数列求和专项训练题(学生)

合集下载

小学数学《数列求和》练习题(含答案)

小学数学《数列求和》练习题(含答案)

小学数学《数列求和》练习题(含答案)【例1】找找下面的数列有多少项?(1)2、4、6、8、……、86、98、100(2)3、4、5、6、……、76、77、78(3)4、7、10、13、……、40、43、46(4)2、6、10、14、18、……、82、86分析:(1)我们都知道:1、2、3、4、5、6、7、8、……、95、96、97、98、99、100 这个数列是100项,现在不妨这样去看:(1、2)、(3、4)、(5、6)、(7、8)、……、(95、96)、(97、98)、(99、100),让它们两两一结合,奇数在每一组的第1位,偶数在第2位,而且每组里偶数比奇数大,小朋友们一看就知道,共有100÷2=50组,每组把偶数找出来,那么原数列就有50项了。

(2)连续的自然数列,3、4、5、6、7、8、9、10……,对应的是这个数列的第1、2、3、4、5、6、7、8、……,发现它的项数比对应数字小2,所以78是第76项,那么这个数列就有76项。

对于连续的自然数列,它们的项数是:末项—首项+ 1 。

(3)配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、……、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有48-4+1=45项,每组3个数,所以共45÷3=15组,原数列有15组。

当然,我们还可以有其他的配组方法。

(4)22项.对于一个等差数列的求和,在许多时候我们不知道的往往是这个数列的项数。

这种找项数的方法在学生学习了求项数公式后,也许稍显麻烦,但它的思路很重要,对于以后学习数论知识有较多的帮助。

希望教师能帮助孩子牢固掌握。

【例2】计算下列各题:(1)2+4+6+…+96+98+100(2)2+5+8+…+23+26+29分析:(1)这是一个公差为2的等差数列,首项是2,末项是100,项数为50。

必修5 第二章 第五节 数列的求和(学生版)

必修5 第二章 第五节 数列的求和(学生版)

