集合的含义与表示
集合的含义与表示

(3)使用描述法时,还应注意以下几点: ①写清集合中元素的代号,如实数或实数对; ②说明该集合中元素具有的性质,如方程、不等式、函数 或几何图形等; ③不能出现未被说明的字母; ④所有描述的内容都要写在花括号内,用于描述的语句力 求简明、确切.
下列说法:
(1)集合{x∈N|x3=x}用列举法表示为{-1,0,1};
(2)实数集可以表示为{x|x 为所有实数}或{R};
(3)方程组xx-+yy==-3 1 的解集为{x=1,y=2}.
其中正确的有( )
A.3 个
B.2 个
C.1 个
D.0 个
【错解】 A 【错因】 对于描述法表示集合,一应清楚符号“{x|x的属性}” 表示的是所有具有某种属性的x的全体,而不是部分;二应从代表元素 入手,弄清楚代表元素是什么. 【正解】 (1)由x3=x,即x(x2-1)=0,得x=0或x=1或x=-1, 因为-1∉N,故集合{x∈N|x3=x}用列举法表示应为{0,1}. (2)集合表示中的符号“{}”已包含“所有”、“全体”等含义, 而符号“R”已表示所有的实数构成的集合,实数集正确的表示应为 {x|x为实数}或R.
【解析】 (1)∈,∉,(2)∈,∈,(3)∉,∈
集合的表示方法
用适当的方法表示下列集合 (1)比4大2的数; (2)方程x2+y2-4x+6y+13=0的解集; (3)不等式x-2>3的解的集合; (4)二次函数y=x2-1图象上所有点组成的集合. 【思路点拨】 由题目可获取以下主要信息: ①已知4个集合; ②用适当的方法表示各个集合.对于(1),比4大2的数就是6,宜 用列举法;对于(2),方程为二元二次方程,可将方程左边因式分解后 求解,宜用列举法;对于(3),不等式的解有无数个,宜于描述法;对 于(4),所给二次函数图象上的点有无数个,宜采用描述法.
集合的含义与表示

集合的含义与表示知识点1集合的含义与表示(1)元素与集合的关系:属于记为∈;不属于记为∉.(2)集合的三种表示法:列举法、描述法、图示法.思考:集合A={x|y=x2},B={y|y=x2},C={(x,y)|y=x2}是同一个集合吗?提示:不是.集合A是函数y=x2的定义域,集合B是函数y=x2的值域,集合C 是函数y=x 2图象上的点集.知识点2集合间的基本关系(1)集合间的基本关系:子集、真子集、相等.(2)“⊆”与“”的区别:A⊆B⇒A=B或A B,若A⊆B和A B同时成立,则AB更准确.思考:若{x|ax+1=0}⊆{x|x2-1=0},则实数a的值为________.提示:0或-1或1.[拓展]1.集合的子集和真子集具有传递性:若A⊆B,B⊆C,则A⊆C;若A B,B C,则A C.2.含有n个元素的集合有2n个子集,有2n-1个非空子集,有2n-1个真子集,有2n -2个非空真子集.知识点3集合的基本运算和性质集合的并集集合的交集集合的补集符号表示A∪B A∩B 若全集为U,则集合A 的补集为∁U A图形表示意义{x|x∈A,或x∈B}{x|x∈A,且x∈B}{x|x∈U,且x∉A}性质A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆AA∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆BA∪(∁U A)=U;A∩(∁U A)=∅;∁U(∁U A)=A;∁U(A∩B)=(∁U A)∪(∁U B);∁U(A∪B)=(∁U A)∩(∁U B)1.思考辨析(在括号内打“√”或“×”)(1)若{x2,1}={0,1},则x=0,1.()(2){x|x≤1}={t|t≤1}.()(3)对于任意两个集合A、B,关系(A∩B)⊆(A∪B)恒成立.()(4)若A∩B=A∩C,则B=C.()答案:(1)×(2)√(3)√(4)×2.(知识点2)若集合A={x∈N|x≤10},a=22,则下面结论中正确的是()A.{a}⊆A B.a⊆AC.{a}∈A D.a∉A解析:选D.A={0,1,2,3},a=22∉A,故选D.3.(知识点3)已知集合A={x|3≤x<7},B={x|2<x<10},则(∁R A)∩B=.⇐源自必修一P11例9解析:因为∁R A={x|x<3或x≥7},所以(∁R A)∩B={x|2<x<3或7≤x<10}.答案:{x|2<x<3或7≤x<10}4.(知识点3)设集合A={1,2,4},B={x|x2-4x+m=0}. 若A∩B={1},则B=()⇐源自必修一P12A组T6A.{1,-3}B.{1,0}C.{1,3} D.{1,5}解析:选C.∵A∩B={1},∴1∈B,∴1-4+m=0,∴m=3.由x2-4x+3=0,解得x=1或x=3.∴B={1,3}.经检验符合题意.故选C.。
