第四节 数列求和

合集下载

第五章 第四节 数列求和(优秀经典公开课比赛课件)

第五章  第四节 数列求和(优秀经典公开课比赛课件)

首页 上页 下页 尾页
教材通关
2.常见数列的求和公式 (1)12+22+32+…+n2=nn+162n+1 (2)13+23+33+…+n3=nn2+12
高考·导航 主干知识 自主排查 核心考点 互动探究 课时作业
首页 上页 下页 尾页
教材通关
[小题诊断]
1.(2018·安溪质检)数列{an}的前n项和为Sn,已知Sn=1-2+3
首页 上页 下页 尾页
教材通关
3.1+2x+3x2+…+nxn-1=________(x≠0且x≠1).
解析:设Sn=1+2x+3x2+…+nxn-1,① 则xSn=x+2x2+3x3+…+nxn,② ①-②得:(1-x)Sn=1+x+x2+…+xn-1-nxn =11--xxn-nxn, ∴Sn=11--xxn2-1n-xnx. 答案:11--xxn2-1n-xnx
高考·导航 主干知识 自主排查 核心考点 互动探究 课时作业
首页 上页 下页 尾页
教材通关
[必记结论]
1.常见的裂项公式
(1)nn1+1=n1-n+1 1.
(2)2n-112n+1=122n1-1-2n1+1.
(3)
1 n+
n+1=
n+1-
n.
高考·导航 主干知识 自主排查 核心考点 互动探究 课时作业
a1+4d=5, ∴5a1+5×25-1d=15,
∴ad1==11,,
∴an=a1+(n-1)d=n.∴ana1n+1=nn1+1=n1-n+1 1,
∴数列
1 anan+1
的前100项和为
1-12

12-13
+…+
1010-1101
=1-1101=110001. 答案:A

高中数学总复习:数列求和

高中数学总复习:数列求和
第四节 数列求和
1. 熟练掌握等差、等比数列的前 n 项和公式及倒序相加求和、错位相
减求和法.
2. 掌握非等差、等比数列求和的几种常见方法.
目录
1
C O N T E N T S
2
3
知识 体系构建
考点 分类突破
课时 跟踪检测
PART
1
知识 体系构建
课前自修
必备知识 系统梳理 基础重落实
目录
高中总复习·数学(提升版)
1

1
= (


+ − );
目录
高中总复习·数学(提升版)
1
1
1
(4)
= [
2
(+1)(+2)
(+1)
(5)
1
2−1+
1
= (
2
2+1

1
(+1)(+2)
];
2 + 1 − 2 − 1 ).
目录
高中总复习·数学(提升版)
1. (2024·杭州一模)数列{ an }的通项公式为 an =
)=
2+1
2
2+1
2
成立,


1
1

5
5

1
1
+…+

7
2−1
1
1
1
·
< ,又因为12 Tn < a 2- a 恒
2 2+1
2
1
所以12× ≤ a 2- a ,解得 a ≤-2或 a ≥3.
2
目录
高中总复习·数学(提升版)
3.

