精品资料-行测专项:数字推理

合集下载

公务员考试行测-数字推理专题

公务员考试行测-数字推理专题

公务员考试行测-数字推理专题解题关键:1. 培养对数字计算的敏感度。

2. 熟练掌握各类基本数列(自然数列、平方数列、立方数列等)。

3. 熟练掌握所列的五大数列及其变形。

数字推理题型一般包括以下几个方面:多级数列【例1】9,20,42,86,(),350A.172B.174C.180D.182【答案】B【解析】相邻两项两两相减,,11,22,44,(88),(176),这是公比为2的等比数列。

所以()=86+88=174。

因此,本题答案为B选项。

【例2】4,10,30,105,420,()A.956B.1258C.1684D.1890【答案】D【解析】该数列相邻两项具有明显的倍数关系,可采取两两做商,得到新数列:2.5,3,3,5,4,(4.5)所以()=420*4.5=1890. 因此,本题答案为D选项。

【例3】82,98,102,118,62,138,()A. 68B. 76C. 78D. 82【答案】D【解析】该数列相邻两项具有波动特性,可采取两两做和,得到新数列:180,200,220,180,200,(220)所以()=220-138=82. 因此,本题答案为D选项。

二. 多重数列【例1】1、3、2、6、5、15、14、()、()、 123A.41,42B.42,41C.13,39D.24,23【答案】D【解析】该数列项数过多,考虑奇偶项分开,奇数项:1,2,5,14,();偶数项:2,6,15,(),123,奇数与偶数项做差均为等比数列。

因此,本题答案为D选项。

【例2】1615,2422,3629,5436,()A.8150B.8143C.7850D.7843【答案】B此题考虑到每项的数字太大,可以把四位数分解成了2个两位数,此数列就分解成:16,15,24,22,36,29,54,36,()。

考虑奇偶项分开,奇数项:16,24,36,54,();偶数项:15,22,29,36,()。

行测九宫格数字推理题

行测九宫格数字推理题

行测九宫格数字推理题
九宫格数字推理题是一类考察逻辑推理和数学运算能力的题目。

常见的九宫格数字推理题包括填空题和序号题。

1. 填空题:给出一部分九宫格内的数字,需要根据已知数字的关联规律填写其他空格内的数字。

例如:
```
1 2 3
4 5 6
7 8 ?
```
答案为9,因为每行数字的和都是6(1+2+3=4+5+?
=7+8+9=15),每列数字的和都是12(1+4+7=2+5+8=3+6+?
=12),因此缺少的数字为9。

2. 序号题:给出一个完整的九宫格数字,并列出一些规律或者算式,需要根据规律找到缺少的数字并填入正确的位置。

例如: ```
1 3 2
4 6 ?
7 9 8
规律:
第一行数字都是奇数,第二行数字都是偶数,第三行数字倒
序排列。

答案为5,根据规律,第二行数字都是偶数,因此缺少的数
字为5。

除了上述例子,九宫格数字推理题还可以涉及到数字之间的加减乘除运算,数字的位置排列规律,颜色或形状的规律等。

在解答这类题目时,需要观察已知的数字,寻找规律,并运用逻辑推理和数学运算能力进行推理。

行测:数字推理题100道(详解)

行测:数字推理题100道(详解)

