二次函数与相似三角形整理用
二次函数与相似三角形问题(含答案完美打印版)

综合题讲解 函数中因动点产生的相似三角形问题例题 如图1,已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B 。
⑴求抛物线的解析式;(用顶点式...求得抛物线的解析式为x x 41y 2+-=) ⑵若点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为顶点的四边形为平行四边形,求D 点的坐标;⑶连接OA 、AB ,如图2,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似若存在,求出P 点的坐标;若不存在,说明理由。
分析:1.当给出四边形的两个顶点时应以两个顶点的连线.......为四边形的边和对角线来考虑问题以O 、C 、D 、B 四点为顶点的四边形为平行四边形要分类讨论:按OB 为边和对角线两种情况2. 函数中因动点产生的相似三角形问题一般有三个解题途径① 求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。
根据未知三角形中已知边与已知三角形的可能对应边分类讨论。
②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。
③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。
yxEQ PC B OA 例题2:如图,已知抛物线y=ax 2+4ax+t (a >0)交x 轴于A 、B 两点,交y 轴于点C ,抛物线的对称轴交x 轴于点E ,点B 的坐标为(-1,0). (1)求抛物线的对称轴及点A 的坐标;(2)过点C 作x 轴的平行线交抛物线的对称轴于点P ,你能判断四边形ABCP 是什么四边形并证明你的结论;(3)连接CA 与抛物线的对称轴交于点D ,当∠APD=∠ACP 时,求抛物线的解析式.练习1、已知抛物线2y ax bx c =++经过5330P E ⎫⎪⎪⎝⎭,,,及原点(00)O ,.(1)求抛物线的解析式.(由一般式...得抛物线的解析式为225333y x x =-+) (2)过P 点作平行于x 轴的直线PC 交y 轴于C 点,在抛物线对称轴右侧且位于直线PC 下方的抛物线上,任取一点Q ,过点Q 作直线QA 平行于y 轴交x 轴于A 点,交直线PC 于B 点,直线QA 与直线PC 及两坐标轴围成矩形OABC .是否存在点Q ,使得OPC △与PQB △相似若存在,求出Q 点的坐标;若不存在,说明理由.(3)如果符合(2)中的Q 点在x 轴的上方,连结OQ ,矩形OABC 内的四个三角形OPC PQB OQP OQA ,,,△△△△之间存在怎样的关系为什么练习2、如图,四边形OABC 是一张放在平面直角坐标系中的矩形纸片,点A 在x 轴上,点C 在y 轴上,将边BC 折叠,使点B 落在边OA 的点D处。
2023年中考数学高频压轴题突破——二次函数与相似三角形

2023年中考数学高频压轴题突破——二次函数与相似三角形1.在平面直角坐标系xOy中(如图),已知点A在x轴的正半轴上,且与原点的距离为3,抛物线y=ax2﹣4ax+3(a≠0)经过点A,其顶点为C,直线y=1与y轴交于点B,与抛物线交于点D(在其对称轴右侧),联结BC、CD.(1)求抛物线的表达式及点C的坐标;(2)点P是y轴的负半轴上的一点,如果△PBC与△BCD相似,且相似比不为1,求点P的坐标;(3)将∠CBD绕着点B逆时针方向旋转,使射线BC经过点A,另一边与抛物线交于点E(点E在对称轴的右侧),求点E的坐标.2.