-三角诱导公式-二倍角公式-半角公式

三角恒等式-三角诱导公式-二倍角公式-半角公式三角恒等式1.同角三角比的基本关系:sin2 a + cos' a = 1,1 + tan2a = sec2 tzj + cot2 = csc2a;(2)倒数关系:sinaCSC a=1, COSaSeCa=l,t an a co二1;(3)商数关系:tan. = ^,cota = ^;cos a sin a注意:已知一个角任意一个三角比,就可以求岀它的其他五个三角比的值。
2.三角比的诱导公式:“奇变偶不变,符号看象限”函数。
(填“奇”或“偶”)tan(2^^ + a) = _______ 伙G Z);( 3 ) sin(2^-a) = _________tan(2^^ 一a) = _____ 伙G Z);(4) sin(兀+ a) = 9 cos(/r + a) = f tan(^ + a)=伙G Z);(5) sin(/r-a) = 9 cos(/r-a) = 9 tan(^-a)= (2Z);(6) sin(— -cr)= • cost—-<z)=2 9 tan(—-a) =伙eZ);(1)平方关系:”指的兀/2的倍数)。
(1) sin(-a) = _________ cos(-a) = _______ tan(-a) = _______ 伙e Z) •注意: y = siru•和y = taiix 是函数,y=COSY是 __________ ( 2 ) sin(2^ + a) = _____________ 9 cos(2R/r + a) = ___________cos(2R;r—a) = ______3•两角和与差的正弦、余弦和正切公式:; ( 2 ) cos(a + 0) = ; ; ( 4 ) sin(a + /?) = ; ) _____________________ tan (a - #) =tan(& + 0) = _______________a ____________________________ ;注意:特别喜欢考查两角和与差的正切公式的逆 用和“1”的巧用。
高一下学期—同角三角比及诱导公式

同角三角比及诱导公式【知识梳理】1. 同角三角比的基本关系(1) 平方关系:22sin cos 1αα+=; 221tan sec αα+=; 221cot csc αα+=.(2) 商数关系:sin tan cos ααα=; cos cot sin ααα=. (3) 倒数关系:sin csc 1αα⋅=; cos sec 1αα⋅=; tan cot 1αα⋅=.2. 诱导公式 诱导公式反映了π2k α±与α之间三角比的关系, 将任意角的三角比转化为锐角三角比. 口诀: “奇变偶不变, 符号看象限”. 例如:πcos()sin 2αα+=- (1)奇, 偶——π2的奇数或偶数倍; (2)变, 不变——三角比名称的变化(正余互化); (3)符号——等式右端的符号; (4)象限——π2k α±的象限(其中视α为锐角); (5)根据左端三角比在上述象限内的符号确定右侧符号.【典型例题】例1. 填空.(1) 已知πsin (π)2αα=<<, 则tan α=_________; (2) 若π2sin()12α-=, [0,2π]α∈, 则α=____________;(3) 2sin(π)3α-=-, 且π(,0)2α∈-, 则cos(3π)α+=________;(4) 若ππ2x <<, 则|sin |tan(π)cos x x x -++=__________; (5) 化简: tan(π)cos(π)sin(π)sin(π)sin(2π)a αααα+-3-=--____________; (6) 在三角形ABC 中, 若3cos 5A =, 则tan A =___________;(7) 化简=_________________;(8) 已知tan 3α=, 则sin cos αα⋅=______________.例2. 根据下列条件, 求三角比.(1)已知1sin 3α=, 且α为第二象限角, 求tan α;(2)已知1sin 3α=, 求tan α; (3)已知sin (1)m m α=≠±, 求tan α;例3. 化简下列各式.;例4. 已知tan 1tan 1αα=--, 求下列各式的值. (1)sin 3cos sin cos αααα-+;(2)2sin sin cos 2ααα++.例5. 已知: 1sin cos 5x x +=, 求:(1) tan cot x x +;(2) 33sin cos x x +.例6. 证明下列三角恒等式:(1)2(cos sin )cos sin 1sin cos 1sin 1cos αααααααα-=-++++;(2)2212sin cos 1tan cos sin 1tan x x x x x x--=-+例7. 是否存在角,αβ, ππ(,),(0,π)22αβ∈-∈, 使等式: πsin(3π)cos()2αβ-=-)π)αβ-=+ 同时成立. 若存在, 求出,αβ的值, 若不存在, 请说明理由.【巩固练习】1. 已知5sin(π),13α+=若α是第四象限角, 则cos(2π)α-的值是………………….............................( ) A. 1213- B. 1213 C. 1213± D. 5132. 若342sin , cos 55m m x x m m --==++, 则m 的值为………………………………………...............................( ) A. 0 B. 8 C. 0或8 D. 39m <<3. 若4cos(π)5α+=-, 且α是第一象限角, 则sin(π)cot(2π)αα++-的值为……................................( ) A. 2915 B. 2915- C. 1115 D. 2720-4. 当π(Z)2k x k ≠∈时, sin tancos cot x xx x ++的值是……………………………………………..............................() A. 恒正 B. 恒负 C. 非负 D. 不能确定5. 1sin cos 2αα+=, 则sin cos αα=_____________;6. tan 3α=, 则4sin 2cos 5cos 3sin αααα-+__________;7. 化简:cos(π)cot(3π)a α-=+________________;8. 已知在三角形ABC 中, 4tan 3A =, 则cos A =______________;9. 已知π1tan()42α+=,(1) 求tan α的值;(2) 求2sin cos 1cos2ααα2-+的值.10. 已知π()sin()4n f n α=+, 化简()(4)(2)(6)f n f n f n f n ⋅+++⋅+.。
同角三角比的关系和诱导公式

课题:同角三角比的关系式一、知识点归纳同角三角比的的8个关系:易错、易漏点:在用平方关系求三角比时,请注意符号的判断。
二、例题讲解例1、化简(1)(1cot csc )(1tan sec )αααα-+-+答案:=2(2)αααcos 22sin 1sin 1+--++且α为锐角答案:=0例2、试确定使下列等式成立的角α的集合(1)1sin 1sin 2tan 1sin 1sin ααααα+--=--+答案:Z k k k ∈+<<+,23222ππαππ或2,k k Z απ=∈(2) ααααααcsc cot sin tan sin tan -=+-答案:,2322ππαππ+<<+k k Z k k k ∈+<<+,22232ππαππ例3、已知2tan =α,求下列各式的值。
⑴ααααcos 9sin 4cos 3sin 2-- 答案:-1 ⑵αααα2222cos 9sin 4cos 3sin 2-- 答案:75⑶αααα22cos 5cos sin 3sin 4-- 答案:1例4、已知ααsin cot ,求m =的值。
答案:当α在x 轴上方时,211sin m+=α当α在x 轴下方时,211sin m+-=α例5、求证 (1)cos 1sin 1sin cos x x x x+=- (2)22sin tan cos cot 2sin cos tan cot x x x x x x x x ⋅+⋅+⋅=+例6、已知),0(31cos sin πθθθ<<=+求.cos sin ,tan ,cos sin 33θθθθθ--三、练习:1、若22sin sin cos cos 1αααα⋅+⋅=-,则角α的取值范围是 。
2、已知2sin cos 2θθ-=,则44sin cos θθ+= 。
答案:873、若α是三角形的内角,且3sin cos 4αα+=,则此三角形一定是( )DA 、等边三角形B 、直角三角形C 、锐角三角形D 、钝角三角形7、如果m =θsin ,270180<<θ,那么θtan 等于( )BA 、211m m -- B 、-21m m- C 、±21mm- D 、-m m 21-8、已知3sin 5m m θ-=+,42cos 5m m θ-=+,其中2πθπ<<,求实数m 值。
三角函数概念、同角三角函数关系式和诱导公式归纳总结

三角函数概念、同角三角函数关系式和诱导公式归纳总结知识点精讲一、基本概念(1)任意角---------⎧⎪⎨⎪⎩正角逆时针旋转而成的角;负角顺时针旋转而成的角;零角射线没旋转而成的角.角α(弧度)(,)∈-∞+∞.(2)角α的始边与x 轴的非负半轴重合,终边落在第几象限,α就叫做第几象限角,终边在坐标轴上的角不是象限角,称之坐标角(或象限界角、轴线角等) (3)弧度制度:半径为r 的圆心角α所对弧长为l ,则lrα=(弧度或rad ). (4)与角α(弧度)终边相同的角的集合为{}2,k k Z ββαπ=+∈,其意义在于α的终边逆时针旋转整数圈,终边位置不变. 注:弧度或rad 可省略(5)两制互化:一周角=036022rrππ==(弧度),即0180π=. 1(弧度)00018057.35718π⎛⎫'=≈= ⎪⎝⎭故在进行两制互化时,只需记忆0180π=,01180π=两个换算单位即可:如:005518015066π=⨯=;036361805ππ=⨯=. (6)弧长公式:l r α=((0,2])απ∈, 扇形面积公式:21122S lr r α==. 注:关于扇形面积公式的记忆,可以采用类似三角形面积公式的方法,把扇形的弧长类比成三角形的底,半径类比成三角形的高,则有11=22S lr =底高,如图4-1所示.二、任意角的三角函数1.定义已知角α终边上的任一点(,)P x y (非原点O ),则P到原点O的距离0r OP ==>.sin ,cos ,tan y x y r r xααα===.此定义是解直三角形内锐角三角函数的推广.类比,对y ↔,邻x ↔,斜r ↔, 如图4-2所示.2.单位圆中的三角函数线以α为第二象限角为例.角α的终边交单位圆于P ,PM 垂直x 轴于M , α的终边或其反向延长线交单位圆切线AT 于T ,如图4-3所示,由于取α为第二象限角,sin α=MP>0, cos α=OM<0, tan α=AT<0.3.三角函数象限符号与单调性在单位圆中1r ==,则:(1)sin yy rα==,即α终边与单位圆交点的纵坐标y 即为α的正弦值sin α. 如图4-4(a )所示,sin α的特征为:01101111.⎧⎪-⎪⎨⎪⎪--⎩上正、下负;上(90),下(270),左、右都为;按逆时针方向旋转,向上(一、四)象限为增,从增到,向下(二,三象限)为减,从减到 (2)cos xx rα==,即α终边与单位圆交点的横坐标x 即为的余弦值cos α. 如图4-4(b )所示,cos α的特征为:01101111.