数列求和专题复习
数列的求和(精华版) 适合高三复习用 可直接打印

数列的求和例1.求和:①个n n S 111111111++++=②22222)1()1()1(n nn xx x x x x S ++++++=③求数列1,3+4,5+6+7,7+8+9+10,…前n 项和n S 思路分析:通过分组,直接用公式求和。
解:①)110(9110101011112-=++++==kkk k a 个)101010[(91)]110()110()110[(9122nS nn n -+++=-++-+-= 8110910]9)110(10[911--=--=+n n n n ②)21()21()21(224422+++++++++=n nn xx x x x x Snxx x x x x n n2)111()(242242++++++++=(1)当1±≠x时,(2)n x x x x n x x x x x x S n n n n n n 2)1()1)(1(21)1(1)1(22222222222+-+-=+--+--=+--- (2)当n S x n 4,1=±=时③)]1()12[()12(2)12(-+-+++++-=k k k k k a kkk k k k 23252)]23()12[(2-=-+-=)21(23)21(2522221n n a a a S n n +++-+++=+++=2)1(236)12)(1(25+-++⋅=n n n n n )25)(1(61-+=n n n 总结:运用等比数列前n 项和公式时,要注意公比11≠=q q 或讨论。
2.错位相减法求和例2.已知数列)0()12(,,5,3,112≠--a an a a n ,求前n 项和。
思路分析:已知数列各项是等差数列1,3,5,…2n-1与等比数列120,,,,-n aa a a对应项积,可用错位相减法求和。
解:()1)12(53112--++++=n na n a a S ()2)12(5332nnan a a a aS -++++=()()nn n a n a a a a S a )12(22221)1(:21132--+++++=---当nn n n a a a S a a )12()1()1(21)1(,121----+=-≠-时 21)1()12()12(1a a n a n a S n n n --++-+=+当2,1nS a n ==时3.裂项相消法求和例3.求和)12)(12()2(534312222+-++⋅+⋅=n n n S n思路分析:分式求和可用裂项相消法求和.解: )12)(12(11)2()12)(12()2(22+-+-=+-=k k k k k k a k)121121(211)12)(12(11+--+=+-+=k k k k )]121121()5131()311[(2121+--++-+-+=+++=n n n a a a S n n 12)1(2)1211(21++=+-+=n n n n n练习:求n n an a a a S ++++= 32321答案: ⎪⎪⎩⎪⎪⎨⎧≠----=+=)1()1()1()1()1(2)1(2a a a a n a a a n n S n nn4.倒序相加法求和 例4求证:nn nnnnn C n C C C 2)1()12(53210+=+++++思路分析:由m n nm n C C -=可用倒序相加法求和。
高考数学专题复习题:数列求和

高考数学专题复习题:数列求和一、单项选择题(共8小题)1.某旅游景区计划将山脚下的一片荒地改造成一个停车场,根据地形,设计7排停车位,靠近山脚的第1排设计9个停车位,从第2排开始,每排设计的停车位个数是上一排的2倍减去8,则设计的停车位的总数是( ) A .172B .183C .286D .3112.在数列{}n a 中,已知112a =,1(2)n n n a na ++=,则它的前30项的和为( ) A .1929B .2829C .2930D .30313.已知{}n a 是递增的等比数列 ,且34528++=a a a ,等差数列{}n b 满足23b a =,542b a =+,85b a =.如果m 为正整数,且对任意的*n ∈N ,都有12231nn b b b m a a a +≥+++,那么m 的最小值为( ) A .8B .7C .5D .44.数列{}n a 的前n 项和为n S ,11a =−,*(1)(N )n n na S n n n =+−∈,设(1)n n n b a =−,则数列{}n b 的前51项之和为( ) A .149−B .49−C .49D .1495.已知递推数列{}n a 满足11a =,()*121n n a a n +=+∈N ,如果n S 是数列{}n a 的前n 项和,那么9S =( ) A .9210−B .9211−C .10210−D .10211−6.如图,某地毯是一系列正方形图案,在4个大正方形中,着色的小正方形的个数依次构成一个数列{a n }的前4项. 记12100111S a a a =++⋅⋅⋅+,则下列结论正确的为( )A .87S >B .87S =C .87S <D .S 与87的大小关系不能确定7.已知首项为2的数列{}n a 满足114522n n n n a a a a ++−−=,当{}n a 的前n 项和16n S ≥时,则n 的最小值为( ) A .40B .41C .42D .438.