集合的含义及其表示

集合的含义及其表示一、集合的相关概念元素集合一般用大括号”{}”表示集合,也常用大写的拉丁字母A、B、C…表示集合.用小写的拉丁字母a,b,c…表示元素二、集合三大特性:思考:判断以下元素的全体是否组成集合,并说明理由;(1) 大于3小于11的偶数;(2) 我国的小河流。
三、重要数集:四、元素对于集合的关系五、集合的分类有限集:无限集:空集:六、集合的表示方法1、列举法:例1 用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1~20以内的所有质数组成的集合。
思考题 (1)你能用自然语言描述集合{2,4,6,8}吗? (2)你能用列举法表示不等式x-7<3吗?2、描述法:3、Venn图:例2 试分别用列举法和描述法表示下列集合:(1)方程x2-2=0的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合。
课堂小结集合间的基本关系观察以下几组集合,并指出它们元素间的关系:① A={1,2,3}, B={1,2,3,4,5};② A={x| x>1}, B={x | x2>1};③ A={四边形}, B={多边形};④ A={x | x是两边相等的三角形},B={x| x是等腰三角形} .一、子集的定义:一般地,对于两个集合A与B,如果集合A中的任何一个元素都是集合B的元素,我们就说这两个集合有包含关系,称集合A为集合B 的子集。
记作:读作:Venn图表示:判断集合A是否为集合B的子集,若是则在()打√,若不是则在()打×:①A={1,3,5}, B={1,2,3,4,5,6} ( )②A={1,3,5}, B={1,3,6,9} ( )③A={0}, B={x x2+2=0} ( )④A={a,b,c,d}, B={d,b,c,a} ( )二、集合相等的定义:一般地,对于两个集合A与B, 如果集合A中的都是集合B的元素,同时集合B中的都是集合A的元素,则称集合A等于集合B,记作三、真子集对于两个集合A与B,如果A B,但存素 ,则称集合A 是集合B的真子集.记作A B四、几个结论①空集是任何集合的子集Φ A②空集是任何非空集合的真子集Φ A (A ≠ Φ)③任何一个集合是它本身的子集,即 A A④对于集合A ,B ,C ,如果 A B,且B C ,则A C例3 设A={x,x 2,xy}, B={1,x,y},且A=B ,求实数x,y 的值.例4 已知集合 与集合 满足Q P , 求a 的取值组成的集合A 作业布置1.教材P.12 A 组 5 B 组2.2. 若A={x |-3≤x≤4}, B={x | 2m -1≤x≤m+1},当B A 时,求实数m 的取值范围.3.已知}06|{2=-+=x x x P },01|{=+=ax x Q {}{}AC B C A B A 求,8,4,2,0,5,3,2,1,,==⊆⊆1.1.3 集合的基本运算(1)观察集合A,B,C元素间的关系:(1) A={4,5,6,8}B={3,5,7,8} C={3,4,5,6,7,8}(2) A={x|x是有理数},B={x|x是无理数}, C={x|x是实数}一、并集一般地,由属于集合A或属于集合B的所有元素组成的集合叫做A与B的并集,记作读作即A∪B=例1. A={4,5,6,8},B={3,5,7,8},求A∪B.例2.设A={x|-1<x<2},B={x|1<x<3},求A∪B性质1A∪A = A∪φ = A∪B B∪A二、交集观察集合A,B,C元素间的关系:A={4,5,6,8}, B={3,5,7,8},C={5,8}一般地,由既属于集合A又属于集合B的元素组成的集合叫做A与B的交集。
集合的含义与表示

称这两个集合相等
湖南省长沙市一中卫星远程学校
练习1.下列指定的对象,能构成一个集合 ( B ) 的是 ①很小的数 ②不超过 30的非负实数 ③直角坐标平面的横坐标与纵坐标相等的点 ④的近似值 ⑤高一年级优秀的学生 ⑥所有无理数 ⑦大于2的整数 ⑧正三角形全体 A. ②③④⑥⑦⑧ C. ②③⑥⑦ B. ②③⑥⑦⑧ D. ②③⑤⑥⑦⑧
解:当a=0时,x=-1.