2020届高考数学一轮复习通用版讲义数列求和

2020届高考数学一轮复习通用版讲义数列求和

第四节数列求和一、基础知识批注——理解深一点1.公式法(1)等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d2. 推导方法:倒序相加法.(2)等比数列{a n }的前n 项和S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q ,q ≠1.推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n =n (n +1)2; ②2+4+6+…+2n =n (n +1); ③1+3+5+…+2n -1=n 2. 2.几种数列求和的常用方法(1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.二、基础小题强化——功底牢一点(一)判一判(对的打“√”,错的打“×”)(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.( ) (2)当n ≥2时,1n 2-1=12⎝⎛⎭⎫1n -1-1n +1.( )(3)求S n =a +2a 2+3a 2+…+na n 之和时,只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )(4)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.( )答案:(1)√ (2)√ (3)× (4)√ (二)选一选1.已知等差数列{a n }的前n 项和为S n ,若S 3=9,S 5=25,则S 7=( ) A .41 B .48 C .49D .56解析:选C 设S n =An 2+Bn ,由题知⎩⎪⎨⎪⎧S 3=9A +3B =9,S 5=25A +5B =25,解得A =1,B =0,∴S 7=49.2.在数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0192 020,则项数n 为( )A .2 016B .2 017C .2 018D .2 019解析:选D 因为a n =1n (n +1)=1n -1n +1,所以S n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1=2 0192 020,所以n =2 019.3.数列{1+2n -1}的前n 项和为( )A .1+2nB .2+2nC .n +2n -1D .n +2+2n解析:选C 由题意得a n =1+2n -1, 所以S n =n +1-2n1-2=n +2n -1.(三)填一填4.数列{a n }的前n 项和为S n ,已知S n =1-2+3-4+…+(-1)n -1·n ,则S 17=________.解析:S 17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+(-6+7)+…+(-14+15)+(-16+17)=1+1+1+…+1=9.答案:95.已知数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧11-2n ,n ≤5,2n -11,n >5,则{a n }的前10项和S 10=________.解析:S 10=5×9+12×5×4×(-2)+5×1+12×5×4×2=50.答案:50方法一 分组转化法求和[典例] 已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和. [解] (1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .又a 1=1也满足a n =n ,故数列{a n }的通项公式为a n =n . (2)由(1)知a n =n ,故b n =2n +(-1)n n . 记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ). 记A =21+22+…+22n ,B =-1+2-3+4-…+2n , 则A =2(1-22n )1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n . 故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.[解题技法]1.分组转化求和的通法数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差数列或等比数列或可求数列的前n 项和的数列求和.2.分组转化法求和的常见类型[题组训练]1.已知数列{a n }的通项公式是a n =2n -⎝⎛⎭⎫12n,则其前20项和为( )A .379+1220B .399+1220C .419+1220D .439+1220解析:选C 令数列{a n }的前n 项和为S n ,则S 20=a 1+a 2+a 3+…+a 20=2(1+2+3+…+20)-⎝⎛⎭⎫12+122+123+…+1220=420-⎝⎛⎭⎫1-1220=419+1220. 2.(2019·资阳诊断)已知数列{a n }中,a 1=a 2=1,a n +2=⎩⎪⎨⎪⎧a n +2,n 是奇数,2a n,n 是偶数,则数列{a n }的前20项和为( )A .1 121B .1 122C .1 123D .1 124解析:选C 由题意可知,数列{a 2n }是首项为1,公比为2的等比数列,数列{a 2n -1}是首项为1,公差为2的等差数列,故数列{a n }的前20项和为1×(1-210)1-2+10×1+10×92×2=1 123.选C.方法二 裂项相消法求和 考法(一) 形如a n =1n (n +k )型[典例] (2019·南宁摸底联考)已知等差数列{a n }满足a 3=7,a 5+a 7=26. (1)求等差数列{a n }的通项公式; (2)设c n =1a n a n +1,n ∈N *,求数列{c n }的前n 项和T n . [解] (1)设等差数列的公差为d ,则由题意可得⎩⎪⎨⎪⎧ a 1+2d =7,2a 1+10d =26,解得⎩⎪⎨⎪⎧a 1=3,d =2.所以a n =3+2(n -1)=2n +1. (2)因为c n =1a n a n +1=1(2n +1)(2n +3), 所以c n =12⎝⎛⎭⎫12n +1-12n +3,所以T n =12⎝⎛⎭⎫13-15+15-17+…+12n +1-12n +3=12⎝⎛⎭⎫13-12n +3=n 6n +9. 考法(二) 形如a n =1n +k +n型[典例] 已知函数f (x )=x α的图象过点(4,2),令a n =1f (n +1)+f (n ),n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 019=( )A. 2 018-1B. 2 019-1C. 2 020-1D. 2 020+1[解析] 由f (4)=2可得4α=2,解得α=12,则f (x )=x 12. ∴a n =1f (n +1)+f (n )=1n +1+n=n +1-n ,S 2 019=a 1+a 2+a 3+…+a 2 019=(2-1)+(3-2)+(4-3)+…+( 2 019-2 018)+( 2 020- 2 019)= 2 020-1. [答案] C[解题技法]1.用裂项法求和的裂项原则及消项规律哪些项,避免遗漏.2.常见的拆项公式 (1)1n (n +1)=1n -1n +1; (2)1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1;(3)1n +n +1=n +1-n ;(4)2n (2n -1)(2n +1-1)=12n -1-12n +1-1.分式差分最常见,指数根式来镶嵌; 取长补短巧改变,裂项求和公式算.[题组训练]1.(口诀第1、4句)在等差数列{a n }中,a 3+a 5+a 7=6,a 11=8,则数列⎩⎨⎧⎭⎬⎫1a n +3·a n +4的前n 项和为( )A.n +1n +2B.nn +2C.n n +1D.2n n +1解析:选C 因为a 3+a 5+a 7=6, 所以3a 5=6,a 5=2,又a 11=8, 所以等差数列{a n }的公差d =a 11-a 511-5=1, 所以a n =a 5+(n -5)d =n -3, 所以1a n +3·a n +4=1n (n +1)=1n -1n +1,因此数列⎩⎨⎧⎭⎬⎫1a n +3·a n +4的前n 项和为1-12+12-13+…+1n -1n +1=1-1n +1=n n +1,故选C.2.(口诀第2、4句)各项均为正数的等比数列{a n }中,a 1=8,且2a 1,a 3,3a 2成等差数列. (1)求数列{a n }的通项公式; (2)若数列{b n }满足b n =1n log 2a n,求{b n }的前n 项和S n .解:(1)设等比数列{a n }的公比为q (q >0). ∵2a 1,a 3,3a 2成等差数列,∴2a 3=2a 1+3a 2,即2a 1q 2=2a 1+3a 1q , ∴2q 2-3q -2=0,解得q =2或q =-12(舍去),∴a n =8×2n -1=2n +2.(2)由(1)可得b n =1n log 22n +2=1n (n +2)=12⎝⎛⎭⎫1n -1n +2, ∴S n =b 1+b 2+b 3+…+b n=12⎝⎛⎭⎫1-13+12-14+13-15+…+1n -1n +2 =12⎝⎛⎭⎫1+12-1n +1-1n +2 =34-12⎝⎛⎭⎫1n +1+1n +2 =34-2n +32(n +1)(n +2). 方法三 错位相减法求和[典例] (2017·山东高考)已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n .已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n项和T n .[解] (1)设{a n }的公比为q ,由题意知:a 1(1+q )=6,a 21q =a 1q 2.又a n >0,解得a 1=2,q =2, 所以a n =2n . (2)由题意知, S 2n +1=(2n +1)(b 1+b 2n +1)2=(2n +1)b n +1,又S 2n +1=b n b n +1,b n +1≠0, 所以b n =2n +1.令c n =b na n,则c n =2n +12n ,因此T n =c 1+c 2+…+c n =32+522+723+…+2n -12n -1+2n +12n ,又12T n =322+523+724+…+2n -12n +2n +12n +1, 两式相减得12T n =32+⎝⎛⎭⎫12+122+…+12n -1-2n +12n +1=32+1-⎝⎛⎭⎫12n -1-2n +12n +1=52-2n +52n +1, 所以T n =5-2n +52n.