如图,在平面直角坐标系中,将抛物线平移,使平移后的抛物线C2经过点A (﹣3,0),B(1,0),与y轴的交点为E.(1)求抛物线C2的函数解析式;(2)点P(m,n)(﹣3<m<0)是抛物线C2上的动点,设四边形OAPE的面积为S,求S与m的函数关系式,并求四边形OAPE的面积的最大值;(3)若y=x2与平移后的抛物线对称轴交于D点,在抛物线C2的对称轴上,是否存在一点M,使得以M,O,D为顶点的三角形与△BOD相似?若存在,求点M的坐标;若不存在,说明理由.3.如图,在直角坐标系中,直线y=﹣x﹣1与x轴,y轴的交点分别为A、B,以x=﹣1为对称轴的抛物线y=x2+bx+c与x轴分别交于点A、C,直线x=﹣1与x轴交于点D.(1)求抛物线的解析式;(2)在线段AB上是否存在一点P,使以A,D,P为顶点的三角形与△AOB相似?若存在,求出点P的坐标;如果不存在,请说明理由;(3)若点Q在第三象限内,且tan∠AQD=2,线段CQ是否存在最小值,如果存在直接写出最小值;如果不存在,请说明理由.4.已知直线y=﹣x+2与x轴、y轴分别交于点A、C,抛物线y=﹣+bx+c过点A、C,且与x轴交于另一点B,在第一象限的抛物线上任取一点D,分别连接CD、AD,作DE⊥AC于点E.(1)求抛物线的表达式;(2)求△ACD面积的最大值;(3)若△CED与△COB相似,求点D的坐标.5.如图,在平面直角坐标系xOy中,直线y=x+4与坐标轴分别交于A、B两点,抛物线y =﹣x2+bx+c过A、B两点,点D为线段AB上一动点,过点D作CD⊥x轴于点C,交抛物线于点E.(1)求抛物线的解析式.(2)求△ABE面积的最大值.(3)连接BE,是否存在点D,使得△DBE和△DAC相似?若存在,求出点D坐标;若不存在,说明理由.6.如图,二次函数y=ax2+bx+2的图象与x轴相交于点A(﹣1,0)、B(4,0),与y轴相交于点C.(1)求该函数的表达式;(2)点P为该函数在第一象限内的图象上一点,过点P作PQ⊥BC,垂足为点Q,连接PC.①求线段PQ的最大值;②若以点P、C、Q为顶点的三角形与△ABC相似,求点P的坐标.7.如图所示,抛物线y=x2﹣4x+3与x轴分别交于A、B两点,交y轴于点C,(1)求cos∠CAO的值;(2)求直线AC的函数关系式;(3)如果有动点P是y轴上,且△OP A与△OAC相似,求P点坐标.8.如图,二次函数y=﹣x2+bx+c的图象与x轴交于点A(﹣1,0),B(2,0),与y轴相交于点C.(1)求二次函数的解析式;(2)若点E是第一象限的抛物线上的一个动点,当四边形ABEC的面积最大时,求点E 的坐标,并求出四边形ABEC的最大面积;(3)若点M在抛物线上,且在y轴的右侧.⊙M与y轴相切,切点为D.以C,D,M 为顶点的三角形与△AOC相似,求点M的坐标.9.在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的解析式;(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;(3)点Q是直线AC上方的抛物线上一动点,过点Q作QE垂直于x轴,垂足为E.是否存在点Q,使以点B、Q、E为顶点的三角形与△AOC相似?若存在,直接写出点Q 的坐标;若不存在,说明理由.10.如图,已知二次函数y=ax2﹣4x+c的图象与x轴交于点A(﹣1,0)、点C,与y轴交于点B(0,﹣5).(1)求该二次函数的解析式;(2)已知该函数图象的对称轴上存在一点P,使得△ABP的周长最小.