如图,用相同的球堆成若干堆“正三棱锥”形的装饰品,其中第1堆只有1层,且只有1个球;第2堆有2层4个球,其中第1层有1个球,第2层有3个球;依次递推;第n 堆有n 层共n S 个球,第1层有1个球,第2层有3个球,第3层有6个球,依次递推.已知201540S =,则2021n n ==∑( )A .2290B .2540C .2650D .2870二、多选题(共3小题)9.已知函数()f x 满足22()()()()f x y f x y f x f y +−=−,(1)1f =,(2)0f =,下列说法正确的是( ) A .(3)1f =−B .(2024)0f =C .21()x k k =+∈Z 时,()(1)kf x =−D .20241()2024k f k ==∑10.利用不等式“ln 10x x −+≤,当且仅当x =1时,等号成立”可得到许多与n (2n ≥且*n ∈N )有关的结论,则下列结论正确的是( ) A .111ln 1231n n <+++⋅⋅⋅+− B .1111ln 4562n n>+++⋅⋅⋅+C .()()()()12121412e 2n n n+++⋅⋅⋅+>⋅D .e12e 1n n n n n ++⋅⋅⋅+<⋅− 11.“杨辉三角”是二项式系数在三角形中的一种几何排列,从第1行开始,第n 行从左至右的数字之和记为n a ,如{}12112,1214,,n a a a =+==++=⋅⋅⋅的前n 项和记为n S ,依次去掉每一行中所有的1构成的新数列2,3,3,4,6,4,5,10,10,5,...,记为{b n },{b n }的前n 项和记为n T ,则下列说法正确的有( )A .101022S =B .12n n n a S S +⎧⎫⎨⎬⋅⎩⎭的前n 项和21122n a +−− C .5766b =D .574150T =三、填空题(共3小题)12.在数列{}n a 中,11a =且1n n a a n +=,当20n ≥时,1231112n n na a a a a λ+++⋅⋅⋅+≤+−,则实数λ的取值范围为__________.13.已知数列{}n a 满足111,21n n a a a n +=+=+,则其前9项和9S =__________,数列1n S ⎧⎫⎨⎬⎩⎭的前2024项的和为__________. 14.函数()[]f x x =称为高斯函数,其中[]x 表示不超过x 的最大整数,如][2.32, 1.92⎡⎤=−=−⎣⎦,已知数列{}n a 满足121,5a a ==,2145n n n a a a +++=,若[]21log ,n n n b a S +=为数列18108n n b b +⎧⎫⎨⎬⋅⎩⎭的前n 项和,则[]2025S =__________.四、解答题(共5小题)15.已知数列{}n a ,{}n b 中,14a =,12b =−,{}n a 是公差为1的等差数列,数列{}n n a b +是公比为2的等比数列. (1)求数列{}n b 的通项公式. (2)求数列{}n b 的前n 项和n T . 16.已知数列{}n a 满足122n n a a n +−=+. (1)证明:数列{}2n a n −是等差数列.(2)若12a =,求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .17.已知数列{}n a 是递增的等差数列,它的前三项和为9,前三项的积为15. (1)求数列{}n a 的通项公式. (2)记b n =1(an+1)2,设数列{}n b 的前n 项和为n T ,求证:14n T <.18.已知{}n a 是等差数列,{}n b 是等比数列,且{}n b 的前n 项和为n S ,1122a b ==,()5435a a a =−,在①()5434b b b =−,②12n n b S +=+这两个条件中任选其中一个,完成下面问题的解答.(1)求数列{}n a 和{}n b 的通项公式.(2)设数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求n T .19.已知2()cos 2x f x a x =+.(1)若()f x 在π0,2⎡⎤⎢⎥⎣⎦上单调递增,求a 的取值范围.(2)证明:()2*11112111tan1212tan 3tantan 23n nn n n n−++++>∈+N . 参考答案12.(],1−∞13.45,4048202514.202515.(1)23nn b n =−− (2)n T 217222n n n+−−− 16.(1)通过构造()()22111n n a n a n +⎡⎤−+−−=⎣⎦证明即可 (2)1n nS n =+. 17.(1)21n a n =− (2)先求数列{}n b 的通项,放缩后再裂项求和即可证明。
一轮复习-数列求和专题

2n
1
1 2n
=1
2
1 2
1 4
1 2n1
2n 1 2n
=1
2
1 2
1 1
1 2n1 1
2n 1 2n
2
=3
2n 2n
3
变式探究
2. 设数列{an} 满足a1+3a2+32a3+…+
n3 3n-1an= ,a∈N*.
(1)求数列{an}的通项;
(2)设bn=
n an
,求数列{bn}的前n项和Sn.