[变透练清]1.(变结论)若本例中a n ,b n 不变,求数列{a n b n }的前n 项和T n . 解:由本例解析知a n =2n ,b n =2n +1, 故T n =3×21+5×22+7×23+…+(2n +1)×2n , 2T n =3×22+5×23+7×24+…+(2n +1)×2n +1,上述两式相减,得,-T n =3×2+2×22+2×23+…+2×2n -(2n +1)2n +1=6+8(1-2n -1)1-2-(2n +1)2n +1=(1-2n )2n +1-2得T n =(2n -1)×2n +1+2.2.已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.(1)求{a n }和{b n }的通项公式; (2)求数列{a 2n b n }的前n 项和(n ∈N *).解:(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由已知b2+b3=12,得b1(q+q2)=12,而b1=2,所以q2+q-6=0.因为q>0,解得q=2,所以b n=2n.由b3=a4-2a1,可得3d-a1=8.①由S11=11b4,可得a1+5d=16.②联立①②,解得a1=1,d=3,由此可得a n=3n-2.所以{a n}的通项公式为a n=3n-2,{b n}的通项公式为b n=2n. (2)设数列{a2n b n}的前n项和为T n,由a2n=6n-2,有T n=4×2+10×22+16×23+…+(6n-2)×2n,2T n=4×22+10×23+16×24+…+(6n-8)×2n+(6n-2)×2n+1,上述两式相减,得-T n=4×2+6×22+6×23+…+6×2n-(6n-2)×2n+1=12×(1-2n)1-2-4-(6n-2)×2n+1=-(3n-4)2n+2-16,得T n=(3n-4)2n+2+16.所以数列{a2n b n}的前n项和为(3n-4)2n+2+16.[解题技法]错位相减法求和的4个步骤[易误提醒](1)两式相减时最后一项因为没有对应项而忘记变号.(2)对相减后的和式的结构认识模糊,错把中间的n-1项和当作n项和.(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比q=1和q≠1两种情况求解.[课时跟踪检测]A级——保大分专练1.数列{a n }的通项公式为a n =1n +n -1,若该数列的前k 项之和等于9,则k =( )A .80B .81C .79D .82解析:选B a n =1n +n -1=n -n -1,故S n =n ,令S k =k =9,解得k =81,故选B.2.若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10=( ) A .15 B .12 C .-12D .-15解析:选A a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8+a 9+a 10=-1+4-7+10-13+16-19+22-25+28=5×3=15,故选A.3.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为( )A.158或5 B.3116或5C.3116D.158解析:选C 设{a n }的公比为q ,显然q ≠1,由题意得9(1-q 3)1-q =1-q 61-q ,所以1+q 3=9,得q =2,所以⎩⎨⎧⎭⎬⎫1a n 是首项为1,公比为12的等比数列,前5项和为1-⎝⎛⎭⎫1251-12=3116.4.在等差数列{a n }中,a 4=5,a 7=11.设b n =(-1)n ·a n ,则数列{b n }的前100项之和S 100=( )A .-200B .-100C .200D .100解析:选D 设数列{a n }的公差为d ,由题意可得⎩⎪⎨⎪⎧ a 1+3d =5,a 1+6d =11⇒⎩⎪⎨⎪⎧a 1=-1,d =2⇒a n =2n -3⇒b n =(-1)n (2n -3)⇒S 100=(-a 1+a 2)+(-a 3+a 4)+…+(-a 99+a 100)=50×2=100,故选D.5.已知T n 为数列⎩⎨⎧⎭⎬⎫2n+12n 的前n 项和,若m >T 10+1 013恒成立,则整数m 的最小值为( )A .1 026B .1 025C .1 024D .1 023解析:选C ∵2n +12n =1+⎝⎛⎭⎫12n, ∴T n =n +1-12n ,∴T 10+1 013=11-1210+1 013=1 024-1210, 又m >T 10+1 013, ∴整数m 的最小值为1 024.6.已知数列:112,214,318,…,⎝⎛⎭⎫n +12n ,…,则其前n 项和关于n 的表达式为________. 解析:设所求的前n 项和为S n ,则S n =(1+2+3+…+n )+⎝⎛⎭⎫12+14+…+12n =n (n +1)2+12⎝⎛⎭⎫1-12n 1-12=n (n +1)2-12n +1. 答案:n (n +1)2-12n +1 7.(2017·全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑k =1n1S k=________.解析:设等差数列{a n }的首项为a 1,公差为d ,依题意有⎩⎪⎨⎪⎧ a 1+2d =3,4a 1+6d =10,解得⎩⎪⎨⎪⎧a 1=1,d =1,所以S n =n (n +1)2,1S n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1, 因此∑k =1n 1S k =2⎝⎛⎭⎫1-12+12-13+…+1n -1n +1=2nn +1.答案:2nn +18.已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则S 2 018=________. 解析:∵数列{a n }满足a 1=1,a n +1·a n =2n ,① ∴n =1时,a 2=2,n ≥2时,a n ·a n -1=2n -1,②由①÷②得a n +1a n -1=2,∴数列{a n }的奇数项、偶数项分别成等比数列, ∴S 2 018=1-21 0091-2+2(1-21 009)1-2=3·21 009-3.答案:3·21 009-39.(2019·成都第一次诊断性检测)已知等差数列{a n }的前n 项和为S n ,a 2=3,S 4=16,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n . 解:(1)设数列{a n }的公差为d ,∵a 2=3,S 4=16,∴a 1+d =3,4a 1+6d =16,解得a 1=1,d =2.∴a n =2n -1.(2)由题意知,b n =1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1, ∴T n =b 1+b 2+…+b n=12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -1-12n +1=12⎝⎛⎭⎫1-12n +1 =n 2n +1. 10.(2018·南昌摸底调研)已知数列{a n }的前n 项和S n =2n +1-2,记b n =a n S n (n ∈N *).(1)求数列{a n }的通项公式;(2)求数列{b n }的前n 项和T n .解:(1)∵S n =2n +1-2, ∴当n =1时,a 1=S 1=21+1-2=2; 当n ≥2时,a n =S n -S n -1=2n +1-2n =2n . 又a 1=2=21,∴a n =2n .(2)由(1)知,b n =a n S n =2·4n -2n +1, ∴T n =b 1+b 2+b 3+…+b n =2(41+42+43+…+4n )-(22+23+…+2n +1)=2×4(1-4n )1-4-4(1-2n )1-2=23·4n +1-2n +2+43. B 级——创高分自选 1.(2019·潍坊统一考试)若数列{a n }的前n 项和S n 满足S n =2a n -λ(λ>0,n ∈N *).(1)证明数列{a n }为等比数列,并求a n ;(2)若λ=4,b n =⎩⎪⎨⎪⎧a n ,n 为奇数,log 2a n ,n 为偶数(n ∈N *),求数列{b n }的前2n 项和T 2n . 解:(1)∵S n =2a n -λ,当n =1时,得a 1=λ,当n ≥2时,S n -1=2a n -1-λ,∴S n -S n -1=2a n -2a n -1,即a n =2a n -2a n -1,∴a n =2a n -1,∴数列{a n }是以λ为首项,2为公比的等比数列, ∴a n =λ·2n -1. (2)∵λ=4,∴a n =4·2n -1=2n +1, ∴b n =⎩⎪⎨⎪⎧2n +1,n 为奇数,n +1,n 为偶数, ∴T 2n =22+3+24+5+26+7+…+22n +2n +1 =(22+24+…+22n )+(3+5+…+2n +1) =4-4n ·41-4+n (3+2n +1)2 =4n +1-43+n (n +2), ∴T 2n =4n +13+n 2+2n -43. 2.已知首项为2的数列{a n }的前n 项和为S n ,且S n +1=3S n -2S n -1(n ≥2,n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =n +1a n,求数列{b n }的前n 项和T n . 解:(1)因为S n +1=3S n -2S n -1(n ≥2), 所以S n +1-S n =2S n -2S n -1(n ≥2),即a n +1=2a n (n ≥2),所以a n +1=2n +1,则a n =2n ,当n =1时,也满足,故数列{a n }的通项公式为a n =2n .(2)因为b n =n +12n =(n +1)⎝⎛⎭⎫12n , 所以T n =2×12+3×⎝⎛⎭⎫122+4×⎝⎛⎭⎫123+…+(n +1)×⎝⎛⎭⎫12n ,① 12T n =2×⎝⎛⎭⎫122+3×⎝⎛⎭⎫123+4×⎝⎛⎭⎫124+…+n ×⎝⎛⎭⎫12n +(n +1)×⎝⎛⎭⎫12n +1,② ①-②得12T n =2×12+⎝⎛⎭⎫122+⎝⎛⎭⎫123+…+⎝⎛⎭⎫12n -(n +1)⎝⎛⎭⎫12n +1 =12+⎝⎛⎭⎫121+⎝⎛⎭⎫122+⎝⎛⎭⎫123+…+⎝⎛⎭⎫12n -(n +1)⎝⎛⎭⎫12n +1 =12+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12-(n +1)⎝⎛⎭⎫12n +1=12+1-⎝⎛⎭⎫12n-(n+1)⎝⎛⎭⎫12n+1=32-n+32n+1.故数列{b n}的前n项和为T n=3-n+3 2n.。