请求出点P的坐标,并求出△ABP周长的最小值;(3)在线段AC上是否存在点E,使以C、P、E为顶点的三角形与三角形ABC相似?若存在写出所有点E的坐标;若不存在,请说明理由.11.已知:如图,二次函数图象的顶点坐标为C(1,﹣2),直线y=kx+m的图象与该二次函数的图象交于A、B两点,其中A点坐标为(3,0),B点在y轴上.点P为线段AB 上的一个动点(点P与点A、B不重合),过点P且垂直于x轴的直线与这个二次函数的图象交于点E.(1)求这个二次函数的解析式;(2)设点P的横坐标为x,求线段PE的长(用含x的代数式表示);(3)点D为直线AB与这个二次函数图象对称轴的交点,若以点P、E、D为顶点的三角形与△AOB相似,请求出P点的坐标.12.如图,抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,对称轴与抛物线相交于点M,连接AC.(1)求该抛物线的解析式;(2)抛物线对称轴上存在一点H,连接AH、CH,当△AHC周长最小时,求此时点H 坐标.(3)设对称轴与x轴交于点E,在对称轴上是否存在点G,使以B、E、G为顶点的三角形与△AOC相似?如果存在,请求出点G的坐标;如果不存在,请说明理由.13.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+8与x轴相交于A,B两点,与y 轴相交于点C,OA=4,OB=2,点D是抛物线上一动点,且在y轴的左侧,连接AD,BC,AC,CD.(1)求抛物线的解析式;(2)已知直线m:y=kx+8(不经过点B),同时与x轴和y轴相交,若直线m与x轴和y轴围成的三角形与△BCO相似,求k的值;(3)连接OD,若△ACD的面积是△ABC的面积的时,求△DOC的面积.14.如图,抛物线y=a(x﹣2)2+1与x轴交于点A(1,0),B(3,0),与y轴交于点C,顶点为D.(1)求抛物线的解析式及点C的坐标;(2)点E是直线BC上一动点,求出△ADE周长的最小值;(3)点P,M分别是抛物线和直线BC上的动点,是否存在以P,M,C为顶点的三角形与△AOC相似.若存在,请直接写出点P的坐标;若不存在,请说明理由.15.如图,点A(0,2),B(1,0),连接AB并将线段AB绕点B顺时针旋转90°,点A 转到点C处.一抛物线经过C、B两点,与x轴交于另一点D(3.5,0).(1)求点C的坐标和抛物线的解析式.(2)在BC上方抛物线上是否存在一点P,使得四边形PBDC的面积最大?若存在,求出P的坐标及最大面积;若不存在,请说明理由.(3)连接CD,①求证:CD∥AB;②直线CD上是否存在一点M,使得△MBC与△AOB相似?若存在,求出点M的坐标;若不存在,请说明理由.16.如图,抛物线与坐标轴交于A,B,C三点,且4CO=2BO=OA=4,点D是线段AB 上的动点,过点D作DF⊥x轴,交x轴于点F,交抛物线于点E.(1)求抛物线的解析式;(2)当点D的坐标是多少时,DE最长,最长是多少?(3)当DE最长时,在直线DE上是否存在点P,使得以P、A、F为顶点的三角形与△ABC相似,若存在,直接写出点P的坐标,若不存在,说明理由.17.已知抛物线与直线AC相交于A、C两点,且A(﹣2,0)、C(4,3).(1)填空:b=,c=;(2)长度为的线段DE在线段AC上移动,点G与点F在上述抛物线上,且线段DG 与EF始终平行于y轴.①连接FG,求四边形DEFG的面积的最大值,并求出对应点D的坐标;②CH⊥AB,垂足为点H,线段DE在移动的过程中,是否存在点D,使△DEG与△ACH相似?若存在,请求出此时点D的坐标;若不存在,试说明理由.18.