⎧⎪-⎪⎨⎪⎪--⎩右正、左负;右(0),左(180),上、下都为;按逆时针方向旋转,向右(三、四)象限为增,从增到,向左(一,三象限)为减,从减到 (3)tan yxα=.如图4-4(c )所示,tan α的特征为: 0.⎧⎪⎨⎪⎩一、三正,二、四负;上、下是(即不存在),左、右都是;逆时针方向旋转,各象限全增三、同角三角函数的基本关系、诱导公式 1. 同角三角函数的基本关系 平方关系:22sin cos 1αα+= 商数关系:sin tan cos ααα=2. 诱导公式(1)sin ()sin()sin ()n n n ααπα⎧+=⎨-⎩为偶数;为奇数cos ()cos()cos ()n n n ααπα⎧+=⎨-⎩为偶数;为奇数tan()tan ()n n απα+=为整数.(2)奇偶性.()()()sin -=-sin cos -=cos tan -=-tan αααααα,,.(3)1sin -=cos cos -=sin tan -=222tan πππαααααα⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,, 奇变偶不变,符号看象限,说明:(1)先将诱导三角函数式中的角统一写作2n πα⋅±;(2)无论有多大,一律视为锐角,判断2n πα⋅±所处的象限,并判断题设三角函数在该象限的正负;(3)当n 为奇数是,“奇变”,正变余,余变正;当n 为偶数时,“偶不变”函数名保持不变即可. 例如(1)sin +2πα⎛⎫⎪⎝⎭,因为+22ππαπ<<,所以sin +>02πα⎛⎫⎪⎝⎭,即sin +=cos 2παα⎛⎫⎪⎝⎭, (2)()sin +πα,因为3+2ππαπ<<,所以()sin +<0πα,即()sin +=-cos παα, 简而言之即“奇变偶不变,符号看象限”.题型归纳及思路提示题型1终边相同的角的集合的表示与区别 思路提示(1) 终边相同的角的集合的表示与识别可用列举归纳法和双向等差数列的方法解决.(2) 注意正角、第一象限角和锐角的联系与区别,正角可以是任一象限角,也可以是坐标轴角;锐角是正角,也是第一象限角,第一象限角不包含坐标轴角.例4.1终边落在坐标轴上的角的集合为( ) A. {},k k Zααπ=∈ B. ,2k k Z παα⎧⎫=∈⎨⎬⎩⎭C. ,2k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭D.,2k k N παα⎧⎫=∈⎨⎬⎩⎭分析 表示终边相同的角的集合,必有k Z ∈,而不是k N ∈.解析 解法 一:排除法.终边在坐标轴上的角有4种可能,x 轴正、负半轴,y 轴正、负半轴,取1,2,3,4,,k =可知只有选项B占有4条半轴,故选B. 解法二;推演法.终边在坐标轴上的角的集合为3113",2,,,,0,,,,2,",2222ππππππππ----可以看作双向等差数列,公差为2π,取初始角0α=,故0()2k k Z πα=+∈,故0()2k k Z πα=+∈⇒,2k k Z παα⎧⎫=∈⎨⎬⎩⎭故选B. 评注 终边在x 轴的角的集合,公差为π,取初始角0α=⇒{},k k Z ααπ=∈;终边在y 轴的角的集合,公差为π,取初始角2πα=⇒,2k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭.例4.2 请表示终边落在图4-5中阴影部分的角的集合.分析 本题是关于区域角的表示问题,需要借助终边相同角的集合表示知识求解,只需要把握区域角初始角的范围和终边相同角的集合的公差的大小即可顺利求解.解析 (1)如图4-5(a )所示阴影部分的角的集合表示为22,63k k k N ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭;(2)如图4-5(b )所示阴影部分的角的集合表示为222,63k k k N ππαπαπ⎧⎫-+≤≤+∈⎨⎬⎩⎭; (3)如图4-5(c )所示阴影部分的角的集合表示为21122,36k k k N ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭; (4)如图4-5(d )所示阴影部分的角的集合表示为,63k k k N ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭. 评注 任一角α与其终边相同的角,都可以表示成α与整数个周角的和,正确理解终边相同的角的集合中元素组成等差数列,公差为2π,即集合的周期概念,是解决本题的关键.变式1设集合M =⎩⎨⎧ x ⎪⎪⎭⎬⎫x =k 2·180°+45°,k ∈Z ,N =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k 4·180°+45°,k ∈Z ,那么( ) A .M ⊆N B . N ⊆M C .M =ND .M ∩N =∅例4.3 下列命题中正确的是( )A. 第一象限角是锐角B. 第二象限角是钝角C.()0,απ∈,是第一、二象限角D. ,02πα⎛⎫∈-⎪⎝⎭,α是第四象限角,也叫负锐角 解析 第一象限角的集合为022,2k k k Z παπαπ⎧⎫+<<+∈⎨⎬⎩⎭,锐角的集合是是其真子集(即当0k =时)故选项A 错;同理选项B 错;选项C 中(0,)2ππ∈,但2π不是象限角,选项C 也错,故选D. 题型2 等分角的象限问题 思路提示先从α的范围出发,利用不等式性质,具体有:(1)双向等差数列法;(2)nα的象限分布图示. 例4.4 α 是第二象限角,2α是第 象限角解析 解法一:α与终边相同的角的集合公差为2π,该集合中每个月的一半组成的集合公差为π,取第二象限的一个初始集合,2ππ⎛⎫ ⎪⎝⎭,得2α的初始集合,42ππ⎛⎫⎪⎝⎭,对比集合以π公差旋转得2α的分布,如图4-6所示,得2α是第一、三象限角.解法二:如图4-7所示,α是第二象限角,2α是第一、三象限角,又若α是第四象限角,2α是第二、四象限角.解法三:取α=0120,000012036060,2402α+⇒=,即2α是第一、三象限角.评注 对于2α是第几象限角的问题,做选填题以记住图示最为便捷,解法三是一种只要答案的特值方法;解法一能准确找出2α的分布. 对于3α是第几象限角可使用象限分布图示的规律,如图4-8所示,那么对于“nα是第几象限角”的象限分布图示规律是什么?只需要把第一个象限平均分成n 部分,并从x 轴正向起,逆时针依次标注1,2,3,4,1,2,3,4,1,2,3,4…..,则数字(α终边所在象限)所在象限即为nα终边所在象限.例如:3α的象限分布图示如图4-8所示,若α为第一象限角,则3α为第一、二、三象限角.变式1 若α是第二象限角,则3α是第 象限角;若α是第二象限角,则3α的取值范围是 题型3 弧长与扇形面积公式的计算 思路提示(1) 熟记弧长公式:l =|α|r ,扇形面积公式:S 扇形=12lr =12|α|r 2(弧度制(0,2]απ∈)(2) 掌握简单三角形,特别是直角三角形的解法例4.5 有一周长为4的扇形,求该扇形面积的最大值和相应圆心角的大小. 解析:设扇形的半径为r ,弧长为l ,圆心角为α(弧度),扇形面积S.依题意0024r l r l >⎧⎪>⎨⎪+=⎩,12S lr =,则12S lr =11(42)(42)224r r r r =-=-32π 2π4π O yx 54π 图 4-62 3 1 4 x 4 13 2 y图 4-7O21422()142r r -+≤=,(当且仅当422r r -=时,即1r =时取“=”,此时2l =)故扇形的面积最大值为1,此时lrα==2(弧度).评注本题亦可解作21112212442l r S lr l r +⎛⎫==⋅≤= ⎪⎝⎭,当且仅当22l r ==,即2l =,1r =时“=”成立,此时lr α==2.本题可改为扇形面积为1,求周长的最小值,2C l r =+≥且112lr =得2lr =,故4C ≥(当且仅当22l r ==时“=”成立),扇形周长的最小值为4.变式1 扇形OAB 的圆心角∠OAB=1(弧度),则AB =() A. 1sin2 B. 6π C. 11sin 2D. 21sin 2变式2 扇形OAB ,其圆心角∠OAB=0120,其面积与其内切圆面积之比为 题型4 三角函数定义题 思路提示(1) 任意角的正弦、余弦、正切的定义; (2) 诱导公式;(3) 理解并掌握同角三角函数基本关系.例4.6 角α终边上一点(2sin 5,2cos5)P -,(0,2)απ∈,则α=( ) A. 52π-B. 35π-C. 5D.5+2π 解析 解法一:排队法. 005557.3286.5≈⨯=,是第四象限角,2sin50x =<,2cos50y =-<,2r ==,α是第三象限角.选项C 中,5是第四象限角,选项D 中,5+2π是第一象限角,故排除C 、D ;选项B 中, ()cos cos 35cos5απ=-=-,与cos sin 5xrα==矛盾,排除B ,故选A.解法二:推演法.由解法一,35,2πθαπθ'=+=+,,(0,)2πθθ'∈(这样设的原因是cos sin5α=),cos cos()απθ'=+=cos θ'-,3sin 5sin()cos 2πθθ=+=-⇒cos cos θθ'-=-⇒cos cos θθ'=,,(0,)2πθθ'∈⇒352πθθ'==-, ⇒35522ππαπ⎛⎫=+-=- ⎪⎝⎭故选A.变式1 已知角α终边上一点(2sin 2,2cos 2)P -,(0,2)απ∈,则α=( )A.2B.-2C.22π-D. 22π- 变式2 已知角α终边上一点22(2sin ,2cos )77P ππ-,则α=变式3 已知角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线2y x =上,则cos2θ=( ) A. 45-B. 35-C. 35D. 45题型5 三角函数线及其应用 思路提示正确作出单位圆中正弦、余弦、正切的三角函数线 一,利用三角函数线证明三角公式 例4.7 证明(1)()sin -=sin παα, (2)sin -=cos 2παα⎛⎫⎪⎝⎭(3)31tan =-2tan παα⎛⎫+⎪⎝⎭解析 (1)如图4-9所示,角-πα与α的终边关于y 轴对称,MP MP '=⇒()sin -=sin παα. (2)如图4-10所示,角-2πα与α的终边关于直线y x =对称.OM M P ''=⇒sin -=cos 2παα⎛⎫⎪⎝⎭(3) 如图4-11所示,.2311tan =k =--2tan tan OT πααα⎛⎫+=⎪⎝⎭评注 用单位圆中的三角函数线证明诱导公式是新课标的要求,必须掌握,重点在(),,2ππααα±-±.在(1)证明中易得()cos -=-cos παα,,相除得()tan -=-tan παα,,在(2)证明 中易得cos -=sin 2παα⎛⎫⎪⎝⎭,相除得1tan =2tan παα⎛⎫-⎪⎝⎭.角α与-πα的终边关于终边(即y 轴)对称,角-2πα与α的终边关于终边所在的直线y x =轴对称.一般地,角α,β的终边关于终边所在直线2αβ+轴对称二.利用三角函数线比较大小 例4.8 ,42ππα⎛⎫∈⎪⎝⎭,比较sin ,cos ,tan ααα的大小. 解析 如图4-12所示,,42ππα⎛⎫∈⎪⎝⎭,在单位圆中作出α的正弦线MP ,余弦线OM 和正切线AT ,显然有OM<MP<A T,故cos sin tan ααα<<.