2023年高考数学一轮复习:数列求和

2023年高考数学一轮复习:数列求和

第四节 数 列 求 和
2023年高考数学总复习
内容索引
必备知识·自主学习
核心考点·精准研析核心素养测评
2.数列求和的几种常用方法
(1)分组转化法
把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.
(3)错位相减法
如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n项和可用错位相减法求解.
(4)倒序相加法
如果一个数列{a
}的前n项中与首末两端等“距离”的两项的和相等或等于同一
n
个常数,那么求这个数列的前n项和即可用倒序相加法求解.
【易错点索引】
序号易错警示典题索引
1忽视通项的特征考点一、T1,3
2运算错误考点一、T4考点二、典例
3不能进行合理转化考点一、T5。

第四节 数列求和(1)

第四节  数列求和(1)
(2)若
数学
1 bn=2an+2an,求数列{bn}的前
n 项和 Sn.
首页
上一页
下一页
末页
第四节
数列求和
结束
解 题 思 路
[解]
+2
求导
代值找数列关系
求通项公式
分组求和
(1)由题设可得 f′(x)=an-an+1+an+2-an+1sin x-an
cos x. 对任意 n∈N
*
数学
首页
上一页
下一页
末页
第四节
数列求和
结束
[练一练]
1.若 Sn=1-2+3-4+5-6+„+(-1)n-1· n,则 S50=________.
答案:-25
2.若数列{an}的通项公式为 an=2n+2n-1,则数列{an}的前 n 项和为________.
21-2n n1+2n-1 解析:Sn= + =2n+1-2+n2. 2 1-2
数列求和
结束
因此an=2n-1,n∈N*. b1 b2 bn 1 (2)由已知a +a +„+a =1-2n,n∈N*, 1 2 n b1 1 当n=1时,a =2;
1
此步骤不可缺!
1 1 bn 1 当n≥2时,a =1-2n-1-2n-1=2n, n bn 1 所以a =2n,n∈N*. n
1 2
答案:C
数学
首页
上一页
下一页
末页
第四节
数列求和
结束
1 角度三 形如an= 型 2n-12n+1 2 3.(2013· 江西高考)正项数列{an}的前 n 项和 Sn 满足:Sn -
(n2+n-1)Sn-(n2+n)=0.

第4节:数列求和

第4节:数列求和
Step2:故 ,
Step3:由 - 得:
Step4:化简: .
例4.(2020年新课标全国卷 17)设 是公比不为1的等比数列, 为 , 的等差中项.
(1)求 的公比;
(2)若 ,求数列 的前 项和.
解析:(1)设公比为 ,得 即 , 得 (舍去), .
(2)设 为 的前n项和,由(1)及题设可得, ,所以
三类应用: 裂相求和; 证明不等式; 求范围.
例3.(2015年全国2卷) 为数列 的前 项和,已知 , .
(1)求 的通项公式;
(2)设 ,求数列 的前 项和.
解析:(1) 与已知作差得: , ,当 时, , .
(2) , .
类型3:错位相减
型如 的数列求和,其基本解题步骤如下:
Step1:由题可得:
例2.(2020新高考2卷)已知公比大于 的等比数列 满足 .
(1)求 的通项公式;
(2)求 .
解析:(1)设等比数列 的公比为q(q>1),则 ,
整理可得: , ,数列的通项公式为: .
(2)由于: ,故:
.
类型2.裂项求和
1.分母是等差数列相邻两项乘积,则: ,则:
.
2.有理化后求和: .
3.指数式裂相求和: .
数列求和的四种常见类型
类型1.公式法求和:用等差(等比)数列求和公式.
例1.(2018年全国2卷)记 为等差数列 的前n项和,已知 , .
(1)求 的通项公式;
(2)求 ,并求 的最小值.
解析:(1)设 的公差为 ,由题意得 ,由 ,得 ,所以 的通项公式为 .
(2)代入等差数列求和公式,得 ,所以当 时, 取到最小值,且最小值为 .

2025高考数学一轮复习-6.4-数列求和【课件】

2025高考数学一轮复习-6.4-数列求和【课件】
【解析】 ∵an=nn1+1=1n-n+1 1 ∴数列{an}的前 n 项和 Sn=1-n+1 1=n+n 1 又 Sn=22001290,∴n=2019,故选 B.
易错易混 4.在数列{an}中,已知 an=n+11n+3(n∈N*),则{an}的前 n 项和 Sn=
_____12__56_-__n_+1__2_-__n_+1__3_ ______. 【解析】 ∵an=n+11n+3=12n+1 1-n+1 3, ∴Sn=1212-14+13-15+14-16+15-17+…+n+1 1-n+1 3 =1212+13-n+1 2-n+1 3 =1256-n+1 2-n+1 3.
第六章 数列
第四节 数列求和
课前双基巩固
——整合知识 夯实基础
『知识聚焦』 1.公式法 (1)等差数列{an}的前 n 项和 Sn=na12+an=na1+nn-2 1d. 推导方法:倒序相加法.
na1,q=1, (2)等比数列{an}的前 n 项和 Sn=a111--qqn,q≠1. 推导方法:乘公比, 错位相减法 .
6.若{log2an}是首项为 1,公差为 2 的等差数列,则数列{nan}的前 n 项和为 _S_n_=__2_+__6_n_9-__2__·4_n_.
【解析】 由题意可得 log2an=1+2(n-1)=2n-1, ∴an=22n-1=2·4n-1,∴nan=2n·4n-1, ∴数列{nan}的前 n 项和 Sn=2(1×40+2×41+3×42+…+n×4n-1), ∴12Sn=1×40+2×41+3×42+…+n×4n-1, ∴2Sn=1×41+2×42+3×43+…+n×4n,
课堂考点突破
——精析考题 提升能力
考点一 分组转化求和 【例 1】 已知数列{an}满足 a1=1,an+an-1=2n(n≥2,n∈N*). (1)记 bn=a2n,求数列{bn}的通项公式; (2)求数列{an}的前 n 项和 Sn.