当a≠0时,=16-4×4a=0. a=1. 此时x=-2. ∴a=1时这个元素为-2. ∴a=0时这个元素为-1.
课堂练习
1.教科书5面练习第1、2题
2.教科书11面习题1.1第1、2题
课堂小结
1.集合的定义 2.集合元素的性质 3.集合与元素的关系 4.集合的表示 5.集合的分类
解:当a=0时,x=-1.
例4已知集合
A={x|ax2+4x+4=0,x∈R,a∈R} 只有一个元素,求a的值与这个元素.
解:当a=0时,x=-1.
当a≠0时,=16-4×4a=0. a=1. 此时x=-2.
例4已知集合
A={x|ax2+4x+4=0,x∈R,a∈R} 只有一个元素,求a的值与这个元素.
2.集合的表示:
集合常用大写字母A,B,C,…表示,元素常用 小写字母a,b,c,…表示.
3.集合与元素的关系:
如果a是集合A的元素,就说a属于集 合A,记作a∈A. 如果a不是集合A的元素,就说a不属 于集合A,记作aA.
例如:A表示方程x2=1的解. 2A,1∈A.
4.常用数集及记法:
N:自然数集(含0)
-1 3
x | 0
x | x
x 2
1.1.1集合的含义与表示

1.1.1集合的含义与表⽰1.1.1集合的含义与表⽰1. 元素:我们把研究的对象统称为元素;常⽤⼩写字母a , b , c …表⽰元素。
2. 集合:把能够确定的不同元素的全体叫做集合,简称集.常⽤⼤写字母A ,B ,C …表⽰。
3. 集合的性质:(1)确定性:元素必须是确定的。
是否有⼀个明确的客观标准来鉴定这些对象,若有,则能构成集合,否则不能构成集合。
(2)互异性:元素必须是互异不相同的。
(3)⽆序性: 元素是⽆先后顺序的. 如:{1,2},{2,1}为同⼀集合。
4. 集合相等:构成两个集合的元素是⼀样的。
5. 集合与元素的关系:如果a 是集合A 的元素,就说a 属于集合A ,记作a ∈A . 如果a 不是集合A 的元素,就说a 不属于集合A ,记作a ?A . 6. 重要的数集:N :⾃然数集(含0)N+:正整数集(不含0) Z :整数集 Q :有理数集 R :实数集7. 空集(?):把没有元素的集合叫做空集,记作?。
8. 集合的表⽰⽅法:列举法、描述法、区间表⽰列举法:将集合中元素⼀⼀列举出来,元素之间⽤逗号隔开,⽤花括号{ }括起来。
描述法:⽤集合所含元素的共同特征表⽰集合的⽅法,称为描述法。
如:在⼤括号内先写上表⽰这个集合元素的⼀般符号及取值(或变化)范围,再画⼀条竖线,在竖线后写出这个集合中元素所具有的共同特征。
区间表⽰:设a 、b 是两个实数,且a①满⾜不等式a ≤x ≤b 的实数x 的集合, 叫作闭区间,记作 [a,b];②满⾜不等式a③满⾜不等式a ≤x{}|10x R x ∈<{}|∈⼀般符号范围共同特征{x| a练习:⼀、说法正确的是( ) 1. 接近于0的数的全体构成⼀个集合 2. 棱柱的全体构成⼀个集合 3. 未来世界的⾼科技产品构成⼀个集合 4. 不⼤于3的所有⾃然数构成⼀个集合 5. 漂亮的花 6. 正三⾓形全体⼆、集合{1,2}与集合{(1,2)}是否相等?集合{(1,2),(2,1)}与集合{(2,1),(1,2)}是否相等?三、⑴ 0 ? ⑵ {0} ? 四、⽤列举法表⽰下列集合:(1) ⽅程x x =2 的所有实数根组成的集合; (2) ⽅程0)1(2=-x 的所有实数根组成的集合;(3) 由1~20以内的所有质数组成的集合。
集合的含义及表示方法

确定性
集合中的元素具有确定性,即每个元素是否属于某个集合是明确的。对于任意一 个元素,如果它属于某个集合,则它只属于该集合;如果不属于该集合,则它与 该集合没有关系。
确定性的性质使得集合可以准确地描述事物的分类和归属问题,是数学和计算机 科学中基本的概念之一。
集合的含义及表示方法
• 集合的基本概念 • 集合的运算 • 集合的性质 • 集合的应用
01
集合的基本概念
集合的定义
01 集合是由确定的、不同的元素所组成的总体 。
02
集合中的元素具有确定性,即每一个对象是 否属于某个集合是确定的。
03
集合中的元素具有互异性,即集合中不会有 重复的元素。
04
集合中的元素具有无序性,即集合中元素的 排列顺序不影响集合本身。
数据库系统
数据库系统是计算机科学中用来存储和管理大量数据的重要工具。集合理论在数据库设计 中起着重要的作用,例如关系数据库中的表可以看作是集合的表示。
在日常生活中的应用
分类问题
在生活中,我们经常需要对事物进行分类。集合可以用来表示不同的类别,帮助我们更好地组织 和理解事物。