评注 由本例可看出,三角函数线可直观、形象地处理三角函数中的大小比较问题变式1 求证:(1)当角α的终边靠近y 轴时,cos sin αα<及tan 1α>; (2)当角α的终边靠近x 轴时,cos sin αα>及tan 1α<;变式2 (1)α为任意角,求证:cos sin 1αα+>; (2)0,2πα⎛⎫∈ ⎪⎝⎭,比较sin ,cos ,tan ααα的大小 变式3 比较大小 (1)sin 2,sin 4,sin 6 (2)cos 2,cos 4,cos6(3)tan 2,tan 4,tan 6 变式4 1sin tan ()tan 22ππαααα>>-<< ,则α∈() A. ,24ππ⎛⎫-- ⎪⎝⎭ B. ,04π⎛⎫- ⎪⎝⎭C. 0,4π⎛⎫⎪⎝⎭D. ,42ππ⎛⎫ ⎪⎝⎭三、利用三角函数线求解特殊三角方程例4.9 利用单位圆中的三角函数线求解下列三角方程: (1)1sin 22x =;(2)2cos 22x =;(3)tan 23x =.解析 (1)在单位圆中作为正弦为12的正弦线,如图4-13所示,得正弦为12的两条终边,即16πα=,256πα=,故226x k ππ=+或5226x k ππ=+,k Z ∈. 解得12x k ππ=+或512x k ππ=+,k Z ∈.(2)如图4-14所示14πα=,24πα=-,故224x k ππ=+或224x k ππ=-+,k Z ∈,解得8x k ππ=+或8x k ππ=-+,k Z ∈.(3)如图4-15所示,得13πα=,243πα=,公差为π,故23x k ππ=+,k Z ∈. 解得6x k ππ=+,k Z ∈.评注(1)sin 1α≤ ,cos 1α≤,tan x R ∈;(2)当1k <时,方程sin ,cos x k x k ==在[0,2)π有两解. 四、利用三角函数线求解特殊三角不等式例4.10利用单位圆,求使下列不等式成立 的角的集合. (1)1sin 2x ≤;(2)2cos 2x ≥;(3)tan 1x ≤.分析 这是一些较简单的三角函数不等式,在单位圆中,利用三角函数线作出满足不等式的角所在的区域,由此写出不等式的解集.解析 (1)如图4-16所示,作出正弦线等于12的角:5,66ππ,根据正弦上正下负,得在图4-16中的阴影区域内的每一个角均满足1sin 2x ≤,因此所求的角x 的集合为 51322,66xk x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭.(2)如图4-17所示,由余弦左负右正得满足2cos 2x ≥的角的集合为 22,44x k x k k Z ππππ⎧⎫-+≤≤+∈⎨⎬⎩⎭. (3)如图4-18所示,在[0,2]π内,作出正切线等于1的角5,44ππ:则在如图4-18所示的阴影区域内(不含y 轴)的每一个角均满足tan 1x ≤,因此所求的角的集合为,24x k x k k Z ππππ⎧⎫-+≤≤+∈⎨⎬⎩⎭.评注 解简单的三角不等式,可借助于单位圆中的三角函数线,先在[0,2]π内找出符合条件的角,再利用终边相同的角的表达式写出符合条件的所有角的集合,借助关于单位圆中的三角函数线,还可以比较三角函数值的大小.例4.11利用单位圆解下列三角不等式: (1)2sin 10α+>; (2)23cos 30α+≤; (3)sin cos αα>;(4)若02απ≤<,sin 3cos αα>,则则α∈() A. ,32ππ⎛⎫⎪⎝⎭ B. ,3ππ⎛⎫⎪⎝⎭ C. 4,33ππ⎛⎫⎪⎝⎭D. 3,32ππ⎛⎫ ⎪⎝⎭解析 (1)由题意1sin 2α>-,令1sin 2α=-,如图4-19所示,在单位圆中标出第三、四象限角的两条终边,这两条终边将单位圆分成上、下两部分,根据正弦上正下负,取α终边上面的部分,按逆时针从小到大标出16πα=-,2766ππαπ=+=,故不等式的解集为 722,66k k k Z ππαπαπ⎧⎫-+≤≤+∈⎨⎬⎩⎭.(2)如图4-20所示,3cos α≤标出3cos α=的角在单位圆中第二、三象限的两条终边,这两条终边将单位圆分成左,右两部分,根据余弦左负右正,取α终边在左侧的部分,按逆时针从小到大标出1566ππαπ=-=,2766ππαπ=+=,.故不等式的解集为 5722,66k k k Z ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭. (3)sin cos αα>y x y x r r ⇒>⇒>.如图4-21所示,在单位圆中作出y x =所对的两个角14πα=,254πα=.这两个角的终边将单位圆分成上、下两部分.在上面的部分取2πα=,sin cos 22ππ>成立 ,故不等式的解集为522,44k k k Z ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭. 注 本题也可通过线性规划的知识直接判断出表示y x >的平面区域为如图4-21所示的阴影部分.(4)sin 3cos αα>,得33y x y x r r>⇒>,如图4-22所示,在单位圆中标出3y x =所对的角13πα=,243πα=.,.这两个角的终边把单位圆分为上、下两部分,因为02απ≤<,在上面的部分取2πα=,sin 3cos αα>成立 ,所以取α终边上面的部分,故不等式的解集为433ππαα⎧⎫≤≤⎨⎬⎩⎭,故选C.评注 三角函数线的应用(1)证明 三角公式;(2)比较大小;(3)解三角方程;(4)求解三角不等式. 变式1 已知函数()3cos ,,()1f x x x x R f x =-∈≥若,则x 的取值范围() A. ,3xk x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭ B. 22,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭ C. 5,66xk x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭D. 522,66x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭题型6 象限符号与坐标轴角的三角函数值思路提示正弦函数值在第一、二象限为正,第三、四象限为负;. 余弦函数值在第一、四象限为正,第二、三象限为负;. 正切函数值在第一、三象限为正,第二、四象限为负.例4.12(1)若()0,2απ∈,sin cos 0αα<,则α的取值范围是 ; (2)3tan 0sincos sincos 222ππππ+---= ; 解析:(1)由sin cos 0αα<得sin 0cos 0αα>⎧⎨>⎩或sin 0cos 0αα<⎧⎨<⎩,得α为第二象限角或第四象限角⇒α的取值范围是3,,222ππππ⎛⎫⎛⎫⋃⎪ ⎪⎝⎭⎝⎭. (2)01(1)(1)12+-----=.变式1 sin 0α>是α为第一、二象限的( )A.充分而不必要条件B. 必要而不充分条件C.充分必要条件D.既不充分也不必要条件 变式2 ,43sin,cos 2525αα==-,2α是第 象限角,α是第 象限角. 变式3若sin cos 1=-,则α的取值范围是 .变式4 已知tan cos 0αα<,则α是第( )象限角.A.一或三B. 二或三C.三或四D.一或四 变式5 若α为第二象限角,则tan2α的符号为变式6 若点(tan ,cos )P αα在第三象限,则角α的终边在第 象限角变式7 函数cos sin tan sin tan x x xy x cox x=++的值域为 . 题型7 同角求值-----条件中出现的角和结论中出现的角是相同的思路提示(1) 若已知角的象限条件,先确定所求三角函数的符号,再利用三角形三角函数定义求未知三角函数值.(2) 若无象限条件,一般“弦化切”. 例4.13 (1)已知3,22παπ⎛⎫∈ ⎪⎝⎭,1sin 3α=-,cos α= , tan α=(2)已知tan α=2, 1. 3,2παπ⎛⎫∈ ⎪⎝⎭,sin α= , cos α= 2.2sin cos 3sin 4cos αααα-+= ,3. 22sin 2sin cos 3cos αααα--= , (3)已知2sin cos αα-= 1. sin cos tan ααα+= ; 2. sin cos αα-= . 解析 (1)因为3,22παπ⎛⎫∈⎪⎝⎭,cos 0,tan 0αα><,故cos α==.sin tan cos ααα==(2)1.因为3,2παπ⎛⎫∈ ⎪⎝⎭,所以sin 0,cos 0αα<<,22sin tan cos sin cos 1ααααα⎧=⎪⎨⎪+=⎩, 得22sin 2cos sin cos 1αααα=⎧⎨+=⎩,得21cos 5α=.cos 5α=-,sin 5α=-2.无象限条件,弦化切.2sin cos 3sin 4cos αααα-+=2tan 122133tan 432410αα-⨯-==+⨯+3. 22sin 2sin cos 3cos αααα--=2222sin 2sin cos 3cos sin cos αααααα--=+22tan 2tan 3tan 1ααα--=+35- (3)无象限条件,弦化切.,两边平方,得()()2222sin cos 5sin cos αααα-=+222sin 4sin cos 4cos (sin 2cos )0αααααα⇒++⇒+=sin 2cos 0αα⇒+=,tan 20α+=⇒tan 2α=-.1. sin cos tan ααα+=22sin cos tan sin cos ααααα+=+2tan 12tan tan 15ααα+=-+2. 2sin cos αα-=()αϕ+=可知当x α=时,2sin cos x x -取最小值.()2sin cos sin 2cos 0x x x ααα='-=+=.2sin cos sin 2cos 0αααα⎧-=⎪⎨+=⎪⎩⇒cos 5sin αα⎧=⎪⎪⎨⎪=⎪⎩,sin cos αα-=5-. 评注 本题给出同角求值的几种基本题型..(1)及(2)中的1体现了有象限条件的任意角三角函数与锐角三角函数的本质联系(只多了一个象限符号);(2)中的2体现了无象限条件弦化切的解题策略.(3)中无象限条件,2sin cos αα-=()αϕ+=表示函数2sin cos y x x =-在处取得极小值,导数0x y α='=,故有更简便做法:()2sin cos sin 2cos 0x x x ααα='-=+=.如已知sin cos αα-=()0,απ∈,则tan α= .答案为-1,与本题(3)同理可解.变式1 若tan α=2,则2212sin cos cos sin αααα+=-=( ) A. 13 B.3 C. 13- D.-3变式2 当x θ=时,函数sin 2cos y αα=-取得最大值,则cos θ= ; 例4.14 已知1sin cos 5αα+=-时,,22ππα⎛⎫∈-⎪⎝⎭,则tan α=( )A. 34-B. 43-C. 34D.- 43解析 解法一:已知角的象限条件,将方程两边平方得112sin cos 25αα+=12sin cos 025αα⇒=-<,,22ππα⎛⎫∈- ⎪⎝⎭,tan 0α<,排除C 和D., sin 0,cos 01sin cos 05αααα<>⎧⎪⎨+=-<⎪⎩⇒sin cos ,αα>tan 1α>,故排除A ,故选B. 解法二:将方程两边平方得,()22221sin 2sin cos cos sin cos 25αααααα++=+ 2212sin 25sin cos 12cos 0αααα⇒++=212tan 25tan 120αα⇒++=43tan 34α⇒=--或由解法一知tan 1α>,得4tan 3α=-,故选B. 