人教版七年级数学上册 第二章整式的加减 2.1整式(第三课时) 课后练习

合集下载

人教版七年级数学上册整式的加减(第3课时)

人教版七年级数学上册整式的加减(第3课时)
第二章 整式的加减
2.2 整式的加减(第3课时)
1.能运用运算律探究去括号法则,并且利用去括号法则 将整式化简.
2.经过类比带有括号的有理数的运算,发现去括号时的符号 变化规律,归纳出去括号法则,培养视察、分析与归纳能力.
回顾 & 思考
• 整式加减运算的最后结果也是一个整式,一般地, 要求这个结果是最简的. 一个最简的整式中不应再有同类项; 但合并同类项之前可能含有括号.
小明和小红一共花费(3x+2y)+ (4x+3y) =3x+2y+4x+3y =7x+5 y .
解法二:小红和小明买笔记本共花费(3x+4x)元, 买圆珠笔共花费(2y+3y)元. 小明和小红一共花费 (3x+4x) + (2y+3y)
=7x+5y .
这节课我们学习了
小结
1.去括号的根据—乘法分配律. 2.去括号的方法—去括号法则. 3.化简整式的一般步骤:去括号,合并同类项.
4
4
号前是 “ - ”
,则去掉括号后原括号内
每项都要变号.
例3:一种笔记本的单价是x元,圆珠笔的单价是y元.小红 买3本笔记本,2支圆珠笔;小明买4本笔记本 ,3支圆珠笔. 买这些笔记本和圆珠笔,小红和小明一共花了多少钱?
解法一:小红买笔记本和圆珠笔共花费(3x+2y)元,小 明买笔记本和圆珠笔共花费(4x+3y)元.
加法交换律
=7x+y
合并同类项
(2)(8a-7b)-(4a-5b) 去括号,括号前是负号,
=8a-7b-4a+5b
括号内的各项变号
你能说出每 步运算的根 据吗?

完整版人教版七年级上册数学第二章 整式的加减含答案(含解析)

完整版人教版七年级上册数学第二章 整式的加减含答案(含解析)

人教版七年级上册数学第二章整式的加减含答案一、单选题(共15题,共计45分)1、下列判断错误的是()A.1-a-2ab是二次三项式B.-a 2b 2c与2ca 2b 2是同类项C.是多项式 D. πa 2的系数是π2、一个多项式加上多项式2x﹣1后得3x﹣2,则这个多项式为()A.x﹣1B.x+1C.x﹣3D.x+33、下列运算正确的是()A. B. C. D.4、多项式3x3﹣2x2﹣15的次数为()A.2B.3C.4D.55、下列说法正确的是()A.单项式的系数是-5,次数是2B.单项式a的系数为1,次数是0 C. 是二次单项式 D.单项式-ab的系数为-,次数是26、若﹣x2y n与3yx2是同类项,则n的值是()A.﹣1B.3C.1D.27、下列计算正确的是()A.2x+3y=5xyB.x 2•x 3=x 6C.(a 3)2=a 6D.(ab)3=ab 38、下列计算正确的是()A.2x+3y=5xyB.5a 2﹣3a 2=2C.(﹣7)÷ =﹣7D.(﹣2)﹣(﹣3)=19、去括号后结果错误的是()A.2(a+2b)=2a+4bB.3(2m﹣n)=6m﹣3nC.﹣[c﹣(a﹣b)]=﹣c ﹣a+bD.﹣(x﹣y+z)=﹣x+y﹣z10、在一张某月的日历上,任意圈出同一列上的三个数的和不可能是( )A.14B.33C.51D.2711、在﹣3x,6﹣a=2,4ab2, 0,,,>,x中,是代数式的共有()A.7个B.6个C.5个D.4个12、下列说法中正确的是( )A.若,则B.若,则C. 的系数是D.若,则13、下列叙述①单项式- 的系数是- ,次数是3次;②用一个平面去截一个圆锥,截面的形状可能是一个三角形;③在数轴上,点A、B分别表示有理数a、b,若a >b,则A到原点的距离比B到原点的距离大;④从八边形的一个顶点出发,最多可以画五条对角线;⑤六棱柱有八个面,18条棱.其中正确的有()A.2个B.3个C.4个D.5个14、下列结论正确的是( )A.3a 2b-a 2b=2B.单项式-x 2的系数是-1C.使式子(x+2)0有意义的x的取值范围是x≠0D.若分式的值等于0,则a=±115、下列结论正确的是()A.2 ﹣1=﹣2B.单项式﹣x 2的系数是﹣1C.使式子有意义的x的取值范围是x<2D.若分式的值等于0,则a=﹣1二、填空题(共10题,共计30分)16、体育课上,甲、乙两班学生进行“引体向上”身体素质测试,测试统计结果如下:甲班:全班同学“引体向上”总次数为;乙班:全班同学“引体向上”总次数为.(注:两班人数均超过30人)请比较一下两班学生“引体向上”总次数,________班的次数多,多________次.17、写出一个单项式,使它的系数是,次数是,________.18、某同学在做计算2A+B时,误将“2A+B”看成了“2A﹣B”,求得的结果是9x2﹣2x+7,已知B=x2+3x+2,则2A+B的正确答案为________.19、若5x3y n和﹣x m y2是同类项,则3m﹣7n=________.20、观察下面由※组成的图案和算式,解答问题:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52请用上述规律计算:1+3+5+…+2003+2005=________.21、﹣πa2b的系数是________,次数是________.22、单项式﹣πa3bc的次数是________,系数是________.23、若﹣2x m﹣n y2与3x4y2m+n是同类项,则m﹣3n的立方根是________.24、已知a、b、c是△ABC的三边,化简|a﹣b﹣c|+|b+c﹣a|+|c+a+b|得________.25、有理数,,在数轴上的位置如图所示,试化简________.三、解答题(共6题,共计25分)26、下列代数式中,哪些是整式?①x2+y2;②﹣x;③;④6xy+1;⑤;⑥0;⑦.27、已知A=3x2-ax+6x-2,B=-3x2+4ax-7,若A+B的值不含x项,求a的值.28、先化简,再求值:已知,求代数式2xy2-[6x-4(2x-1)-2xy2]+9的值。

人教版初中七年级数学上册第二章《整式的加减》经典习题(含答案解析)

人教版初中七年级数学上册第二章《整式的加减》经典习题(含答案解析)