数字推理题500道详解【1】7,9,-1,5,( )A.4;B.2;C.-1;D.-3剖析:选D,7+9=16; 9+(-1)=8;(-1)+5=4;5+(-3)=2 , 16,8,4,2等比【2】3,2,5/3,3/2,( )A.1/4;B.7/5;C.3/4;D.2/5剖析:选B,可化为3/1,4/2,5/3,6/4,7/5,分子3,4,5,6,7,分母1,2,3,4,5【3】1,2,5,29,()A.34;B.841;C.866;D.37剖析:选C,5=12+22;29=52+22;( )=292+52=866【4】2,12,30,()A.50;B.65;C.75;D.56;剖析:选D,1×2=2; 3×4=12; 5×6=30; 7×8=()=56【5】2,1,2/3,1/2,()A.3/4;B.1/4;C.2/5;D.5/6;剖析:选C,数列可化为4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,8等差,所今后项为4/10=2/5,【6】 4,2,2,3,6,()A.6;B.8;C.10;D.15;剖析:选D,;2/2=1;; 6/3=2;,1,1.5, 2等比,所今后项为×6=15【7】1,7,8,57,()A.123;B.122;C.121;D.120;剖析:选C,12+7=8; 72+8=57; 82+57=121;【8】 4,12,8,10,()A.6;B.8;C.9;D.24;剖析:选C,(4+12)/2=8;(12+8)/2=10; (8+10)/2=9【9】1/2,1,1,(),9/11,11/13A.2;B.3;C.1;D.7/9;剖析:选C,化成 1/2,3/3,5/5 ( ),9/11,11/13这下就看出来了只能是(7/7)留意分母是质数列,分子是奇数列.【10】95,88,71,61,50,()A.40;B.39;C.38;D.37;剖析:选A,思绪一:它们的十位是一个递减数字 9.8.7.6.5 只是少开端的4 所以选择A.思绪二:95 - 9 - 5 = 81;88 - 8 - 8 = 72;71 - 7 - 1 = 63;61 - 6 - 1 = 54;50 - 5 - 0 = 45;40 - 4 - 0 = 36 ,构成等差数列.【11】2,6,13,39,15,45,23,( )A. 46;B. 66;C. 68;D. 69;剖析:选D,数字2个一组,后一个数是前一个数的3倍【12】1,3,3,5,7,9,13,15(),()A:19,21;B:19,23;C:21,23;D:27,30;剖析:选C,1,3,3,5,7,9,13,15(21),( 30 )=>奇偶项分两组 1.3.7.13.21和 3.5.9.15.23个中奇数项 1.3.7.13.21=>作差 2.4.6.8等差数列,偶数项3.5.9.15.23=>作差2.4.6.8等差数列【13】1,2,8,28,();;;;剖析:选B, 1×2+2×3=8;2×2+8×3=28;8×2+28×3=100【14】0,4,18,(),100;;;;剖析: A,思绪一:0.4.18.48.100=>作差=>4.14.30.52=>作差=>10.16.22等差数列;思绪二:13-12=0;23-22=4;33-32=18;43-42=48;53-52=100;思绪三:0×1=0;1×4=4;2×9=18;3×16=48;4×25=100;思绪四:1×0=0;2×2=4;3×6=18;4×12=48;5×20=100 可以发明:0,2,6,(12),20依次相差2,4,(6),8,思绪五:0=12×0;4=22×1;18=32×2;( )=X2×Y;100=52×4所以()=42×3【15】23,89,43,2,();;;;剖析:选A,原题中各数本身是质数,并且各数的构成数字和2+3=5.8+9=17.4+3=7.2也是质数,所以待选数应同时具备这两点,选A 【16】1,1, 2, 2, 3, 4, 3, 5, ( )剖析:思绪一:1,(1,2),2,(3,4),3,(5,6)=>分 1.2.3和(1,2),(3,4),(5,6)两组.思绪二:第一项.第四项.第七项为一组;第二项.第五项.第八项为一组;第三项.第六项.第九项为一组=>1,2,3;1,3,5;2,4,6=>三组都是等差【17】1,52, 313, 174,( );;;;剖析:选B,52中5除以2余1(第一项);313中31除以3余1(第一项);174中17除以4余1(第一项);515中51除以5余1(第一项)【18】5, 15, 10, 215, ( )A.415;B.-115;C.445;D.-112;答:选B,前一项的平方减后一项等于第三项,5×5-15=10; 15×15-10=215; 10×10-215=-115【19】-7,0, 1, 2, 9, ( )A.12;B.18;C.24;D.28;答:选D, -7=(-2)3+1; 0=(-1)3+1; 1=03+1;2=13+1;9=23+1; 28=33+1【20】0,1,3,10,( )A.101;B.102;C.103;D.104;答:选B,思绪一: 0×0+1=1,1×1+2=3,3×3+1=10,10×10+2=102;思绪二:0(第一项)2+1=1(第二项) 12+2=3 32+1=10 102+2=102,个中所加的数呈1,2,1,2 纪律.思绪三:各项除以3,取余数=>0,1,0,1,0,奇数项都能被3整除,偶数项除3余1;【21】5,14,65/2,( ),217/2;;C. 64;D. 65;答:选B,5=10/2 ,14=28/2 , 65/2, ( 126/2), 217/2,分子=> 10=23+2; 28=33+1;65=43+1;(126)=53+1;217=63+1;个中2.1.1.1.1头尾相加=>1.2.3等差【22】124,3612,51020,()A.7084;B.71428;C.81632;D.91836;答:选B,思绪一: 124 是 1. 2. 4; 3612是 3 .6. 12; 51020是 5. 10.20;71428是7, 14 28;每列都成等差.思绪二:124,3612,51020,(71428)把每项拆成3个部分=>[1,2,4].[3,6,12].[5,10,20].[7,14,28]=>每个[ ]中的新数列成等比.思绪三:首位数分离是1.3.5.( 7 ),第二位数分离是:2.6.10.(14);最后位数分离是:4.12.20.(28),故应当是71428,选B.