变式1 已知R α∈,sin 2cos αα+=,则tan 2α=( ) A.43 B. 34 C. 34- D. 43- 变式2 已知3sin cos 8αα=,42ππα<<,则cos sin αα-=( )A. 12B. 12-C. 14D. 14-题型8 诱导求值与变形 思路提示(1)诱导公式用于角的变换,凡遇到与2π整数倍角的和差问题可用诱导公式,用诱导公式可以把任意角的三角函数化成锐角三角函数. (2)通过2,,2πππ±±±等诱导变形把所给三角函数化成所需三角函数.(3)2,,2παβππ±=±±±等可利用诱导公式把,αβ的三角函数化例4.15 求下列各式的值.(1)0sin(3000)-; (2)41cos 3π⎛⎫-⎪⎝⎭; (3)51tan 4π⎛⎫-⎪⎝⎭解析 (1)0sin(3000)-=0sin(8360120)sin120-⨯+=-000sin(18060)sin 602=--=-=-;(2)41cos 3π⎛⎫-⎪⎝⎭=411cos cos 14cos 3332ππππ⎛⎫⎛⎫⎛⎫=-==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(3)5151tan tan tan(13)tan 14444πππππ⎛⎫-=-=--== ⎪⎝⎭. 评注 利用诱导公式化简或求值,可以参照口决“负角化正角,大角化小角,化为锐角,再计算比较”.变式1 若()cos 2-3πα=,且,02πα⎛⎫∈- ⎪⎝⎭,则()sin -πα= ; 变式2 若3,22ππα⎛⎫∈⎪⎝⎭,()3tan 74απ-=,则cos sin αα+=( ) A. 15± B. 15- C.15 D. 75- 变式3 若cos-80°= k ,则tan 100°的值为( )A.B. D.变式4 已知1sin 64x π⎛⎫+= ⎪⎝⎭,则25sin sin ()63x x ππ⎛⎫-+- ⎪⎝⎭= ; 最有效训练题A. 15± B. 15- C. 15 D. 75-2.已知点33(sin ,cos )44P ππ落在角θ的终边上,且[]0,2θπ∈,则θ的值为( )A. 4πB. 34πC. 54πD. 74π3.若角α的终边落在直线0x y +==( )A. 2B. 2-C. 1D. 0 4.若角A 是第二象限角,那么2A 和2A π-都不是( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 5.已知sin -=cos ,cos -=sin 22ππαααα⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,,对于任意角α均成立.若(sin )cos 2f x x =,则(cos )f x =( )A. cos2x -B. cos2xC. sin 2x -D. sin 2x6.已知02x π-<<,1cos sin 5αα+=-,则sin cos 1αα-+=( ) A. 25- B. 25 C. 15 D. 15-7.已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若(4,)P y 是角θ终边上一点,且25sin 5θ=-,则y = .8.函数2lgsin 29y x x =+-的定义域为 .9.如图4-23所示,已知正方形ABCD 的边长为1,以A 为圆心,AD 长为半径画弧,交BA 的延长线于1P ,然后以B 为圆心,1BP 长为半径画弧,交CB 的延长线于2P ,再以C 为圆心,2CP 长为半径画弧,交DC 的延长线于3P ,再以D 为圆心,3DP 长为半径画弧,交AD 的延长线于4P ,再以A 为圆心,4AP 长为半径画弧,…,如此继续下去,画出的第8道弧的半径是 ,画出第n 道弧时,这n 道弧的弧度之和为 .10.在平面直角坐标系xOy 中,将点3,1)A 绕点O 逆时针旋转090到点B ,那么点B 的坐标为 ;若直线OB 的倾斜角为α,则sin 2α的值为 . 11.一条弦的长度等于半径r ,求: (1)这条弦所对的劣弧长;(2)这条弦和劣弧所围成的弓形的面积.12.已知001tan(720)3221tan(360)θθ++=+--. 求2221cos ()sin()cos()2sin ()cos (2)πθπθπθπθθπ⎡⎤-++-++⎣⎦--的值.。
同角三角比的关系和诱导公式

2
2
1、求下列各三角比的值(不得使用计算器)
回家作业 (1)
tan
4
(2)
sin
390
(3)
sin
25
2
(4)
cos
690
(共6题)
2、利用诱导公式,求角 23 和 87 的正弦值、余弦值、正切值
3
4
3、化简(保留化简过程)
(1)
sin cos
cot tan
2 2
(2)
技巧1:公式变形的使用
技巧2:化切法
7、已知 3sin
4cos
0
,求
sin2 cos2 1 cos2
技巧3,化弦法+ (sinx+cosx),(sinx-cosx),(sinx*cosx)
8、已知关于 x 的一元二次方程 x2 tan cot x 1 0 的
一个实数根为 2 3 ,求 sin cos
cot2
tan2
sin2
4、根据条件,求角 x:
(1) tan x 3, x 0, 2 (2) cos x 2 ,x 是第二象限的角
2
5、在三角形 ABC 中(1)若 sin A 3 ,求角 A (2)若 cos A 2 ,求角 A
2
2
6、(1)若 为第一象限角,则 2 是第__________象限角; 是第__________象限 角; 是第__________象限角; 是第__________象限角;
①求值②化简③方程
例1:求下列三角比(不用计算器)
sin 26
3
tan 13
4
求值的一般方法:负角正角[0,2π]的角锐角
二、诱导公式典型题型
(完整word版)三角函数诱导公式大全,推荐文档

三角函數誘導公式大全三角函数诱导公式常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于k·π/2±α(k∈Z)的个三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。
(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
高考数学复习同角三角函数的基本关系与诱导公式

第2讲 同角三角函数的基本关系与诱导公式 最新考纲考向预测1.理解同角三角函数的基本关系式sin 2x +cos 2x =1,sin xcos x =tan x .2.借助单位圆的对称性,利用定义推导出诱导公式⎝ ⎛⎭⎪⎫α±π2,α±π的正弦、余弦、正切. 命题趋势 考查利用同角三角函数的基本关系、诱导公式解决条件求值问题,常与三角恒等变换相结合起到化简三角函数关系的作用,强调利用三角公式进行恒等变形的技巧以及基本的运算能力.核心素养数学运算1.同角三角函数的基本关系 (1)平方关系:sin 2x +cos 2x =1.(2)商数关系:tan x =sin x cos x ⎝ ⎛⎭⎪⎫其中x ≠k π+π2,k ∈Z .2.三角函数的诱导公式 组数 一 二 三 四 五 六 角 α+2k π (k ∈Z ) π+α -α π-α π2-α π2+α 正弦 sin α -sin__α -sin__α sin__α cos__α cos__α 余弦 cos α -cos__α cos__α -cos__α sin__α -sin__α正切tan αtan__α-tan__α-tan__α常用结论1.诱导公式的记忆口诀“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化.2.同角三角函数的基本关系式的几种变形 (1)sin 2α=1-cos 2α=(1+cos α)(1-cos α);cos 2α=1-sin 2α=(1+sin α)(1-sin α); (sin α±cos α)2=1±2sin αcos α. (2)sin α=tan αcos α⎝ ⎛⎭⎪⎫α≠π2+k π,k ∈Z .(3)sin 2α=sin 2αsin 2α+cos 2α=tan 2αtan 2α+1;cos 2α=cos 2αsin 2α+cos 2α=1tan 2α+1.常见误区1.同角三角函数的基本关系式及诱导公式要注意角的范围对三角函数符号的影响,尤其是利用平方关系求三角函数值,进行开方时要根据角的范围,判断符号后,正确取舍.2.注意求值与化简后的结果一般要尽可能有理化、整式化.1.判断正误(正确的打“√”,错误的打“×”) (1)对任意的角α,β,都有sin 2α+cos 2β=1.( ) (2)若α∈R ,则tan α=sin αcos α恒成立.( )(3)sin(π+α)=-sin α成立的条件是α为锐角.( ) (4)若cos(n π-θ)=13(n ∈Z ),则cos θ=13.( ) 答案:(1)× (2)× (3)× (4)×2.(易错题)已知cos(π+α)=23,则tan α=( ) A .52 B .255 C .±52D .±255解析:选C.因为cos(π+α)=23, 所以cos α=-23,则α为第二或第三象限角,所以sin α=±1-cos 2α=±53.所以tan α=sin αcos α=±53-23=±52. 3.已知sin αcos α=12,则tan α+1tan α=( ) A .2 B .12 C .-2D .-12解析:选A.tan α+1tan α=sin αcos α+cos αsin α=sin 2α+cos 2αsin αcos α=112=2.4.sin 2 490°=________;cos ⎝ ⎛⎭⎪⎫-52π3=________.解析:sin 2 490°=sin(7×360°-30°)=-sin 30°=-12.cos ⎝ ⎛⎭⎪⎫-52π3=cos 52π3=cos ⎝ ⎛⎭⎪⎫16π+π+π3=cos ⎝ ⎛⎭⎪⎫π+π3=-cos π3=-12. 答案:-12 -125.化简cos ⎝ ⎛⎭⎪⎫α-π2sin ⎝ ⎛⎭⎪⎫52π+α·cos(2π-α)的结果为________.解析:原式=sin αcos α·cos α=sin α. 答案:sin α同角三角函数的基本关系式 角度一 “知一求二”问题(2020·北京市适应性测试)已知α是第四象限角,且tan α=-34,则sinα=( )A .-35 B.35 C.45 D .-45 【解析】 因为tan α=sin αcos α=-34, 所以cos α=-43sin α ①.sin 2α+cos 2α=1 ②,由①②得sin 2α=925,又α是第四象限角,所以sin α<0,则sin α=-35,故选A.【答案】 A利用同角三角函数的基本关系求解问题的关键是熟练掌握同角三角函数的基本关系的正用、逆用、变形.同角三角函数的基本关系本身是恒等式,也可以看作是方程,对于一些题,可利用已知条件,结合同角三角函数的基本关系列方程组,通过解方程组达到解决问题的目的.角度二 sin α,cos α的齐次式问题已知tan αtan α-1=-1,求下列各式的值:(1)sin α-3cos αsin α+cos α;(2)sin 2α+sin αcos α+2. 【解】 由已知得tan α=12. (1)sin α-3cos αsin α+cos α=tan α-3tan α+1=-53.(2)sin 2α+sin αcos α+2=sin 2α+sin αcos αsin 2α+cos 2α+2=tan 2α+tan αtan 2α+1+2=⎝ ⎛⎭⎪⎫122+12⎝ ⎛⎭⎪⎫122+1+2=135.关于sin α与cos α的齐n 次分式或齐二次整式的化简求值的解题策略已知tan α,求关于sin α与cos α的齐n次分式或齐二次整式的值.角度三sin α±cos α,sin αcos α之间的关系已知α∈(-π,0),sin α+cos α=1 5.(1)求sin α-cos α的值;(2)求sin 2α+2sin2α1-tan α的值.