1.如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( )A .3251x x +-和3933x x ---B .358x x ++和31212x x -+-C .335x x -++和341x x -+-D .3732x x -+-和2x -- C解析:C【分析】由整式的加法运算,把每个选项进行计算,再进行判断,即可得到答案.【详解】解:A 选项、333251933724x x x x x x +----=-+-,不符合题意;B 选项、333581212724x x x x x x ++-+-=-+-,不符合题意;C 选项、333541x x x x -++-+-=3724x x -++,符合题意;D 选项、337322724x x x x x -+---=-+-,不符合题意.故选:C .【点睛】本题考查了整式的加法运算,解题的关键是熟练掌握整式加法的运算法则进行解题. 2.若2312a b x y +与653a b x y -的和是单项式,则+a b =( ) A .3-B .0C .3D .6C 解析:C【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值.【详解】解:根据题意可得:26{3a b a b +=-=, 解得:3{0a b ==, 所以303a b +=+=,故选:C .【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.3.某公司今年2月份的利润为x万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)()A.(x﹣8%)(x+10%)B.(x﹣8%+10%)C.(1﹣8%+10%)x D.(1﹣8%)(1+10%)x D解析:D【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润.【详解】解:由题意得3月份的产值为(1﹣8%)x,4月份的产值为(1﹣8%)(1+10%)x.故选:D.【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.4.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x,则该文具店五月份销售铅笔的支数是()A.100(1+x)B.100(1+x)2C.100(1+x2)D.100(1+2x)B解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x),五月份的产量是100(1+x)2.故答案选B.考点:列代数式.5.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是()A.19 B.20 C.21 D.22D解析:D【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n个图案中有黑色纸片=3n+1张.当n=7时,3n+1=3×7+1=22.故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.6.下列计算正确的是( )A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣9D 解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A .﹣1﹣1=﹣2,故本选项错误;B .2(a ﹣3b )=2a ﹣6b ,故本选项错误;C .a 3÷a =a 2,故本选项错误;D .﹣32=﹣9,正确;故选:D .【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 7.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- C解析:C【分析】 本题首先求解矩形面积,继而求解空白部分的圆形面积,最后作差求解阴影面积.【详解】由已知得:矩形面积为2ab ,空白圆形半径为a ,故圆形面积为2a π,则阴影部分的面积为22ab a π-.故选:C .【点睛】本题考查几何图形阴影面积的求法,涉及矩形面积公式以及圆形面积公式运用,求解不规则图形面积时通常利用割补法.8.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则,,a b c 的值分别为( )1111211464115101051331151161a b c A .1,6,15a b c === B .6,15,20a b c ===C .15,20,15a b c ===D .20,15,6a b c === B 解析:B【分析】由数字排列规律可得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和,据此解答即可.【详解】解:根据图形得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和, 所以156a =+=,51015,101020b c =+==+=.故选:B .【点睛】本题以“杨辉三角”为载体,主要考查了与整式有关的数字类规律探索,找准规律是关键. 9.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .66 C 解析:C【分析】 分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是8,右上是10.【详解】解:8×10−6=74,故选:C .【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.10.一个多项式与²21x x -+的和是32x -,则这个多项式为( )A .253x x -+B .21x x -+-C .253x x -+-D .2513x x -- C解析:C【分析】 根据题意列出关系式,去括号合并即可得到结果.【详解】∵一个多项式与x 2-2x+1的和是3x-2,∴这个多项式=(3x-2)-(x 2-2x+1)=3x-2-x 2+2x-1=253x x -+-.故选:C .【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键. 11.下列变形中,正确的是( )A .()x z y x z y --=--B .如果22x y -=-,那么x y =C .()x y z x y z -+=+-D .如果||||x y =,那么x y = B 解析:B【分析】根据去括号法则、等式的基本性质以及绝对值的性质逐一判断即可.【详解】A :()x z y x z y --=-+,选项错误;B :如果22x y -=-,那么x y =,选项正确;C :()x y z x y z -+=--,选项错误;D :如果||||x y =,那么x 与y 互为相反数或二者相等,选项错误;故选:B.【点睛】本题主要考查了去括号法则、等式的基本性质与绝对值性质,熟练掌握相关概念是解题关键.12.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17 B .67 C .-67D .0B 解析:B【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0,解得m =67. 故选:B .【点睛】 本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 13.﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c B 解析:B【分析】根据去括号法则解题即可.【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c故选B .【点睛】本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.14.下列说法:①在数轴上表示a -的点一定在原点的左边;②有理数a 的倒数是1a ;③一个数的相反数一定小于或等于这个数;④如果a b >,那么22a b >;⑤235x y 的次数是2;⑥有理数可以分为整数、正分数、负分数和0;⑦27m ba -与2abm 是同类项.其中正确的个数为( )A .1个B .2个C .3个D .4个A解析:A【分析】根据字母可以表示任意数可判断①,根据特殊例子0没有倒数可判断②,根据负数的相反数可判断③,根据特殊例子a=1,b=-2,可判断④,根据单项式次数的定义可判断⑤,根据有理数的分类判断⑥,根据同类项的概念判断⑦.【详解】字母可以表示任意数,当a <0时,-a >0,故①错误;0没有倒数,故②错误;负数的相反数是正数,正数大于负数,故③错误;若a=1,b=-2,a b >,但是22a b <,故④错误; 235x y 的次数是3,故⑤错误; 0属于整数,故⑥这种分类不正确;27m ba -与2abm 是同类项,⑦正确,故选A.【点睛】本题考查有理数和代数式的相关概念,熟记这类知识点是解题的关键.15.已知3a b -=-,2c d +=,则()()a d b c --+的值为( )A .﹣5B .1C .5D .﹣1A解析:A【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可.【详解】解:根据题意:(a-d )-(b+c )=(a-b )-(c+d )=-3-2=-5,故选:A .【点睛】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案. 1.如图是用棋子摆成的“上”字:如果按照以下规律继续摆下去,第n 个“上”字需用______枚棋子. (4n+2)【分析】先数出前三个上字各所需棋子数然后规律即可解答【详解】解:∵第一个上字需用6枚棋子第二个上字需用10枚棋子第三个上字需用14枚棋子∴依次多4个∴第n 个上字需用(4n+2)枚棋子故答解析:(4n+2).【分析】先数出前三个“上”字各所需棋子数,然后规律即可解答.【详解】解:∵第一个“上”字需用6枚棋子,第二个“上”字需用10枚棋子,第三个“上”字需用14枚棋子,∴依次多4个∴第n 个“上”字需用(4n+2)枚棋子.故答案为:(4n+2).【点睛】本题主要考查了图形的变化规律,观察出哪些部分发生了变化、是按照什么规律变化的是解答本题的关键.2.请观察下列等式的规律:111=11323⎛⎫- ⎪⨯⎝⎭,1111=-35235⎛⎫ ⎪⨯⎝⎭, 1111=-57257⎛⎫ ⎪⨯⎝⎭,1111=-79279⎛⎫ ⎪⨯⎝⎭, …则1111...=133********++++⨯⨯⨯⨯______.【解析】试题 解析:50101 【解析】试题1111++++13355799101⨯⨯⨯⨯ =111111111111)()()()23235257299101-+-+-++-(=111111111++)23355799101---++-( =111)2101-( =11002101⨯ =50101. 3.某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤: 第一步,A 同学拿出二张扑克牌给B 同学;第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为______.7【分析】本题是整式加减法的综合运用设每人有牌x 张解答时依题意列出算式求出答案【详解】设每人有牌x 张B 同学从A 同学处拿来二张扑克牌又从C 同学处拿来三张扑克牌后则B 同学有张牌A 同学有张牌那么给A 同学后解析:7【分析】本题是整式加减法的综合运用,设每人有牌x 张,解答时依题意列出算式,求出答案.【详解】设每人有牌x 张,B 同学从A 同学处拿来二张扑克牌,又从C 同学处拿来三张扑克牌后, 则B 同学有()x 23++张牌,A 同学有()x 2-张牌,那么给A 同学后B 同学手中剩余的扑克牌的张数为:()x 23x 2x 5x 27++--=+-+=.故答案为:7.【点睛】本题考查列代数式以及整式的加减,解题关键根据题目中所给的数量关系,建立数学模型,根据运算提示,找出相应的等量关系.4.如图,是由一些点组成的图形,按此规律,在第n个图形中,点的个数为_____.n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2解析:n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2n﹣1)=n2+2.故答案为:n2+2.【点睛】本题考查规律型:图形的变化类.5.已知轮船在静水中的速度为(a+b)千米/时,逆流速度为(2a-b)千米/时,则顺流速度为_____千米/时3b【分析】顺流速度静水速度(静水速度逆流速度)依此列出代数式计算即可求解【详解】解:依题意有(千米时)故顺流速度为千米时故答案为:【点睛】本题主要考查了整式加减的应用整式的加减步骤及注意问题:1整解析:3b【分析】顺流速度=静水速度+(静水速度-逆流速度),依此列出代数式+++--计算即可求解.()[()(2)]a b a b a b【详解】解:依题意有+++--a b a b a b()[()(2)]=+++-+a b a b a b[2]=+++-+2a b a b a b=(千米/时).3b故顺流速度为3b千米/时.故答案为:3b.【点睛】本题主要考查了整式加减的应用,整式的加减步骤及注意问题:1.整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.2.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“-”时,去括号后括号内的各项都要改变符号.6.有一列数:12,1,54,75,…,依照此规律,则第n个数表示为____.【分析】根据分母是从2开始连续的自然数分子是从1开始连续的奇数解答即可【详解】这列数可以写为因此分母为从2开始的连续正整数分子为从1开始的奇数故第n个数为故答案为:【点睛】本题考查了数字的变化规律找解析:211nn-+.【分析】根据分母是从2开始连续的自然数,分子是从1开始连续的奇数解答即可.【详解】这列数可以写为12,33,54,75,因此,分母为从2开始的连续正整数,分子为从1开始的奇数,故第n个数为211nn-+.故答案为:211nn-+.【点睛】本题考查了数字的变化规律,找出分子分母的联系,得出运算规律是解决问题的关键.7.观察下列各等式中的数字特征:53-58=53×58,92-911=92×911,107-1017=107×1017,…将所发现的规律用含字母a,b的等式表示出来是_____.-=×【分析】从大的方面看两个数的差等于两个数的积从小的方面看所有的分子都相同可设两个分母分别为ab分子用ab表示即可【详解】观察发现都是两个分数的差等于两个分数的积设第一个分式为则第二个分式的分子解析:ab-aa b+=ab×aa b+【分析】从大的方面看,两个数的差等于两个数的积.从小的方面看,所有的分子都相同,可设两个分母分别为a,b,分子用a,b表示即可.【详解】观察发现,都是两个分数的差等于两个分数的积.设第一个分式为a b,则第二个分式的分子与第一个分式的分子相同,而分母恰好是a b +,∴用含字母a b ,的等式表示出来是a b -a a b +=a b ×a a b +. 故答案为:a b -a a b +=a b ×a a b +. 【点睛】本题考查了数字类规律的探索,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.8.在括号内填上恰当的项:22222x xy y -+-=-(_____________________).【分析】根据添括号的法则解答【详解】解:故答案是:【点睛】本题考查了去括号与添括号添括号法则:添括号时如果括号前面是正号括到括号里的各项都不变号如果括号前面是负号括号括号里的各项都改变符号添括号与去解析:222x xy y -+【分析】根据添括号的法则解答.【详解】解:222222(2)x xy y x xy y -+-=--+.故答案是:222x xy y -+.【点睛】本题考查了去括号与添括号,添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验.9.求值:(1)()()22232223a a a a a -++-=______,其中2a =-;(2)()()222291257127a ab ba ab b -+-++=______,其中12a =,12b =-; (3)()()222222122a b ab a b ab +----=______,其中2a =-,2b =.60【分析】先根据去括号合并同类项法则进行化简然后再代入求值即可【详解】(1)原式=当时原式=;(2)原式=当时原式=;(3)原式=【点睛】本题考查整式的化简求值掌握去括号合并同类项法则是解题的关键解析:6 0【分析】先根据去括号、合并同类项法则进行化简,然后再代入求值即可.【详解】(1)原式= 2222342268a a a a a a a --+-=-,当2a =-时,原式=()()228241620--⨯-=+=;(2)原式=222222912571272242a ab b a ab b a ab b -+---=--, 当12a =,12b =-时,原式=22111111224266222222⎛⎫⎛⎫⎛⎫⨯-⨯⨯--⨯-=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (3)原式=22222222220a b ab a b ab +-+--=.【点睛】本题考查整式的化简求值,掌握去括号、合并同类项法则是解题的关键.10.图中阴影部分的面积为______. 【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积进行计算即可【详解】解:【点睛】本题考查圆的面积计算公式熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积解析:21π4R【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积,进行计算即可.【详解】解:2221=()224R R S R πππ-=阴影 【点睛】本题考查圆的面积计算公式,熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积是解题关键.11.请根据给出的x ,-2,y 2组成一个单项式和一个多项式________________-2xy2;-2x+y2;【分析】根据单项式的定义和多项式的定义即可得出答案单项式的定义:数或字母的积组成的式子叫做单项式单独的一个数或字母也是单项式几个单项式的和叫做多项式每个单项式叫做多项式的项解析:-2xy 2;-2x+y 2;【分析】根据单项式的定义和多项式的定义即可得出答案.单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.【详解】由x 、-2、y 2组成一个单项式,这个单项式可以为-2xy 2,由x 、-2、y 2组成一个二项式,这个二次项式可以为-2x+y 2.故答案为:-2xy 2;-2x+y 2;【点睛】此题考查单项式,多项式,解题关键在于掌握其定义.1.已知222242,325A ab b a B b a ab =--=-+,当11.5,2a b ==-时,求34B A -的值. 解析:12【分析】根据题意,先根据整式的混合运算法则化简34B A -,再将a ,b 的值代入即可.【详解】()()2222222234332544296151684B A b a ab ab b a b a ab ab b a -=-+---=-+-++=22172b a ab --, 当11.5,2a b ==-时,原式22111931172 1.5 1.517224242⎛⎫⎛⎫=⨯--⨯-⨯-=⨯-+= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.2.当0.2x =-时,求代数式22235735x x x x -+-+-的值。

人教版初中七年级数学上册第二章《整式的加减》经典练习题(含答案解析)

人教版初中七年级数学上册第二章《整式的加减》经典练习题(含答案解析)