如图1,抛物线y=ax2+bx+4的顶点为(1,),抛物线交x轴于A,B两点(A在B 的左边),交y轴于C.(1)求抛物线的解析式;(2)如图2,沿射线AC方向平移抛物线y=ax2+bx+4,分别记A、C两点的对应点为E、F,在平移过程中,是否存在以A,E,B为顶点的三角形与△ABF相似,若存在,请求出此时平移后的E的横坐标;若不存在,请简要说明理由;(3)如图3,点N在y轴负半轴上,点A绕点N顺时针旋转,恰好落在第四象限的抛物线上点M处,且∠ANM+∠ACM=180°,求N点坐标.19.如图,二次函数y=a(x+1)(x﹣3)(a>0)的图象与x轴交于点A,B(A在B的左边),与y轴交于点C,点P是二次函数图象上一动点.(1)若点C的坐标为(0,﹣3),求二次函数及直线BC的函数关系式.(2)如图①,在(1)的条件下,若点P在第四象限,过P作PQ∥AC,交直线BC于点Q,求线段PQ长的最大值.(3)如图②,若点P在第一象限,且△ABP有△ABC相似,求点P的坐标.20.如图,若抛物线y=﹣x2+bx+c与x轴相交于A(﹣1,0),B两点,与y轴相交于点C,直线y=﹣x+3经过点B,C.(1)求抛物线的解析式;(2)点P为抛物线位于第二象限上的一点,连接BP交线段AC于点Q,若△AQB与△AOC相似,求点P的坐标;(3)若点D为抛物线位于第一象限上的一点,过点D作x轴的垂线,垂足为F,直线DF交直线BC于点E,若△CDE为等腰三角形,请直接写出点D的坐标.参考答案:1.【分析】(1)把点A的坐标代入抛物线的解析式中可得:a的值,从而得抛物线的解析式,配方得顶点C的坐标;(2)根据∠DBC=∠PBC=45°,且相似比不为1,所以只能△CBP∽△DBC,列比例式可得BP的长,从而得点P的坐标;(3)连接AC,过E作EH⊥BD于H,先根据勾股定理的逆定理证明△ABC是直角三角形,且∠ACB=90°,由等角三角函数得tan∠ABC=tan∠EBD==,设EH=m,则BH=2m,表示E(2m,m+1),代入抛物线的解析式,可得结论.【解答】解:(1)∵点A在x轴的正半轴上,且与原点的距离为3,∴A(3,0),把A(3,0)代入抛物线y=ax2﹣4ax+3中得:0=9a﹣12a+3,∴a=1,∴抛物线的表达式为:y=x2﹣4x+3,y=x2﹣4x+3=(x﹣2)2﹣1,∴C(2,﹣1);(2)当y=1时,x2﹣4x+3=1,解得:x1=2﹣,x2=2+,由题意得:D(2+,1),∵B(0,1),C(2,﹣1),∴BC==2,BD=2+,∵∠DBC=∠PBC=45°,且相似比不为1,只能△CBP∽△DBC,∴,即,∴BP=8﹣4,∴P(0,4﹣7);(3)连接AC,过E作EH⊥BD于H,由旋转得:∠CBD=∠ABE,∴∠EBD=∠ABC,∵AB2=32+12=10,BC2=22+22=8,AC2=12+12=2,∴AB2=BC2+AC2,∴△ABC是直角三角形,且∠ACB=90°,∴tan∠ABC==,∴tan∠EBD==,设EH=m,则BH=2m,∴E(2m,m+1),∵点E在抛物线上,∴(2m)2﹣4×2m+3=m+1,4m2﹣9m+2=0,解得:m1=2,m2=(舍),∴E(4,3).2.【分析】(1)设抛物线C2的函数解析式为y=x2+bx+c,把A、B的坐标代入上式,即可求解;(2)S=S△OAP+S△OEP=(﹣m2﹣2m+3)+×3(﹣m)即可求解;(3)分、,两种情况分别求解即可.