【23】1,1,2,6,24,( )A,25;B,27;C,120;D,125解答:选C.思绪一:(1+1)×1=2 ,(1+2)×2=6,(2+6)×3=24,(6+24)×4=120思绪二:后项除以前项=>1.2.3.4.5 等差【24】3,4,8,24,88,( )A,121;B,196;C,225;D,344解答:选D.思绪一:4=20 +3,8=22 +4,24=24 +8,88=26 +24,344=28 +88思绪二:它们的差为以公比2的数列:4-3=20,8-4=22,24-8=24,88-24=26,?-88=28,?=344.【25】20,22,25,30,37,( )A,48;B,49;C,55;D,81解答:选A.两项相减=>2.3.5.7.11质数列【26】1/9,2/27,1/27,( )A,4/27;B,7/9;C,5/18;D,4/243;答:选D,1/9,2/27,1/27,(4/243)=>1/9,2/27,3/81,4/243=>分子,1.2.3.4 等差;分母,9.27.81.243 等比【27】√2,3,√28,√65,( )A,2√14;B,√83;C,4√14;D,3√14;答:选D,原式可以等于:√2,√9,√28,√65,( ) 2=1×1×1 + 1;9=2×2×2 + 1;28=3×3×3 + 1;65=4×4×4 + 1;126=5×5×5 + 1;所以选√126 ,即 D 3√14【28】1,3,4,8,16,( )A.26;B.24;C.32;D.16;答:选C,每项都等于其前所有项的和1+3=4,1+3+4=8,1+3+4+8=16,1+3+4+8+16=32【29】2,1,2/3,1/2,( )A.3/4;B.1/4;C.2/5;D.5/6;答:选C ,2, 1 , 2/3 , 1/2 , (2/5 )=>2/1, 2/2, 2/3, 2/4 (2/5)=>分子都为2;分母,1.2.3.4.5等差【30】1,1,3,7,17,41,( )A.89;B.99;C.109;D.119 ;答:选B, 从第三项开端,第一项都等于前一项的2倍加上前前一项.2×1+1=3;2×3+1=7;2×7+3=17; …;2×41+17=99【31】5/2,5,25/2,75/2,()答:后项比前项分离是2,,3成等差,所今后项为,()/(75/2)=7/2,所以,()=525/4【32】6,15,35,77,( )A. 106;B.117;C.136;D.163答:选D,15=6×2+3;35=15×2+5;77=35×2+7;163=77×2+9个中3.5.7.9等差【33】1,3,3,6,7,12,15,( )A.17;B.27;C.30;D.24;答:选D, 1, 3, 3, 6, 7, 12, 15, ( 24 )=>奇数项 1.3.7.15=>新的数列相邻两数的差为2.4.8 作差=>等比,偶数项 3.6.12.24 等比【34】2/3,1/2,3/7,7/18,()A.4/11;B.5/12;C.7/15;D.3/16剖析:选A.4/11,2/3=4/6,1/2=5/10,3/7=6/14,…分子是4.5.6.7,接下来是8.分母是6.10.14.18,接下来是22【35】63,26,7,0,-2,-9,()A.-16;B.-25;C;-28;D.-36剖析:选 C.43-1=63;33-1=26;23-1=7;13-1=0;(-1)3-1=-2;(-2)3-1=-9;(-3)3 - 1 = -28【36】1,2,3,6,11,20,()A.25;B.36;C.42;D.37剖析:选D.第一项+第二项+第三项=第四项 6+11+20 = 37【37】1,2,3,7,16,( );;;D.63剖析:选B,前项的平方加后项等于第三项【38】2,15,7,40,77,()A.96;B.126;C.138;D.156剖析:选C,15-2=13=42-3,40-7=33=62-3,138-77=61=82-3【39】2,6,12,20,();;;答:选C,思绪一:2=22-2;6=32-3;12=42-4;20=52-5;30=62-6;思绪二: 2=1×2;6=2×3;12=3×4;20=4×5;30=5×6【40】0,6,24,60,120,();;;;答:选B,0=13-1;6=23-2;24=33-3;60=43-4;120=53-5;210=63-6【41】2,12,30,();;;答:选D,2=1×2;12=3×4;30=5×6;56=7×8【42】1,2,3,6,12,();;;答:选C,分3组=>(1,2),(3,6),(12,24)=>每组后项除以前项=>2.2.2【43】1,3,6,12,();;;答:选B,思绪一:1(第一项)×3=3(第二项);1×6=6;1×12=12;1×24=24个中3.6.12.24等比,思绪二:后一项等于前面所有项之和加2=> 3=1+2,6=1+3+2,12=1+3+6+2,24=1+3+6+12+2【44】-2,-8,0,64,( );;;D.250答:选D,思绪一:13×(-2)=-2;23×(-1)=-8;33×0=0;43×1=64;所以53×2=250=>选D【45】129,107,73,17,-73,( );;;;答:选C, 129-107=22; 107-73=34;73-17=56;17-(-73)=90;则-73 - ( )=146(22+34=56;34+56=90,56+90=146)【46】32,98,34,0,();;C. 3;;答:选C,思绪一:32,98,34,0,3=>每项的个位和十位相加=>5.17.7.0.3=>相减=>-12.10.7.-3=>视为-1.1.1.-1和12.10.7.3的组合,个中-1.1.1.-1 二级等差12.10.7.3 二级等差.思绪二:32=>2-3=-1(即后一数减前一个数),98=>8-9=-1,34=>4-3=1,0=>0(因为0这一项本身只有一个数字, 故照样推为0),?=>?得新数列:-1,-1,1,0,?;再两两相加再得出一个新数列:-2,0,1.?;2×0-2=-2;2×1-2=0;2×2-3=1;2×3-3=?=>3【47】5,17,21,25,();;;答:选C, 5=>5 , 17=>1+7=8 , 21=>2+1=3 , 25=>2+5=7 ,?=>?得到一个全新的数列5 , 8 , 3 , 7 , ?前三项为5,8,3第一组, 后三项为3,7,?第二组,第一组:中央项=前一项+后一项,8=5+3,第二组:中央项=前一项+后一项,7=3+?,=>?