一、选择题1.(0分)下面用数学语言叙述代数式1a ﹣b ,其中表达正确的是( ) A .a 与b 差的倒数B .b 与a 的倒数的差C .a 的倒数与b 的差D .1除以a 与b 的差C 解析:C【分析】根据代数式的意义,可得答案.【详解】 用数学语言叙述代数式1a ﹣b 为a 的倒数与b 的差, 故选:C .【点睛】此题考查了代数式,解决问题的关键是结合实际,根据代数式的特点解答.2.(0分)下列对代数式1a b -的描述,正确的是( ) A .a 与b 的相反数的差B .a 与b 的差的倒数C .a 与b 的倒数的差D .a 的相反数与b 的差的倒数C解析:C【分析】根据代数式的意义逐项判断即可.【详解】解:A. a 与b 的相反数的差:()a b --,该选项错误;B. a 与b 的差的倒数:1a b-,该选项错误; C. a 与b 的倒数的差:1a b-;该选项正确; D. a 的相反数与b 的差的倒数:1a b --,该选项错误. 故选:C .【点睛】此题主要考查列代数式,注意掌握代数式的意义.3.(0分)如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1B解析:B【详解】 ∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,22,…,2n ,下边三角形的数字规律为:1+2,222+,…,2n n +,∴最后一个三角形中y 与n 之间的关系式是y=2n +n.故选B .【点睛】考点:规律型:数字的变化类.4.(0分)某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x )B 解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x ),五月份的产量是100(1+x )2.故答案选B.考点:列代数式.5.(0分)已知-25a 2m b 和7b 3-n a 4是同类项,则m +n 的值是( )A .2B .3C .4D .6C 解析:C【分析】本题根据同类项的性质求解出m 和n 的值,代入求解即可.【详解】由已知得:2431m n =⎧⎨-=⎩,求解得:22m n =⎧⎨=⎩, 故224m n +=+=;故选:C .【点睛】本题考查同类项的性质,按照对应字母指数相同原则列式求解即可,注意计算仔细. 6.(0分)一列数123,,n a a a a ⋅⋅⋅,其中11a =-,2111a a =- ,3211a a =- ,……,111n n a a -=- ,则1232020a a a a ⨯⨯⋅⋅⋅⨯=( )A .1B .-1C .2020D .2020- A解析:A【分析】 首先根据11a =-,可得()21111,1112a a ===---32112,1112a a ===--43111112a a ===---,…,所以这列数是-1、12、2、−1、12、2…,每3个数是一个循环;然后用2020除以3,求出一共有多少个循环,还剩下几个数,从而可得答案.【详解】 解: 11a =-,()21111,1112a a ===--- 32112,1112a a ===-- 43111112a a ===---, 所以这列数是-1、12、2、−1、12、2…,发现这列数每三个循环, 由202036731,÷= 且()1231121,2a a a ⨯⨯=-⨯⨯=- 所以:()()123206732011 1.a a a a =-⨯-⨯⨯⋅⨯=⋅⋅故选A .【点睛】 本题主要考查了探寻数列规律问题,同时考查了有理数的加减乘除乘方的运算,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:这列数是-1、12、2、−1、12、2…,每3个数是一个循环. 7.(0分)已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3B .﹣3C .1D .﹣1D 解析:D【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值.【详解】 解:单项式3122m x y +与133n x y +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D .【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.8.(0分)下列各式中,符合代数书写规则的是( )A .273x B .14a ⨯ C .126p - D .2y z ÷ A解析:A 【分析】 根据代数式的书写要求判断各项.【详解】A 、273x 符合代数书写规则,故选项A 正确. B 、应为14a ,故选项B 错误; C 、应为136p -,故选项C 错误; D 、应为2y z,故选项D 错误; 故选:A .【点睛】此题考查代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.9.(0分)若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( )A .17B .67C .-67D .0B解析:B【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0, 解得m =67. 故选:B .【点睛】 本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 10.(0分)一列数:0,1,2,3,6,7,14,15,30,___,___,___这串数是由小能按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数可能是下面的 A .31,63,64B .31,32,33C .31,62,63D .31,45,46C解析:C【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可写出最后的3个数.【详解】解:本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1,所以这串数最后的三个数为31,62,63.故选:C .【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的. 二、填空题11.(0分)在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n 时,最多可有的交点数m 与直线条数n 之间的关系式为:m =_____.(用含n 的代数式填空)【分析】根据题意3条直线相交最多有3个交点4条直线相交最多有6个交点5条直线相交最多有10个交点而3=1+26=1+2+310=1+2+3+4故可猜想n 条直线相交最多有1+2+3+…+(n-1)=个解析:()12n n - 【分析】根据题意,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12n n-个交点.【详解】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点.而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12 n n-个交点.即()12n nm-=故答案为:()12n n-.【点睛】本题主要考查了相交线,图形的规律探索,此题着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.12.(0分)观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,按此规律第4个图中共有点的个数比第3个图中共有点的个数多 ________________ 个;第20个图中共有点的个数为________________ 个.【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点从而得出结论【详解】解:第2个图形比第1个图形多2×3个点第3个图形比第2个图形多3×3个点…即每个图形比前一个图形多序号×3个点∴第4个解析:12631【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点,从而得出结论.【详解】解:第2个图形比第1个图形多2×3个点,第3个图形比第2个图形多3×3个点,…,即每个图形比前一个图形多序号×3个点.∴第4个图中共有点的个数比第3个图中共有点的个数多4×3=12个点.第20个图形共有4+2×3+3×3+…+19×3+20×3=4+3×(2+3+…+19+20)=4+627=631(个).故答案为:12;631.【点睛】本题考查了图形的变化,解题的关键是:发现“每个图形比前一个图形多序号×3个点”.本题属于中档题型,解决形如此类题型时,将射线上的点算到同一方向,即可发现规律. 13.(0分)用代数式表示:(1)甲数与乙数的和为10,设甲数为y ,则乙数为____;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为____;(3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为____cm ;(4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为____%;(5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是______km/h .(1)10-y(2)(3)(4)(5)【分析】(1)乙数=和-甲数y 据此解答;(2)甲数x=2个乙数+4从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2据此解答;(4)利用:含盐率=解析:(1)10-y (2)42x - (3)2a b + (4)100a a b + (5)52y - 【分析】(1)乙数=和-甲数y ,据此解答;(2)甲数x=2个乙数+4,从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2,据此解答;(4)利用:含盐率=100%⨯盐的质量盐水的质量,据此解答, (5) 利用顺行速度-逆水速度=12水流速度列出式子即可. 【详解】(1) 甲数与乙数的和为10,设甲数为y ,则乙数为:10y -;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为:42x -; (3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为:2a b +cm ; (4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为:100a a b+%; (5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是:52y - km/h . 故答案为:(1)1?0y -; (2) 42x -; (3) 2a b + ;(4) 100a a b +; (5) 52y -.本题考查了列代数式,比较简单,列代数式时,要先认真审题,抓住关键词语,并注意书写的规范性.14.(0分)观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2 019个式子为__________.(32019-2)×32019+1=(32019-1)2【分析】观察等式两边的数的特点用n 表示其规律代入n =2016即可求解【详解】解:观察发现第n 个等式可以表示为:(3n-2)×3n +1=(3n-解析:(32 019-2)×32019+1=(32 019-1)2【分析】观察等式两边的数的特点,用n 表示其规律,代入n =2016即可求解.【详解】解:观察发现,第n 个等式可以表示为:(3n -2)×3n +1=(3n -1)2,当n =2019时,(32019-2)×32019+1=(32019-1)2,故答案为:(32019-2)×32019+1=(32019-1)2.【点睛】此题主要考查数的规律探索,观察发现等式中的每一个数与序数n 之间的关系是解题的关键.15.(0分)观察下面的单项式:234,2,4,8,,a a a a 根据你发现的规律,第8个式子是____.【分析】根据题意给出的规律即可求出答案【详解】由题意可知:第n 个式子为2n-1an ∴第8个式子为:27a8=128a8故答案为:128a8【点睛】本题考查单项式解题的关键是正确找出题中的规律本题属于解析:8128a【分析】根据题意给出的规律即可求出答案.【详解】由题意可知:第n 个式子为2n-1a n ,∴第8个式子为:27a 8=128a 8,故答案为:128a 8.【点睛】本题考查单项式,解题的关键是正确找出题中的规律,本题属于基础题型.16.(0分)如果关于x 的多项式42142mx x +-与多项式35n x x +的次数相同,则2234n n -+-=_________.【分析】根据多项式的次数的定义先求出n 的值然后代入计算即可得到答案【详解】解:∵多项式与多项式的次数相同∴∴;故答案为:【点睛】本题考查了求代数式的值以及多项式次数的定义解题的关键是正确求出n 的值解析:24-【分析】根据多项式的次数的定义,先求出n 的值,然后代入计算,即可得到答案.【详解】解:∵多项式42142mx x +-与多项式35n x x +的次数相同, ∴4n =,∴22234243443212424n n -+-=-⨯+⨯-=-+-=-;故答案为:24-.【点睛】本题考查了求代数式的值,以及多项式次数的定义,解题的关键是正确求出n 的值. 17.(0分)如图,有一种飞镖游戏,将飞镖圆盘八等分,每个区域内各有一个单项式,现假设你的每支飞镖均能投中目标区域,如果只提供给你四支飞镖且都要投出,那么要使你投中的目标区域内的单项式之和为a+2b ,共有_____种方式(不考虑投中目标的顺序). 2【分析】根据整式的加减尝试进行即可求解【详解】解:当投中的目标区域内的单项式为ab ﹣b2b 时a+b ﹣b+2b =a+2b ;当投中的目标区域内的单项式为﹣a2a02b 时﹣a+2a+0+2b =a+2b 故解析:2【分析】根据整式的加减尝试进行即可求解.【详解】解:当投中的目标区域内的单项式为a 、b 、﹣b 、2b 时,a+b ﹣b+2b =a+2b ;当投中的目标区域内的单项式为﹣a 、2a 、0、2b 时,﹣a+2a+0+2b =a+2b .故答案为2.【点睛】本题考查了整式的加减,解题的关键是尝试进行整式的加减.18.(0分)已知()()2420b k k a k =--≠,用含有b 、k 的代数式表示a ,则a =______.【分析】将已给的式子作恒等式进行变形表示a由于k≠0先将式子左右同时除以(-4k)再移项系数化1即可表示出a【详解】∵k≠0∴原式两边同时除以(-4x)得∴∴故答案为【点睛】本题考查的是代数式的表示解析:2248b kk+【分析】将已给的式子作恒等式进行变形表示a,由于k≠0,先将式子左右同时除以(-4k),再移项、系数化1,即可表示出a.【详解】∵k≠0,∴原式两边同时除以(-4x)得,22 4bk a k=--∴224ba kk=+,∴2224828b k b kak k+=+=,故答案为2248b kk+.【点睛】本题考查的是代数式的表示,能够进行合理变形是解题的关键.19.(0分)随着计算机技术的迅猛发展,电脑价格不断降低,某品牌的电脑按原价降低m 元后,又降价25%,现售价为n元,那么该电脑的原售价为______.【分析】根据题意列出代数式解答即可【详解】解:该电脑的原售价故填:【点睛】此题考查了列代数式关键是读懂题意找出题目中的数量关系列出代数式解析:43n m+【分析】根据题意列出代数式解答即可.【详解】解:该电脑的原售价4125%3nm n m+=+-,故填:43n m+.【点睛】此题考查了列代数式,关键是读懂题意,找出题目中的数量关系,列出代数式.20.(0分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7;则上图中m+n+p=_________;4【分析】根据约定的方法求出mnp 即可【详解】解:根据约定的方法可得:;∴;∴∴故答案为4【点睛】本题考查了列代数式和代数式求值解题的关键是掌握列代数式的约定方法解析:4【分析】根据约定的方法求出m ,n ,p 即可.【详解】解:根据约定的方法可得:18n -+= ,81m +=- ;∴7n = ,9m =- ;∴()716p =+-=∴9764m n p ++=-++=故答案为4.【点睛】本题考查了列代数式和代数式求值,解题的关键是掌握列代数式的约定方法.三、解答题21.(0分)已知31A B x ,且3223A x x ,求代数式B .解析:2322x x -++【分析】将A 代入A-B=x 3+1中计算即可求出B .【详解】解:∵A-B=x 3+1,且A=-2x 3+2x+3,∴B=A-(x 3+1)=-2x 3+2x+3-x 3-1=-3x 3+2x+2.【点睛】本题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解题的关键.22.(0分)观察下列单项式:x -,23x ,35x -,47x ,…1937x -,2039x ,…写出第n 个单项式,为了解这个问题,特提供下面的解题思路.()1这组单项式的系数的符号,绝对值规律是什么?()2这组单项式的次数的规律是什么?()3根据上面的归纳,你可以猜想出第n 个单项式是什么?()4请你根据猜想,请写出第2014个,第2015个单项式.解析:()1 (1)n -(或:负号正号依次出现;),21n -(或:从1开始的连续奇数);()2从1开始的连续自然数;()3第n 个单项式是:()(1)21n n n x --;()4?2014个单项式是20144027x ;第2015个单项式是20154029x -.【分析】(1)根据已知数据得出单项式的系数的符号规律和系数的绝对值规律;(2)根据已知数据次数得出变化规律;(3)根据(1)和(2)中数据规律得出即可;(4)利用(3)中所求即可得出答案.【详解】()1数字为1-,3,5-,7,9-,11,…,为奇数且奇次项为负数,可得规律:()(1)21n n --;故单项式的系数的符号是:(1)n-(或:负号正号依次出现;),绝对值规律是:21n -(或:从1开始的连续奇数); ()2字母因数为:x ,2x ,3x ,4x ,5x ,6x ,…,可得规律:n x ,这组单项式的次数的规律是从1开始的连续自然数.()3第n 个单项式是:()(1)21n n n x --.()4把2014n =、2015n =直接代入解析式即可得到:第2014个单项式是20144027x ;第2015个单项式是20154029x -.【点睛】此题主要考查了数字变化规律,得出次数与系数的变化规律是解题关键.23.(0分)已知多项式-13x 2y m +1+12xy 2-3x 3+6是六次四项式,单项式3x 2n y 2的次数与这个多项式的次数相同,求m 2+n 2的值.解析:13【解析】 试题分析:根据多项式次数的定义,可得2+m+1=6,从而可求出m 的值,根据单项式的次数的定义结合题意可得2n+2=6,求解即可得到n 的值,把m ,n 的值代入到m 2+n 2中,计算即可得到求解.试题根据题意得2+m +1=6,2n +2=6解得:m =3, n =2,所以m 2+n 2=13.点睛:此题考查多项式,解题的关键是弄清多项式的次数是多项式中次数最高的项的次数,还要弄清有几项.24.(0分)已知a+b =2,ab =2,求32231122a b a b ab ++的值. 解析:4根据因式分解,首先将整式提取公因式12ab ,在采用完全平方公式合,在代入计算即可. 【详解】 解:原式=12a 3b +a 2b 2+12ab 3 =12ab (a 2+2ab +b 2) =12ab (a +b )2, ∵a +b =2,ab =2, ∴原式=12×2×4=4. 【点睛】本题主要考查因式分解的代数计算,关键在于整式的因式分解.25.(0分)已知多项式2x 2+4xy ﹣3y 2+x 2+kxy+5y 2,当k 为何值时,它与多项式3x 2+6xy+2y 2是相等的多项式.解析:k=2.【分析】根据两个多项式是相同的多项式,可以直接列等式根据各项前对应系数相等直接列式计算.【详解】解:2x 2+4xy ﹣3y 2+x 2+kxy+5y 2,=3x 2+(4+k )xy+2y 2,因为它与多项式3x 2+6xy+2y 2是相等的多项式,所以4+k=6,解得:k=2.【点睛】本题考查了带系数多项式与已知多项式相等求未知系数,掌握多项式的概念是解决此题的关键.26.(0分)已知2223,A x xy y B x xy()1若()2230x y ++-=,求2A B -的值()2若2A B -的值与y 的值无关,求x 的值解析:(1)-9;(2)x=-1【分析】(1)根据去括号,合并同类项,可得答案;(2)根据多项式的值与y 无关,可得y 的系数等于零,根据解方程,可得答案.【详解】(1)A-2B=(2x 2+xy+3y )-2(x 2-xy )=2x 2+xy+3y-2x 2+2xy∵(x+2)2+|y-3|=0,∴x=-2,y=3.A-2B=3×(-2)×3+3×3=-18+9=-9.(2)∵A-2B 的值与y 的值无关,即(3x+3)y 与y 的值无关,∴3x+3=0.解得x=-1.【点睛】此题考查整式的加减,解题关键在于掌握去括号,括号前是正数去括号不变号,括号前是负数去括号都变号.27.(0分)化简下列各式:(1)32476x y y -+--+;(2)4(32)3(52)x y y x ----.解析:(1)352x y --+;(2)67x y --【分析】(1)根据合并同类项的法则解答即可;(2)先去括号,再合并同类项.【详解】解:(1)原式3(27)(46)352x y x y =-+-+-+=--+;(2)原式12815667x y y x x y =-+-+=--.【点睛】本题考查了整式的加减运算,属于基础题型,熟练掌握整式加减运算的法则是关键. 28.(0分)如图,已知等腰直角三角形ACB 的边AC BC a ==,等腰直角三角形BED 的边BE DE b ==,且a b <,点C 、B 、E 放置在一条直线上,联结AD .(1)求三角形ABD 的面积;(2)如果点P 是线段CE 的中点,联结AP 、DP 得到三角形APD ,求三角形APD 的面积;(3)第(2)小题中的三角形APD 与三角形ABD 面积哪个较大?大多少?(结果都可用a 、b 代数式表示,并化简)解析:(1)ab (2)()24a b +(3)三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【分析】(1)由题意知//AC DE (同旁内角互补,两条直线平行),所以四边形ACED 是梯形,再由梯形面积减去两个等腰直角三角形面积即可求得;(2)与题(1)思路完全一样,由梯形面积减去两个直角三角形面积即可求得; (3)将所求的两个面积作差,化简并与0比较大小即可.【详解】(1)()()22111222ABD ABC BDE ACED S S S S a b a b a b ab ∆∆∆=--=++--=四边形 (2)()()()2111222224APD APC PDE ACED a b a b a b S S S S a b a b a b ∆∆∆+++=--=++-⨯-⨯=四边形(3)()()2244APD ABDa b b a S S ab ∆∆+--=-=,∵b a >,∴()204APD ABD b a S S ∆∆--=>,即三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【点睛】 本题是一道综合题,考查了三角形的面积公式12S =⨯底⨯高,多项式的化简.。