教学辅导教案1. 等差数列{}n a 中,2474,15a a a =+=. (1)求数列{}n a 的通项公式;2. 设n S 为数列{n a }的前n 项和.已知n a >0,22n n a a +=43n S +.(1)求数列{n a }的通项公式;(2)设11n n n b a a +=,求数列{n b }的前n 项和.3. 已知等比数列{}n a 满足32152,027a a a a a ==-. (1)求{}n a 的通项公式;(2)若,求证:是等差数列.3log 33+=n n a b {}n b4. 已知数列{}n a 的通项公式22n a n =+*()n ∈N (1)求25,a a ;(2)若25,a a 恰好是等比数列{}n b 的第2项和第3项,求数列{}n b 的通项公式.5. 已知数列{}n a 的前n 项和S n =3n 2+8n ,{}n b 是等差数列,且1.n n n a b b +=+ (Ⅰ)求数列{}n b 的通项公式;1. 已知正项等比数列{}n a 满足1a ,22a ,36a +成等差数列,且24159a a a =.(1)求数列{}n a 的通项公式;(2)设31log ()n n n b a a =+⋅,求数列{}n b 的前n 项和n T .2. 已知数列{}n a 是等差数列,数列{}n b 是等比数列,且38b =,416b =,11a b =,84a b =.(1)求数列{}n a 和{}n b 的通项公式;(2)若n n n c a b =+,求数列{}n c 的前n 项和n T .3. 设数列{}满的前n 项和为Sn ,且,·(1)求数列{}满的通项公式;(2)设,求数列{}的前n 项和.4. 已知数列满足,则数列的前项和___________.5. 已知数列{}n a 满足11a =,且对于任意*n N ∈都有11n n a a n +=++,则121001111a a a ++⋅⋅⋅+=【题型一: 通项分析法】 【例1】 已知数列的各项依次为,,,求它的前项和【例1】 已知数列{}n a :12,1233+,123444++,…, 123910101010+++L ,…,若11n n n b a a +=⋅,那么数列{}n b 的前n 项和n S 为( )A .1n n + B .41n n + C. 31n n + D .51n n + 【变式训练1】 已知等差数列的前项和为,,,则数列的前100项和为( )A .100101 B .99101C .99100D .1011001. (题型1)设n S 是数列的前项和,且11a =-,11n n n a S S ++=,则n S =________.2. (题型2)已知()11sin 22f x x ⎛⎫=+- ⎪⎝⎭,数列{}n a 满足()()12101n n a f f f f f n n n -⎛⎫⎛⎫⎛⎫=+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L ,则2017a =__________. 3. (题型3)在等差数列中,已知,,求通项公式及前项和4. (题型4)所以数列的前项和已知{}n a 是等差数列,其前n 项和为n S ,{}n b 是等比数列,且112a b ==,4427a b +=,4410S b -=.7. (题型6)已知数列{}n a 为等差数列,其中238a a +=,523a a =. (1)求数列{}n a 的通项公式;(2)记12n n n b a a +=,设{}n b 的前n 项和为n S ,求最小的正整数n ,使得20162017n S >成立.【查漏补缺】1. 数列{}n a 的前n 项和为n S ,若)1(1+=n n a n ,则5S 等于( )A .1B .65 C .61 D .301 2. 已知数列{}n a 的前n 项和为n S ,且对任意正整数n ,都有324n n a S =+成立.(1)记2log n n b a =,求数列{}n b 的通项公式;(2)设11n n n c b b +=,求数列{}n c 的前n 项和n T .3. 已知数列{}n a 的前n 项和为n S ,且2n S n n =+.(1)求数列{}n a 的通项公式; (2)求数列1{}()2nnS n +⋅的前n 项和n T .4. 设等差数列{}n a 的前n 项和为n S ,已知3a =24,11S =0. (Ⅰ)求数列{}n a 的前n 项和n S ; (Ⅱ)设nS b nn =,求数列}{n b 前n 项和n T 的最大值.1. 已知数列{}n a 满足1362,4a a a ==, n a n ⎧⎫⎨⎬⎩⎭是等差数列,则数列(){}1nn a -的前10项的和10S = A. 220B. 110C. 99D. 552. 设n S 为等差数列{}n a 的前n 项的和11a =,20172015120172015S S -=,则数列1n S ⎧⎫⎨⎬⎩⎭的前2017项和为 A.20171009 B. 20172018 C. 12017 D. 120183. 已知函数()()2cos f n n n π=,且()()1n a f n f n =++,则12100a a a ++⋯+=( )A.100- B. 0 C. 100 D. 102004. 数列满足12sin 122n n n a a n π+⎛⎫=-+ ⎪⎝⎭,则数列的前100项和为A. 5050B. 5100C. 9800D. 9850 5. 观察如下规律:1111111111111111111111111,,,,,,,,,,,,,,,,,,,,,,,,,333555557777777999999999L ,该组数据的前2025项和为__________. 6. 已知数列的前n 项和为n S ,且2n n S a n =-.(1)证明:数列{}1n a +是等比数列,求数列{}n a 的通项公式;(2)记1111n n n n b a a a ++=+,求数列{}n b 的前n 项和n T .7. 已知数列{a n }的首项a 1=23,a n +1=21n n a a + (n *N ∈).(1)证明:数列{1na -1}是等比数列; (2)求数列{nna }的前n 项和S n .8. 已知等差数列{}n a 的前n 项和为n S ,并且252,15a S ==,数列{}n b 满足:()1111,22n n n b b b n N n+++==∈,记数列{}n b 的前n 项和为n T . (1)求数列{}n a 的通项公式n a 及前n 项和为n S ; (2)求数列{}n b 的通项公式n b 及前n 项和为n T ;9. 设各项均为正数的等比数列{}n a 中,133510,40.a a a a +=+=2log n nb a =(1)求数列{}n b 的通项公式;(2)若111,nn n nb c c c a +==+,求证: 3n c <;第1,2天作业1. (2015年高考新课标I 卷)已知是公差为1的等差数列,为的前项和,若,则A .B .C .D .2. (2015年高考新课标Ⅱ卷)设是等差数列的前项和,若,则 A .B .C .D .3. (2014年高考福建卷)等差数列的前项和为,若,则 A .8B .10C .12D .114. (2016年高考北京卷)已知为等差数列,为其前n 项和,若,,则_______.5. (2016年高考江苏卷)已知{}是等差数列,是其前项和.若,{}n a n S {}n a n 844S S =10a =1721921012n S {}n a n 1353a a a ++=5S =57911{}n a n n S 132,12a S ==6a ={}n a n S 16a =350a a +=6=S n a n S n 2123a a +=-。

高中数学专题强化练习《数列求和》含答案解析

高中数学专题强化练习《数列求和》含答案解析
1 × (1 - 2) n
=2 -1,
1-2
=
∴Sn=(21-1)+(22-1)+…+(2n-1)
2 × (1 - 2)
-n=2n+1-n-2.故选
1-2
=
D.
2.B 由题意可得,当 n 为奇数时,an=f(n)+f(n+1)=n2-(n+1)2=-2n-1;
当 n 为偶数时,an=f(n)+f(n+1)=-n2+(n+1)2=2n+1.
公差不为 0,其前 n 项和为 Sn.若 a2,a4,a7 成等比数列,S3=12.
(1)求 an 及 Sn;
1
1
1
(2)已知数列{bn}满足+1-=an,n∈N*,b1=3,Tn 为数列{bn}的前 n 项和,
求 Tn 的取值范围.
答案全解全析
一、选择题
1.D ∵an=1+2+22+…+2n-1
又 a14=b4,所以 1+13d=1×33,解得 d=2,