=4再依据上面的纪律还原所求项本身的数字,4=>3+1=>31,所以答案为31【48】0,4,18,48,100,();;;;答:选C,两两相减===>?4,14,30,52 ,{()-100} 两两相减==>10.16,22,()==>这是二级等差=>0.4.18.48.100.180==>选择C.思绪二:4=(2的2次方)×1;18=(3的2次方)×2;48=(4的2次方)×3;100=(5的2次方)×4;180=(6的2次方)×5【49】 65,35,17,3,( );;;;答:选A, 65=8×8+1;35=6×6-1;17=4×4+1;3=2×2-1;1=0×0+1【50】 1,6,13,();;;;答:选A,1=1×2+(-1);6=2×3+0;13=3×4+1;?=4×5+2=22【51】2,-1,-1/2,-1/4,1/8,( );;;;答:选C,分4组,(2,-1);(-1,-1/2);(-1/2,-1/4);(1/8,(1/16))===>每组的前项比上后项的绝对值是 2【52】 1,5,9,14,21,()A. 30;B. 32;C. 34;D. 36;答:选B,1+5+3=9;9+5+0=14;9+14+(-2)=21;14+21+(-3)=32,个中 3.0.-2.-3二级等差【53】4,18, 56, 130, ( );;;答:选A,每项都除以4=>取余数0.2.0.2.0【54】4,18, 56, 130, ( );;;;答:选B,各项除3的余数分离是1.0.-1.1.0,对于1.0.-1.1.0,每三项相加都为0【55】1,2,4,6,9,(),18A.11;B.12;C.13;D.18;答:选C,1+2+4-1=6;2+4+6-3=9;4+6+9-6=13;6+9+13-10=18;个中 1.3.6.10二级等差【56】1,5,9,14,21,()A.30;B. 32;C. 34;D. 36;答:选B,思绪一:1+5+3=9;9+5+0=14;9+14-2=21;14+21-3=32.个中,3.0.-2.-3 二级等差,思绪二:每项除以第一项=>5.9.14.21.32=>5×2-1=9; 9×2-4=14;14×2-7=21; 21×2-10=32.个中,1.4.7.10等差【57】120,48,24,8,( );B. 10;;D. 20;答:选C, 120=112-1; 48=72-1; 24=52-1; 8=32-1; 15=(4)2-1个中,11.7.5.3.4头尾相加=>5.10.15等差【58】48,2,4,6,54,(),3,9A. 6;B. 5;C. 2;D. 3;答:选C,分2组=>48,2,4,6 ; 54,() ,3,9=>个中,每组后三个数相乘等于第一个数=>4×6×2=48 2×3×9=54【59】120,20,( ),-4;;;;答:选A, 120=53-5;20=52-5;0=51-5;-4=50-5【60】6,13,32,69,( );;;答:选B, 6=3×2+0;13=3×4+1;32=3×10+2;69=3×22+3;130=3×42+4;个中,0.1.2.3.4 一级等差;2.4.10.22.42 三级等差【61】1,11,21,1211,( )A.11211;B.111211;C.111221;D.1112211剖析:选C,后项是对前项数的描写,11的前项为1 则11代表1个1,21的前项为11 则21代表2个1,1211的前项为21 则1211代表1个2 .1个1,111221前项为1211 则111221代表1个1.1个2.2个1【62】-7,3,4,( ),11A.-6;B. 7;C. 10;D. 13;答:选B,前两个数相加的和的绝对值=第三个数=>选B【63】,,,( );;;;答:选A,小数点左边:3.5.13.7,都为奇数,小数点右边:3.7.5.7,都为奇数,碰到数列中所稀有都是小数的题时,先不要斟酌运算关系,而是直接不雅察数字本身,往往数字本身是切入点.【64】,( );;;;答:选C,小数点左边:33.88.47.16成奇.偶.奇.偶的纪律,小数点右边:1.1.1.1 等差【65】5,12,24, 36, 52, ( );;;;答:选C,思绪一:12=2×5+2;24=4×5+4;36=6×5+6;52=8×5+12 68=10×5+18,个中,2.4.6.8.10 等差; 2.4.6.12.18奇数项和偶数项分离构成等比.思绪二:2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,37质数列的变形,每两个分成一组=>(2,3)(5,7)(11,13)(17,19)(23,29)(31,37) =>每组内的2个数相加=>5,12,24,36,52,68【66】16, 25, 36, 50, 81, 100, 169, 200, ( );;;;答:选C,奇数项:16, 36, 81, 169, 324=>分离是42, 62, 92, 132,182=>而4,6,9,13,18是二级等差数列.偶数项:25,50,100,200是等比数列.【67】1, 4, 4, 7, 10, 16, 25, ( );;;答:选C,4=1+4-1;7=4+4-1;10=4+7-1;16=7+10-1;25=10+16-1;40=16+25-1【68】7/3,21/5,49/8,131/13,337/21,( );;;答:选A,分母:3, 5, 8, 13, 21, 34两项之和等于第三项,分子:7,21,49,131,337,885分子除以相对应的分母,余数都为1,【69】9,0,16,9,27,( );;;;答:选D, 9+0=9;0+16=16;16+9=25;27+22=49;个中,9.16.25.36分离是32, 42, 52, 62,72,而3.4.5.6.7 等差【70】1,1,2,6,15,( );;;;答:选C,思绪一:两项相减=>0.1.4.9.16=>分离是02, 12, 22, 32, 42,个中,0.1.2.3.4 等差.思绪二:头尾相加=>8.16.32 等比【71】5,6,19,33,(),101A. 55;B. 60;C. 65;D. 70;答:选B,5+6+8=19;6+19+8=33;19+33+8=60;33+60+8=101【72】0,1,(),2,3,4,4,5A. 0;B. 4;C. 2;D. 3答:选C,思绪一:选C=>相隔两项依次相减差为2,1,1,2,1,1(即2-0=2,2-1=1,3-2=1,4-2=2,4-3=1,5-4=1).思绪二:选C=>分三组,第一项.