人教版七年级上册数学课后基础练习第2章:2.2 整式的加减(包含答案)

人教版七年级上册数学课后基础练习第2章:2.2 整式的加减(包含答案)

2.2 整式的加减一.填空题1.去括号:﹣2(m﹣3)=.2.若a3b y与﹣2a x b是同类项,则y x=.3.如果单项式3x a+2y b﹣2与5x3y a+2的和为8x3y a+2,那么2a﹣b=.4.计算(1﹣2a)﹣(2﹣2a)=.5.对于有理数a、b,定义a*b=3a+2b,化简x*(x﹣y)=.6.若﹣3x m y3与2x2y n是同类项,则|m﹣n|的值是7.若mn=m﹣3,则mn+4m+8﹣5mn=.8.已知(a+b)2=7,|ab|=3,则(a2+b2)﹣ab=.9.已知﹣a=5,则﹣[+(﹣a)]=.二.选择题10.与2ab2是同类项的是()A.4a2b B.2a2b C.5ab2D.﹣ab11.如果3ab2m﹣1与9ab m+1是同类项,那么m等于()A.2B.1C.﹣1D.012.下列去括号正确的是()A.﹣3(b﹣1)=﹣3b﹣3B.2(2﹣a)=4﹣aC.﹣3(b﹣1)=﹣3b+3D.2(2﹣a)=2a﹣413.已知:|a|=2,|b|=3,且|a﹣b|=b﹣a,则(8a2b﹣7b2)﹣(4a2b﹣5b2)=()A.30B.﹣66C.30或﹣66D.﹣30或6614.计算4a2﹣5a2的结果是()A.﹣a2 B.﹣1C.a2 D.9 a215.下列各运算中,计算正确的是()A.4xy+xy=5xyB.x+2x=2x2C.5xy﹣3xy=2D.x+y=xy16.已知A=﹣4x2,B是多项式,在计算B+A时,李明同学把B+A看成了B•A,结果得32x5﹣16x4,则B+A为()A.﹣8x3+4x2B.﹣8x3+8x2C.﹣8x3D.8x317.若m+n=7,2n﹣p=4,则m+3n﹣p=()A.﹣11B.﹣3C.3D.1118.给出下列结论:①单项式﹣的系数为﹣;②x与y的差的平方可表示为x2﹣y2;③化简(x+)﹣2(x﹣)的结果是﹣x+;④若单项式ax2y n+1与﹣ax m y4的差是同类项,则m+n=5.其中正确的结论有()A.1个B.2个C.3个D.4个19.多项式8x2﹣3x+5与3x3﹣4mx2﹣5x+7多项式相加后,不含二次项,则m的值是()A.2B.4C.﹣2D.﹣420.若A=x2y﹣2xy,B=xy2﹣3xy,则计算3A﹣2B的结果是()A.2x2y B.3x2y﹣2xy2C.x2y D.xy221.化简m3+m3的结果等于()A.m6B.2m6C.2m3D.m922.去括号2﹣(x﹣y)=()A.2﹣x﹣y B.2+x+y C.2﹣x+y D.2+x﹣y23.下列各项去括号正确的是()A.﹣3(m+n)﹣mn=﹣3m+3n﹣mnB.﹣(5x﹣3y)+4(2xy﹣y2)=﹣5x+3y+8xy﹣4y2C.ab﹣5(﹣a+3)=ab+5a﹣3D.x2﹣2(2x﹣y+2)=x2﹣4x﹣2y+424.已知a﹣b=3,c+d=2,则(a+c)﹣(b﹣d)的值为()A.1B.﹣1C.5D.﹣5三.解答题25.先化简,再求值:(1)2x3﹣(7x2﹣9x)﹣2(x3﹣3x2+4x),其中x=﹣1.(2)已知x2﹣2y﹣5=0,求3(x2﹣2xy)﹣(x2﹣6xy)﹣4y的值.26.先化简,再求值:4x2y﹣[6xy﹣3(4xy﹣2)﹣x2y﹣1],其中x=2,y=﹣.27.已知A=3x2+3y2﹣2xy,B=xy﹣2y2﹣2x2,(1)求2A﹣3B;(2)若|2x﹣3|=1,y2=9,且|x﹣y|=y﹣x,求2A﹣3B的值.28.(1)设A=2a2﹣a,B=a2+a,若a=- ,求A﹣2B的值;(2)某公司有甲、乙两类经营收入,去年甲类收入是乙类收入的2倍,预计今年甲类年收入减少9%,乙类收入将增加19%.问今年该公司的年总收入比去年增加了吗?请说明理由.参考答案一.填空题1.﹣2m+6;2.1;3.﹣3;4.﹣1;5.5x﹣2y;6.1;7.20;8.﹣或;9.﹣5;二.选择题10-24:CACAA ACDCA BCCBC三.解答题25.解:(1)原式=2x3-7x2+9x-2x3+6x2-8x=-x2+x,当x=-1时,原式=-1-1=-2;(2)原式=3x2-6xy-x2+6xy-4y=2x2-4y=2(x2-2y),由x2-2y-5=0,得到x2-2y=5,则原式=10.26.解:原式=4x2y-(6xy-12xy+6-x2y-1)=4x2y-(-6xy-x2y+5)=4x2y+6xy+x2y-5=5x2y+6xy-5当x=2,y=−时,原式=5×4×(−)+6×2×(−=-10-6-5=-21;27.解:(1)2A-3B=2(3x2+3y2-2xy)-3(xy-2y2-2x2)=6x2+6y2-4xy-3xy+6y2+6x2=12x2+12y2-7xy;(2)由题意可知:2x-3=±1,y=±3,∴x=2或1,y=±3,由于|x-y|=y-x,∴y-x≥0,∴y≥x,当y=3,x=2时,原式=12(x2+y2)-7xy=12(x2+2xy+y2-2xy)-7xy=12(x+y)2-31xy=12×25-31×6=114,当y=3,x=1时,原式=12×16-31×3=99.28.解:(1)A-2B=(2a2-a)-2(a2+a)=2a2-a-2a2-2a=-3a,当a=−)=1;(2)今年该公司的年总收入是增加.理由如下:设去年乙类收入为a,则甲类收入是2a,去年甲类、乙类两种经营总收入为:a+2a=3a;预计今年甲类年收入为(1-9%)×2a,B种年收入为(1+19%)a,预计今年甲类、乙类两种经营总收入为:(1-9%)×2a+(1+19%)a=3.01a;因为3.01a>3a,所以今年该公司的年总收入是增加.。