1
1 1+ 2 1+ 2 + 3
1+ 2 + 3 + 4 + ....+ n
解:an
1 1 23
2 n n(n 1)
2( 1 1 ) n n 1
1 11
11
Sn
2[(1
)( 22
) 3
(
)]
n n 1
2(1 1 ) 2n n 1 n 1
3.
1
1( 1 1 )
(2n 1)(2n 1) 2 2n 1 2n 1
4. 1 1 ( a b) a b ab
5.
1
1[ 1
1
]
n(n 1)(n 2) 2 n(n 1) (n 1)(n 2)
nn+1 n n+1
6.
n常n见21nn1- +的1111裂2n+nn项+21公==12式12n2n有nn1+1-:111--2nn1++11n1,n+2.
=
(6n
-
5)[6(n
+ 1)
-
5]
=
2
(
6n
-
数列前n项和的求法(专题)

专题二:数列求和的基本方法一.利用常用求和公式求和 1.等差数列求和公式:11()(1)22n n n a a n n S na d +-==+2.等比数列求和公式:111(1)(1)(1)11n n n na q S a a q a q q q q =⎧⎪=--⎨=≠⎪--⎩3.1123(1)2n S n n n =++++=+ 4.22221123(1)(21)6n S n n n n =++++=++5.333321123[(1)]2n S n n n =++++=+ 例1.设123,n S n n N *=++++∈ ,求1()(32)nn S f n n S +=+的最大值。
练习:1.已知数列2{log (1)},n a n N *-∈为等差数列,且133,9a a ==。
(1)求数列{}n a 的通项公式; (2)求21321111n na a a a a a ++++--- 。
二.错位相减法这种方法是在推导等比数列的前n 项和公式时所用到的方法,主要用于求数列{}n n a b ⋅的前n 项和,其中{},{}n n a b 分别是等差数列和等比数列。
例2.求23222322nn S n =+⋅+⋅++⋅ 。
例3.求数列2313521,,,,nn a aaa- 的前n 项和n S 。
练习: 2.求数列3621,1,,,,22nn 的前n 项和。
3.求和:21159(43)n x x n x -++++- 。
4.已知点1(,2)n n n a a ++在直线2x y =上,其中n=1,2,3,...。
(1)若()2n n na b n N *=∈,求证:数列{}n b 是等差数列;(2)若11a =,求数列{}n a 的前n 项和n S 。
5.设数列{}n a 满足21123333,3n n n a a a a n N -*++++=∈ 。
(1)求数列{}n a 的通项公式; (2)设n nn b a =,求数列{}n b 的前n 项和n S 。
专题6-2 数列求和归类-2023年高考数学一轮复习热点题型(全国通用)(原卷版)

)(n N , n 2) ,求 Sn ;
(2)若 S n f ( ) f ( ) ... f (
n
n
n
(1)证明函数 f ( x ) 的图像关于点 ( ,1) 对称;
【提分秘籍】
基本规律
倒序求和,多是具有中心对称的
【变式演练】
1
1.设奇函数� � 对任意� ∈ �都有�(�) = �(� − 1) + 2 .
(2)设数列 bn 满足 bn
2 an 1
, 求数列 bn 的前 n 项和 Rn .
4n
2.设数列 an 的前 n 项和为 Sn , a2 4 ,且对任意正整数 n ,点 an 1 , S n 都在直线 x 3 y 2 0 上.(1)
求 an 的通项公式;
(2)若 bn nan ,求 bn 的前 n 项和 Tn .
【题型五】裂项相消常规型
【典例分析】
设数列 an 满足: a1 1 ,且 2an an 1 an 1 ( n 2 )
, a3 a4 12 .
(1)求 an 的通项公式:
1
的前 n 项和.
已知数列 an 的前 n 项和为 Sn , a1
1
, S n S n 1 S n S n 1 0 n 2 .
2
1
是等差数列;
Sn
Sn
, n为奇数
(2)若 Cn n 3
,设数列 C n 的前 n 项和为 Tn ,求 T2n .
【提分秘籍】
基本规律
分组求和法:
c(等比)
1.形如 an= b(等差)
高考数学专题复习 (28)

数列{1+2n-1}的前 n 项和为( )
A.1+2n
B.2+2n
C.n+2n-1
D.n+2+2n
解:由题意得 an=1+2n-1,所以 Sn=n
+11--22n=n+2n-1.故选 C.