第四项.第七项为一组;第二项.第五项.第八项为一组;第三项.第六项为一组=>即0,2,4;1,3,5; 2,4.每组差都为2.【73】4,12, 16,32, 64, ( );;;;答:选D,从第三项起,每项都为其前所有项之和.【74】1,1,3,1,3,5,6,().A. 1;B. 2;C. 4;D. 10;答:选D,分4组=>1,1; 3,1; 3,5; 6,(10),每组相加=>2.4.8.16 等比【75】0,9,26,65,124,( );;;;答:选B, 0是13减1;9是23加1;26是33减1;65是43加1;124是5 3减1;故63加1为217【76】1/3,3/9,2/3,13/21,( )A.17/27;B.17/26;C.19/27;D.19/28;答:选A,1/3, 3/9, 2/3, 13/21, ( 17/27)=>1/3.2/6.12/18.13/21.17/27=>分子分母差=>2.4.6.8.10 等差【77】1,7/8,5/8,13/32,(),19/128;;;答:选D,=>4/4, 7/8, 10/16, 13/32, (16/64), 19/128,分子:4.7.10.13.16.19 等差,分母:4.8.16.32.64.128 等比【78】2,4,8,24,88,();;;答:选A,从第二项起,每项都减去第一项=>2.6.22.86.342=>各项相减=>4.16.64.256 等比【79】1,1,3,1,3,5,6,().A. 1;B. 2;C. 4;D. 10;答:选B,分4组=>1,1; 3,1; 3,5; 6,(10),每组相加=>2.4.8.16 等比【80】3,2,5/3,3/2,()A.1/2;B.1/4;C.5/7;D.7/3剖析:选C;思绪一:9/3, 10/5,10/6,9/6,(5/7)=>分子分母差的绝对值=>6.5.4.3.2 等差,思绪二:3/1.4/2.5/3.6/4.5/7=>分子分母差的绝对值=>2.2.2.2.2 等差【81】3,2,5/3,3/2,( )A.1/2;B.7/5;C.1/4;D.7/3剖析:可化为3/1,4/2,5/3,6/4,7/5,分子3,4,5,6,7,分母1,2,3,4,5【82】0,1,3,8,22,64,()A.174;B.183;C.185;D.190;答:选D,0×3+1=1;1×3+0=3;3×3-1=8;8×3-2=22;22×3-2=64;64×3-2=190;个中1.0.-1.-2.-2.-2头尾相加=>-3.-2.-1等差【83】2,90,46,68,57,()A.65;B.62.5;C.63;D.62答:选B, 从第三项起,后项为前两项之和的一半.【84】2,2,0,7,9,9,( )A.13;B.12;C.18;D.17;答:选C,从第一项起,每三项之和分离是2,3,4,5,6的平方.【85】 3,8,11,20,71,()A.168;B.233;C.211;D.304答:选B,从第二项起,每项都除以第一项,取余数=>2.2.2.2.2 等差【86】-1,0,31,80,63,( ),5A.35;B.24;C.26;D.37;答:选B, -1=07-1,0=16-1,31=25-1,80=34-1,63=43-1,(24)=52-1,5=61-1【87】11,17,( ),31,41,47A. 19;B. 23;C. 27;D. 29;答:选B,隔项质数列的分列,把质数补齐可得新数列:11,13,17,19,23,29,31,37,41,43,47.抽出偶数项可得数列: 11,17,23,31,41,47【88】18,4,12,9,9,20,( ),43A.8;B.11;C.30;D.9答:选D, 把奇数列和偶数列拆开剖析: 偶数列为4,9,20,43. 9=4×2+1, 20=9×2+2, 43=20×2+3,奇数列为18,12,9,( 9 ). 18-12=6, 12-9=3, 9-( 9 )=0【89】1,3,2,6,11,19,()剖析:前三项之和等于第四项,依次类推,办法如下所示: 1+3+2=6;3+2+6=11;2+6+11=19;6+11+19=36【90】1/2,1/8,1/24,1/48,();;;答:选B,分子:1.1.1.1.1等差,分母:2.8.24.48.48,后项除以前项=>4.3.2.1 等差【91】,3,(原文是7又2分之1),(原文是22又2分之1),();(原文是78又4分之1);;答:选C,后项除以前项=>2..3.3.5 等差【92】2,2,3,6,15,( )A.25;B.36;C.45;D.49剖析:选 C.2/2=1 3/2=1.5 6/3=2 15/6=2.5 45/15=3.个中,1, 1.5, 2, 2.5, 3 等差【93】5,6,19,17,( ),-55A. 15;B. 344;C. 343;D. 11;答:选B, 第一项的平方减去第二项等于第三项【94】2,21,( ),91,147A. 40;B. 49;C. 45;D. 60;答:选B,21=2(第一项)×10+1,49=2×24+1,91=2×45+1,147=2×73+1,个中10.24.45.73 二级等差【95】-1/7,1/7,1/8,-1/4,-1/9,1/3,1/10,( )A. -2/5;B. 2/5;C. 1/12;D. 5/8;答:选A,分三组=>-1/7,1/7; 1/8,-1/4; -1/9,1/3; 1/10,( -2/5 ),每组后项除以前项=>-1,-2,-3,-4 等差【96】63,26,7,0,-1,-2,-9,()A.-18;B.-20;C.-26;D.-28;答:选D,63=43-1,26=33-1,7=23-1,0=13-1,-1=03-1,-2=(-1)3-1,-9=(-2)3-1 -28=(-3)3-1,【97】5,12 ,24,36,52,( ),;;;答:选C,题中各项分离是两个相邻质数的和(2,3)(5,7)(11,13)(17,19)(23 ,29 )(31 ,37)【98】1,3, 15,( ),;;;D.256答:选C, 3=(1+1)2-1 15=(3+1)2-1 255=(15+1)2-1【99】3/7,5/8,5/9,8/11,7/11,( );;;;答:选A,奇数项:3/7,5/9,7/11 分子,分母都是等差,公役是2,偶数项:5/8,8/11,11/14 分子.分母都是等差数列,公役是3【100】1,2,2, 3,3,4,5,5,( );;;D.0 ;答:选B,以第二个3为中间,对称地位的两个数之和为7。