人教版七年级数学上册 第二章 整式的加减 练习题

人教版七年级数学上册 第二章  整式的加减 练习题

第二章 整式的加减2.1 整式第1课时 用字母表示数基础题知识点 用字母表示数(1)在含有字母的式子中如果出现乘号,通常将乘号写作“·”或省略不写.出现字母乘以数字,通常将数字写在字母前面.如:200×m 通常写作200m ;ab ×12通常写作12ab .(2)用字母表示数,字母和数一样可以参与运算,可以用式子把数量关系简明地表示出来.1.某省参加课改实验区初中毕业学业考试的学生约有15万人,其中男生约有a 万人,则女生约有(B ) A .(15+a )万人 B .(15-a )万人 C .15a 万人 D .(a -15)万人2.有三个连续偶数,最大的一个是2n +2,则最小的一个可以表示为(A ) A .2n -2 B .2n C .2n +1 D .2n -13.车上有100袋面粉,每袋50千克,取下x 袋,车上还有面粉(A ) A .50(100-x )千克 B .(50×100-x )千克 C .100(50-x )千克 D .50x 千克4.长方形的周长为10,它的长是a,那么它的宽是(C ) A .10-2a B .10-a C .5-a D .5-2a5.3月12日某班50名学生到郊外植树,平均每人植树a 棵,则该班一共植树50a 棵.6.商店上月收入为a 元,本月的收入比上月的2倍还多5元,则本月的收入为(2a +5)元.7.(云南中考)一台电视机原价是2 500元,现按原价的8折出售,则购买a 台这样的电视机需要2__000a 元. 8.用含字母的式子表示:(1)x 的2倍与5的和:2x +5;(2)x 与y 两数的差的平方:(x -y )2;(3)a 与b 的平方差:a 2-b 2.9.用字母表示图中阴影部分的面积.解:(1)阴影部分的面积为ab -bx. (2)阴影部分的面积为R 2-14πR 2.中档题10.若x 表示一个两位数,把数字3放在x 的左边,组成一个三位数是(D ) A .3x B .10x +3 C .100x +3 D .3×100+x11.礼堂第一排有m 个座位,后面每排都比前一排多1个座位,则第n 排座位个数是(B ) A .m +1 B .m +(n -1) C .m +(n +1) D .m +n12.一条河的水流速度为3 km/h,船在静水中的速度为x km/h,则船在这条河中顺水行驶的速度是(x +3)km/h. 13.体育委员带了500元钱去买体育用品,已知一个足球a 元,一个篮球b 元.则式子500-3a -2b 表示的数为体育委员买了3个足球,2个篮球后剩余的经费.14.(昆明期中)列式表示p 与q 的平方和的14是14(p 2+q 2).15.10名学生的平均成绩是x,如果另外5名学生每人得84分,那么整个组的平均成绩是10x +42015分.16.用式子表示:(1)a 与b 的积的4倍; 解:4ab.(2)x 的2倍与y 的5%的差; 解:2x -5%y.(3)a 与b 的和的平方;解:(a +b )2.(4)a 与b 的差的平方的c 倍.解:c (a -b )2.17.(曲靖月考)列式表示:(1)棱长为a cm 的正方体的表面积;(2)每件a 元的上衣,降价20%后的售价是多少元?(3)一辆汽车的行驶速度是v km/h,t h 行驶多少千米?解:(1)6a 2 cm 2. (2)0.8a 元. (3)vt km.综合题18.甲、乙两超市为了促销一种定价相同的商品,甲超市连续两次降价5%,乙超市一次性降价10%,在哪个超市购买这种商品合算?下列选项中正确的是(B ) A .甲超市 B .乙超市C .两个超市一样D .与商品的价格有关第2课时 单项式基础题知识点1 认识单项式表示数或字母的积的式子叫做单项式.单独的一个数或一个字母也是单项式. 1.在3a ,x +1,-2,-b 3,0.72xy,2π,3x -14中,单项式有(C )A .2个B .3个C .4个D .5个2.下列单项式中,书写格式规范的是(B ) A .-1×kB.214x C .a ×c 2×8 D .x ÷3知识点2 单项式的系数、次数一个单项式中的数字因数叫做这个单项式的系数.一个单项式中,所有字母的指数的和叫做这个单项式的次数. 3.(台州中考)单项式2a 的系数是(A ) A .2 B .2a C .1 D .a4.-4a 2b 的次数是(A ) A .3 B .2 C .4 D .-45.(曲靖月考)已知2x b -2是关于x 的3次单项式,则b 的值为(A ) A .5 B .4 C .6 D .76.关于单项式3.8×104xy 2,下列说法正确的是(B ) A .系数是3.8,次数是2B .系数是3.8×104,次数是3C .系数是3.8×104,次数是2 D .系数是3.8,次数是77.(教材P57练习T1变式)填表:单项式 -2a 53h -xy 2t 2-3vt 2 系数 -2 3 -1 1 -32 次数513228.如果-=7.9.将式子2a 2b 2c 和a 3x 2的共同点填在下列横线上:(1)都是五次单项式;(2)都有字母a .知识点3 单项式的应用10.学校购买了一批图书,共a 箱,每箱有b 册,将这批图书的一半捐给社区,则捐给社区的图书为ab2册.11.列出单项式,并指出它们的系数和次数.(1)某班总人数为m 人,女生人数是男生人数的35,那么该班男生人数为多少?(2)长方形的长为x,宽为y,则长方形的面积为多少?解:(1)58m,系数是58,次数是1.(2)xy,系数是1,次数是2.易错点 对单项式中系数和次数的概念不清 12.下列关于单项式-3xy25的说法中,正确的是(D )A .系数是-35,次数是2B .系数是35,次数是2C .系数是-3,次数是3D .系数是-35,次数是3中档题13.单项式-3πxy 2z 3的系数和次数分别是(C ) A .-3π,5 B .-3,7 C .-3π,6 D .-3,6 14.下列说法正确的是(D ) A .x 的系数是0B .24x 与42y 的系数不相同 C .y 的次数是0D .34xyz 是三次单项式15.同时含有字母a,b,c 且系数为1的五次单项式有(C ) A .1个 B .3个 C .6个 D .9个16.(昆明月考)-5πxy 26的系数是-56π,次数是3.17.已知三个单项式:①πx 2;②-12xy 3;③-103x 3,按次数由小到大排列为①③②.(填序号)18.(教材P56例3变式)用单项式填空,并指出它们的系数和次数:(1)一台电脑原价a 元,现在加价20%出售,这台电脑现在的售价为65a 元,次数为1,系数为65;(2)一个长方体的长、宽、高分别是x,x,y,则它的体积是x 2y,次数为3,系数为1.19.若(m +2)x 3y |m|是关于x,y 的五次单项式,求m 的值. 解:由题意,3+|m|=5,所以|m|=2,m =±2. 又因为m +2≠0,所以m =2.综合题20.观察下列单项式:-x,3x 2,-5x 3,7x 4,…,-37x 19,39x 20,….回答下列问题: (1)这组单项式的系数的规律是什么? (2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n 个单项式是什么? (4)请你根据猜想,写出第2 018,2 019个单项式.解:(1)这组单项式的系数的符号规律是(-1)n,系数绝对值的规律是2n -1.(n 为正整数) (2)次数的规律是从1开始的连续自然数.(3)第n 个单项式是(-1)n (2n -1)x n.(4)第2 018个单项式是4 035x 2 018,第2 019个单项式是-4 037x 2 019.第3课时 多项式及整式基础题知识点1 多项式及整式的有关概念(1)几个单项式的和叫做多项式.多项式里,每个单项式叫做多项式的项,不含字母的项叫做常数项;次数最高项的次数,叫做多项式的次数.(2)单项式与多项式统称为整式.1.下列式子:2a 2b,3xy -2y 2,a +b2,4,-m,x +yz 2x ,ab -c π,其中多项式有(B )A .2个B .3个C .4个D .5个2.(曲靖期中)下列式子:x 2+2,1a +4,3ab 27,abc ,-5x,0中,整式的个数是(C )A .6B .5C .4D .33.多项式-x 2-12x -1的各项分别是(B )A .-x 2,12x,1B .-x 2,-12x,-1C .x 2,12x,1D .x 2,-12x,-14.(昆明月考)多项式xy 2+xy +1是(D ) A .二次二项式 B .二次三项式 C .三次二项式 D .三次三项式5.(佛山中考)多项式1+2xy -3xy 2的次数及最高次项的系数分别是(A ) A .3,-3 B .2,-3 C .5,-3 D .2,36.(大理期中)-3x 2y -x 3+xy 3是四次多项式. 7多项式 3a -1 -x +5x 2+7 -2x 2y +6xy 4-3 各项 3a,-1 -x,5x 2,7-2x 2y,6xy 4,-3次数 1 2 5 最高次项 3a 5x 2 6xy 4几次几项式一次二项式二次三项式五次三项式知识点2 求整式的值8.(湖州中考)当x =1时,式子4-3x 的值(A ) A .1 B .2 C .3 D .49.(重庆中考)若a =2,b =-1,则a +2b +3的值为(B ) A .-1 B .3 C .6 D .5知识点3 多项式的应用10.已知a 是两位数,b 是一位数,把a 写在b 的右边,就成为一个三位数.这个三位数可表示成(C ) A .10b +a B .ba C .100b +a D .b +10a11.甲、乙两个车间同时加工相同数量的零件,甲车间每小时加工a 个,乙车间每小时加工b 个(b <a ),5小时后,甲车间还剩20个零件未加工,此时乙车间未加工的零件个数为(A ) A .5a +20-5b B .5b +20-5a C .5a +20 D .5b +20中档题12.(红河期中)下列式子中,是二次三项式的是(C )A .a 2+b 2B .x +y +7C .5-x -y 2D .x 2-y 2+x -3x 213.如果一个多项式是五次多项式,那么它任何一项的次数(D ) A .都小于5 B .都等于5 C .都不小于5 D .都不大于514.(民大附中月考)按如图程序计算,若开始输入的值为x =3,则最后输出的结果是(D )A .6B .21C .156D .23115.某人买了50元的乘车月票卡,如果此人乘车的次数用m 表示,则记录他每次乘车后的余额n 元,如下表:次数m 余额n (元) 1 50-0.8 2 50-1.6 3 50-2.4 4 50-3.2 ……(1)写出用此人乘车的次数m 表示余额n 的公式; (2)利用上述公式,计算:乘了13次车还剩多少元钱? 解:(1)n =50-0.8m.(2)当m =13时,n =50-0.8×13=39.6(元). 答:乘了13次车还剩39.6元钱.16.如图,某长方形广场的四个角都有一块半径相同的四分之一圆形的草地,若圆形的半径为r 米,长方形长为a 米,宽为b 米.(1)分别列式表示草地和空地的面积;(2)若长方形长为300米,宽为200米,圆形的半径为10米,求广场空地的面积(计算结果保留到整数). 解:(1)草地面积为4×14πr 2=πr 2(平方米),空地面积为(ab -πr 2)平方米. (2)当a =300,b =200,r =10时,ab -πr 2=300×200-100π≈59 686(平方米). 答:广场空地的面积约为59 686平方米.综合题17.