22-1 1+32-1 1+42-1 1+…+(n+11)2-1的值为(
)
A.2(nn++12)
B.34-2(nn++12)
①n(n1+1)=
- n1+1;
②(2n-1)1(2n+1)=
2n1-1-2n1+1;
③n(n+1)1(n+2)=
n(n1+1)-(n+1)1(n+2);
④
1 a+
= b
( a- b);
⑤(n+n1)!=
-(n+11)!;
⑥Cmn -1= ⑦n·n!=
; !-n!;
⑧an=Sn-Sn-1(n≥2). 2.数列应用题常见模型
(1)单利公式
利息按单利计算,本金为 a 元,每期利率为 r,存期
为 x,则本利和 y=
.
(2)复利公式
利息按复利计算,本金为 a 元,每期利率为 r,存
期为 x,则本利和 y=
.
(3)产值模型
原来产值的基础数为 N,平均增长率为 p,对于时
间 x,总产值 y=
.
(4)递推型
递推型有 an+1=f(an)与 Sn+1=f(Sn)两类.
+190,…,若 bn=ana1n+1,数列{bn}的前 n 项和记为 Sn,则 S2 019
=________.
n(n+1)
解:由条件得到数列{an}的通项为 an=
2 n+1
=n2,则 an+1=n+2 1,所
以 bn=ana1n+1=n(n4+1)=41n-n+1 1,则 Sn=4(1-12+12-13+…+1n-n+1 1) =41-n+1 1=n4+n1,将 n=2 019 代入得到 S2 019=2500159.故填2500159.
数列求和专题(必考必练,方法全面,有答案)

数列求和专题一.公式法(已知数列是等差或等比数列可以直接使用等差或等比的求和公式求和) 二.分组求和法若数列的通项是若干项的代数和,可将其分成几部分来求.例1:求数列11111246248162n n ++L ,,,,,…的前n 项和n S .- 23411111111(2462)(1)222222n n n S n n n ++⎛⎫=+++++++++=++- ⎪⎝⎭L L .例2: 求数列5,55,555,…,55…5 的前n 项和S n解: 因为55…5=)110(95-n 所以 S n =5+55+555+...+55 (5)=[])110()110()110(952-+⋅⋅⋅+-+-n=⎥⎦⎤⎢⎣⎡---n n 110)110(1095 =815095108150--⨯n n 练习:、求数列11111,2,3,4,392781L 的前n 项和。
解:211223nn n ++-⋅三.错位相减法这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.例: 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………(0x ≠)解: 当x=1时,23121315171(21)1135(21)n n S n n n -=+∙+∙+∙+⋅⋅⋅+-∙=++++-=当x ≠1时, 132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………. ① ①式两边同乘以x 得n xS = 231135(23)(21)n n x x x n x n x -+++⋅⋅⋅+-+-………② (设制错位)①-②得 n n n x n xx x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+n练习: 1:求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n 前n 项的和. 1224-+-=n n n S2. 已知数列.}{,)109()1(n n nn S n a n a 项和的前求⨯+=四.裂项相消法 常见的拆项公式有:1()n n k =+111()k n n k -+=1k,1(21)(21)n n =-+111()22121n n --+,等. 例1:求数列311⨯,421⨯,531⨯,…,)2(1+n n ,…的前n 项和S. 解:∵)2(1+n n =211(21+-n n )S n =⎥⎦⎤⎢⎣⎡+-+⋅⋅⋅+-+-)211()4121()311(21n n =)2111211(21+-+--n n =42122143+-+-n n 例2:设9)(2+=x x f ,(1)若;),2(),(,111n n n u n u f u u 求≥==-(2)若;}{,,3,2,1,11n n k k k S n a k u u a 项和的前求数列 =+=+解:(1)}{),2(9122121n n nu n u u u ∴⎩⎨⎧≥+==- 是公差为9的等差数列,,89,0,892-=∴>-=∴n u u n u n n n(2)),8919(9119891--+=++-=k k k k a k);119(91)]8919()1019()110[(91-+=--+++-+-=∴n n n S n练习: 1、 求数列2112+,2124+,2136+,2148+,…的前n 项和n S .2、求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.五.倒序相加法这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.例1:求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5例2: 求222222222222123101102938101++++++++的和. 解:设222222222222123101102938101S =++++++++ 则222222222222109811012938101S =++++++++.两式相加,得 2111105S S =+++=∴=,.练习:设221)(xx x f +=,求:⑴)4()3()2()()()(111f f f f f f +++++; ⑵).2010()2009()2()()()()(21312009120101f f f f f f f ++++++++ 【解题思路】观察)(x f 及⎪⎭⎫ ⎝⎛x f 1的特点,发现1)1()(=+xf x f 六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .例6: 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°∵ cos(180)cos n n -=- (找特殊性质项)∴S n = (cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+···+(cos89°+ cos91°)+ cos90° (合并求和)= 0练习:已知:n S n n ⋅-++-+-+-=+1)1(654321 .求n S .(⎪⎪⎩⎪⎪⎨⎧-+=)(2)(21为正偶数为正奇数n n n n S n )。
数列求和-高考复习

知识梳理
5 返回导航
6
2.数列求和的几种常用方法 (1)分组转化法 把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (2)裂项相消法 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. (3)错位相减法 如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个 数列的前 n 项和可用错位相减法求解.