决策制定
在决策制定过程中,我们经常需要考虑多个因素或条件。集合可以帮助我们表示这些因素或条件 ,并分析它们之间的关系,从而做出更好的决策。
03
补集
补集是指全集中不属于某个集合的元素组成的集合。
补集的表示方法是在一个集合后面加上"′",例如:A′。
补集运算满足反演律,即A′=(全集−A)∪(全集−B)。
03
集合的性质
无序性
集合中的元素没有固定的顺序,即元素的位置不影响集合的性质。例如,集合A={1,2,3}和集合B={3,2,1}是同一个集合,因为 元素的无序性,集合A和集合B具有相同的性质。
高中数学知识点总结:集合的含义与表示

高中数学知识点总结 第 1 页 共 1 页 高中数学知识点总结:集合的含义与表示
集合的含义与表示
(1)集合的概念
集合中的元素具有确定性、互异性和无序性.
(2)常用数集及其记法
N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.
(3)集合与元素间的关系
对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一.
(4)集合的表示法
①自然语言法:用文字叙述的形式来描述集合.
②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.
③描述法:{x |x 具有的性质},其中x 为集合的代表元素.
④图示法:用数轴或韦恩图来表示集合.
(5)集合的分类
①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).。
集合的含义与表示

集合的含义与表示目录集合的含义与表示 (1)知识点: (1)一、集合的三性:确定性、互异性、无序性 (3)①确定性 (3)②互异性 (4)二、集合的表示方法 (7)①元素与集合的关系 (7)②列举法 (8)③描述法 (10)三、区别点集与数集 (11)知识点:1.集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。
一般的研究对象统称为元素,一些元素组成的总体叫集合,简称为集。
2.集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。
例:世界上最高的山、中国古代四大美女、教室里面所有的人……(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。
例:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合例:{a,b,c}和{a,c,b}是表示同一个集合.3.集合的表示:{…} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
①列举法:将集合中的元素一一列举出来{a,b,c……}②描述法:将集合中元素的公共属性描述出来,写在大括号内表示集合。
{x∈R| x-3>2} ,{x| x-3>2}③语言描述法:例:{不是直角三角形的三角形}4.集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合例:{x|x2=-5}5.元素与集合的关系:(1)元素在集合里,则元素属于集合,即:a∈A∉(2)元素不在集合里,则元素不属于集合,即:a A注意:常用数集及其记法:非负整数集(即自然数集)记作:N;正整数集N*或N+;整数集Z;有理数集Q;实数集R.一、集合的三性:确定性、互异性、无序性①确定性1.下列各组对象能够构成集合的是( )A. 我国所有的老人B. 我们班的高个子C. 长命万岁的人D. 我国的小河流答案:C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习1.下列指定的对象,能构成一个集合 ( B ) 的是 ①很小的数 ②不超过 30的非负实数 ③直角坐标平面的横坐标与纵坐标相等的点 ④的近似值 ⑤高一年级优秀的学生 ⑥所有无理数 ⑦大于2的整数 ⑧正三角形全体 A. ②③④⑥⑦⑧ C. ②③⑥⑦ B. ②③⑥⑦⑧ D. ②③⑤⑥⑦⑧
探讨以下问题:
例3若方程x2-5x+6=0
和方程x2-x-2=0的解为元素的集为
M,则M中元素的个数为 A.1 B.2 C.3 D.4 ( C )
例4已知集合
A={x|ax2+4x+4=0,x∈R,a∈R} 只有一个元素,求a的值与这个元素.