【解】(1)由sin α+cos α=1 5,平方得sin2α+2sin αcos α+cos2α=1 25,整理得2sin αcos α=-24 25.所以(sin α-cos α)2=1-2sin αcos α=49 25.由α∈(-π,0),知sin α<0,又sin α+cos α>0,所以cos α>0,则sin α-cos α<0,故sin α-cos α=-7 5.(2)sin 2α+2sin2α1-tan α=2sin α(cos α+sin α)1-sin αcos α=2sin αcos α(cos α+sin α)cos α-sin α=-2425×1575=-24175.sin α±cos α与sin αcos α关系的应用技巧(1)通过平方,sin α+cos α,sin α-cos α,sin αcos α之间可建立联系,若令sin α+cos α=t ,则sin αcos α=t 2-12,sin α-cos α=±2-t 2(注意根据α的范围选取正、负号).(2)对于sin α+cos α,sin α-cos α,sin αcos α这三个式子,可以知一求二.1.(2020·河南六市一模)已知cos ⎝ ⎛⎭⎪⎫π2+α=35,且α∈⎝ ⎛⎭⎪⎫π2,3π2,则tan α=( )A .43 B .34 C .-34D .±34解析:选B.因为cos ⎝ ⎛⎭⎪⎫π2+α=35,所以sin α=-35.又α∈⎝ ⎛⎭⎪⎫π2,3π2,所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=34.2.已知tan α=-34,则sin α(sin α-cos α)=( ) A.2125 B.2521 C.45D.54解析:选 A.sin α(sin α-cos α)=sin 2α-sin αcos α=sin 2α-sin αcos αsin 2α+cos 2α=tan 2α-tan αtan 2α+1,将tan α=-34代入得原式=⎝ ⎛⎭⎪⎫-342-⎝ ⎛⎭⎪⎫-34⎝ ⎛⎭⎪⎫-342+1=2125.3.(一题多解)已知sin α-cos α=2,α∈(0,π),则tan α=( ) A .-1 B .-22 C .22D .1解析:选A.方法一:由⎩⎨⎧sin α-cos α=2,sin 2α+cos 2α=1,得2cos 2α+22cos α+1=0,即(2cos α+1)2=0, 所以cos α=-22.又α∈(0,π),所以α=3π4, 所以tan α=tan 3π4=-1.方法二:因为sin α-cos α=2, 所以2sin ⎝ ⎛⎭⎪⎫α-π4=2,所以sin ⎝ ⎛⎭⎪⎫α-π4=1.因为α∈(0,π),所以α=3π4,所以tan α=-1.法三:由sin α-cos α=2得1-sin 2α=2,所以sin 2α=-1. 设sin α+cos α=t ,所以1+sin 2α=t 2,所以t =0.由⎩⎨⎧sin α-cos α=2,sin α+cos α=0得sin α=22,cos α=-22, 所以tan α=-1.诱导公式的应用(1)sin(-1 200°)cos 1 290°=________.(2)已知角θ的顶点在坐标原点,始边与x 轴正半轴重合,终边在直线3x -y =0上,则sin ⎝ ⎛⎭⎪⎫3π2+θ+2cos (π-θ)sin ⎝ ⎛⎭⎪⎫π2-θ-sin (π-θ)等于________.【解析】 (1)原式=-sin 1 200°cos 1 290° =-sin(3×360°+120°)cos(3×360°+210°) =-sin 120°cos 210°=-sin(180°-60°)cos(180°+30°) =sin 60°cos 30°=32×32=34.(2)由题意可知tan θ=3,原式=-cos θ-2cos θcos θ-sin θ=-31-tan θ=32.【答案】 (1)34 (2)32【引申探究】 (变问法)若本例(2)的条件不变,则cos ⎝ ⎛⎭⎪⎫π2+θ-sin (-π-θ)cos ⎝ ⎛⎭⎪⎫11π2-θ+sin ⎝ ⎛⎭⎪⎫9π2+θ=________.解析:由题意可知tan θ=3, 原式=-sin θ+sin (π+θ)cos ⎝ ⎛⎭⎪⎫6π-π2-θ+sin ⎝ ⎛⎭⎪⎫4π+π2+θ =-sin θ-sin θcos ⎝ ⎛⎭⎪⎫π2+θ+sin ⎝ ⎛⎭⎪⎫π2+θ=-2sin θ-sin θ+cos θ=2tan θtan θ-1=2×33-1=3.答案:3(1)诱导公式用法的一般思路①化负为正,化大为小,化到锐角为止;②角中含有加减π2的整数倍时,用公式去掉π2的整数倍. (2)常见的互余和互补的角①常见的互余的角:π3-α与π6+α;π3+α与π6-α;π4+α与π4-α等; ②常见的互补的角:π3+θ与2π3-θ;π4+θ与3π4-θ等.1.已知sin ⎝ ⎛⎭⎪⎫α-π3=13,则cos ⎝ ⎛⎭⎪⎫α+π6的值是( )A .-13 B.13 C.223 D .-223解析:选A.因为sin ⎝ ⎛⎭⎪⎫α-π3=13,所以cos ⎝ ⎛⎭⎪⎫α+π6=cos ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫α-π3=-sin ⎝ ⎛⎭⎪⎫α-π3=-13.2.(多选)已知A =sin (k π+α)sin α+cos (k π+α)cos α+tan (k π+α)tan α,则A 的值可以是( )A .3B .-3C .1D .-1解析:选AD.由已知可得,当k 为偶数时,A =sin (k π+α)sin α+cos (k π+α)cos α+tan (k π+α)tan α=sin αsin α+cos αcos α+tan αtan α=3;当k 为奇数时,A =sin (k π+α)sin α+cos (k π+α)cos α+tan (k π+α)tan α=-sin αsin α+-cos αcos α+tan αtan α=-1,所以A 的值可以是3或-1.故答案为AD.同角三角函数的基本关系式与诱导公式的综合应用(2020·湖北宜昌一中期末)已知α是第三象限角,且cos α=-1010. (1)求tan α的值;(2)化简并求cos (π-α)2sin (-α)+sin ⎝ ⎛⎭⎪⎫π2+α的值.【解】 (1)因为α是第三象限角,cos α=-1010, 所以sin α=-1-cos 2α=-31010,所以tan α=sin αcos α=3.(2)原式=-cos α-2sin α+cos α=cos α2sin α-cos α=12tan α-1,由(1)知tan α=3,所以原式=12×3-1=15.求解诱导公式与同角关系综合问题的基本思路和化简要求基本 思路①分析结构特点,选择恰当公式; ②利用公式化成单角三角函数;③整理得最简形式化简 要求①化简过程是恒等变换;②结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值1.已知sin ⎝ ⎛⎭⎪⎫5π2+α=35,所以tan α的值为( )A .-43B .-34C .±43D .±34解析:选C.sin ⎝ ⎛⎭⎪⎫5π2+α=sin ⎝ ⎛⎭⎪⎫π2+α=cos α=35,所以sin α=±45,tan α=sin αcos α=±43.2.已知tan(π-α)=-23,且α∈⎝ ⎛⎭⎪⎫-π,-π2,则cos (-α)+3sin (π+α)cos (π-α)+9sin α的值为( )A .-15B .-37 C.15 D.37解析:选 A.因为tan(π-α)=-23,所以tan α=23,所以cos (-α)+3sin (π+α)cos (π-α)+9sin α=cos α-3sin α-cos α+9sin α=1-3tan α-1+9tan α=1-2-1+6=-15,故选A.[A 级 基础练]1.(多选)已知x ∈R ,则下列等式恒成立的是( ) A .sin(-x )=sin x B .sin ⎝ ⎛⎭⎪⎫3π2-x =cos xC .cos ⎝ ⎛⎭⎪⎫π2+x =-sin xD .cos(x -π)=-cos x解析:选CD.sin(-x )=-sin x ,故A 不成立;sin ⎝ ⎛⎭⎪⎫3π2-x =-cos x ,故B 不成立;cos ⎝ ⎛⎭⎪⎫π2+x =-sin x ,故C 成立;cos(x -π)=-cos x ,故D 成立.2.(多选)若sin α=45,且α为锐角,则下列选项中正确的有( )A .tan α=43 B .cos α=35 C .sin α+cos α=85D .sin α-cos α=-15解析:选AB.因为sin α=45,且α为锐角, 所以cos α=1-sin 2α=1-⎝ ⎛⎭⎪⎫452=35,故B 正确, 所以tan α=sin αcos α=4535=43,故A 正确,所以sin α+cos α=45+35=75≠85,故C 错误, 所以sin α-cos α=45-35=15≠-15,故D 错误.3.已知角α是第二象限角,且满足sin ⎝ ⎛⎭⎪⎫5π2+α+3cos(α-π)=1,则tan(π+α)=( )A . 3B .- 3C .-33D .-1解析:选B.由sin ⎝ ⎛⎭⎪⎫5π2+α+3cos(α-π)=1,得cos α-3cos α=1,所以cos α=-12, 因为角α是第二象限角,所以sin α=32, 所以tan(π+α)=tan α=sin αcos α=- 3.4.已知f (α)=sin (2π-α)cos ⎝ ⎛⎭⎪⎫π2+αcos ⎝ ⎛⎭⎪⎫-π2+αtan (π+α),则f ⎝ ⎛⎭⎪⎫π3=( ) A .12 B .22 C .32D .-12解析:选A.f (α)=sin (2π-α)cos ⎝ ⎛⎭⎪⎫π2+αcos ⎝ ⎛⎭⎪⎫-π2+αtan (π+α)=-sin α·(-sin α)sin α·tan α=sin 2αsin α·sin αcos α=cos α,则f ⎝ ⎛⎭⎪⎫π3=cos π3=12.5.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上一点A (2sin α,3)(sin α≠0),则cos α=( )A .12B .-12C .32D .-32解析:选A.由三角函数定义得tan α=32sin α,即sin αcos α=32sin α,得3cos α=2sin 2α=2(1-cos 2α),解得cos α=12或cos α=-2(舍去).故选A.6.计算:sin 11π6+cos 10π3的值为________.解析:原式=sin ⎝ ⎛⎭⎪⎫2π-π6+cos ⎝ ⎛⎭⎪⎫3π+π3=-sin π6-cos π3=-12-12=-1.答案:-17.已知sin ⎝ ⎛⎭⎪⎫-π2-αcos ⎝ ⎛⎭⎪⎫-7π2+α=1225,且0<α<π4,则sin α=________,cos α=________.解析:sin ⎝ ⎛⎭⎪⎫-π2-αcos ⎝ ⎛⎭⎪⎫-7π2+α=-cos α·(-sin α)=sin αcos α=1225.因为0<α<π4,所以0<sin α<cos α.又因为sin 2α+cos 2α=1,所以sin α=35,cos α=45.答案:35 45 8.化简1-2sin 40°cos 40°cos 40°-1-sin 250°=________. 解析:原式=sin 240°+cos 240°-2sin 40°cos 40°cos 40°-cos 50°=|sin 40°-cos 40°|sin 50°-sin 40°=|sin 40°-sin 50°|sin 50°-sin 40°=sin 50°-sin 40°sin 50°-sin 40°=1.