( - 1)
1 - 3
2+3 - 1.
·2+
=n
2
1-3
2
所以数列{an+bn}的前 n 项和为 n+
8.答案 6
6
解析 设等比数列{an}的首项为 a1,公比为 q,由 a4=24,a6=96,得 q2=4
=4,所以 q=2 或 q=-2,
(n ≤ 6,n ∈ N*),
2
∴Tn= n2 - 11n + 60
(n ≥ 7,n ∈ N*).
2
=15+

数列求和(分组求和、并项法、错位相减、裂项相消)综合经典例题(收藏版)含答案详解

数列求和(分组求和、并项法、错位相减、裂项相消)综合经典例题(收藏版)含答案详解

数列求和综合(经典总结版)含答案详解包括四种题型:分组求和、并项法、错位相减、裂项相消一、分组求和例1.求和.练1已知数列{}n x 的首项13x =,通项2n n x p n q =⋅+⋅(*n ∈N ,,p q 是常数),且145,,x x x 成等差数列.(1)求,p q 的值;(2)求数列{}n x 的前n 项和n S .例2.(奇偶性)已知等差数列{a n }中,a 1=1,且a 1,a 2,a 4+2成等比数列.(Ⅰ)求数列{a n }的通项公式及前n 项和S n ;(Ⅱ)设b n =,求数列{b n }的前2n 项和T 2n .二、并项法例1.已知数列的前项和,求,的值以及Sn 的值.练1.求,,,,…,,…的前50项之和以及前项之和.三、错位相减例1 已知数列{a n }的前n 项和为S n ,且有a 1=2,3S n =11543(2)n n n a a S n ---+≥(I )求数列a n 的通项公式; (Ⅱ)若b n =n ·a n ,求数列{b n }的前n 项和T n 。