行政职业能力测试精讲五:数字推理

行政职业能力测试精讲五:数字推理
A.31 B.41 C.51 D.61
解析:答案为C。通过观察可以发现,如果原数列的每一项都加上2,那么可以形成一个以2为公比的新数列2,4,8,16,( ),64。因此答案为16×2-2,即为30。
解析:答案为C。通过观察可以发现,如果原数列的每一项都减去1,那么可以形成一个以2为公比的新数列1,2,4,8,16,( )。因此答案为l6×2+1,即为33。
通过观察可以发现如果原数列的每一项都加上2那么可以形成一个以2为公比的新数列2481664
行政职业能力测试精讲五:数字推理
【例题】0,2Байду номын сангаас6,14,( ),62
A.40 B.36 C.30 D.38
【例题】2,3,5,9,17,( )
A.29 B.31 C.33 D.37
【例题】1,2,5,14,( )
解析:答案为B。将题干中的数列各项均加上1得到一个新数列:2,3,6,15,( )。可以发现,新数列从第二项开始第n项是原数列的第n-1项的3倍,因此答案为l4×3-1,即为41。

行测数字推理详解

行测数字推理详解

数字推理题725道详解【1】7,9,-1,5,( )A、4;B、2;C、-1;D、-3分析:选D,7+9=16;9+(-1)=8;(-1)+5=4;5+(-3)=2 , 16,8,4,2等比【2】3,2,5/3,3/2,( )A、1/4;B、7/5;C、3/4;D、2/5分析:选B,可化为3/1,4/2,5/3,6/4,7/5,分子3,4,5,6,7,分母1,2,3,4,5【3】1,2,5,29,()A、34;B、841;C、866;D、37分析:选C,5=12+22;29=52+22;( )=292+52=866【4】2,12,30,()A、50;B、65;C、75;D、56;分析:选D,1×2=2;3×4=12;5×6=30;7×8=()=56【5】2,1,2/3,1/2,()A、3/4;B、1/4;C、2/5;D、5/6;分析:选C,数列可化为4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,8等差,所以后项为4/10=2/5,【6】4,2,2,3,6,()A、6;B、8;C、10;D、15;分析:选D,2/4=0.5;2/2=1;3/2=1.5;6/3=2;0.5,1,1.5, 2等比,所以后项为2.5×6=15【7】1,7,8,57,()A、123;B、122;C、121;D、120;分析:选C,12+7=8;72+8=57;82+57=121;【8】4,12,8,10,()A、6;B、8;C、9;D、24;分析:选C,(4+12)/2=8;(12+8)/2=10;(8+10)/2=9【9】1/2,1,1,(),9/11,11/13A、2;B、3;C、1;D、7/9;分析:选C,化成1/2,3/3,5/5 ( ),9/11,11/13这下就看出来了只能是(7/7)注意分母是质数列,分子是奇数列。

【10】95,88,71,61,50,()A、40;B、39;C、38;D、37;分析:选A,思路一:它们的十位是一个递减数字9、8、7、6、5 只是少开始的4 所以选择A。

行政能力测试数字推理题

行政能力测试数字推理题

数字推理行测数字推理全方法:(一)等差、倍数关系介绍要学会观察变化趋势(1)数变化很大,一般和乘法和次方有关。

如:2,5,13,35,97 ()-------------A×2+1 3 9 27 81=B 又如:1,1,3,15,323,()---------------数跳很大,考虑是次方和乘法。

此题-------------(A+B)^2-1=c再如:1 , 2 ,3 ,35 ()------------(a×b) 2-1=c0.4 1.6 8 56 560 ()--------4 5 7 10倍,倍数成二级等差A、2240B、3136C、4480D、784009国考真题14 20 54 76 ()A.104 B.116 C.126 D1449+525-549+5(2)数差(数跳不大,考虑是做差)等差数列我就不说了,很简单下面说下数字变化不大,但是做差没规律怎么办?一般三种可以尝试的办法(1)隔项相加、相减(2)递推数列(3)自残(一般用得很少,真题里我好像没见过?也许是我忘了吧)09江苏真题1,1,3,5,11,()A.8 B.13 C.21 D.32满足C-A=2 4 8 16-3,7,14,15,19,29,()A 35B 36C 40D 42------------------------------满足A+C=11 22 33 44 5521,37,42,45,62,()A 57B 69C 74D 8721+3×7=4237+4×2=4542+4×5=6245+6×2=57(3)倍数问题(二)三位数的数字推理的思路(1)数和数之间的差不是很大的时候考虑做差(2)很多三位数的数字推理题都用“自残法”如:252,261,270,279,297,()252+2+5+2=261261+2+6+1=270270+2+7+0=27909国考真题C.1079D.1229150+3170+9200+27….左边等差,右边等比(三)多项项数的数字推理多项项数的数推比如:5,24,6,20,(),15,10,()上面个数列有8项,我习惯把项数多余6项的数列叫做“多项数列”。

公务员考试数字推理大全

公务员考试数字推理大全

精心整理公务员考试数字推理大全1)等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24,70,208,622,规律为a*3-2=b2)深一愕模型,各数之间的差有规律,如1、2、5、10、17。

它们之间的差为1、3、5、7,成等差数列。

这些规律还有差之间成等比之类。

B,各数之间的和有规律,如1、2、3、5、8、13,前两个数相加等于后一个数。

3)看各数的大小组合规律,作出合理的分组。

如7,9,40,74,1526,5436,7和9,40和74,1526和5436这三组各自是大致处于同一大小级,那规律就要从组方面考虑,即不把它们看作6个数,而应该看作3个组。

而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。

所以7*7-9=40, 9*9-7=74 , 40*40-74=1526 , 74*74-40=5436,这就是规律。

4)如根据大小不能分组的,A,看首尾关系,如7,10,9,12,11,14,这组数7+14=10+11=9+12。

首尾关系经常被忽略,但又是很简单的规律。

B,数的大小排列看似无序的,可以看它们之间的差与和有没有顺序关系。

5)各数间相差较大,但又不相差大得离谱,就要考虑乘方,这就要看各位对数字敏感程度了。

如6、24、60、120、210,感觉它们之间的差越来越大,但这组数又看着比较舒服(个人感觉,嘿嘿),它们的规律就是2^3-2=6、3^3-3=24、4^3-4=60、5^3-5=120、6^3-6=210。

这组数比较巧的是都是6的倍数,容易导入歧途。

6)看大小不能看出来的,就要看数的特征了。

如21、31、47、56、69、72,它们的十位数就是递增关系,如25、58、811、1114 ,这些数相邻两个数首尾相接,且2、5、8、11、14的差为3,如论坛上fjjngs解答:256,269,286,302,(),2+5+6=132+6+9=172+8+6=163+0+2=5,∵256+13=269269+17=286286+16=302∴下一个数为302+5=307。

行测数字推理八大解题技巧

行测数字推理八大解题技巧

数字推理八大解题方法【真题精析】例1.2,5,8,11,14,( )A.15 B.16 C.17 D.18[答案]C[解析]数列特征明显单调且倍数关系不明显,优先采用逐差法。

差值数列是常数列。

如图所示,因此,选C。

【真题精析】例1、(2006·国考A类)102,96,108,84,132,( )A.36 B.64 C.70 D.72[答案]A[解析]数列特征明显不单调,但相邻两项差值的绝对值呈递增趋势,尝试采用逐差法。