答案:19.已知sin(3π+α)=2sin ⎝ ⎛⎭⎪⎫3π2+α,求下列各式的值:(1)sin α-4cos α5sin α+2cos α;(2)sin 2α+sin 2α.解:由已知得sin α=2cos α. (1)原式=2cos α-4cos α5×2cos α+2cos α=-16.(2)原式=sin 2α+2sin αcos αsin 2α+cos 2α=sin 2α+sin 2αsin 2α+14sin 2α=85.10.已知角θ的终边与单位圆x 2+y 2=1在第四象限交于点P ,且点P 的坐标为⎝ ⎛⎭⎪⎫12,y .(1)求tan θ的值;(2)求cos ⎝ ⎛⎭⎪⎫π2-θ+cos (θ-2π)sin θ+cos (π+θ)的值.解:(1)由θ为第四象限角,终边与单位圆交于点P ⎝ ⎛⎭⎪⎫12,y ,得⎝ ⎛⎭⎪⎫122+y 2=1,y <0,解得y =-32,所以tan θ=-3212=- 3.(2)因为tan θ=-3, 所以cos ⎝ ⎛⎭⎪⎫π2-θ+cos (θ-2π)sin θ+cos (π+θ)=sin θ+cos θsin θ-cos θ=tan θ+1tan θ-1=-3+1-3-1=2- 3. [B 级 综合练]11.(多选)已知角θ的终边与坐标轴不重合,式子1-sin 2(π+θ)化简的结果为-cos θ,则( )A .sin θ>0,tan θ>0B .sin θ<0,tan θ>0C .sin θ<0,tan θ<0D .sin θ>0,tan θ<0解析:选BD.1-sin 2(π+θ)=1-sin 2θ=cos 2θ=|cos θ|=-cos θ,所以cos θ<0,角θ的终边落在第二或三象限,所以sin θ>0,tan θ<0或sin θ<0,tan θ>0,故选BD.12.(2020·陕西汉中月考)已知角α为第二象限角,则cos α·1+sin α1-sin α+sin 2α1+1tan 2α=( )A .1B .-1C .0D .2解析:选B.因为角α为第二象限角,所以sin α>0,cos α<0,所以cos α 1+sin α1-sin α=cos α(1+sin α)2cos 2α=cos α·1+sin α|cos α|=-1-sin α,sin 2α1+1tan 2α=sin 2α1+cos 2αsin 2α=sin 2αsin 2α+cos 2αsin 2α=sin 2α1sin 2α=sin 2α⎪⎪⎪⎪⎪⎪1sin α=sin α,所以cos α1+sin α1-sin α+sin 2α1+1tan 2α=-1-sin α+sin α=-1.故选B.13.是否存在α∈⎝ ⎛⎭⎪⎫-π2,π2,β∈()0,π使等式sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫π2-β,3cos(-α)=-2cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由.解:假设存在角α,β满足条件. 由已知条件可得⎩⎨⎧sin α=2sin β,①3cos α=2cos β,②由①2+②2,得sin 2α+3cos 2α=2.所以sin 2α=12,所以sin α=±22.因为α∈⎝ ⎛⎭⎪⎫-π2,π2,所以α=±π4. 当α=π4时,由②式知cos β=32, 又β∈(0,π),所以β=π6,此时①式成立; 当α=-π4时,由②式知cos β=32,又β∈(0,π), 所以β=π6,此时①式不成立,故舍去. 所以存在α=π4,β=π6满足条件. 14.在△ABC 中,(1)求证:cos 2A +B 2+cos 2 C2=1;(2)若cos ⎝ ⎛⎭⎪⎫π2+A sin ⎝ ⎛⎭⎪⎫3π2+B tan(C -π)<0,求证:△ABC 为钝角三角形.证明:(1)在△ABC 中,A +B =π-C , 所以A +B 2=π2-C2,所以cos A +B 2=cos ⎝ ⎛⎭⎪⎫π2-C 2=sin C 2,所以cos 2A + B 2+cos 2C2=1.(2)若cos ⎝ ⎛⎭⎪⎫π2+A sin ⎝ ⎛⎭⎪⎫3π2+B tan(C -π)<0,所以(-sin A )(-cos B )tan C <0, 即sin A cos B tan C <0.因为在△ABC 中,0<A <π,0<B <π,0<C <π且sin A >0, 所以⎩⎨⎧cos B <0,tan C >0或⎩⎨⎧cos B >0,tan C <0,所以B 为钝角或C 为钝角,所以△ABC 为钝角三角形.[C 级 创新练]15.(2020·山东肥城统考)公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,发现黄金分割比例为5-12≈0.618,这一数值也可以表示为m =2sin 18°.若m 2+n =4,则m n2cos 227°-1=( )A .4B .3C .2D .1解析:选C.因为m =2sin 18°,且m 2+n =4,所以n =4-m 2=4-4sin 218°=4(1-sin 218°)=4cos 218°,所以m n2cos 227°-1=2sin 18°4cos 218°cos 54°=4sin 18°cos 18°sin 36°=2.故选C.16.已知α,β∈(0,2π)且α<β,若关于x 的方程(x +sin α)(x +sin β)+1=0有实数根,则代数式3sin ⎝ ⎛⎭⎪⎫π2+α+cos ⎝ ⎛⎭⎪⎫3π2-β2-sin (π-α)cos ⎝ ⎛⎭⎪⎫3π2+β=________.解析:整理方程(x +sin α)(x +sin β)+1=0得x 2+x (sin α+sin β)+sin αsin β+1=0.由题意得Δ=(sin α+sin β)2-4sin αsin β-4≥0, 即(sin α-sin β)2≥4①.因为-1≤sin α≤1,-1≤sin β≤1,所以sin α-sin β∈[-2,2],从而(sin α-sin β)2≤4②.由①②得sin α-sin β=±2,所以⎩⎨⎧sin α=1,sin β=-1或⎩⎨⎧sin α=-1,sin β=1.因为α,β∈(0,2π)且α<β,所以α=π2,β=3π2,即⎩⎨⎧sin α=1,sin β=-1.因此3sin ⎝ ⎛⎭⎪⎫π2+α+cos ⎝ ⎛⎭⎪⎫3π2-β2-sin (π-α)cos ⎝ ⎛⎭⎪⎫3π2+β=3cos α-sin β2-sin αsin β=12+1=13.答案:13第2讲 同角三角函数的基本关系与诱导公式 最新考纲考向预测1.理解同角三角函数的基本关系式sin 2x +cos 2x =1,sin xcos x =tan x .2.借助单位圆的对称性,利用定义推导出诱导公式⎝ ⎛⎭⎪⎫α±π2,α±π的正弦、余弦、正切. 命题趋势 考查利用同角三角函数的基本关系、诱导公式解决条件求值问题,常与三角恒等变换相结合起到化简三角函数关系的作用,强调利用三角公式进行恒等变形的技巧以及基本的运算能力.核心素养数学运算1.同角三角函数的基本关系 (1)平方关系:sin 2x +cos 2x =1.(2)商数关系:tan x =sin x cos x ⎝ ⎛⎭⎪⎫其中x ≠k π+π2,k ∈Z .2.三角函数的诱导公式 组数 一 二 三 四 五 六 角 α+2k π (k ∈Z ) π+α -α π-α π2-α π2+α 正弦 sin α -sin__α -sin__α sin__α cos__α cos__α 余弦 cos α -cos__α cos__α -cos__α sin__α -sin__α正切tan αtan__α-tan__α-tan__α常用结论1.诱导公式的记忆口诀“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化.2.同角三角函数的基本关系式的几种变形 (1)sin 2α=1-cos 2α=(1+cos α)(1-cos α);cos 2α=1-sin 2α=(1+sin α)(1-sin α); (sin α±cos α)2=1±2sin αcos α. (2)sin α=tan αcos α⎝ ⎛⎭⎪⎫α≠π2+k π,k ∈Z .(3)sin 2α=sin 2αsin 2α+cos 2α=tan 2αtan 2α+1;cos 2α=cos 2αsin 2α+cos 2α=1tan 2α+1.常见误区1.同角三角函数的基本关系式及诱导公式要注意角的范围对三角函数符号的影响,尤其是利用平方关系求三角函数值,进行开方时要根据角的范围,判断符号后,正确取舍.2.注意求值与化简后的结果一般要尽可能有理化、整式化.1.判断正误(正确的打“√”,错误的打“×”) (1)对任意的角α,β,都有sin 2α+cos 2β=1.( ) (2)若α∈R ,则tan α=sin αcos α恒成立.( )(3)sin(π+α)=-sin α成立的条件是α为锐角.( ) (4)若cos(n π-θ)=13(n ∈Z ),则cos θ=13.( ) 答案:(1)× (2)× (3)× (4)×2.(易错题)已知cos(π+α)=23,则tan α=( ) A .52 B .255 C .±52D .±255解析:选C.因为cos(π+α)=23, 所以cos α=-23,则α为第二或第三象限角,所以sin α=±1-cos 2α=±53.所以tan α=sin αcos α=±53-23=±52. 3.已知sin αcos α=12,则tan α+1tan α=( ) A .2 B .12 C .-2D .-12解析:选A.tan α+1tan α=sin αcos α+cos αsin α=sin 2α+cos 2αsin αcos α=112=2.4.sin 2 490°=________;cos ⎝ ⎛⎭⎪⎫-52π3=________.解析:sin 2 490°=sin(7×360°-30°)=-sin 30°=-12.cos ⎝ ⎛⎭⎪⎫-52π3=cos 52π3=cos ⎝ ⎛⎭⎪⎫16π+π+π3=cos ⎝ ⎛⎭⎪⎫π+π3=-cos π3=-12. 答案:-12 -125.化简cos ⎝ ⎛⎭⎪⎫α-π2sin ⎝ ⎛⎭⎪⎫52π+α·cos(2π-α)的结果为________.解析:原式=sin αcos α·cos α=sin α. 答案:sin α同角三角函数的基本关系式 角度一 “知一求二”问题(2020·北京市适应性测试)已知α是第四象限角,且tan α=-34,则sinα=( )A .-35 B.35 C.45 D .-45 【解析】 因为tan α=sin αcos α=-34, 所以cos α=-43sin α ①.sin 2α+cos 2α=1 ②,由①②得sin 2α=925,又α是第四象限角,所以sin α<0,则sin α=-35,故选A.【答案】 A利用同角三角函数的基本关系求解问题的关键是熟练掌握同角三角函数的基本关系的正用、逆用、变形.同角三角函数的基本关系本身是恒等式,也可以看作是方程,对于一些题,可利用已知条件,结合同角三角函数的基本关系列方程组,通过解方程组达到解决问题的目的.角度二 sin α,cos α的齐次式问题已知tan αtan α-1=-1,求下列各式的值:(1)sin α-3cos αsin α+cos α;(2)sin 2α+sin αcos α+2. 【解】 由已知得tan α=12. (1)sin α-3cos αsin α+cos α=tan α-3tan α+1=-53.(2)sin 2α+sin αcos α+2=sin 2α+sin αcos αsin 2α+cos 2α+2=tan 2α+tan αtan 2α+1+2=⎝ ⎛⎭⎪⎫122+12⎝ ⎛⎭⎪⎫122+1+2=135.