11111232482n n ⎛⎫+++⋅⋅⋅++ ⎪⎝⎭{}n a n 1159131721...(1)(43)n n S n -=-+-+-++--15S 22S 21-2223-242(1)n n •-50S n n S练1 等比数列{a n }的前n 项和为S n .已知S 1,S 3,S 2成等差数列.若a 1-a 3=-32,求数列{n ·a n }的前n 项和T n .练2 设数列{a n }满足a 1=2,a n +1-a n =3·22n -1.(1)求数列{a n }的通项公式;(2)令b n =na n ,求数列{b n }的前n 项和S n .例2已知数列{}n a 的首项123a =,121n n n a a a +=+,1,2,3,n =…. (Ⅰ)证明:数列1{1}na -是等比数列;(Ⅱ)数列{}n n a 的前n 项和n S .练1 已知各项均为正数的数列{}n a 前n 项和为n S ,首项为1a ,且n n S a ,,21等差数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若n bn a )21(2=,设nnn a b c =,求数列{}n c 的前n 项和n T .练2、已知递增的等比数列{a n }满足:a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项. (1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,求S n .例3 在等比数列{a n }中,a 2a 3=32,a 5=32.(1)求数列{a n }的通项公式; (2)设数列{a n }的前n 项和为S n ,求S 1+2S 2+…+nS n .例4.已知数列{a n }的前n 项和为S n =3n ,数列{b n }满足b 1=-1,b n +1=b n +(2n -1)(n ∈N *). (1)求数列{a n }的通项公式a n ;(2)求数列{b n }的通项公式b n ;(3)若c n =a n ·b nn ,求数列{c n }的前n 项和T n .四、裂项相消裂项相消的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,以达到求和的目的. 常见的裂项相消形式有: 1. 111(1)1n a n n n n ==-++ 1111()(2)22n a n n n n ==-++ ┈┈1111()()n a n n k k n n k ==-++2n p a An Bn C ⇒=++(分母可分解为n 的系数相同的两个因式)2. 1111()(21)(21)22121n a n n n n ==--+-+ 1111()(21)(23)22123n a n n n n ==-++++1111()(65)(61)66561n a n n n n ==--+-+3. 1111(1)(2)2(1)(1)(2)n a n n n n n n n ⎡⎤==-⎢⎥+++++⎣⎦4.)121121(211)12)(12()2(2+--+=+-n n n n n 5. 111211(21)(21)2121n n n n n n a ---==-++++ +1+1211(21)(21)2121nnn n n n a ==-++++122(1)111(1)2(1)22(1)2n n n n n n n n a n n n n n n -++-==⋅=-++⋅+6.=┈┈12=1k=- 例1.正项数列}{n a 满足02)12(2=---n a n a n n .(Ⅰ)求数列}{n a 的通项公式n a ; (Ⅱ)令,)1(1nn a n b +=求数列}{n b 的前n 项和n T .练1.等比数列}{n a 的各项均为正数,且6223219,132a a a a a ==+.(Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设,log log log 32313n n a a a b +++= 求数列}1{nb 的前n 项和.例2.已知等差数列}{n a 满足:26,7753=+=a a a .}{n a 的前n 项和为n S .(Ⅰ)求n a 及n S ; (Ⅱ)令),(11*2N n a b n n ∈-=求数列}{n b 的前n 项和n T .例3.已知等差数列}{n a 的公差为2,前n 项和为n S ,且421,,S S S 成等比数列.(1)求数列}{n a 的通项公式;(2)令,4)1(112+--=n n n a a nb 求数列}{n b 的前n 项和n T .例4.正项数列}{n a 的前n 项和n S 满足:0)()1(222=+--+-n n S n n S n n .(1)求数列}{n a 的通项公式n a ;(2)令,)2(122n n a n n b ++=数列}{n b 的前n 项和为n T ,证明:对于,*N n ∈∀都有645<n T .练1、已知数列{}n a 是首相为1,公差为1的等差数列,21n n n b a a +=⋅,n S 为{}n b 的前n 项和,证明:1334n S ≤<.例5.已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8.(1)求数列{a n }的通项公式; (2)设S n 为数列{a n }的前n 项和,b n =,求数列{b n }的前n 项和T n .例6. (无理型)设数列{}n a 满足01=a 且111111=---+nn a a ,(1)求{}n a 的通项公式;(2)设na b n n 11+-=,记∑==nk kn bS 1,证明:1<n S .例7.(指数型).已知数列{a n }的前n 项和为S n ,且a 2=8,S n =﹣n ﹣1.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)求数列{}的前n 项和T n .例8.设{a n }是等比数列,公比大于0,其前n 项和为S n (n ∈N *),{b n }是等差数列.已知a 1=1,a 3=a 2+2,a 4=b 3+b 5,a 5=b 4+2b 6.(Ⅰ)求{a n }和{b n }的通项公式; (Ⅱ)设数列{S n }的前n 项和为T n (n ∈N *), (i )求T n ;(ii )证明=﹣2(n ∈N *)作业:1.设231()2222()n f n n N ++=++++∈,则()f n 等于( )A.21n -B.22n -C. 122n +-D. 222n +-2.满足*12121,log log 1()n n a a a n +==+∈N ,它的前n 项和为n S ,则满足1025n S >的最小n 值是( )A .9B .10C .11D .123.已知等差数列}{n a 的前n 项和为,15,5,55==S a S n 则数列}1{1+n n a a 的前100项和为( A ) A .100101 B .99101 C .99100 D .1011004.求和2345672223242526272+⨯+⨯+⨯+⨯+⨯+⨯= . 5.定义在上的函数满足, 则6.已知数列{a n }的前n 项和S n 与通项a n 满足S n =12-12a n .(1)求数列{a n }的通项公式;(2)设f (x )=log 3x ,b n =f (a 1)+f (a 2)+…+f (a n ),T n =1b 1+1b 2+…+1b n ,求T 2 012;(3)若c n =a n ·f (a n ),求{c n }的前n 项和U n .7.已知数列{a n }为公差不为零的等差数列,a 1=1,各项均为正数的等比数列{b n }的第1项,第3项,第5项分别是a 1,a 3,a 21.(1)求数列{a n }与{b n }的通项公式;(2)求数列{a n b n }的前n 项和S n .8. 已知数列{an}的前n 项和Sn =-12n 2+kn(其中k ∈N +),且S n 的最大值为8.(1)确定常数k ,并求a n ;(2)求数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和Tn.R )(x f 2)21()21(=-++x f x f )83()82()81(f f f ++67()()_______88f f +++=数列求和综合答案详解版一、分组求和例1.求和. 【解析】(1+2+3+…+n)+ =【总结升华】1. 一般数列求和,先认真理解分析所给数列的特征规律,联系所学,考虑化归为等差、等比数列或常数列,然后用熟知的公式求解.2. 一般地,如果等差数列与等比数列的对应项相加而形成的数列都用分组求和的办法来求前项之和.练1已知数列{}n x 的首项13x =,通项2n n x p n q =⋅+⋅(*n ∈N ,,p q 是常数),且145,,x x x 成等差数列.(1)求,p q 的值;(2)求数列{}n x 的前n 项和n S . 【解析】(1)232(164)2325p q p q p q p p +=⎧⎨+=+++⎩ 解得11q p =⎧⎨=⎩(2)12212(21)(22)+(2)n n S x x x n =+++=+++++………… =12(22+2)(123+n)n ++++++…………=1(1)222n n n ++-+ 例2.(奇偶性)已知等差数列{a n }中,a 1=1,且a 1,a 2,a 4+2成等比数列.(Ⅰ)求数列{a n }的通项公式及前n 项和S n ; (Ⅱ)设b n =,求数列{b n }的前2n 项和T 2n .【解答】解:(I )设等差数列{a n }的过程为d ,∵a 1=1,且a 1,a 2,a 4+2成等比数列. ∴=a 1•(a 4+2),即(1+d )2=1×(1+3d +2),化为:d 2﹣d ﹣2=0,解得d =2或﹣1.其中d =﹣1时,a 2=0,舍去.∴d =2.a n =1+2(n ﹣1)=2n ﹣1,S n ==n 2.(Ⅱ)设b n ==,∴n 为偶数时,==16,b 2=8;11111232482n n ⎛⎫+++⋅⋅⋅++ ⎪⎝⎭11111232482n n S n ⎛⎫=+++⋅⋅⋅++= ⎪⎝⎭111242n ⎛⎫++⋅⋅⋅+ ⎪⎝⎭(1)1122n n n ++-{}n a {}n b {}n n a b +n n Sn 为奇数时,==,b 1=.∴数列{b n }的奇数项是首项为,公比为.数列{b n }的偶数项是首项为8,公比为16.∴数列{b n }的前2n 项和T 2n =+=.二、并项法例1.已知数列的前项和,求,的值以及Sn 的值.【思路点拨】该数列{}n a 的特征:1(1)(43)n n a n -=--,既非等差亦非等比,但也有规律:所有奇数项构成以1为首项8为公差的等差数列,偶数项构成以-5为首项-8为公差的等差数列,因而可以对奇数项和偶数项分组求和;还有规律:1234561...4n n a a a a a a a a ++=+=+==+=-(n 为奇数),可以将相邻两项组合在一起. 【解析】(1)法1(分组)由可得,法2(并项)a1+a2=−4,a3+a4=−4(2)由∴当为奇数,时, ,Sn=( a1+a2)+ a3+a4……(a n-2-a n-1)+an=−4(n−12)+4n-3=2n-1当为偶数,时,,Sn=( a1+a2)+ a3+a4……(a n-1+an )=−4×n2=−2n 【总结升华】1.对通项公式中含有或的一类数列,在求时要注意讨论的奇偶情况.2. 对正负相间的项中的相邻两项进行恰当的组合,可能会有意料之结. 举一反三:【变式1】求,,,,…,,…的前50项之和以及前项之和.{}n a n 1159131721...(1)(43)n n S n -=-+-+-++--15S 22S 1(1)(43)n n a n -=--158(157)7(553)[19...(4153)][513...(4143)]2922S ++=+++⨯--+++⨯-=-=2211(181)11(585)[19...(4213)][513...(4223)]4422S ++=+++⨯--+++⨯-=-=-1(1)(43)n n a n -=--n n N +∈1(43)(41)4n n a a n n ++=--+=-n n N +∈1(43)(41)4n n a a n n ++=--++=n )1(-1n )1(+-n S n 21-2223-242(1)n n •-50S n n S【解析】(1)设,则数列为等差数列,且是的前25项之和, 所以.(2)当为偶数即时,.当为奇数即时,.三、错位相减例1 已知数列{a n }的前n 项和为S n ,且有a 1=2,3S n =11543(2)n n n a a S n ---+≥ (I )求数列a n 的通项公式;(Ⅱ)若b n =n ·a n ,求数列{b n }的前n 项和T n 。