差值数列是公比为-2的等比数列。

如图所示,因此,选A。

【真题精析】例1.(2009·江西)160,80,40,20,( )A.B.1 C.10 D.5[答案]C[解析]数列特征明显单调且倍数关系明显,优先采用逐商法。

商值数列是常数列。

如图所示,因此,选C【真题精析】例1、2,5,13,35,97,( )A.214 B.275 C.312 D.336[答案]B[解析]数列特征明显单调且倍数关系明显,优先采用逐商法。

商值数列是数值为2的常数列,余数数列是J2-I:h为3的等比数列。

如图所示,因此,选B。

【真题精析】例1、(2009·福建)7,21,14,21,63,( ),63A.35 B.42 C.40 D.56[答案]B[解析]数列特征明显单调且倍数关系明显,优先采用逐商法。

商值数列是以为周期的周期数列。

如图所示,因此,选B。

【真题精析】例1.8,8,12,24,60,( )A.90 B.120 C.180 D.240[答案]C[解析]逐商法,做商后商值数列是公差为0.5的等差数列。

【真题精析】例1. -3,3,0,3,3,( )A.6 B.7 C.8 D.9[答案]A[解析]数列特征:(1)单调关系不明显;(2)倍数关系不明显;(3)数字差别幅度不大。

优先采用加和法。

【真题精析】例1、(2008·湖北B类)2,3,5,10,20,( )A.30 B.35 C 40 D.45[答案]C[解析]数列特征明显单调且倍数关系不明显,优先做差后得到结果选项中不存在;则考虑数列特征:(1)倍数关系不明显;(2)数字差别幅度不大,采用加和法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品资料行测专项数字推理⊙专项训练1、5,7,4,6,4,6,()A、4B、5C、6D、7解析:从左到右,相邻两项的前项减后项,可以得到一个新的二级数列:5,7,4,6,4,6,()-2,3,-2,2,-2,?按照规律,二级数列的奇数项都是-2,偶数项应该是从大到小的自然数列3,2,1,因此,?=1。

还原数列为:5,7,4,6,4,6,(5 )-2,3,-2,2,-2, 1由此可知,填入空格中的项应该是:5。

所以,正确选项是B。

2、2,5,13,38,()A、121B、116C、106D、91解析:从左到右,相邻两项的后项减前项:2,5,13,38,()3,8,25,?观察可见,3,8,25这几个数存在一定的规律,其中:3=3的1次方8=3的2次方-125=3的3次方-2?=3的4次方-3解得:?=78还原数列为:2, 5, 13, 38, ( 116 )3, 8, 25, 78由此可知,填入空格中的项应该是:116所以,正确选项是B 。

3、 3,10,21,35,51,( )A 、 59B 、 66C 、 68D 、 72解析:从左到右,相邻两项的后项减前项:3, 10, 21, 35, 51, ( )7, 11, 14, 16, ( )再把二级数列相邻两项的后项减前项:3, 10, 21, 35, 51, ( )7, 11, 14, 16, ( )4, 3, 2, ?现在已经很容易看出来了,?=1还原数列为:3, 10, 21, 35, 51, ( 68 )7, 11, 14, 16, ( 17 )4, 3, 2, 1由此可知,填入空格中的项应该是:68。

所以,正确选项是C 。

4、 41,52,75,1,1417,( )A 、1725B 、1726C 、1925D 、1926解析:像这种题干中有分数项有整数项的数列,可以先把整数转化成分数。

这样做往往能对迅速找到解题思路有很大的帮助。

把题干数列整理为:41,52,75,1010,1417,( )现在发现什么规律了吗?这个数列的分子分别是1,2,5,10,17。

从左到右,其相邻两项的后项减前项,可以得到一个公差为2的等差数列,即:1,3,5,7,(9)这个数列的分母分别是4,5,7,10,14。

从左到右,其相邻两项的后项减前项,可以得到一个公差为1的等差数列,即:1,2,3,4,(5)按照这个规律,填入空格中的项其分子应该是17+9=(26),分母应该是14+5=19,则这个数是D 项:1926。

所以,正确选项是D 。

5、 1.01,1.02, 2.03, 3.05, 5.08,( )A 、 8.13 B. 8、013 C 、 7.12 D 、 7.012解析:本题的数列规律是,从左到右,相邻三项中的前两项之和等于第三项,即:1.01+1.02=2.03,1.02+2.03=3.05,2.03+3.05=5.08,3.05+5.08=(8.13)。

按照这个规律,填入空格中的项应该是:8.13。

所以,正确选项是A 。

6、2,3,6,15,( )A 、20B 、24C 、32D 、42解析:本题的数字规律是:从左到右,相邻两项的后项减前项,可以得到一个公比为3的等比数列1,3,9,即:3-2=1,6-3=3,15-6=9。

还原数列为: 2,3,6,15,(42)1,3,19,(27)按照这个规律,填入括号中的应该是D 项:27+15=42。

所以,正确选项是D 。

7、60,80,104,120,( )A 、164B 、144C 、142D 、201解析:本题的数列规律是:每一项的数字中都有一个0。

按照这个规律,填入括号中的项应该是D项:201。

所以,正确选项是D。

8、2,4,1,5,0,6,()A、-1B、0C、1D、3解析:本题的数列规律是:奇数项和偶数项分别构成等差数列。

奇数项数列为:2,1,0,(-1)偶数项数列为:4,5,6按照这个规律,填入括号中的项应该是A项:-1。

所以,正确选项是A。

9、3,30,29,12,()A、92B、7C、8D、10解析:本题的数列规律是:3=1的4次方+2,30=3的3次方+3,29=5的2次方+412=7的1次方+5()=90+6=7按照这个规律,填入空格中的项应该是B项:7。