关于sin α与cos α的齐n 次分式或齐二次整式的化简求值的解题策略已知tan α,求关于sin α与cos α的齐n次分式或齐二次整式的值.角度三sin α±cos α,sin αcos α之间的关系已知α∈(-π,0),sin α+cos α=1 5.(1)求sin α-cos α的值;(2)求sin 2α+2sin2α1-tan α的值.【解】(1)由sin α+cos α=1 5,平方得sin2α+2sin αcos α+cos2α=1 25,整理得2sin αcos α=-24 25.所以(sin α-cos α)2=1-2sin αcos α=49 25.由α∈(-π,0),知sin α<0,又sin α+cos α>0,所以cos α>0,则sin α-cos α<0,故sin α-cos α=-7 5.(2)sin 2α+2sin2α1-tan α=2sin α(cos α+sin α)1-sin αcos α=2sin αcos α(cos α+sin α)cos α-sin α=-2425×1575=-24175.sin α±cos α与sin αcos α关系的应用技巧(1)通过平方,sin α+cos α,sin α-cos α,sin αcos α之间可建立联系,若令sin α+cos α=t ,则sin αcos α=t 2-12,sin α-cos α=±2-t 2(注意根据α的范围选取正、负号).(2)对于sin α+cos α,sin α-cos α,sin αcos α这三个式子,可以知一求二.1.(2020·河南六市一模)已知cos ⎝ ⎛⎭⎪⎫π2+α=35,且α∈⎝ ⎛⎭⎪⎫π2,3π2,则tan α=( )A .43 B .34 C .-34D .±34解析:选B.因为cos ⎝ ⎛⎭⎪⎫π2+α=35,所以sin α=-35.又α∈⎝ ⎛⎭⎪⎫π2,3π2,所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=34.2.已知tan α=-34,则sin α(sin α-cos α)=( ) A.2125 B.2521 C.45D.54解析:选 A.sin α(sin α-cos α)=sin 2α-sin αcos α=sin 2α-sin αcos αsin 2α+cos 2α=tan 2α-tan αtan 2α+1,将tan α=-34代入得原式=⎝ ⎛⎭⎪⎫-342-⎝ ⎛⎭⎪⎫-34⎝ ⎛⎭⎪⎫-342+1=2125.3.(一题多解)已知sin α-cos α=2,α∈(0,π),则tan α=( ) A .-1 B .-22 C .22D .1解析:选A.方法一:由⎩⎨⎧sin α-cos α=2,sin 2α+cos 2α=1,得2cos 2α+22cos α+1=0,即(2cos α+1)2=0, 所以cos α=-22.又α∈(0,π),所以α=3π4, 所以tan α=tan 3π4=-1.方法二:因为sin α-cos α=2, 所以2sin ⎝ ⎛⎭⎪⎫α-π4=2,所以sin ⎝ ⎛⎭⎪⎫α-π4=1.因为α∈(0,π),所以α=3π4,所以tan α=-1.法三:由sin α-cos α=2得1-sin 2α=2,所以sin 2α=-1. 设sin α+cos α=t ,所以1+sin 2α=t 2,所以t =0.由⎩⎨⎧sin α-cos α=2,sin α+cos α=0得sin α=22,cos α=-22, 所以tan α=-1.诱导公式的应用(1)sin(-1 200°)cos 1 290°=________.(2)已知角θ的顶点在坐标原点,始边与x 轴正半轴重合,终边在直线3x -y =0上,则sin ⎝ ⎛⎭⎪⎫3π2+θ+2cos (π-θ)sin ⎝ ⎛⎭⎪⎫π2-θ-sin (π-θ)等于________.【解析】 (1)原式=-sin 1 200°cos 1 290° =-sin(3×360°+120°)cos(3×360°+210°) =-sin 120°cos 210°=-sin(180°-60°)cos(180°+30°) =sin 60°cos 30°=32×32=34.(2)由题意可知tan θ=3,原式=-cos θ-2cos θcos θ-sin θ=-31-tan θ=32.【答案】 (1)34 (2)32【引申探究】 (变问法)若本例(2)的条件不变,则cos ⎝ ⎛⎭⎪⎫π2+θ-sin (-π-θ)cos ⎝ ⎛⎭⎪⎫11π2-θ+sin ⎝ ⎛⎭⎪⎫9π2+θ=________.解析:由题意可知tan θ=3, 原式=-sin θ+sin (π+θ)cos ⎝ ⎛⎭⎪⎫6π-π2-θ+sin ⎝ ⎛⎭⎪⎫4π+π2+θ =-sin θ-sin θcos ⎝ ⎛⎭⎪⎫π2+θ+sin ⎝ ⎛⎭⎪⎫π2+θ=-2sin θ-sin θ+cos θ=2tan θtan θ-1=2×33-1=3.答案:3(1)诱导公式用法的一般思路①化负为正,化大为小,化到锐角为止;②角中含有加减π2的整数倍时,用公式去掉π2的整数倍. (2)常见的互余和互补的角①常见的互余的角:π3-α与π6+α;π3+α与π6-α;π4+α与π4-α等; ②常见的互补的角:π3+θ与2π3-θ;π4+θ与3π4-θ等.1.已知sin ⎝ ⎛⎭⎪⎫α-π3=13,则cos ⎝ ⎛⎭⎪⎫α+π6的值是( )A .-13 B.13 C.223 D .-223解析:选A.因为sin ⎝ ⎛⎭⎪⎫α-π3=13,所以cos ⎝ ⎛⎭⎪⎫α+π6=cos ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫α-π3=-sin ⎝ ⎛⎭⎪⎫α-π3=-13.2.(多选)已知A =sin (k π+α)sin α+cos (k π+α)cos α+tan (k π+α)tan α,则A 的值可以是( )A .3B .-3C .1D .-1解析:选AD.由已知可得,当k 为偶数时,A =sin (k π+α)sin α+cos (k π+α)cos α+tan (k π+α)tan α=sin αsin α+cos αcos α+tan αtan α=3;当k 为奇数时,A =sin (k π+α)sin α+cos (k π+α)cos α+tan (k π+α)tan α=-sin αsin α+-cos αcos α+tan αtan α=-1,所以A 的值可以是3或-1.故答案为AD.同角三角函数的基本关系式与诱导公式的综合应用(2020·湖北宜昌一中期末)已知α是第三象限角,且cos α=-1010. (1)求tan α的值;(2)化简并求cos (π-α)2sin (-α)+sin ⎝ ⎛⎭⎪⎫π2+α的值.【解】 (1)因为α是第三象限角,cos α=-1010, 所以sin α=-1-cos 2α=-31010,所以tan α=sin αcos α=3.(2)原式=-cos α-2sin α+cos α=cos α2sin α-cos α=12tan α-1,由(1)知tan α=3,所以原式=12×3-1=15.求解诱导公式与同角关系综合问题的基本思路和化简要求基本 思路①分析结构特点,选择恰当公式; ②利用公式化成单角三角函数;③整理得最简形式化简 要求①化简过程是恒等变换;②结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值1.已知sin ⎝ ⎛⎭⎪⎫5π2+α=35,所以tan α的值为( )A .-43B .-34C .±43D .±34解析:选C.sin ⎝ ⎛⎭⎪⎫5π2+α=sin ⎝ ⎛⎭⎪⎫π2+α=cos α=35,所以sin α=±45,tan α=sin αcos α=±43.2.已知tan(π-α)=-23,且α∈⎝ ⎛⎭⎪⎫-π,-π2,则cos (-α)+3sin (π+α)cos (π-α)+9sin α的值为( )A .-15B .-37 C.15 D.37解析:选 A.因为tan(π-α)=-23,所以tan α=23,所以cos (-α)+3sin (π+α)cos (π-α)+9sin α=cos α-3sin α-cos α+9sin α=1-3tan α-1+9tan α=1-2-1+6=-15,故选A.[A 级 基础练]1.(多选)已知x ∈R ,则下列等式恒成立的是( ) A .sin(-x )=sin x B .sin ⎝ ⎛⎭⎪⎫3π2-x =cos xC .cos ⎝ ⎛⎭⎪⎫π2+x =-sin xD .cos(x -π)=-cos x解析:选CD.sin(-x )=-sin x ,故A 不成立;sin ⎝ ⎛⎭⎪⎫3π2-x =-cos x ,故B 不成立;cos ⎝ ⎛⎭⎪⎫π2+x =-sin x ,故C 成立;cos(x -π)=-cos x ,故D 成立.2.(多选)若sin α=45,且α为锐角,则下列选项中正确的有( )A .tan α=43 B .cos α=35 C .sin α+cos α=85D .sin α-cos α=-15解析:选AB.因为sin α=45,且α为锐角, 所以cos α=1-sin 2α=1-⎝ ⎛⎭⎪⎫452=35,故B 正确, 所以tan α=sin αcos α=4535=43,故A 正确,所以sin α+cos α=45+35=75≠85,故C 错误, 所以sin α-cos α=45-35=15≠-15,故D 错误.3.已知角α是第二象限角,且满足sin ⎝ ⎛⎭⎪⎫5π2+α+3cos(α-π)=1,则tan(π+α)=( )A . 3B .- 3C .-33D .-1解析:选B.由sin ⎝ ⎛⎭⎪⎫5π2+α+3cos(α-π)=1,得cos α-3cos α=1,所以cos α=-12, 因为角α是第二象限角,所以sin α=32, 所以tan(π+α)=tan α=sin αcos α=- 3.4.已知f (α)=sin (2π-α)cos ⎝ ⎛⎭⎪⎫π2+αcos ⎝ ⎛⎭⎪⎫-π2+αtan (π+α),则f ⎝ ⎛⎭⎪⎫π3=( ) A .12 B .22 C .32D .-12解析:选A.f (α)=sin (2π-α)cos ⎝ ⎛⎭⎪⎫π2+αcos ⎝ ⎛⎭⎪⎫-π2+αtan (π+α)=-sin α·(-sin α)sin α·tan α=sin 2αsin α·sin αcos α=cos α,则f ⎝ ⎛⎭⎪⎫π3=cos π3=12.5.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上一点A (2sin α,3)(sin α≠0),则cos α=( )A .12B .-12C .32D .-32解析:选A.由三角函数定义得tan α=32sin α,即sin αcos α=32sin α,得3cos α=2sin 2α=2(1-cos 2α),解得cos α=12或cos α=-2(舍去).故选A.6.计算:sin 11π6+cos 10π3的值为________.解析:原式=sin ⎝ ⎛⎭⎪⎫2π-π6+cos ⎝ ⎛⎭⎪⎫3π+π3=-sin π6-cos π3=-12-12=-1.答案:-17.已知sin ⎝ ⎛⎭⎪⎫-π2-αcos ⎝ ⎛⎭⎪⎫-7π2+α=1225,且0<α<π4,则sin α=________,cos α=________.解析:sin ⎝ ⎛⎭⎪⎫-π2-αcos ⎝ ⎛⎭⎪⎫-7π2+α=-cos α·(-sin α)=sin αcos α=1225.因为0<α<π4,所以0<sin α<cos α.又因为sin 2α+cos 2α=1,所以sin α=35,cos α=45.答案:35 45 8.化简1-2sin 40°cos 40°cos 40°-1-sin 250°=________. 