高中数学常见数列求和的方法训练(裂项相消、错位相减、分组求和、倒序相加、奇偶并项)

高中数学常见数列求和的方法训练(裂项相消、错位相减、分组求和、倒序相加、奇偶并项)

高中数学常见数列求和的方法训练(裂项相消、错位相减、分组求和、倒序相加、奇偶并项)【题组一裂项相消】1.(2020·沭阳县修远中学高二月考)数列{}n a的通项公式n a =n 项的和为11,则n=________。

2.(2020·河南高二月考)已知等差数列{}n a 中,13212a a +=,12421a a a +=+。

(1)求数列{}n a 的通项公式;(2)记数列{}n a 的前n 项和为n S ,证明:121112123n S S S n +++<+++L ;3.已知公差不为0的等差数列{}n a 中22a =,且2a ,4a ,8a 成等比数列。

(1)求数列{}n a 的通项公式;(2)设11n n n b a a +=,数列{}n b 的前n 项和为n S ,求使1415n S <的n 的最大值。

练习1已知数列{}n a 的前n 项和为n S ,且2347n n S a n =+-。

(1)证明:数列{}2n a -为等比数列;(2)若()()1211n n n n a b a a +-=--,求数列{}n b 的前n 项和n T ;2.已知数列{a n }满足a 1=3,a n +1=3a n -4n ,n ∈N *.(1)判断数列{a n -2n -1}是否是等比数列,并求{a n }的通项公式;(2)若b n =(2n -1)2n a n a n +1,求数列{b n }的前n 项和S n ;【题组二错位相减】1.在数列{a n }中,a 1=1,a n +1=2a n +2n 。