如果关于x 的多项式ax 4+4x 2-12与3x b +5x 是同次多项式,求12b 3-2b 2+3b -4的值.解:由题意:若a =0,则b =2;若a ≠0,则b =4.当b =2时,原式=12×8-2×4+3×2-4=-2;当b =4时,原式=12×64-2×16+3×4-4=8.2.2 整式的加减 第1课时 合并同类项基础题知识点1 同类项的概念所含字母相同,并且相同字母的指数也相同的项叫做同类项.几个常数项也是同类项.1.(昆明期末)在下列单项式中,与3a 2b 是同类项的是(C )A .3x 2yB .-2ab 2C .a 2b D .3ab2.(昆明期末)在下列单项式中,不是同类项的是(C )A .-2x 2y 和-yx 2B .-3和0C .-a 2bc 和ab 2c D .-mnt 和-8mnt3.(昆明月考)若单项式2x m y 3与单项式-3y n x 2是同类项,则m =2,n =3. 4.指出下列多项式中的同类项: (1)3x -2y +1+5y -2x -3; 解:3x 与-2x,-2y 与5y,1与-3.(2)3x 2y -2xy 2+12xy 2-23yx 2.解:3x 2y 与-23yx 2,12xy 2与-2xy 2.知识点2 合并同类项把多项式中的同类项合并成一项,叫做合并同类项.合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变.5.合并同类项-4a 2b +3a 2b =(-4+3)a 2b =-a 2b 时,依据的运算律是(C ) A .加法交换律 B .乘法交换律 C .乘法分配律 D .乘法结合律6.(红河期中)下列式子中,能与2a 合并的是(C )A .2a 3B .-3a +bC .-10aD .-a 2b7.(昭通期中)下列计算正确的是(D )A .x 2+x 2=x 4B .x 2+x 3=2x 5C .3x -2x =1D .x 2y -2x 2y =-x 2y 8.计算:(1)15x +4x -10x ; 解:原式=9x.(2)-p 2-p 2-p 2;解:原式=-3p 2.(3)6x -10x 2+12x 2-5x ;解:原式=2x 2+x.(4)x 2y -3xy 2+2yx 2-y 2x.解:原式=3x 2y -4xy 2.知识点3 合并同类项的应用9.三个植树队,第一队种树x 棵,第二队种的棵数是第一队的2倍,第三队种的棵数是第一队的一半,三个队一共种树72x 棵. 10.小明阅读一本书,第一天看了全书的13,第2天看了全书的49,若全书共x 页,则小明还有29x 页没看.中档题11.把多项式2x 2-5x +x 2+4x -3x 2合并同类项后所得的结果是(D ) A .二次二项式 B .二次三项式 C .一次二项式 D .单项式12.(曲靖月考)若5a |x|b 2与-0.2a 3b |y|是同类项,则x,y 的值分别是(A ) A .x =±3,y =±2 B .x =3,y =2 C .x =-3,y =-2 D .x =3,y =-213.(临沧期中)若多项式x 2-3kxy -3y 2+6xy -8不含xy 项,则k =2.14.(大理期中)若关于x,y 的单项式-3x 3y m 与2x n y 2的和是单项式,则(m -n )n=-1. 15.计算:(1)(大理期中)2a 2b -3ab -14a 2b +4ab ;解: 原式=(2a 2b -14a 2b )+(-3ab +4ab )=-12a 2b +ab.(2)14a 2b -0.4ab 2-12a 2b +25ab 2-1.解:原式=(14a 2b -12a 2b )+(-0.4ab 2+25ab 2)-1=-14a 2b ―1.16.(教材P65练习T2变式)(曲靖月考)先合并同类项,再求值:7x 2-3+2x -6x 2-5x +8,其中x =-2.解:原式=x 2-3x +5.当x =-2时,原式=4+6+5=15.17.小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m ),解答下列问题:(1)用含x,y 的式子表示地面总面积;(2)当x =4,y =2时,若铺1 m 2地砖的平均费用为30元,那么铺地砖的费用是多少元?解:(1)4xy +2y +4y +8y =(14y +4xy )m 2. (2)当x =4,y =2时,30(14y +4xy )=30×(14×2+4×4×2)=1 800. 答:铺地砖的费用是1 800元.综合题18.有这样一道题:当a =0.35,b =-0.28时,求多项式7a 3-6a 3b +3a 2b +3a 3+6a 3b -3a 2b -10a 3的值.小明说:“本题中a =0.35,b =-0.28是多余的条件.”小强马上反对说:“这不可能,多项式中每一项都含有a 和b,不给出a,b的值怎么能求出多项式的值呢?”你同意哪名同学的观点?请说明理由.解:我同意小明的观点.理由:因为7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3=(7+3-10)a3+(-6+6)a3b+(3-3)a2b=0,所以a=0.35,b=-0.28是多余的条件,故小明的观点正确.第2课时去括号基础题知识点1 去括号如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.1.(大理期中)下列运算正确的是(D)A.4x2y-xy2=3x2yB.3(x-1)=3x-1C.-3a+7a+1=-10a+1D.-(x-6)=-x+62.下列各式中,去括号不正确的是(D)A.x+2(y-1)=x+2y-2B.x-2(y-1)=x-2y+2C.x-2(y+1)=x-2y-2D.x-2(y-1)=x-2y-23.去掉下列各式中的括号:(1)a-(-b+c)=a+b-c;(2)a+(b-c)=a+b-c;(3)(a-2b)-(b2-2a2)=a-2b-b2+2a2.知识点2 去括号化简4.化简-(a-1)-(-a-2)+3的值是(B)A.4 B.6 C.0 D.无法计算5.计算:3(2x+1)-6x=3.6.化简:(1)-16(x-0.5);解:原式=-16x+8.(2)(-x2+3)+(5x-7+2x2);解:原式=-x2+3+5x-7+2x2=x2+5x-4.(3)-3(2x2-xy)+4(x2+xy);解:原式=-2x2+7xy.(4)(4ab-b2)-2(a2+2ab-b2).解:原式=-2a2+b2.知识点3 去括号化简的应用7.长方形的一边等于3m+2n,另一边比它大m-n,则这个长方形的周长是(A)A.14m+6n B.7m+3nC.4m+n D.8m+2n易错点去括号时漏乘项或漏项变号8.化简:4a2-3a+3-3(-a3+2a+1).解:原式=4a2-3a+3+3a3-6a-3=3a3+4a2+(-3a-6a)+(3-3)=3a3+4a2-9a.9.(曲靖月考)下列去括号中错误的是(B )A .3x 2-(2x -y )=3x 2-2x +y B .x 2-34(x +2)=x 2-34x -2C .5a +(-2a 2-b )=5a -2a 2-b 2D .-(a -3b )-(a 2+b 2)=-a +3b -a 2-b 210.已知x 2y =2,则(5x 2y +5xy -7x )-(4x 2y +5xy -7x )的值为(C ) A.12B .-2C .2D .411.(曲靖月考)若式子2x -y 的值是5,则式子2y -4x +5的值为(B ) A .-15 B .-5 C .5 D .1512.式子(xyz 2-4yx -1)+(3xy +z 2yx -3)-(2xyz 2+xy )的值(B ) A .与x,y,z 的大小无关B .与x,y 大小有关,而与z 的大小无关C .与x 的大小有关,与y,z 的大小无关D .与x,y,z 大小都有关 13.化简:(1)3(a 2-ab )-5(ab +2a 2-1);解:原式=-7a 2-8ab +5.(2)(3a -2a 2)-[5a -13(6a 2-9a )-4a 2].解:原式=4a 2-5a.14.先化简,再求值:4x -[3x -2x -(x -3)],其中x =12.解:原式=4x -3. 当x =12时,原式=-1.15.已知x +4y =-1,xy =5,求(6xy +7y )+[8x -(5xy -y +6x )]的值. 解:原式=6xy +7y +8x -5xy +y -6x =xy +8y +2x=xy +2(x +4y ).当x +4y =-1,xy =5时,原式=5+2×(-1)=3.16.如图所示是两种长方形铝合金窗框.已知窗框的长都是y 米,窗框宽都是x 米,若一用户需(1)型的窗框2个,(2)型的窗框5个,则共需铝合金多少米?解:由题意可知:做2个(1)型的窗框需要铝合金2(3x +2y )米;做5个(2)型的窗框需要铝合金5(2x +2y )米,所以共需铝合金:2(3x +2y )+5(2x +2y )=(16x +14y )米.17.(昭通期中)如图所示,用火柴棒摆金鱼,摆一条需要8根,摆两条需要14根,摆三条需要20根,则摆n条需要(6n+2)根.第3课时 整式的加减基础题知识点1 整式的加减运算一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项. 1.化简a -(5a -3b )+(2b -a )的结果是(B ) A .7a -b B .-5a +5b C .7a +5b D .-5a -b2.化简2(3x +1)+3(2-x )的结果为(C ) A .6x -4 B .3x +4 C .3x +8 D .9x +83.若A =x 2-xy,B =xy +y 2,则A +B 为(A )A .x 2+y 2B .2xyC .-2xyD .x 2-y 24.计算3a 2+2a -1与a 2-5a +1的差,结果正确的是(D )A .4a 2-3a -2B .2a 2-3a -2C .2a 2+7aD .2a 2+7a -25.化简:(x 2+y 2)-3(x 2-2y 2)=-2x 2+7y 2. 6.(昆明期中)计算:(1)(3a -2)-3(a -5); 解:原式=3a -2-3a +15 =13.(2)(4a 2b -5ab 2)-(3a 2b -4ab 2);解:原式=4a 2b -5ab 2-3a 2b +4ab 2=a 2b -ab 2.(3)m -2(m -n 2)-(m -n 2).解:原式=m -2m +2n 2-m +n 2=-2m +3n 2.7.(昭通期中)先化简,再求值:5(3a 2b -ab 2)-(ab 2+3a 2b ),其中a =-12,b =13.解:原式=15a 2b -5ab 2-ab 2-3a 2b =12a 2b -6ab 2. 当a =-12时,b =13时,原式=12×⎝ ⎛⎭⎪⎫-122×13-6×⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫-132=43.知识点2 整式加减的应用8.(民大附中月考)一个长方形的一边长3a +4b,另一边长为a +b,那么这个长方形的周长为8a +10b .9.兴客隆超市10月1日仓库里原有(5x 2-10x )桶食用油,中午休息时又购进同样的食用油(x 2-x )桶,下午清仓时发现该食用油只剩下5桶,请问:(1)兴客隆超市10月1日一共卖出多少桶食用油?(用含有x 的式子表示) (2)当x =5时,兴客隆超市这天一共卖出多少桶食用油?