第四节 数列求和 课件(共48张PPT)

第四节 数列求和 课件(共48张PPT)


1 n+3
)=
1 2
56-n+1 2-n+1 3. 答案:1256-n+1 2-n+1 3
考点1 分组转化法求和 [例1] (2020·焦作模拟)已知{an}为等差数列,且 a2=3,{an}前4项的和为16,数列{bn}满足b1=4,b4= 88,且数列{bn-an}为等比数列. (1)求数列{an}和{bn-an}的通项公式; (2
an=n(n1+k)型
[例2] (2020·中山七校联考)已知数列{an}为公差 不为0的等差数列,满足a1=5,且a2,a9,a30成等比数列.
(1)求{an}的通项公式; (2)若数列{bn}满足bn+1-bn=an(n∈N*),且b1=
3,求数列b1n的前n项和Tn.
1.裂项时常用的三种变形.
(1)n(n1+1)=n1-n+1 1.
(2)n(n1+2)=12n1-n+1 2.
(3)(2n-1)1(2n+1)=122n1-1-2n1+1.
(4)
1 n+
n+1=
n+1-
n.
2.应用裂项相消法时,应注意消项的规律具有对称 性,即前面剩第几项则后面剩倒数第几项.
3.在应用错位相减法求和时,若等比数列的公比为 参数,应分公比等于1和不等于1两种情况求解.
) B. 2 020-1
C. 2 021-1 D. 2 021+1
解析:由f(4)=2,可得4α=2,解得α=12,
则f(x)= x.
所以an=
1 f(n+1)+f(n)