【解答】解:(1)设抛物线C2的函数解析式为y=x2+bx+c,把A、B的坐标代入得,解得:,故抛物线C2的函数解析式为y=x2+2x﹣3;(2)连接OP,作PH⊥x轴,作PQ⊥y轴,把P(m,n)代入y=x2+2x﹣3得n=m2+2m ﹣3,由抛物线y=x2+2x﹣3得:点E(0,﹣3),则S=S△OAP+S△OEP=(﹣m2﹣2m+3)+×3(﹣m)=﹣(m+)2+,所以四边形OAPE的面积最大值是;(3)由y=x2+2x﹣3得对称轴是直线x=﹣1,所以D(﹣1,1),则DF=OF=1,则△DOF为等腰直角三角形,∴∠DOF=∠ODF=45°,OD=,BD=,∠BOD=135°,∴点M只能在点D上方,∵∠BOD=∠ODM=135°,∴当时,以M、O、D为顶点的三角形与△BOD相似.①,则解得DM=2,此时点M坐标为(﹣1,3);②若,则解得DM=1,此时点M坐标为(﹣1,2);综上,点M坐标为(﹣1,3)或(﹣1,2).3.【分析】(1)利用对称性和待定系数法求函数关系式;(2)分类讨论三角形相似情况即可;(3)由已知,满足条件的Q点在以A、D、F(﹣1,﹣1)的圆E在第三象限的部分,连接CE交圆于Q,则CQ最小.【解答】解:(1)由已知,点A坐标为(﹣3,0)∵直线x=﹣1为对称轴∴点C坐标为(1,0)∴抛物线解析式为:y=(x+3)(x﹣1)=x2+2x﹣3(2)存在由已知点D坐标为(﹣1,0)设点P的横坐标为(a,﹣a﹣1)当△AOB∽△ADP时∴a=﹣1点P坐标为(﹣1,)当△AOB∽△APD时过点P作PE⊥x轴于点E则△APE∽△APDE∴PE2=AE•ED∴(﹣a﹣1)2=(a+3)(﹣a﹣1)解得a1=﹣3(舍去),a2=﹣∴点P坐标为(﹣,﹣)(3)存在,CQ最小值为如图,取点F(﹣1,﹣1),过点ADF作圆,则点E(﹣2,﹣)为圆心.∵tan∠AFD=2∴(A、D除外)上的点都是满足条件的Q点.连CE交⊙E于点Q,则CQ为满足条件的最小值此时CE=,⊙E半径为∴CQ最小值为4.【分析】(1)根据题意求得点A、C的坐标,将它们分别代入函数解析式,列出关于系数b、c的方程组,通过解方程组求得它们的值;(2)如图1,过点D作DG⊥x轴于点G,交AC于点F.利用三角形的面积公式得到二次函数关系式,由二次函数最值的求法解答;(3)需要分类讨论:①当∠DCE=∠BCO时,∠DCE=∠OAC;②当∠DCE=∠CBO 时,∠DCE=∠OCA.根据相似三角形的对应边成比例求得相关线段的长度,从而得到点D的坐标.【解答】解:(1)∵直线y=﹣x+2与x轴、y轴分别交于点A、C,∴A(4,0),C(0,2),OA=4,OC=2,(1分)将A(4,0),C(0,2)分别代入y=﹣+bx+c中,解得,∴y=﹣+x+2;(2)如图1,过点D作DG⊥x轴于点G,交AC于点F,设D(t,﹣t2+t+2),其中0<t<4,则F(t,﹣t+2)∴DF=﹣t2+t+2﹣(﹣t+2)=﹣t2+2tS△ACD=S△CDF+S△ADF=DF•OG+DF•AG=DF•(OG+AG)=DF•OA=×4×(﹣t2+2t)=﹣(t﹣2)2+4.∴当t=2时,S△ACD最大=4.(3)设y=0,则﹣t2+t+2=0,解得x1=4,x2=﹣1,∴B(﹣1,0),OB=1∵tan∠OCB==,tan∠OAC===∴∠OCB=∠OAC∴∠OCA=∠OBC;①当∠DCE=∠BCO时,∠DCE=∠OAC,∴CD∥OA,点D的纵坐标与点C纵坐标相等,令y=2,则﹣t2+t+2=2,解得x1=0,x2=3,∴D1(3,2);②如图2,当∠DCE=∠CBO时,∠DCE=∠OCA,将△OCA沿AC翻折得△MCA,点O的对称点为点M,过点M作MH⊥y轴于点H,AN⊥MH于点N,则CM=CO=2,AM=AO=4,设HM=m,MN=HN﹣HM=OA﹣HM=4﹣m,由∠AMC=∠AOC=∠ANM=∠MHC=90°易证△CHM∽△MNA,且相似比=,∴AN=2MH=2m,CH=MN=2﹣m,在Rt△CMH中,由勾股定理得:m2+(2﹣m)2=22,解得m1=0,m2=∴MH=,OH=,M(,).