例4已知集合
A={x|ax2+4x+4=0,x∈R,a∈R} 只有一个元素,求a的值与这个元素.
注:集合相等:构成两个集合的元素是一样的
例题:
• 1.{著名的数学家} • 2.A={2,3,4,5}与B={4,5,6,7}
合并为C={ }
3 • 3.由实数x、-x、1x1、 x2 , x
组成
的集合最多有
个元素
• 4.若方程x-5x+6=0和方程x-x-2=0 的解为元素的集合为M,则M中元素 的个数为( )
列举法
练习:⑴ 0 ⑵{0}
(填 ∈ 或 ) (填=或≠)
(六)、集合的分类
• 2、从集合中元素的属性分类: (1)数集; 例如:{奇数}={x|x=2k+1,k∈ Z} 思考:偶数集如何表示 (2)点集; 例如:{(x,y)|x>0,y>0} (3)图形集; 例如:{三角形} (4)事物集 例如:{本班的全体学生} 等等。。。
课后作业
教科书12面习题1.1第3、4题
预习提纲 • 两个集合之间存在什么关系? • 子集,真子集的概念
典例辨析
(1)抛物线y x 2上的点 (2)抛物线y x 2上的点的横坐标 (3)抛物线y x 2上的点的纵坐标
元素相同, 元素相同,
意义不同
1.用描述法表示下列集合 意义不同
解:( 1 ) {( x, y) | y x }
2
(3){y | y x }
2
(2){x | y x }
2
典例分析:
2、用列举法表示下列集合: ①{x∈N|x是15的约数}; ②{(x,y)|x∈{1,2},y∈{2,3}}; ③{(x,y)|3x+2y=16,x∈N,y∈N} 解:①{1,3,5,15} ②{(1,2),(1,3),(2,2),(2,3)} ③{(0,8),(2,5),(4,2)} 注意:②、③都是点集,要注意点集的写法,如{(1,2)}不能写成 {1,2}或{x=1,y=2};点(1,2)是集合{(1,2)}中的一个元素。
(五)、集合的表示方法
• 3.图示法
例如:
用一条封闭曲线的内部表示集合的方法。 这种图成为Venn(文氏图,韦恩图)
A 1,2, 3,4
上面两个图分别表示集合A和集合{1,2,3,4}
(六)、集合的分类
1、按照集合中元素个数分类: (1)有限集:含有有限个元素的集合 例如:A={-1,1} 描述法 (2)无限集:含有无数个元素的集合; 例如:N={x∣x≥1} (3)空集:不含任何元素的集合。记为Φ 例如:{x∣x+1=0}
解:当a=0时,x=-1.
例4已知集合
A={x|ax2+4x+4=0,x∈R,a∈R} 只有一个元素,求a的值与这个元素.
解:当a=0时,x=-1.
当a≠0时,=16-4×4a=0. a=1. 此时x=-2.
例4已知集合
A={x|ax2+4x+4=0,x∈R,a∈R} 只有一个元素,求a的值与这个元素.
例:方程(x-2)(x-3)=0的所有实数根 所组成的集合:{2,3}
练习
• 1. 大于0且小于10的奇数的集合
• 2. 15以内的质数
质数:一个数(除1外),如果只有1和它本身两个因 数,这样的数叫做质数,又称素数。
“,”分隔,不重不漏,无顺序 优点:集合中的元素清晰可见,一目了然
(五)、集合的表示方法
例1 用符号“∈”或“∈”填空:
(1)3.14_Q; (3)0 _ N+ (5)(-2)0 _ N+
(7) 2
(2)
π_ Q N
_
;
(4)0 _ (6)2 (8) 2
5 5
Z R
5
_
Q
_
(五)、集合的表示方法
• 1.列举法
把集合的元素一一列举出来,并用花括号“{ }” 括起来表示集合的方法叫做列举法.