所以,正确选项是B。

10、2,4,9,23,64,()A、92B、124C、156D、186解析:本题的数列规律是:4=2×3-2。

9=4×3-3。

23=9×3-4。

64=23×3-5。

()=64×3-6=186。

按照这个规律,填入空格中的项应该是D项:186。

所以,正确选项是D。

⊙专项训练1、-1,0,27,()。

A、64B、91C、256D、512解析:本题的数列规律是:-1×1的1次方=-1,0×2的2次方=0,1×3的3次方=27。

按照这个规律,填入空格的项应该是:2×4的4次方=512。

所以,正确选项是D。

2、3,2,8,12,28,()。

A、15B、32C、27D、52解析:本题的数列规律是:从左到右相邻三项,第一项乘以2再加上第二项等于第三项。

即:3×2+2=8,2×2+8=12,8×2+12=28。

按照这个规律,填入空格的项应该是:12×2+28=52。

所以,正确选项是D。

3、7,10,16,22,()。

A、28B、32C、34D、45解析:把数列的每一项分别除以3,即:7/3=2……1。

10/3=3……1。

16/3=5……1。

22/3=7……1。

它们的商2,3,5,7,(11)是一个质数数列。

按照这个规律,填入空格的项应该是:11×3+1=34。

所以,正确选项是C。

4、3/15,1/3,3/7,1/2,()。

A、5/8B、4/9C、15/27D、-3解析:像这种题干是分数的数列,可以根据数字的特点对其分子、分母进行整理。

这样做往往能对迅速找到解题思路有很大的帮助。

整理为:3/15=1/51/3=2/63/71/2=4/8按照这个规律,填入空格的项应该是:5/9。

5/9=15/27所以,正确选项是C。

5、3,-1,5,1,()。

A、3B、7C、25D、64解析:从左到右,把相邻的两项相加为:3+(-1)=2-1+5=45+1=61+(7)=8按照这个规律,填入空格的项应该是:7。

所以,正确选项是B。

6、-1,2,11,38,( )A、119B、133C、121D、117解析:本题的数列规律是:从左到右相邻两项的后项减前项等于3的n次方。

即:2-(-1)=3=3111-2=9=3238-11=27=33(x-38=34)按照这个规律,填入空格的项应该是:38+34=119。

所以,正确选项是A。

7、4,11,30,67,( )A、121B、128C、130D、135解析:本题的数列规律是:从左到右项数的立方再加上3等于该项。

即:13+3=423+3=1133+3=3043+3=67按照这个规律,填入空格的项应该是:53+3=128。

所以,正确选项是B。

8、-2,14,6,10,8,( )A、4B、7C、9D、10解析:本题的数列规律是:从左到右相邻两项的和再除以2等于下一项。

即:(-2+14)÷2=6(14+6)÷2=10(6+10)÷2=8按照这个规律,填入空格的项应该是:(10+8)÷2=9。

所以,正确选项是C。

9、1,2,7,13,49,24,343,( )A、35B、69C、114D、238解析:本题考查的是分隔组合数列。

两个数列分别是:1,7,49,3432,13,24,(35 )(这是一个公差为11的等差数列)按照这个规律,填入空格的项应该是:24+11=35。

所以,正确选项是A。

10、1/16,2/13,2/5,8/7,4,( )A、19/3B、8C、16D、32解析:像这种题干是分数的数列,可以根据数字的特点对其分子、分母进行整理。

这样做往往能对迅速找到解题思路有很大的帮助。

整理为:1/16,2/13,4/10,8/7,16/4,( )现在发现规律了吗?分子是公比为2等比数列:1,2,4,8,16,(32)分母是公差为3的等差数列:16,13,10,7,4,(1)按照这个规律,填入空格的项应该是:32/1=32。

所以,正确选项是D。

⊙专项训练1、2,4,12,48,()A、96B、120C、240D、480解析:本题的数列规律是:2×2=4,4×3=12,12×4=48。

则填入空格的项应该是:48×5=240。

所以,正确选项是C。

2、1,1,2,6,()A、21B、22C、23D、24解析:本题的数列规律是:1×1=1,1×2=2,2×3=6。

则填入空格的项应该是:6×4=24。

所以,正确选项是D。

3、1,3,3,5,7,9,13,15,(),()A、19,21B、19,23C、21,23D、27,30解析:本题考查的是分隔组合数列。

奇数项数列为:1,3,7,13从左到右,相邻两项求差得到:2,4,6,(8)偶数项数列为:3,5,9,15从左到右,相邻两项求差得到:2,4,6,(8)按照这个规律,填入空格的两项应该分别是:(13+8=21),(15+8=23)。

所以,正确选项是C。

4、1,2,5,14,()A、31B、41C、51D、61解析:本题的数列规律是:从左到右,相邻两项求差可得一公比为3的等比数列。

即:1,3,9,(27)。

按照这个规律,填入空格的项应该是:14+27=41。

所以,正确选项是B。

5、0,1,1,2,4,7,13,()A、22B、23C、24D、25解析:本题的数列规律是:从第四项起,后一项等于前三项之和。

即:0+1+1=2,1+1+2=4,1+2+4=7,2+4+7=13。

按照这个规律,填入空格的项应该是:4+7+13=24。

所以,正确选项是C。

6、1,4,16,49,121,()A、256B、225C、196D、169解析:本题的数列规律是:数列所给各项分别是1,2,4,7,11的平方。

再看这五个数的关系,第二个比第一个大1,第三个比第二个大2,第四个比第三个大3,第五个比第四个大4。

按照这个规律,第六个数要比第五个数大5,即:11+5=16。

16的平方等于256。

所以,正确选项是A。

7、2,3,10,15,26,()A、29B、32C、35D、37解析:本题的数列规律是:自然数列1,2,3,4,5,(6)的平方再依次加减1。

即:1的2次方+1=2,2的2次方-1=3,3的2次方+1=10,4的2次方-1=15,5的2次方+1=26。

相关文档
最新文档