设直线CM的表达式为y=kx+n,则,解得,∴y=x+2,由解得,∴D2(,)综上所述,点D的坐标为D1(3,2)、D2(,).5.【分析】(1)首先求出点A、B的坐标,然后利用待定系数法求出抛物线的解析式;(2)设点C坐标为(m,0)(m<0),则点E坐标为(m,﹣m2﹣3m+4),从而得出OC=﹣m、OF=﹣m2﹣3m+4、BF=﹣m2﹣3m,根据S△ABE=S梯形AOFE﹣S△AOB﹣S△BEF 得出S=﹣2(m+2)2+8,据此可得答案;(3)由于△ACD为等腰直角三角形,而△DBE和△DAC相似,则△DBE必为等腰直角三角形.分两种情况讨论,要点是求出点E的坐标,由于点E在抛物线上,则可以由此列出方程求出未知数.【解答】解:(1)在直线解析式y=x+4中,令x=0,得y=4;令y=0,得x=﹣4,∴A(﹣4,0),B(0,4).∵点A(﹣4,0),B(0,4)在抛物线y=﹣x2+bx+c上,∴,解得:b=﹣3,c=4,∴抛物线的解析式为:y=﹣x2﹣3x+4.(2)如图,连接AE、过点E作EF⊥y轴于点F,设点C坐标为(m,0)(m<0),则点E坐标为(m,﹣m2﹣3m+4),则OC=﹣m,OF=﹣m2﹣3m+4,∵OA=OB=4,∴BF=﹣m2﹣3m,则S△ABE=S梯形AOFE﹣S△AOB﹣S△BEF=×(﹣m+4)(﹣m2﹣3m+4)﹣×4×4﹣×(﹣m)×(﹣m2﹣3m).=﹣2m2﹣8m=﹣2(m+2)2+8,∵﹣4<m<0,∴当m=﹣2时,S取得最大值,最大值为8.即△ABE面积的最大值为8.(3)设点C坐标为(m,0)(m<0),则OC=﹣m,CD=AC=4+m,BD=OC=﹣m,则D(m,4+m).∵△ACD为等腰直角三角形,△DBE和△DAC相似∴△DBE必为等腰直角三角形.i)若∠BED=90°,则BE=DE,∵BE=OC=﹣m,∴DE=BE=﹣m,∴CE=4+m﹣m=4,∴E(m,4).∵点E在抛物线y=﹣x2﹣3x+4上,∴4=﹣m2﹣3m+4,解得m=0(不合题意,舍去)或m=﹣3,∴D(﹣3,1);ii)若∠EBD=90°,则BE=BD=﹣m,在等腰直角三角形EBD中,DE=BD=﹣2m,∴CE=4+m﹣2m=4﹣m,∴E(m,4﹣m).∵点E在抛物线y=﹣x2﹣3x+4上,∴4﹣m=﹣m2﹣3m+4,解得m=0(不合题意,舍去)或m=﹣2,∴D(﹣2,2).综上所述,存在点D,使得△DBE和△DAC相似,点D的坐标为(﹣3,1)或(﹣2,2).6.【分析】(1)设交点式y=a(x+1)(x﹣4),再展开可得到﹣4a=2,解得a=﹣,然后写出抛物线解析式;(2)①作PN⊥x轴于N,交BC于M,如图,先利用待定系数法求出直线BC的解析式为y=﹣x+2,设P(t,﹣t2+t+2),则M(t,﹣t+2),用t表示出PM=﹣t2+2t,再证明△PQM∽△BOC,利用相似比得到PQ=﹣t2+t,然后利用二次函数的性质解决问题;②讨论:当∠PCQ=∠OBC时,△PCQ∽△ABC,PC∥x轴,利用对称性可确定此时P点坐标;当∠CPQ=∠OBC时,△CPQ∽△ABC,则∠CPQ=∠MPQ,所以△PCM为等腰三角形,则PC=PM,利用两点间的距离公式得到t2+(﹣t2+t+2﹣2)2=(﹣t2+2t)2,然后解方程求出t得到此时P点坐标.