解:(1)根据题意,得(5x 2-10x )+(x 2-x )-5=5x 2-10x +x 2-x -5=6x 2-11x -5,即兴客隆超市10月1日一共卖出(6x 2-11x -5)桶食用油.(2)当x =5时,6x 2-11x -5=6×52-11×5-5=90, 即当x =5时,兴客隆超市这天一共卖出90桶食用油.易错点 列式时,减法的减式没有带括号10.一个多项式加上5x 2-4x -3得-x 2-3x,则这个多项式为-6x 2+x +3.中档题11.当x =2时,(x 2-x )-2(x 2-x -1)的值等于(D ) A .4 B .-4 C .1 D .012.(昭通期中)如图,从边长为(a +3)cm 的大正方形纸片中剪去一个边长为(a +1)cm 的小正方形(a >0),剩余部分沿虚线剪开,重新拼成一个长方形(不重叠无缝隙),则此长方形的周长为(A )A .(4a +12)cmB .(4a +8)cmC .(2a +6)cmD .(2a +4)cm13.(昆明期中)数a,b 在数轴上对应点的位置如图所示,化简a -|b -a|=b .14.某商场一月份的销售额为a 元,二月份比一月份销售额多b 元,三月份比二月份减少10%,第一季度的销售额总计为(2.9a +1.9b )元;当a =2万元,b =5 000元时,第一季度的总销售额为67__500元.15.计算:2a 2-[-2a +a (2a +1)].解:原式=2a 2-(-2a +2a 2+a )=2a 2+2a -2a 2-a =a.16.(大理期中)(1)先化简,再求值:x 2-2(x 2-3xy )+3(y 2-2xy )-2y 2,其中x =12,y =-1;解:原式=x 2-2x 2+6xy +3y 2-6xy -2y 2=-x 2+y 2. 当x =12,y =-1时,原式=-(12)2+(-1)2=34.(2)已知x +y =6,xy =-1,求式子2(x +1)-(3xy -2y )的值. 解:原式=2x +2-3xy +2y =2(x +y )-3xy +2.当x +y =6,xy =-1时,原式=12+3+2=17.综合题17(1)带阴影的方框中的9个数之和与方框正中心的数有什么关系?(2)不改变方框的大小如果将带阴影的方框移至其他几个位置试一试,你能得出什么结论?你知道为什么吗?(3)这个结论对于任何一个月的日历都成立吗?解:(1)带阴影的方框中的9个数之和是11的9倍.(2)带阴影的方框中的9个数之和是正中间数的9倍.理由:设方框正中心的数为x,则其余八个数分别为:x-8,x -7,x-6,x-1,x+1,x+6,x+7,x+8.阴影的方框中的9个数之和为:(x-8)+(x-7)+(x-6)+(x-1)+x+(x+1)+(x+6)+(x+7)+(x+8)=9x,所以带阴影的方框中的9个数之和是正中间数的9倍.(3)这个结论对任何一个月的日历都成立.计算:(1)(x-1)-(2x+1);解:原式=-x-2.(2)2(a-1)-(2a-3)+3;解:原式=4.(3)(大理期中)(2a-3b)-3(2b-3a);解:原式=11a-9b.(4)2(2a2+9b)+3(-5a2-4b);解:原式=-11a2+6b.(5)3(x3+2x2-1)-(3x3+4x2-2);解:原式=2x2-1.(6)(7x2+5x-3)-(5x2-3x+2);解:原式=7x2+5x-3-5x2+3x-2=2x2+8x-5.(7)3(x2-x2y-2x2y2)-2(-x2+2x2y-3);解:原式=3x2-3x2y-6x2y2+2x2-4x2y+6=5x2-7x2y-6x2y2+6.(8)-(2x2+3xy-1)+(3x2-3xy+x-3);解:原式=-2x2-3xy+1+3x2-3xy+x-3=x2-6xy+x-2.(9)a3b+(a3b-2c)-2(a3b-c);解:原式=a3b+a3b-2c-2a3b+2c=0.(10)-7x2-2(6x2-5xy)+(3y2+xy-x2).解:原式=-7x2-12x2+10xy+3y2+xy-x2=-20x2+11xy+3y2.类型1 化简后直接代入求值 1.先化简,再求值:(1)(4a +3a 2-3-3a 3)-(-a +4a 3),其中a =-2;解:原式=-7a 3+3a 2+5a -3. 当a =-2时, 原式=55.(2)(昆明期中)6x 2-[3xy 2-2(2xy 2-3)+7x 2],其中x =4,y =-12.解:原式=6x 2-3xy 2+4xy 2-6-7x 2,=-x 2+xy 2-6. 当x =4,y =-12时,原式=-42+4×(-12)2-6=-21.2.已知A =4ab -2b 2-a 2,B =3b 2-2a 2+5ab,当a =1.5,b =-12时,求3B -4A 的值.解:3B -4A =3(3b 2-2a 2+5ab )-4(4ab -2b 2-a 2)=9b 2-6a 2+15ab -16ab +8b 2+4a 2=17b 2-2a 2-ab. 当a =1.5,b =-12时,原式=17×(-12)2-2×1.52-1.5×(-12)=17×14-92+34=12.类型2 整体代入求值3.若a 2+2b 2=5,求多项式(3a 2-2ab +b 2)-(a 2-2ab -3b 2)的值.解:原式=3a 2-2ab +b 2-a 2+2ab +3b 2=2a 2+4b 2.当a 2+2b 2=5时,原式=2(a 2+2b 2)=10.4.已知||m +n -2+(mn +3)2=0,求2(m +n )-2[mn +(m +n )]-3[2(m +n )-3mn]的值. 解:由已知条件知m +n =2,mn =-3,所以原式=2(m +n )-2mn -2(m +n )-6(m +n )+9mn =-6(m +n )+7mn =-12-21 =-33.类型3 利用“无关”求值5.若式子(2x 2+ax -y +6)-(2bx 2-3x +5y -1)的值与字母x 的取值无关,求式子12a 2-2b +4ab 的值.解:(2x 2+ax -y +6)-(2bx 2-3x +5y -1)=(2-2b )x 2+(a +3)x -6y +7.由题意,得2-2b =0,a +3=0. 所以a =-3,b =1.将a,b 的值代入式子12a 2-2b +4ab,得12×9-2×1+4×(-3)×1=-192.章末复习(二) 整式的加减分点突破知识点1 用字母表示数1.用式子表示“a,b 两数的和与c 的积”是(C ) A .a +bc B .ab +c C .(a +b )c D .a (b +c )2.(大理期中)今年某种药品的单价比去年上涨了10%,如果今年的单价是a 元,那么去年的单价为(C ) A .(1+10%)a 元 B .(1-10%)a 元 C.a1+10%元D.a1-10%元知识点2 整式的相关概念3.在整式-0.3x 2y,0,x +12,-22abc 2,13x 2,-14y,-13ab 2+12 中,其中单项式有 (C )A .3个B .4个C .5个D .6个4.(文山期中)多项式2x 2y 3-5xy 2-3的次数和项数分别是(A ) A .5,3 B .5,2 C .8,3 D .3,35.(昭通期中)单项式-37a 3b 的系数是-37,次数是4.6.多项式-3xy +5x 3y -2x 2y 3+5的次数是5,最高次项系数是-2.知识点3 整式的加减及其应用 7.下列去括号正确的是(A ) A .-(2x -5)=-2x +5 B .-12(4x +2)=-2x +2C.13(2m -3n )=23m +n D .-(23m -2x )=-23m -2x8.(昭通期中)如果15a 2b 3与-14a x +1b y是同类项,那么xy =3.9.计算:(1)8a +7b -12a -5b ;解:原式=(8-12)a +(7-5)b =-4a +2b.(2)a 2+(5a 2-2a )-2(a 2-3a ).解:原式=a 2+5a 2-2a -2a 2+6a=4a 2+4a.10.先化简,再求值:(2-a 2+4a )-(5a 2-a -1),其中a =-2.解:原式=2-a 2+4a -5a 2+a +1=-6a 2+5a +3.当a =-2时,原式=-31.11.某公园里一块草坪的形状如图中的阴影部分(长度单位:m ).(1)用整式表示草坪的面积;(2)若a =2,求阴影部分的面积.解:(1)(7.5+12.5)(a +2a +a )+7.5×2a +7.5×2a =110a (cm 2).(2)当a =2时,110a =110×2=220(m 2).知识点4 整式的规律探究12.观察下面由※组成的图案和算式,解答问题:1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52…请猜想1+3+5+7+9+…+(2n -1)+(2n +1)+(2n +3)=(n +2)2.常考题型演练13.一种商品进价为a 元,按进价增加25%定出标价,再按标价的9折出售,那么每件还能盈利(A )A .0.125aB .0.15aC .0.25aD .1.25a14.已知-2x m +1y 3与13x 2y n -1是同类项,则m,n 的值分别为(A ) A .m =1,n =4 B .m =1,n =3C .m =2,n =4D .m =2,n =315.关于x 的多项式(a -4)x 3-x b +x -b 是二次三项式,则a =4,b =2.16.(大理期中)已知2a -3b 2=2,则8-6a +9b 2的值是2.17.(民大附中月考)观察给出的一列式子:x 2y,12x 4y 2,14x 6y 3,-18x 8y 4,…,根据其蕴含的规律可知这一列式子中的第8个式子是-1128x 16y 8. 18.计算:(1)3ab -a 2-2ab -3a 2;解:原式=ab -4a 2.(2)5(3a 2b -ab 2-1)-(ab 2+3a 2b -5);解:原式=12a 2b -6ab 2.(3)7ab -3(a 2-2ab )-5(4ab -a 2).解:原式=2a 2-7ab.19.已知x 2-x +1的2倍减去一个多项式得到3x 2+4x -1,求这个多项式.解:2(x 2-x +1)-(3x 2+4x -1)=2x 2-2x +2-3x 2-4x +1=-x 2-6x +3.故这个多项式为-x 2-6x +3.20.(民大附中月考)化简求值:5a 2+3b 2+2(a 2-b 2)-(5a 2-3b 2),其中|a +1|+(b -12)2=0. 解:由题意知:a +1=0,b -12=0, 所以a =-1,b =12. 原式=5a 2+3b 2+2a 2-2b 2-5a 2+3b 2=2a 2+4b 2.当a =-1,b =12时,原式=2×(-1)2+4×(12)2=2×1+4×14=2+1=3.21.(大理期中)某市为鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20立方米时,按3元/立方米计费;月用水量超过20立方米时,其中的20立方米仍按3元/立方米收费,超过部分按3.5元/立方米计费.设每户家庭月用水量为x 立方米.(1)当x 不超过20时,应收水费为3x 元;当x 超过20时,应收水费为(3.5x -10)元(用x 的式子表示);(2)小明家第二季度用水情况为:四月份用水15立方米,五月份用水22立方米,六月份用水25立方米,请帮小明计算一下他家这个季度应交多少元水费?解: 3×15+3.5×22-10+3.5×25-10=189.5(元).答:小明家这个季度应交189.5元水费.。