(1)设b n =12n n a -.证明:数列{b n }是等差数列;(2)求数列{a n }的前n 项和;2.设等差数列{}n a 的前n 项和为n S ,且424S S =,2121a a =+。

(1)求数列{}n a 的通项公式;(2)设数列{}n b 满足()214n n n a b -=,求数列{}n b 的前n 项和n R ;3.设等差数列{}n a 的公差为d ,前n 项和为n S ,且满足2d =-,476S =.等比数列{}n b 满足1310b b +=,2420b b +=。

小学六年级奥数数列求和问题专项强化训练(高难度)

小学六年级奥数数列求和问题专项强化训练(高难度)

小学六年级奥数数列求和问题专项强化训练(高难度)例题:已知数列 an 的通项公式为 a n = n2 + 2n,求 s10,其中 s10 表示数列前 10 项的和。

解析:我们需要先找到数列的前 10 项,然后将它们相加。

数列的通项公式为 an = n^2 + 2n,所以我们可以求出数列的前 10 项:a1 = 12 + 2×1 = 3a2 = 22 + 2×2 = 8a3 = 32 + 2×3 = 15...a10 = 102 + 2×10 = 120接下来,将这些项相加得到数列前 10 项的和 s10:s10 = a1 + a2 + a3 + ... + a10s10 = 3 + 8 + 15 + ... + 120这是一个等差数列,使用求和公式可以得到:s10 = (a1 + a10) × 10 ÷ 2s10 = (3 + 120) × 10 ÷ 2s10 = 1230所以,数列前 10 项的和为 1230。

接下来是 15 道对应题型的专项练习应用题:1.已知数列 an 的通项公式为 an = n2 + 3n,求 s12。

2.2. 已知数列 an 的前 n 项和为 sn,an = 2n + 1,求 s10。

3. 已知数列 an 的前 n 项和为 sn,an = n2 - n,求 s8。

4. 已知数列 an 的前 n 项和为 sn,an = 3n + 2,求 s15。

5. 已知数列 an 的前 n 项和为 sn,an = n2 + n + 1,求 s20。

6. 已知数列 an 的前 n 项和为 sn,an = 4n + 3,求 s18。

7. 已知数列 an 的前 n 项和为 sn,an = n2 + 5n,求 s16。

8. 已知数列 an 的前 n 项和为 sn,an = 2n2 + 3n,求 s14。

9. 已知数列 an 的前 n 项和为 sn,an = 5n + 4,求 s13。

数列求和专题(必考必练,方法全面,有答案)

数列求和专题(必考必练,方法全面,有答案)

数列求和专题一.公式法(已知数列是等差或等比数列可以直接使用等差或等比的求和公式求和) 二.分组求和法若数列的通项是若干项的代数和,可将其分成几部分来求.例1:求数列11111246248162n n ++L ,,,,,…的前n 项和n S .- 23411111111(2462)(1)222222n n n S n n n ++⎛⎫=+++++++++=++- ⎪⎝⎭L L .例2: 求数列5,55,555,…,55…5 的前n 项和S n解: 因为55…5=)110(95-n 所以 S n =5+55+555+...+55 (5)=[])110()110()110(952-+⋅⋅⋅+-+-n=⎥⎦⎤⎢⎣⎡---n n 110)110(1095 =815095108150--⨯n n 练习:、求数列11111,2,3,4,392781L 的前n 项和。