1 n+1+
= n
n+1 -
n,
所以S2 020=a1+a2+a3+…+a2 020=( 2 - 1 )+ ( 3- 2)+( 4- 3)+…+( 2 021- 2 020)=
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四节 数列求和1.公式法(1)等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d2. 推导方法:倒序相加法.(2)等比数列{a n }的前n 项和S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q ,q ≠1.推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n =n (n +1)2; ②2+4+6+…+2n =n (n +1); ③1+3+5+…+2n -1=n 2. 2.几种数列求和的常用方法(1)分组求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和而后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.常用的裂项公式有:①1n (n +1)=1n -1n +1;②1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1;③1n +n +1=n +1-n .(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.[小题体验]1.若S n =1-2+3-4+5-6+…+(-1)n -1·n ,则S 50=________.答案:-252.(教材习题改编)数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于________.答案:n 2+1-12n1.直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.2.在应用错位相减法时,注意观察未合并项的正负号;结论中形如a n ,a n+1的式子应进行合并.3.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项.[小题纠偏]1.设f (n )=2+24+27+210+…+23n +10(n ∈N *),则f (3)=________.答案:27(87-1)2.已知数列{a n }的前n 项和为S n 且a n =n ·2n ,则S n =________. 答案:(n -1)2n +1+2考点一 公式法求和(基础送分型考点——自主练透)[题组练透]1.(易错题)(2015·安徽高考)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.解析:由a 1=1,a n =a n -1+12(n ≥2),可知数列{a n }是首项为1,公差为12的等差数列,故S 9=9a 1+9×(9-1)2×12=9+18=27.答案:272.若等比数列{a n }满足a 1+a 4=10,a 2+a 5=20,则{a n }的前n 项和S n =________. 解析:由题意a 2+a 5=q (a 1+a 4),得20=q ×10,故q =2,代入a 1+a 4=a 1+a 1q 3=10,得9a 1=10,即a 1=109.故S n =109(1-2n )1-2=109(2n -1).答案:109(2n-1)3.(2015·重庆高考)已知等差数列{a n }满足a 3=2,前3项和S 3=92.(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n . 解:(1)设{a n }的公差为d ,则由已知条件得 a 1+2d =2,3a 1+3×22d =92, 化简得a 1+2d =2,a 1+d =32,解得a 1=1,d =12,故{a n }的通项公式a n =1+n -12,即a n =n +12. (2)由(1)得b 1=1,b 4=a 15=15+12=8. 设{b n }的公比为q ,则q 3=b 4b 1=8,从而q =2,故{b n }的前n 项和T n =b 1(1-q n )1-q =1×(1-2n )1-2=2n -1.[谨记通法]数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差或等比或可求数列前n 项和的数列来求之.如“题组练透”第1题.考点二 分组转化法求和(重点保分型考点——师生共研)[典例引领](2015·福建高考)等差数列{a n }中,a 2=4,a 4+a 7=15. (1)求数列{}a n 的通项公式;(2)设b n =2a n -2+n ,求b 1+b 2+b 3+…+b 10的值. 解:(1)设等差数列{a n }的公差为d .由已知得⎩⎪⎨⎪⎧ a 1+d =4,(a 1+3d )+(a 1+6d )=15,解得⎩⎪⎨⎪⎧a 1=3,d =1.所以a n =a 1+(n -1)d =n +2. (2)由(1)可得b n =2n +n , 所以b 1+b 2+b 3+…+b 10=(2+1)+(22+2)+(23+3)+…+(210+10) =(2+22+23+…+210)+(1+2+3+…+10) =2(1-210)1-2+(1+10)×102=(211-2)+55 =211+53=2 101.[由题悟法]分组转化法求和的常见类型[提醒] 某些数列的求和是将数列转化为若干个可求和的新数列的和或差,从而求得原数列的和,注意在含有字母的数列中对字母的讨论.[即时应用]已知等比数列{a n }中,首项a 1=3,公比q >1,且3(a n +2+a n )-10a n +1=0(n ∈N *). (1)求数列{a n }的通项公式;(2)设⎩⎨⎧⎭⎬⎫b n +13a n 是首项为1,公差为2的等差数列,求数列{b n }的通项公式和前n 项和S n .解:(1)∵3(a n +2+a n )-10a n +1=0, ∴3(a n q 2+a n )-10a n q =0, 即3q 2-10q +3=0. ∵公比q >1,∴q =3.又首项a 1=3,∴数列{a n }的通项公式为a n =3n . (2)∵⎩⎨⎧⎭⎬⎫b n +13a n 是首项为1,公差为2的等差数列,∴b n +13a n =1+2(n -1).即数列{b n }的通项公式为b n =2n -1-3n -1,S n =-(1+3+32+…+3n -1)+[1+3+…+(2n -1)]=-12(3n -1)+n 2.考点三 错位相减法求和(重点保分型考点——师生共研)[典例引领](2015·湖北高考)设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q .已知b 1=a 1,b 2=2,q =d ,S 10=100.(1)求数列{a n },{b n }的通项公式;(2)当d >1时,记c n =a nb n,求数列{c n }的前n 项和T n .解:(1)由题意有⎩⎪⎨⎪⎧10a 1+45d =100,a 1d =2,即⎩⎪⎨⎪⎧ 2a 1+9d =20,a 1d =2,解得⎩⎪⎨⎪⎧a 1=1,d =2或⎩⎪⎨⎪⎧a 1=9,d =29.故⎩⎪⎨⎪⎧a n =2n -1,b n =2n -1或⎩⎨⎧a n =19(2n +79),b n=9·⎝⎛⎭⎫29n -1.(2)由d >1,知a n =2n -1,b n =2n -1,故c n =2n -12n -1, 于是T n =1+32+522+723+924+…+2n -12n -1,①12T n =12+322+523+724+…+2n -32n -1+2n -12n .② ①-②可得12T n =2+12+122+…+12n -2-2n -12n =3-2n +32n , 故T n =6-2n +32n -1.[由题悟法]用错位相减法求和的3个注意事项(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.[即时应用](2015·青岛一模)等差数列{a n }中,a 2+a 3+a 4=15,a 5=9. (1)求数列{a n }的通项公式;(2)设b n =3n a 12+,求数列⎩⎨⎧⎭⎬⎫a n +12·b n 的前n 项和S n .解:(1)设数列{a n }的公差为d ,首项为a 1,由题意得⎩⎪⎨⎪⎧ 3a 1+6d =15,a 1+4d =9,解得⎩⎪⎨⎪⎧a 1=1,d =2.所以数列{a n }的通项公式为a n =2n -1. (2)由(1)可得b n =3n a 12+=3n ,所以a n +12·b n =n ·3n , 所以S n =1×31+2×32+3×33+4×34+…+n ·3n , 3S n =32+2×33+3×34+…+(n -1)·3n +n ·3n +1,两式相减得2S n =-(3+32+33+34+…+3n )+n ·3n +1=-3(1-3n )1-3+n ·3n +1=3+(2n -1)·3n +12,所以S n =3+(2n -1)·3n +14.考点四 裂项相消法求和(常考常新型考点——多角探明)[命题分析]把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. 裂项相消法求和是历年高考的重点,命题角度凸显灵活多变,在解题中要善于利用裂项相消的基本思想,变换数列a n 的通项公式,达到求解目的.常见的命题角度有: (1)形如a n =1n (n +k )型;(2)形如a n =1n +k +n型.[题点全练]角度一:形如a n =1n (n +k )型1.(2015·全国卷Ⅰ)S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和.解:(1)由a 2n +2a n =4S n +3,① 可知a 2n +1+2a n +1=4S n +1+3.②②-①,得a 2n +1-a 2n +2(a n +1-a n )=4a n +1, 即2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ).由a n >0,得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列, 通项公式为a n =2n +1. (2)由a n =2n +1可知 b n =1a n a n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎫12n +1-12n +3.设数列{b n }的前n 项和为T n ,则 T n =b 1+b 2+…+b n=12⎣⎡⎦⎤⎝⎛⎭⎫13-15+⎝⎛⎭⎫15-17+…+⎝⎛⎭⎫12n +1-12n +3=n3(2n +3).角度二:形如a n =1n +k +n型2.(2016·江南十校联考)已知函数f (x )=x a 的图象过点(4,2),令a n =1f (n +1)+f (n ),n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 014=( )A. 2 013-1B. 2 014-1C. 2 015-1D. 2 015+1解析:选C 由f (4)=2可得4a =2,解得a =12,则f (x )=x 12. ∴a n =1f (n +1)+f (n )=1n +1+n=n +1-n ,S 2 014=a 1+a 2+a 3+…+a 2 014=(2-1)+(3-2)+(4-3)+…+( 2 014-2 013)+( 2 015- 2 014)= 2 015-1.[方法归纳]利用裂项相消法求和的注意事项(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项; (2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=1d ⎝⎛⎭⎫1a n -1a n +1,1a n a n +2=12d ⎝⎛⎭⎫1a n -1a n +2.一抓基础,多练小题做到眼疾手快1.已知等差数列{a n }的前n 项和为S n ,若S 3=9,S 5=25,则S 7=( ) A .41 B .48 C .49D .56解析:选C 设S n =An 2+Bn ,由题知,⎩⎪⎨⎪⎧S 3=9A +3B =9,S 5=25A +5B =25,解得A =1,B =0,∴S 7=49.2.数列{1+2n -1}的前n 项和为( )A .1+2nB .2+2nC .n +2n -1D .n +2+2n解析:选C 由题意得a n =1+2n -1, 所以S n =n +1-2n1-2=n +2n -1.3.(2016·江西新余三校联考)数列{a n }的通项公式是a n =(-1)n (2n -1),则该数列的前100项之和为( )A .-200B .-100C .200D .100解析:选D 根据题意有S 100=-1+3-5+7-9+11-…-197+199=2×50=100,故选D.4.设数列{a n }的前n 项和为S n ,且a n =sin n π2,n ∈N *,则S 2 016=________.解析:a n =sin n π2,n ∈N *,显然每连续四项的和为0.S 2 016=S 4×504=0. 答案:05.(2015·陕西质检)已知正项数列{a n }满足a 2n +1-6a 2n =a n +1a n .若a 1=2,则数列{a n }的前n 项和为________.解析:∵a 2n +1-6a 2n =a n +1a n ,∴(a n +1-3a n )(a n +1+2a n )=0, ∵a n >0,∴a n +1=3a n ,又a 1=2,∴{a n }是首项为2,公比为3的等比数列, ∴S n =2(1-3n )1-3=3n-1.答案:3n -1二保高考,全练题型做到高考达标1.(2015·阳泉质检)已知数列{a n }的前n 项和为S n ,并满足:a n +2=2a n +1-a n ,a 5=4-a 3,则S 7=( )A .7B .12C .14D .21解析:选C 由a n +2=2a n +1-a n 知数列{a n }为等差数列, 由a 5=4-a 3得a 5+a 3=4=a 1+a 7, 所以S 7=7(a 1+a 7)2=14. 2.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为( )A.158或5 B.3116或5 C.3116D.158解析:选C 设{a n }的公比为q ,显然q ≠1,由题意得9(1-q 3)1-q =1-q 61-q,所以1+q 3=9,得q =2,所以⎩⎨⎧⎭⎬⎫1a n 是首项为1,公比为12的等比数列,前5项和为1-⎝⎛⎭⎫1251-12=3116.3.已知数列{a n }的通项公式是a n =2n -3⎝⎛⎭⎫15n,则其前20项和为( ) A .380-35⎝⎛⎭⎫1-1519 B .400-25⎝⎛⎭⎫1-1520 C .420-34⎝⎛⎭⎫1-1520 D .440-45⎝⎛⎭⎫1-1520 解析:选C 令数列{a n }的前n 项和为S n ,则S 20=a 1+a 2+…+a 20=2(1+2+…+20)-3⎝⎛⎭⎫15+152+…+1520=2×20×(20+1)2-3×15⎝⎛⎭⎫1-15201-15=420-34⎝⎛⎭⎫1-1520.4.已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n -1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=( )A .1-4nB .4n -1 C.1-4n 3D.4n -13解析:选B 由已知得b 1=a 2=-3,q =-4, ∴b n =(-3)×(-4)n -1,∴|b n |=3×4n -1,即{|b n |}是以3为首项,4为公比的等比数列. ∴|b 1|+|b 2|+…+|b n |=3(1-4n )1-4=4n-1.5.122-1+132-1+142-1+…+1(n +1)2-1的值为( ) A.n +12(n +2)B.34-n +12(n +2)C.34-12⎝⎛⎭⎫1n +1+1n +2D.32-1n +1+1n +2 解析:选C ∵1(n +1)2-1=1n 2+2n =1n (n +2)= 12⎝⎛⎭⎫1n -1n +2, ∴122-1+132-1+142-1+…+1(n +1)2-1=12⎝⎛⎭⎫1-13+12-14+13-15+…+1n -1n +2 =12⎝⎛⎭⎫32-1n +1-1n +2 =34-12⎝⎛⎭⎫1n +1+1n +2. 6.(2016·山西四校联考)设数列{a n }满足a 2+a 4=10,点P n (n ,a n )对任意的n ∈N *,都有向量n n P P+1=(1,2),则数列{a n }的前n 项和S n =________.解:∵P n (n ,a n ),∴P n +1(n +1,a n +1),∴n n P P+1=(1,a n +1-a n )=(1,2),∴a n +1-a n =2,∴{a n }是公差d 为2的等差数列.7又由a 2+a 4=2a 1+4d =2a 1+4×2=10,解得a 1=1,∴S n =n +n (n -1)2×2=n 2. 答案:n 27.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,{a n }的“差数列”的通项公式为2n ,则数列{a n }的前n 项和S n =________.解析:∵a n +1-a n =2n ,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =2n -1+2n -2+…+22+2+2=2-2n1-2+2=2n -2+2=2n .∴S n =2-2n +11-2=2n +1-2.答案:2n +1-28.(2016·江西八校联考)在数列{a n }中,已知a 1=1,a n +1+(-1)n a n =cos(n +1)π,记S n为数列{a n }的前n 项和,则S 2 015=________.解:∵a n +1+(-1)n a n =cos(n +1)π=(-1)n +1,∴当n =2k 时,a 2k +1+a 2k =-1,k ∈N *,∴S 2 015=a 1+(a 2+a 3)+…+(a 2 014+a 2 015)=1+(-1)×1 007=-1 006. 答案:-1 0069.(2014·湖南高考)已知数列{a n } 的前n 项和S n =n 2+n 2,n ∈N * .(1)求数列{a n } 的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n } 的前2n 项和. 解:(1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .故数列{a n }的通项公式为a n =n . (2)由(1)知,a n =n ,故b n =2n +(-1)n n . 记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ). 记A =21+22+…+22n ,B =-1+2-3+4-…+2n ,则A =2(1-22n )1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.10.已知数列{}a n 与{}b n ,若a 1=3且对任意正整数n 满足a n +1-a n =2,数列{}b n 的前n项和S n =n 2+a n .(1)求数列{}a n ,{}b n 的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n .解:(1)因为对任意正整数n 满足a n +1-a n =2, 所以{}a n 是公差为2的等差数列. 又因为a 1=3,所以a n =2n +1. 当n =1时,b 1=S 1=4;当n ≥2时,b n =S n -S n -1=(n 2+2n +1)-[(n -1)2+2(n -1)+1]=2n +1,对b 1=4不成立.所以数列{}b n 的通项公式为b n =⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2.(2)由(1)知当n =1时,T 1=1b 1b 2=120. 