人教版七年级上册数学第二章 整式的加减含答案

人教版七年级上册数学第二章 整式的加减含答案

人教版七年级上册数学第二章整式的加减含答案一、单选题(共15题,共计45分)1、下列运算正确的是()A. B. C. D.2、下列计算正确的是()A.a•a 2=a 2B.(a 2)2=a 4C.3a+2a=5a 2D.(a 2b)3=a 2•b 33、如上图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(-1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…依此规律跳动下去,则点P第2017次跳动至P2017的坐标是()A.(504,1007)B.(505,1009)C.(1008,1007)D.(1009,1009)4、下列运算正确的个数是()①(-10)-(-10)=0;②0-7=7;③(-3)-(+7)=-10;④ -(-)=A.1个B.2个C.3个D.4个5、下列运算正确的是()A. B. C. D.6、去括号得()A. B. C. D.7、一个含有多个字母的整式,如果把其中任何两个字母互换位置,所得的结果与原式相同,那么称此整式是对称整式.例如,是对称整式,不是对称整式.①所含字母相同的两个对称整式求和,若结果中仍含有多个字母,则该和仍为对称整式;②一个多项式是对称整式,那么该多项式中各项的次数必相同③单项式不可能是对称整式④若某对称整式只含字母,,,且其中有一项为,则该多项式的项数至少为3.以上结论中错误的个数是()A.4B.3C.2D.18、记sn =a1+a2+…+an,令Tn= ,则称Tn为a1, a2,…,an这列数的“凯森和”.已知a1, a2,…,a500的“凯森和”为2004,那么13,a 1, a2,…,a500的“凯森和”为()A.2013B.2015C.2017D.20199、在式子x2;ab;;0,3a+b;中,单项式的个数有()A.4个B.3个C.2个D.1个10、下列去括号正确的是()A.a﹣2(﹣b+c)=a﹣2b﹣2cB.a﹣2(﹣b+c)=a+2b﹣2cC.a+2(b ﹣c)=a+2b﹣cD.a+2(b﹣c)=a+2b+2c11、对于任意非零实数a、b,定义运算“⊕”,使下列式子成立:1⊕2=﹣, 2⊕1=,(﹣2)⊕5=, 5⊕(﹣2)=﹣,…,则(﹣3)⊕(﹣4)=()A.-B.C.-D.12、在数轴上表示a、b两个实数的点的位置如图所示,则化简|a﹣b|﹣|a+b|的结果为()A.2aB.2bC.2a﹣2bD.﹣2b13、方程2-3(x+1)=1去括号得( )A.2-3x-1=1B.2-3x+1=1C.2-3x+3=1D.2-3x-3=114、下列计算正确的是()A. B. C. D.15、下列计算正确的是()A.a 3+a 2=a 5B.a 3•a 2=a 6C.(a 2)3=a 6D.a 6÷a 3=a 2二、填空题(共10题,共计30分)16、三个小队植树,第一队种x棵,第二队种的树比第一队种的树的2倍还多8棵,第三队种的树比第二队种的树的一半少6棵,三队共种树________棵.17、两个单项式与的和是一个单项式,那么________,________.18、单项式-x2m-n y3与单项式可以合并,则多项式4m-2n+(-m-n)2-2(n-2m)2的值是________.19、已知,,若多项式不含一次项,则m=________.20、若a+b=2,则代数式a2﹣b2+4b=________.21、如图,用灰白两色正方形瓷砖铺设地面,第n个图案中白色瓷砖数为________.22、若﹣是四次单项式,则m的值是________.23、已知a,b,c在数轴上的位置如图所示,则=________24、减去得的式子为________.25、去括号:(a﹣b)﹣(﹣c+d)=________.三、解答题(共6题,共计25分)26、化简求值:5ab﹣7a2b2﹣8ab+5a2b2﹣ab,其中a=﹣2,b=﹣.27、x5•x7+x6•(﹣x3)2+2(x3)4.28、先化简再求值:,其中,29、实数a,b在数轴上的位置如图所示,化简:|a-b|-.30、先化简,再求值:2(x3﹣2y2)﹣(x﹣2y)﹣(x﹣3y2+2x3),其中x=﹣2,y=﹣3.参考答案一、单选题(共15题,共计45分)1、D3、B4、C5、D6、A7、B8、A9、B10、B11、A12、B13、D14、C15、C二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共6题,共计25分)26、27、29、30、。

人教版七年级数学上册第2章第1节《整式的加减-列代数式》课后练习题(附答案)

人教版七年级数学上册第2章第1节《整式的加减-列代数式》课后练习题(附答案)

人教版七年级数学上册第2章第1节《整式的加减-列代数式》课后练习题一.选择题1.某种商品进价为a元/件,在销售旺季,商品售价较进价高30%;销售旺季过后,商品又以7折(即原售价的70%)的价格开展促销活动,这时一件该商品的售价为()A.a元B.0.7a元C.0.91a元D.1.03a元2.一个两位数x,还有一个两位数y,若把两位数x放在y前面,组成一个四位数,则这个四位数为()A.10x+y B.xy C.100x+y D.1000x+y3.购买1个单价为a元的面包和3瓶单价为b元的饮料,所需钱数为()A.(a+b)元 B.3(a+b)元C.(3a+b)元D.(a+3b)元4.某商品原价每件x元,后来店主将每件增加10元,再降价25%,则现在的单价(元)是()A.25%x+10 B.(1-25%)x+10 C.25%(x+10) D.(1-25%)(x+10)5.某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是()A.(1-10%)(1+15%)x万元B.(1-10%+15%)x万元C.(x-10%)(x+15%)万元D.(1+10%-15%)x万元6.如图,表示阴影部分面积的代数式是()A.ab+bc B.ad+c(b-d)C.c(b-d)+d(a-c) D.ab-cd7.某机关单位2015年3月的三公经费为a万元,为响应省委提倡节俭的号召,开始减少三公经费,4月份比3月份减少10%,5月份又比4月份减少15%,则5月份的三公经费8.某种水果的售价为每千克a元,用面值为50元的人民币购买了3千克这种水果,应找回9.礼堂第一排有a个座位,共n排,后面每排都比上一排多1个座位,则n排共有座位个.10.某市出租车收费标准为:起步价10元,3千米后每千米价1.8元.则某人乘坐出租车x三.解答题11.列代数式:(1)比a的一半大3的数(2)a与b的差的c倍(3)a的一半与b的平方的差.(4)王明同学买2本练习册花n元,那么买m本练习册要花多少元?(5)正方体的棱长为a,那么它的表面积是多少?体积呢?12.某市为了增强居民的节水意识,特制定了居民用水标准,规定居民用水量不超过标准用水量15m3(含15m3),每立方米按a元收费;超过标准用水量的,超过部分每立方米按2a元收费.(1)小明家用水量为12m3,应缴水费多少元?(2)小明家本月用水量为20m3,应缴水费多少元?(3)小明家用水量为xm3,应缴水费多少元?1.C解析:根据商品的售价=商品售价较进价高30%的价格×打7折后的价格,列出代数式得出结果即可.2.C解析:把两位数x放在y前面,组成一个四位数,相当于把x扩大了100倍.3.D解析:求用买1个面包和2瓶饮料所用的钱数,用1个面包的总价+三瓶饮料的单价即可.4.D解析:根据某商品原价每件x元,后来店主将每件增加10元,再降价25%,可以求得表示现在的单价代数式,从而可以解答本题.5.A6.B解析:先作辅助线,把阴影部分分成两部分,然后根据矩形的面积公式列式即可得解.二.填空题7.(1-10%)(1-15%)a.8.(50-3a)解析:利用单价×质量=应付的钱;用50元减去应付的钱等于剩余的钱即为应找回的钱.9.a+n-1解析:由第1排的座位数,看第n排的座位数是在第1排座位数的基础上增加几个1即可.(5)∵正方体的棱长为a,∴它的表面积是6a;它的体积是a.12.解:(1)12a元(2)〔15a+(20-15)•2a〕元或25a元(3)当x≤15时,应缴水.费ax元.当x>15时,应缴水费〔15a+(x-15)•2a〕元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级数学上册 第二章整式的加减 2.1整式(第三课时) 课后练习
一、单选题
1.下列说法错误的是( (
A .
2b a
+是一次二项式 B .x 6(1是六次二项式 C .3x 4(5x 2y 2(6y 3(2是四次四项式 D .2121x x
++不是多项式 2.下列式子:2a 2b (3xy (2y 2(2a b +(4((m (2x yz x +(ab c π-(其中多项式有( ) A .2个 B .3个 C .4个 D .5个
3.下列说法正确的是( )
A .2
x x 是整式 B .单项式28mn 的系数是2,次数是10
C .多项式23x -54
的常数项是-54,二次项系数是34 D .多项式3a 3-abc+4c-5a 4+2c 2的次数是13 4.下列说法正确的是( )
A .3x 2-2x+5的项是3x 2,2x,5
B .x-y 3与2x 2-2xy-5都是多项式
C .多项式-2x 2+4xy 的次数是3
D .一个多项式的次数是6,则这个多项式中只有一项的次数是6
5.下列说法中正确的个数是( ) (1)﹣a 表示负数;(2)多项式﹣3a 2b+7a 2b 2
﹣2ab+l 的次数是3;(3)单项式﹣2
29xy 的系数为﹣2; (4)一个有理数不是整数就是分数
A .0个
B .1个
C .2个
D .3个
6.下列说法正确的是( )
A .若|a|=(a ,则a(0
B .若a(0(ab(0,则b(0
C .式子3xy 2(4x 3y+12是七次三项式
D .若a=b(m 是有理数,则
a m =
b m 7.多项式x 2(2xy 3(
12y(1是( ) A .三次四项式 B .三次三项式 C .四次四项式 D .四次三项式
8.代数式3x 2y -4x 3y 2-5xy 3-1按x 的升幂排列,正确的是( )
A .-4x 3y 2+3x 2y -5xy 3-1
B .-5xy 3+3x 2y -4x 3y 2-1
C .-1+3x 2y -4x 3y 2-5xy 3
D .-1-5xy 3+3x 2y -4x 3y 2
9.下列说法中,正确的是( )
A .a 的系数是0
B .1m
是单项式 C .3x 2的次数为3 D .y +π2是一次多项式 10.下列代数式中,既不是单项式,也不是多项式的是( ) A .2x 2﹣1
B .﹣73xy
C .b a
D .0 二、填空题
11.一个关于x 的二次三项式(一次项的系数是1(二次项的系数和常数项都是-
12(则这个二次三项式为_____( 12.多项式x 2﹣4x ﹣8是__次__项式﹣
13.一个只含有字母x 的二次三项式,它的二次项系数为-2,一次项系数为37
,常数项为-1,则这个二次三项式为__________. 14.把多项式x 5(((4x 4y(5xy 4)(6((x 3y 2(x 2y 3)(((3y 5)去括号后,按字母x 的降幂排列为___(
15.在多项式5x 2y(3x 2y 2+6中,次数最高的项的系数是 _____(
三、解答题
16.已知多项式-3x 3y m+1+xy 3+(n-1)x 2y 2-4是六次三项式,求(m+1)2n -3的值.
17.(3m -4)x 3-(2n -3)+x 2+(2m+5n(x(6是关于x 的多项式.
(1)当m(n 满足什么条件时,该多项式是关于x 的二次多项式;
(2)当m(n 满足什么条件时,该多项式是关于x 的三次二项式.
18.若多项式4x n+2﹣5x 2﹣n +6是关于x 的三次多项式,求代数式n 3﹣2n+3的值.
19.已知6m x y -为四次单项式,231n n x y x y -+为五次多项式,求n m 的值.
20.已知(a -3(x 2y |a|+(b+2)是关于x(y 的五次单项式,求a 2-3ab+b 2的值.
21.已知多项式5x m+1y 2+2xy 2-4x 3+1是六次四项式,单项式26x 2n y 5-m 的次数与该多项式的次数相同,
求(-m(3+2n 的值.
22.已知多项式7x m +kx 2-(3n+1(x+5是关于x 的三次三项式,并且一次项系数为-7,求m+n -k 的值.
23.已知多项式x 3(3xy 2(4的常数是a ,次数是b(
(1)则a=_____(b=_____;并将这两数在数轴上所对应的点A(B 表示出来;
(2)数轴上在B 点右边有一点C 到A(B 两点的距离之和为11,求点C 在数轴上所对应的数;
(3)在数轴上是否存在点P ,使P 到A(B(C 的距离和等于12?若存在,求点P 对应的数;若不存在,请说明理由. (4)在数轴上是否存在点P ,使P 到A(B(C 的距离和最小?若存在,求该最小值,并求此时P 点对应的数;若不存在,请说明理由.
【参考答案】
1.A 2.B 3.C 4.B 5.B 6.B 7.C 8.D 9.D 10.C
11.21122
x x -+- 12. 二 三
13.23217
x x -+- 14.x 5(4x 4y(6x 3y 2(6x 2y 3(5xy 4(3y 5
15.(3(
16.6
17.(1(m=43(n≠32((2(n=32(m=(154
( 18.2或4.
19.9n m =
20.-5.
21.-23
22.5
23.(1)-4,3;(2)5((3(P=0或 3
16 (4(点P 表示的数为3时,P 到A(B(C 的距离和最小,最小值为9(。

相关文档
最新文档