解:211223nn n ++-⋅三.错位相减法这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.例: 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………(0x ≠)解: 当x=1时,23121315171(21)1135(21)n n S n n n -=+∙+∙+∙+⋅⋅⋅+-∙=++++-=当x ≠1时, 132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………. ① ①式两边同乘以x 得n xS = 231135(23)(21)n n x x x n x n x -+++⋅⋅⋅+-+-………② (设制错位)①-②得 n n n x n xx x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+n练习: 1:求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n 前n 项的和. 1224-+-=n n n S2. 已知数列.}{,)109()1(n n nn S n a n a 项和的前求⨯+=四.裂项相消法 常见的拆项公式有:1()n n k =+111()k n n k -+=1k,1(21)(21)n n =-+111()22121n n --+,等. 例1:求数列311⨯,421⨯,531⨯,…,)2(1+n n ,…的前n 项和S. 解:∵)2(1+n n =211(21+-n n )S n =⎥⎦⎤⎢⎣⎡+-+⋅⋅⋅+-+-)211()4121()311(21n n =)2111211(21+-+--n n =42122143+-+-n n 例2:设9)(2+=x x f ,(1)若;),2(),(,111n n n u n u f u u 求≥==-(2)若;}{,,3,2,1,11n n k k k S n a k u u a 项和的前求数列 =+=+解:(1)}{),2(9122121n n nu n u u u ∴⎩⎨⎧≥+==- 是公差为9的等差数列,,89,0,892-=∴>-=∴n u u n u n n n(2)),8919(9119891--+=++-=k k k k a k);119(91)]8919()1019()110[(91-+=--+++-+-=∴n n n S n练习: 1、 求数列2112+,2124+,2136+,2148+,…的前n 项和n S .2、求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.五.倒序相加法这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.例1:求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5例2: 求222222222222123101102938101++++++++的和. 解:设222222222222123101102938101S =++++++++ 则222222222222109811012938101S =++++++++.两式相加,得 2111105S S =+++=∴=,.练习:设221)(xx x f +=,求:⑴)4()3()2()()()(111f f f f f f +++++; ⑵).2010()2009()2()()()()(21312009120101f f f f f f f ++++++++ 【解题思路】观察)(x f 及⎪⎭⎫ ⎝⎛x f 1的特点,发现1)1()(=+xf x f 六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .例6: 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°∵ cos(180)cos n n -=- (找特殊性质项)∴S n = (cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+···+(cos89°+ cos91°)+ cos90° (合并求和)= 0练习:已知:n S n n ⋅-++-+-+-=+1)1(654321 .求n S .(⎪⎪⎩⎪⎪⎨⎧-+=)(2)(21为正偶数为正奇数n n n n S n )。

经典的数列通项公式与数列求和练习题(有答案)

经典的数列通项公式与数列求和练习题(有答案)

经典的数列通项公式与数列求和练习题(有答案)一、斐波那契数列斐波那契数列是最经典的数列之一,它的通项公式为:$$F(n) = F(n-1) + F(n-2)$$其中 $F(1) = 1$,$F(2) = 1$。

以下是一些关于斐波那契数列的练题:练题1:求斐波那契数列的第10项。

解答:根据通项公式进行递归计算,得出第10项为34。

练题2:求斐波那契数列的前20项的和。

解答:利用循环计算斐波那契数列的前20项,并将每项相加得到总和为6765。

二、等差数列等差数列是一种常见的数列类型,它的通项公式为:$$a_n = a_1 + (n - 1) \cdot d$$其中 $a_1$ 是首项,$d$ 是公差。

以下是一些关于等差数列的练题:练题1:已知等差数列的首项 $a_1 = 3$,公差 $d = 5$,求该数列的前10项。

解答:根据通项公式,将$a_1$ 和$d$ 代入,依次计算出前10项为:3, 8, 13, 18, 23, 28, 33, 38, 43, 48。

练题2:已知等差数列的首项 $a_1 = 2$,公差 $d = -4$,求该数列的前15项的和。

解答:根据通项公式和等差数列前n项和的公式,将 $a_1$、$d$ 和$n$ 代入,计算出前15项的和为:-420。

三、等比数列等比数列是另一种常见的数列类型,它的通项公式为:$$a_n = a_1 \cdot q^{(n-1)}$$其中 $a_1$ 是首项,$q$ 是公比。

以下是一些关于等比数列的练题:练题1:已知等比数列的首项 $a_1 = 2$,公比 $q = 3$,求该数列的前8项。

解答:根据通项公式,将 $a_1$ 和 $q$ 代入,依次计算出前8项为:2, 6, 18, 54, 162, 486, 1458, 4374。

练题2:已知等比数列的首项 $a_1 = 5$,公比 $q = \frac{1}{4}$,求该数列的前12项的和。

解答:根据通项公式和等比数列前n项和的公式,将 $a_1$、$q$ 和$n$ 代入,计算出前12项的和为 $\frac{5}{1 - \frac{1}{4}} =\frac{20}{3}$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列求和的常用方法
第一类:公式法求和
利用下列常用求和公式求和是数列求和的最基本最重要的.
1、等差数列前n 和公式:()()
11122
n n n a a n n S na d +-=
=+ 2、等比数列前n 和公式:1
11(1)(1)(1)
11n n n na q S a a q
a q q q q =⎧⎪
=--⎨=≠⎪--⎩
自然数方幂和公式:
3、11(1)2n
n k S k n n ===+∑ 4、211
(1)(21)
6n
n k S k n n n ===++∑
5、32
1
1[(1)]2
n
n k S k n n ===+∑
【例】已知数列{}n a 满足*111,4,n n a a a n N +==+∈,求数列{}n a 的前n 项和
n S .
【练习】已知321
log log 3
x -=
,求23n x x x x +++⋅⋅⋅++⋅⋅⋅的前n 项和.
第二类:分组法求和
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.
若数列{}n c 的通项公式为n n n c a b =+,其中数列{}n a ,{}n b 分别是等差数列和等比数列,求和时一般用分组结合法。