当n ≥2时,1b n b n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎫12n +1-12n +3,所以T n =120+12⎣⎢⎡ ⎝⎛⎭⎫15-17+⎝⎛⎭⎫17-19+…+⎝⎛ 12n +1 ⎦⎥⎤⎭⎫-12n +3 =120+12⎝⎛⎭⎫15-12n +3 =120+n -110n +15. 当n =1时仍成立, 所以T n =120+n -110n +15. 三上台阶,自主选做志在冲刺名校1.(2016·云南师大附中检测)已知数列{a n }中,a 1=2,a 2n =a n +1,a 2n +1=n -a n ,则{a n }的前100项和为________.解析:由a 1=2,a 2n =a n +1,a 2n +1=n -a n ,得a 2n +a 2n +1=n +1,∴a 1+(a 2+a 3)+(a 4+a 5)+…+(a 98+a 99)=2+2+3+…+50=1 276,∵a 100=1+a 50=1+(1+a 25)=2+(12-a 12)=14-(1+a 6)=13-(1+a 3)=12-(1-a 1)=13,∴a 1+a 2+…+a 100=1 276+13=1 289.答案:1 2892.已知数列{a n }的前n 项和S n =3n ,数列{b n }满足b 1=-1,b n +1=b n +(2n -1)(n ∈N *). (1)求数列{a n }的通项公式; (2)求数列{b n }的通项公式;(3)若c n =a n ·b nn,求数列{c n }的前n 项和T n . 解:(1)∵S n =3n ,∴S n -1=3n -1(n ≥2), ∴a n =S n -S n -1=3n -3n -1=2×3n -1(n ≥2).当n =1时,2×31-1=2≠S 1=a 1=3,∴a n =⎩⎪⎨⎪⎧3,n =1,2×3n -1,n ≥2.(2)∵b n +1=b n +(2n -1),∴b 2-b 1=1,b 3-b 2=3,b 4-b 3=5,…,b n -b n -1=2n -3(n ≥2). 以上各式相加得b n -b 1=1+3+5+…+(2n -3)=(n -1)(1+2n -3)2=(n -1)2(n ≥2).∵b 1=-1,∴b n =n 2-2n (n ≥2). 又上式对于n =1也成立, ∴b n =n 2-2n (n ∈N *).(3)由题意得c n =⎩⎪⎨⎪⎧-3,n =1,2(n -2)×3n -1,n ≥2.当n ≥2时,T n =-3+2×0×31+2×1×32+2×2×33+…+2(n -2)×3n -1,∴3T n =-9+2×0×32+2×1×33+2×2×34+…+2(n -2)×3n . 相减得-2T n =6+2×32+2×33+…+2×3n -1-2(n -2)×3n .∴T n =(n -2)×3n -(3+32+33+…+3n -1) =(n -2)×3n-3n -32=(2n -5)3n +32.∴T n =⎩⎪⎨⎪⎧-3,n =1,(2n -5)3n +32,n ≥2.∴T n =(2n -5)3n +32(n ∈N *).第五节 数列的综合应用考点一 等差数列与等比数列的综合问题(重点保分型考点——师生共研)[典例引领]在等差数列{a n }中,a 10=30,a 20=50.(1)求数列{a n }的通项公式;(2)令b n =2a n -10,证明:数列{b n }为等比数列; (3)求数列{nb n }的前n 项和T n .解:(1)设数列{a n }的公差为d ,则a n =a 1+(n -1)d ,由a 10=30,a 20=50,得方程组⎩⎪⎨⎪⎧a 1+9d =30,a 1+19d =50,解得⎩⎪⎨⎪⎧a 1=12,d =2.所以a n =12+(n -1)·2=2n +10.(2)由(1),得b n =2a n -10=22n +10-10=22n =4n ,所以b n +1b n =4n +14n =4.所以{b n }是首项为4,公比为4的等比数列.(3)由nb n =n ×4n ,得T n =1×4+2×42+…+n ×4n ,① 4T n =1×42+…+(n -1)×4n +n ×4n +1,②①-②,得-3T n =4+42+…+4n -n ×4n +1=4(1-4n )-3-n ×4n +1.所以T n =(3n -1)×4n +1+49.[由题悟法]等差数列、等比数列综合问题的2大解题策略(1)设置中间问题:分析已知条件和求解目标,为最终解决问题设置中间问题,例如求和需要先求出通项、求通项需要先求出首项和公差(公比)等,确定解题的顺序.(2)注意解题细节:在等差数列与等比数列综合问题中,如果等比数列的公比不能确定,则要看其是否有等于1的可能,在数列的通项问题中第一项和后面的项能否用同一个公式表示等,这些细节对解题的影响也是巨大的.[提醒] 在不能使用同一公式进行计算的情况下要注意分类讨论,分类解决问题后还要注意结论的整合.[即时应用](2016·南昌三校联考)已知公比不为1的等比数列{a n }的首项a 1=12,前n 项和为S n ,且a 4+S 4,a 5+S 5,a 6+S 6成等差数列.(1)求等比数列{a n }的通项公式;(2)对n ∈N *,在a n 与a n +1之间插入3n 个数,使这3n +2个数成等差数列,记插入的这3n 个数的和为b n ,求数列{b n }的前n 项和T n .解:(1)设等比数列{a n }的公比为q ,a 4+S 4,a 5+S 5,a 6+S 6成等差数列, 所以a 5+S 5-a 4-S 4=a 6+S 6-a 5-S 5, 即2a 6-3a 5+a 4=0,所以2q 2-3q +1=0. 因为q ≠1,所以q =12,所以等比数列{a n }的通项公式为a n =12n .(2)由题意得b n =a n +a n +12·3n =34·⎝⎛⎭⎫32n, T n =34·32-⎝⎛⎭⎫32n +11-32=94⎣⎡⎦⎤⎝⎛⎭⎫32n -1. 4.数列{a n }满足a 1=1,a n +1=2a n (n ∈N *),S n 为其前n 项和.数列{b n }为等差数列,且满足b 1=a 1,b 4=S 3.(1)求数列{a n },{b n }的通项公式; (2)设c n =1b n ·log 2a 2n +2,数列{c n }的前n 项和为T n ,证明:13≤T n <12.解:(1)由题意知,{a n }是首项为1,公比为2的等比数列, ∴a n =a 1·2n -1=2n -1.∴S n =2n -1.设等差数列{b n }的公差为d ,则b 1=a 1=1,b 4=1+3d =7, ∴d =2,b n =1+(n -1)×2=2n -1. (2)证明:∵log 2a 2n +2=log 222n +1=2n +1,∴c n =1b n ·log 2a 2n +2=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1, ∴T n =12⎝⎛⎭⎫1-13+13-15+…+12n -1-12n +1=∵n ∈N *,∴T n =12⎝⎛⎭⎫1-12n +1<12,12⎝⎛⎭⎫1-12n +1=n 2n +1. 当n ≥2时,T n -T n -1=n 2n +1-n -12n -1=1(2n +1)(2n -1)>0,∴数列{T n }是一个递增数列,∴T n ≥T 1=13.综上所述,13≤T n <12.1.(2014·辽宁高考)设等差数列{a n }的公差为d ,若数列{2a 1a n }为递减数列,则( ) A .d <0B .d >0C .a 1d <0D .a 1d >0解析:选C ∵数列{2a 1a n }为递减数列,a 1a n =a 1[a 1+(n -1)d ]=a 1dn +a 1(a 1-d ),等式右边为关于n 的一次函数,∴a 1d <0.2.(2014·全国卷Ⅱ)数列 {a n }满足 a n +1=11-a n ,a 8=2,则a 1 =________. 解析:将a 8=2代入a n +1=11-a n ,可求得a 7=12;再将a 7=12代入a n +1=11-a n,可求得a 6=-1;再将a 6=-1代入a n +1=11-a n,可求得a 5=2;由此可以推出数列{a n }是一个周期数列,且周期为3,所以a 1=a 7=12.答案:126.(2015·山东高考)已知数列{a n }是首项为正数的等差数列,数列⎩⎨⎧⎭⎬⎫1a n ·a n +1的前n 项和为n2n +1. (1)求数列{a n }的通项公式;(2)设b n =(a n +1)·2a n ,求数列{b n }的前n 项和T n . 解:(1)设数列{a n }的公差为d , 令n =1,得1a 1a 2=13, 所以a 1a 2=3.①令n =2,得1a 1a 2+1a 2a 3=25, 所以a 2a 3=15.②由①②解得a 1=1,d =2,所以a n =2n -1.经检验,符合题意. (2)由(1)知b n =2n ·22n -1=n ·4n ,所以T n =1·41+2·42+…+n ·4n , 所以4T n =1·42+2·43+…+n ·4n +1,两式相减,得-3T n =41+42+…+4n -n ·4n +1=4(1-4n )1-4-n ·4n +1=1-3n 3×4n +1-43,所以T n =3n -19×4n +1+49=4+(3n -1)4n +19.7.(2014·全国卷Ⅱ)已知数列{a n }满足a 1=1,a n +1=3a n +1. (1)证明:⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式;(2)证明:1a 1+1a 2+…+1a n <32.证明:(1)由a n +1=3a n +1得a n +1+12=3⎝⎛⎭⎫a n +12. 又a 1+12=32,所以⎩⎨⎧⎭⎬⎫a n +12是首项为32,公比为3的等比数列.所以a n +12=3n2,因此{a n }的通项公式为a n =3n -12.(2)由(1)知1a n =23n -1.因为当n ≥1时,3n -1≥2×3n -1,所以13n-1≤12×3n -1. 于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32⎝⎛⎭⎫1-13n <32.1a1+1a2+…+1a n<32.所以。

相关文档
最新文档