8 返回导航
(4)
1 a+
b=a-1 b(
a-
b).
(5)பைடு நூலகம்
1 n+
n+1=
n+1-
n.
(6)2n-122nn+1-1=2n-1 1-2n+11-1.
9 返回导航
基础检测
10
1.判断下列命题是否正确,正确的在括号内画“√”,错误的画“×”.
(1)若数列{an}为等比数列,且公比不等于 1,则其前 n 项和 Sn=a11--aqn+1.( √ )
返回导航
考点3 分组求和与并项求和
27
【例 3】 则 S2 023= 1
(1)已知数列{an}的前 n 项和为 Sn,且满足 an+an+1+an+2=cosn3π,a1=1, .
解析:S2 023=a1+(a2+a3+a4)+(a5+a6+a7)+…+(a2 021+a2 022+a2 023)=1+cos23π +cos53π+…+cos2 0318π+cos2 0321π=1+337×cos23π+cos53π=1.
2.能在具体的问题情境中,发现数列的等差、等比关系,并解决相应的问题. 并掌 握非等差数列、非等比数列求和的几种常见方法.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见拆项:
5.公式法求和
典例精讲:
题型1:公式法、性质法求和:
例1.(★★★)数列{ }的前n项和 ()
A. B. C. D.
巩固练习:1、(★★★)已知等比数列{an}的前n项和为10,前3n项的和为70,求其前2n项的和.
题型2:分组法求和
2、现在你可以解决了本节课的提问了,你怎么解决?下节课检查你的完成情况。
练习1、在数列{an}中, ,又 ,求数列{bn}的前n项的和.
练习2、 计算:
例3.(★★★)求和: .
巩固练习:1、(★★★)求 。
题型4:错位相减法求和
例4.(★★★)若数列 的通项 ,求此数列的前 项和 .
【利用等比数列前 项和公式的推导方法求和,一般可解决形如一个等差数列与一个等比数列对应项相乘所得数列的求和问题】
数列求和(★★★)
导入:
xx你知道还记得学习过的数列求和方法吗?数列这一章我们学习了哪些方法,自己可以总结一下?
会计算:
重难点:
1、掌握数列前n项和公式
2、理解各种求和方法的方法过程;
知识梳理:
1、数列求和:
1.直接用等差、等比数列的求和公式求和。
2.错位相减法求和:如:
3.分组求和:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。
例2.(★★)求通过为 的数列的前n项和;
巩固练习:1、(★★★★)求和:
题型3:裂项相消法求和
这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.
通项分解(裂项)如:
(1)
(2)
(3) ;
.
例题1、 求数列 的
(1)证明: ;
(2)求 的值.
【练习巩固】
1.(山东卷18)已知等差数列 满足: , , 的前n项和为
(1)求 及
(2)令bn= (n N*),求数列 的前n项和
2.(2008浙江文)已知数列 的首项 ,通项 ( 为常数),且 成等差数列,求:
(1) 的值
(2)数列 的前 项的和 的公式
巩固练习:1、(★★★)若数列 的通项 (其中 ),求此数列的前 项和 .
【利用等比数列前 项和公式的推导方法求和,一般可解决形如一个等差数列与一个等比数列对应项相乘所得数列的求和问题】
三、倒序相加法求和
这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个 .
3.(全国Ⅰ卷理17)设数列 满足
(1)求数列 的通项公式
(2)令 ,求数列的前n项和
4.设数列 的前 项和为 ,求 的通项公式
5.在数列 中, . 为数列 的前 项和,且满足 .
(1)证明数列 成等差数列
(2)求数列 的通项公式
6.已知正项数列 的前n项和为 ,且满足 ,求通项
回顾总结
1、今天我们主要学习什么?今天主要学习了什么方法来求数列的前n项的和?如果是一个数学由等差数列和等比数列乘积形式,怎么求这个数列的前n项的和呢?