【例】数列111111,2,3,4
,,,24816
2n
n
求数列的前n 项和.
【练习】数列{}n a 的通项公式221n n a n =+-
第三类:裂项法求和
这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.
常用的通项分解(裂项)如:
(1)()()1n a f n f n =+-
(2)()11111
n a n n n n =
=-++ (()1111n a n n k k n n k ⎛⎫
==- ⎪++⎝⎭)
(3)()()1
111212122121n a n n n n ⎛⎫
=
=⋅- ⎪+--+⎝⎭
(4
)n a =
=(5)()1log 1log 1log n a a a a n n n ⎛⎫=+=+- ⎪⎝

【例1】数列11
11,
,,,
,
12123
123n
++++++
+,求该数列的前n 项和.
【例2】已知等差数列{}n a 满足3575,22a a a =+=.
(1)求n a ; (2)令1
1
n n n b a a +=
,求数列{}n b 的前n 项和n S .
【例3】数列
()
1111
,,,,
,
132435
2n n ⨯⨯⨯+,求该数列的前n 项和.
小结:要先观察通项类型,在裂项求和时候,尤其要注意究竟是像例1一样剩下首尾两项,还是像例3一样剩下四项.
【例4】数列{}
n a 的通项公式是n a =,若前n 项和为10,则
项数为( )
A. 11
B. 99
C. 120
D. 121
【例5】数列{}n a 的通项公式是21log 1n a n ⎛⎫=+ ⎪⎝

,求该数列的前127项
和.
第三类:错位相减法求和
这种方法主要用于求数列{}n n a b ⋅的前n 项和(112233n n n S a b a b a b a b =⋅+⋅+⋅++⋅),其中{}n a ,{}n b 分别是等差数列
和等比数列.
【例1】求数列{}n a 的前n 项和n S .
(1)2
3
4
12,22,32,42,
,2n
n ⨯⨯⨯⨯⨯
(2)2
341234
,
,,,,
2222
2n
n
【练习】求数列{}n a 的前n 项和n S . (1)()23412,32,52,72,,212n
n ⨯⨯⨯⨯-⨯
(2)234
2468
2,
,,,,
22222n
n
【例2】已知数列的等比数列公比是首项为4
1,41}{1==q a a n ,设
*)(log 324
1N n a b n n ∈=+,数列n n n n b a c c ⋅=满足}{.求数列}{n c 的前n 项
和S n ;
第四类:合并求和法
针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此在求数列的和时,
可将这些项放在一起求和,然后再求n S .
【例】求2222222212345699100-+-+-+--+的值.
第五类:倒序相加法
这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序)
,再把它与原数列相加,就可以得到n 个()1n a a +。

【例】若函数()f x 对任意x R ∈,都有()()12f x f x +-=.
(1)()()12101n n a f f f f f n n n -⎛⎫⎛⎫⎛⎫=+++++
⎪ ⎪ ⎪⎝⎭
⎝⎭
⎝⎭
,数列{}n a 是等差数列吗是证明你的结论;
(2)数列11n n a a +⎧⎫

⎬⎩⎭
的前n 项和n S .
【例习】求22222sin 1sin 2sin 3sin 88sin 89+++⋅⋅⋅++的值.
第六类:利用数列的通项求和
先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.
【例】求1
1111111111n +++⋅⋅⋅+⋅⋅⋅个的和
数列通项与求和的综合题
1.已知各项均为正数的数列{}n a 中,11=a ,n S 是数列{}n a 的前n 项和,对任意*∈N n ,有p pa pa S n n n -+=222,()R p ∈.
(1)求常数p 的值; (2)求数列{}n a 的通项公式;
(3)记n n
n n S b 23
4⋅+=
,求数列{}n b 的前n 项和n T .
2.设数列{}n a 的前n 项和为2n S n =,{}n b 为等比数列,且()1112121,a b b a a b +=-=,
(1)求数列{}n a 和{}n b 的通项公式; (2)设n
n n
a c
b =
,求数列{}n c 的前n 项和n T . 3.(2013
广东文科)设各项均为正数的数列{}n a 的前n 项和为n S ,满

21441,,n n S a n n N *
+=--∈且2514,,a a a 构成等比数列.
(1)
证明:2a = (2) 求数列{}n a 的通项公式; (3) 证明:对一切正整数n ,有
1223
111
11
2
n n a a a a a a ++++
<.
4.已知等差数列{}n a 的公差0d ≠,它的前n 项和为n S ,若570S =,且
2a ,7a ,22a 成等比数列.
(1)求数列{}n a 的通项公式;
(2)设数列1n S ⎧⎫⎨
⎬⎩⎭
的前n 项和为n T ,求证:13
68n
T <≤.
5.(2010·山东高考理科·T18)已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S .
(1)求n a 及n S ;(2)令n b = 211
n a -(n ∈N *),求数列{}n b 的前n 项和n T .。

相关文档
最新文档