{x | x 2 6x 5 0}
x x
2
x 1 0
{Байду номын сангаас
1 5 1 5 , } 2 2
• (3){2,4,6,8} • (4)
{x | x是大于 1且小于9的偶数}或 {x | x 2n,1 n 4, n N}
x N 3 x 7
{4,5,6}
3、直线y=2x+3上的点集为P,则P=___________ 点(2,7)与集合P有什么关系? 解:P={(x,y)|y=2x+3} (2,7)∈P
例题
例1若x∈R,则数集{1,x,x2}中元素x
应满足什么条件.
例题
例1若x∈R,则数集{1,x,x2}中元素x
应满足什么条件. 解:∵x≠1且x2≠1且x2≠x,
例题
例1若x∈R,则数集{1,x,x2}中元素x
应满足什么条件. 解:∵x≠1且x2≠1且x2≠x,
∴ x≠1且x≠-1且x≠0.
解:当a=0时,x=-1.
当a≠0时,=16-4×4a=0. a=1. 此时x=-2. ∴a=1时这个元素为-2. ∴a=0时这个元素为-1.
课堂练习
1.教科书5面练习第1、2题
2.教科书11面习题1.1第1、2题
课堂小结
1.集合的定义 2.集合元素的性质 3.集合与元素的关系 4.集合的表示 5.集合的分类
(1) 本班的高个子同学能构成一个集合吗?
(2) {1,2,2,3}是含1个1,2个2, 1个3的四个元 素的集合吗?
(3) {a,b,c,d}和{b,c,d,a}是不是表示同一个 集合?
(2)、集合中元素的特性
①确定性:
集合中的元素必须是确定的。
②互异性:
集合中的元素没有重复。
③无序性: 集合中的元素没有先后顺序之分
§1.1.1 集合的含义与表示
第一章
集合与函数概念
1.1 集合
§1.1.1 集合的含义与表示
活动
1.列举生活中的集合的例子;
2.分析、概括各实例的共同特征
同一类对象的汇集
复习回顾(数学中的例子)
1、数的分类:正数的集合与负数的集合; 2、不等式的解集:如2x-1>3的所有的解; 3、圆的定义:到定点的距离等于定长的所 有的点; 4、线段垂直平分线定义:到线段两端点的 距离相等的所有的点 5、所有的三角形
A.1
B.2
C.3
D.4
(三)、元素与集合的关系:
• 如果对象a是集合A的元素,就记 作a∈A,读作a属于A; • 如果对象a不是集合A的元素,就 记作a A,读作a不属于A。
•如:2∈Z,2.5 Z
(四)、常用数集及记法
(1)自然数集(非负整数集) : 全体非负整数的集合。记作N (2)正整数集: 非负整数集内排除0的集。记作N*或N+ (3)整数集:全体整数的集合。记作Z (4)有理数集:全体有理数的集合。记作Q (5)实数集:全体实数的集合。记作R
同一类对象的汇集
(一)集合的有关概念:
1、集合的含义
集合:某些指定对象集在一起就 成为 一个集合,也简称集(set)。 表示:①大括号{}
②大写拉丁字母A、B、C…
(一)集合的有关概念:
2、元素的定义: 元素:集合中的每一个对象叫做该集合 的元素(element)或简称元。
表示:小写拉丁字母a、b、c…
例2设x∈R,y∈R,观察下面四个集合 A={ y=x2-1 } B={ x | y=x2-1 } C={ y | y=x2-1 } D={ (x, y) | y=x2-1 } 它们表示含义相同吗?
例3若方程x2-5x+6=0
和方程x2-x-2=0的解为元素的集为
M,则M中元素的个数为 A.1 B.2 C.3 D.4 ( C )
• 2. 描述法 用集合所含元素的共同特征表示集合的 方法。 一般格式:{x︱P(x)}
其中①x:元素即研究对象②︱:分隔号③P(x):集 合元素的共同属性
如:不等式3x-2﹥1的解集{x︱ x﹥1}
练习
• 1.
使y
1
x
2
x6
有意义的实数 x的集合:
2.所有被3除余1的整数
练习
• 3.把下列集合用另一种形式表示出来 • (1){1,5} • (2)