解析:原式=sin 240°+cos 240°-2sin 40°cos 40°cos 40°-cos 50°=|sin 40°-cos 40°|sin 50°-sin 40°=|sin 40°-sin 50°|sin 50°-sin 40°=sin 50°-sin 40°sin 50°-sin 40°=1.答案:19.已知sin(3π+α)=2sin ⎝ ⎛⎭⎪⎫3π2+α,求下列各式的值:(1)sin α-4cos α5sin α+2cos α;(2)sin 2α+sin 2α.解:由已知得sin α=2cos α. (1)原式=2cos α-4cos α5×2cos α+2cos α=-16.(2)原式=sin 2α+2sin αcos αsin 2α+cos 2α=sin 2α+sin 2αsin 2α+14sin 2α=85.10.已知角θ的终边与单位圆x 2+y 2=1在第四象限交于点P ,且点P 的坐标为⎝ ⎛⎭⎪⎫12,y .(1)求tan θ的值;(2)求cos ⎝ ⎛⎭⎪⎫π2-θ+cos (θ-2π)sin θ+cos (π+θ)的值.解:(1)由θ为第四象限角,终边与单位圆交于点P ⎝ ⎛⎭⎪⎫12,y ,得⎝ ⎛⎭⎪⎫122+y 2=1,y <0,解得y =-32,所以tan θ=-3212=- 3.(2)因为tan θ=-3, 所以cos ⎝ ⎛⎭⎪⎫π2-θ+cos (θ-2π)sin θ+cos (π+θ)=sin θ+cos θsin θ-cos θ=tan θ+1tan θ-1=-3+1-3-1=2- 3. [B 级 综合练]11.(多选)已知角θ的终边与坐标轴不重合,式子1-sin 2(π+θ)化简的结果为-cos θ,则( )A .sin θ>0,tan θ>0B .sin θ<0,tan θ>0C .sin θ<0,tan θ<0D .sin θ>0,tan θ<0解析:选BD.1-sin 2(π+θ)=1-sin 2θ=cos 2θ=|cos θ|=-cos θ,所以cos θ<0,角θ的终边落在第二或三象限,所以sin θ>0,tan θ<0或sin θ<0,tan θ>0,故选BD.12.(2020·陕西汉中月考)已知角α为第二象限角,则cos α·1+sin α1-sin α+sin 2α1+1tan 2α=( )A .1B .-1C .0D .2解析:选B.因为角α为第二象限角,所以sin α>0,cos α<0,所以cos α 1+sin α1-sin α=cos α(1+sin α)2cos 2α=cos α·1+sin α|cos α|=-1-sin α,sin 2α1+1tan 2α=sin 2α1+cos 2αsin 2α=sin 2αsin 2α+cos 2αsin 2α=sin 2α1sin 2α=sin 2α⎪⎪⎪⎪⎪⎪1sin α=sin α,所以cos α1+sin α1-sin α+sin 2α1+1tan 2α=-1-sin α+sin α=-1.故选B.13.是否存在α∈⎝ ⎛⎭⎪⎫-π2,π2,β∈()0,π使等式sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫π2-β,3cos(-α)=-2cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由.解:假设存在角α,β满足条件. 由已知条件可得⎩⎨⎧sin α=2sin β,①3cos α=2cos β,②由①2+②2,得sin 2α+3cos 2α=2.所以sin 2α=12,所以sin α=±22. 因为α∈⎝ ⎛⎭⎪⎫-π2,π2,所以α=±π4. 当α=π4时,由②式知cos β=32,又β∈(0,π),所以β=π6,此时①式成立;当α=-π4时,由②式知cos β=32,又β∈(0,π),所以β=π6,此时①式不成立,故舍去.所以存在α=π4,β=π6满足条件.14.在△ABC 中,(1)求证:cos 2A +B 2+cos 2 C 2=1;(2)若cos ⎝ ⎛⎭⎪⎫π2+A sin ⎝ ⎛⎭⎪⎫3π2+B tan(C -π)<0,求证:△ABC 为钝角三角形. 证明:(1)在△ABC 中,A +B =π-C ,所以A +B 2=π2-C 2,所以cos A +B 2=cos ⎝ ⎛⎭⎪⎫π2-C 2=sin C 2, 所以cos 2A + B 2+cos 2C 2=1.(2)若cos ⎝ ⎛⎭⎪⎫π2+A sin ⎝ ⎛⎭⎪⎫3π2+B tan(C -π)<0, 所以(-sin A )(-cos B )tan C <0,即sin A cos B tan C <0.因为在△ABC 中,0<A <π,0<B <π,0<C <π且sin A >0,所以⎩⎨⎧cos B <0,tan C >0或⎩⎨⎧cos B >0,tan C <0, 所以B 为钝角或C 为钝角,所以△ABC 为钝角三角形.[C 级 创新练]15.(2020·山东肥城统考)公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,发现黄金分割比例为5-12≈0.618,这一数值也可以表示为m =2sin 18°.若m 2+n =4,则m n 2cos 227°-1=( ) A .4 B .3 C .2 D .1解析:选C.因为m =2sin 18°,且m 2+n =4,所以n =4-m 2=4-4sin 218°=4(1-sin 218°)=4cos 218°,所以m n 2cos 227°-1=2sin 18°4cos 218°cos 54°=4sin 18°cos 18°sin 36°=2.故选C.16.已知α,β∈(0,2π)且α<β,若关于x 的方程(x +sin α)(x +sin β)+1=0有实数根,则代数式3sin ⎝ ⎛⎭⎪⎫π2+α+cos ⎝ ⎛⎭⎪⎫3π2-β2-sin (π-α)cos ⎝ ⎛⎭⎪⎫3π2+β=________. 解析:整理方程(x +sin α)(x +sin β)+1=0得x 2+x (sin α+sin β)+sin αsin β+1=0.由题意得Δ=(sin α+sin β)2-4sin αsin β-4≥0,即(sin α-sin β)2≥4①.因为-1≤sin α≤1,-1≤sin β≤1,所以sin α-sin β∈[-2,2],从而(sin α-sin β)2≤4②.由①②得sin α-sin β=±2,所以⎩⎨⎧sin α=1,sin β=-1或⎩⎨⎧sin α=-1,sin β=1.因为α,β∈(0,2π)且α<β,所以α=π2,β=3π2,即⎩⎨⎧sin α=1,sin β=-1. 因此3sin ⎝ ⎛⎭⎪⎫π2+α+cos ⎝ ⎛⎭⎪⎫3π2-β2-sin (π-α)cos ⎝ ⎛⎭⎪⎫3π2+β=3cos α-sin β2-sin αsin β=12+1=13. 答案:13。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解毕
熟练掌握好公式及各 象限三角比的符号是 准确解题的关键
1 + cot 2 α = csc 2 α
1 + cot 2 α = csc 2 α
课堂练习2 已知 sin α = m, (0 <| m |< 1) 课堂练习 求它其余的三角比( 表示) 求它其余的三角比(用m表示). 表示 解: 若 α ∈ I , IV
一、同角三角比的关系
1.倒数关系 倒数关系
cos α = 1 − sin 2 α = 1 − m 2 sin α m = tan α = cos α 1 − m2 1 − m2 1 1 cot α = ,sec α = , csc α = 2 m m 1− m 若 α ∈ II , III
第一章 集合和命题 第二章 不等式 第四章 幂函数、指数函数、对数函数
第三章 函数的基本性质
第五章 三角比
5.2.3 任意角的三角比
5.3.1 同角三角比的关系
一、同角三角比的关系
1.倒数关系 倒数关系
sin α ⋅ csc α = 1 cos α ⋅ sec α = 1 tan α ⋅ cot α = 1
sin 2 α + cos 2 α = 1 1 + tan 2 α = sec 2 α
1 + cot 2 α = csc 2 α
1 − m2 1 1 cot α = − ,sec α = − , csc α = 2 m m 1− m 解毕
例2:已知 α 是钝角且 sin α + cos α = − : 求 tan α 1 解: sin α + cos α = −
解二元二次方程组得: 解二元二次方程组得:
3 4 sin α = sin α = − 5 5 or (舍) 4 3 cos α = − cos α = 5 5
3 tan α = − 4
sin 2 α + cos 2 α = 1 1 + tan 2 α = sec 2 α
sin α tan α = cos α cos α cot α = sin α
y
2.商数关系 商数关系
3.平方关系 平方关系
sin 2 α + cos 2 α = 1 1 + tan 2 α = sec 2 α 1 + cot 2 α = csc 2 α
T
α
1
P
O
M
A
x
3 满足: 例1:第二象限角 α 满足:sin α = : 5
求它其余的三角比( 表示) 求它其余的三角比(用m表示). 表示
sin α ⋅ csc α = 1 cos α ⋅ sec α = 1 tan α ⋅ cot α = 1
sin α cos α cos α cot α = sin α tan α =
3.平方关系 平方关系 2.商数关系 商数关系
sin 2 α + cos 2 α = 1 1 + tan 2 α = sec 2 α
求它其余的三角比. 求它其余的三角比
一、同角三角比的关系
1.倒数关系 倒数关系
4 解:cos α = − 1 − sin α = − 5 sin α 3 tan α = =− cos α 4 4 5 5 cot α = − ,sec α = − , csc α = 解毕 3 4 3
2
sin α ⋅ csc α = 1 cos α ⋅ sec α = 1 tan α ⋅ cot α = 1
sin α ⋅ csc α = 1 cos α ⋅ sec α = 1 tan α ⋅ cot α = 1
sin α cos α cos α cot α = sin α tan α =
3.平方关系 平方关系 2.商数关系 商数关系
cos α = − 1 − sin 2 α = − 1 − m 2 sin α m tan α = =− cos α 1 − m2
1 5
一、同角三角比的关系
1.倒数关系 倒数关系
5
sin 2 α + cos 2 α = 1
sin α ⋅ csc α = 1 cos α ⋅ sec α = 1 tan α ⋅ cot α = 1
sin α cos α cos α cot α = sin α tan α =
3.平方关系 平方关系 2.商数关系 商数关系
sin α cos α cos α cot α = sin α tan α =
3.平方关系 平方关系 2.商数关系 商数关系
课堂练习1 课堂练习
5 满足: 第三象限角 α 满足: α = tan 12 求: α , cos α , cot α sin
2 2 2
sin 2 α + cos 2 α = 1 1 + tan 2 α = sec 2 α
1 解:sec α = 1 + tan α ⇒ cos α = 1 + tan 2 α 12 5 cos α = − ,sin α = − 解毕 13 13
1 + cot 2 α = csc 2 α
课堂练习2 课堂练习
已知 sin α = m, (0 <| m |< 1)
一、同角三角比的关系
1.倒数关系 倒数关系