【解答】解:(1)抛物线解析式为y=a(x+1)(x﹣4),即y=ax2﹣3ax﹣4a,则﹣4a=2,解得a=﹣,所以抛物线解析式为y=﹣x2+x+2;(2)①作PN⊥x轴于N,交BC于M,如图,BC==2,当x=0时,y=﹣x2+x+2=2,则C(0,2),设直线BC的解析式为y=mx+n,把C(0,2),B(4,0)得,解得,∴直线BC的解析式为y=﹣x+2,设P(t,﹣t2+t+2),则M(t,﹣t+2),∴PM=﹣t2+t+2﹣(﹣t+2)=﹣t2+2t,∵∠NBM=∠NPQ,∴△PQM∽△BOC,∴=,即PQ=,∴PQ=﹣t2+t=﹣(t﹣2)2+,∴当t=2时,线段PQ的最大值为;②当∠PCQ=∠ABC时,△PCQ∽△ABC,此时PC∥OB,点P和点C关于直线x=对称,∴此时P点坐标为(3,2);当∠CPQ=∠OBC时,△CPQ∽△ABC,∵∠OBC=∠NPQ,∴∠CPQ=∠MPQ,而PQ⊥CM,∴△PCM为等腰三角形,∴PC=PM,∴t2+(﹣t2+t+2﹣2)2=(﹣t2+2t)2,解得t=,此时P点坐标为(,),综上所述,满足条件的P点坐标为(3,2)或(,).7.【分析】(1)根据抛物线y=x2﹣4x+3与x轴分别交于A、B两点,交y轴于点C,可以求得A、B、C三点的坐标,从而可以求得OA、OC、AC的长,进而可以得到cos∠CAO 的值;(2)根据点A、C两点的坐标,可以求得直线AC的函数关系式;(3)根据第三问的条件,可知符合要求的三角形OP A存在三种情况,然后分别画出相应的图形,即可求得点P的坐标.【解答】解:(1)∵抛物线y=x2﹣4x+3与x轴分别交于A、B两点,交y轴于点C,∴x2﹣4x+3=0,得x=1或x=3,x=0时,y=3,∴点A的坐标为(1,0),点B的坐标为(3,0),点C的坐标为(0,3),∴OA=1,OC=3,∴,∴cos∠CAO=;(2)设直线AC的解析式为:y=kx+b,∵点A的坐标为(1,0),点C的坐标为(0,3),∴解得k=﹣3,b=3.即直线AC的解析式为:y=﹣3x+3;(3)如果有动点P是y轴上,且△OP A与△OAC相似,则有如下三种情况,第一种情况如下图1所示,当∠OP A=∠OCA,∠AOC=∠AOP时,△OP A∽△OAC,∴,∵点C的坐标为(0,3),∴OP=OC=3,∴点P的坐标为(0,﹣3);第二种情况如下图2所示,点P位于y轴正半轴,当∠OP A=∠OAC,∠AOC=∠AOP时,△OP A∽△OAC,∴,∵点C的坐标为(0,3),点A的坐标为(1,0),∴OA=1,OC=3,即点P的坐标为(0,);第三种情况如下图3所示,点P位于y轴负半轴,当∠OP A=∠OAC,∠AOC=∠AOP时,△OP A∽△OAC,∴,∵点C的坐标为(0,3),点A的坐标为(1,0),∴OA=1,OC=3,∴,即点P的坐标为(0,﹣).由上可得,点P的坐标为:(0,﹣3),(0,),(0,﹣).8.【分析】(1)根据题意把点A(﹣1,0),B(2,0)代入二次函数解析式,得到b和c 的二元一次方程组,求出b和c的值即可;(2)设E(a,b),且a>0,b>0,首先用a和b表示出S四边形ABEC,再结合点E在二次函数的图象上,得到S四边形ABEC=﹣a2+2a+3,即可求解;(3)首先画出图形,以C,D,M为顶点的三角形与△AOC相似,得到,或,根据n的取值范围求出m的值即可.【解答】解:(1)∵二次函数y=﹣x2+bx+c的图象与x轴相交于点A(﹣1,0),B(2,0),∴,∴二次函数的解析式为y=﹣x2+x+2.(2)如图1.∵二次函数的解析式为y=﹣x2+x+2与y轴相交于点C,∴C(0,2).设E(a,b),且a>0,b>0.∵A(﹣1,0),B(2,0),∴OA=1,OB=2,OC=2.则S四边形ABEC==1+a+b,∵点E(a,b)是第一象限的抛物线上的一个动点,∴b=﹣a2+a+2,∴S四边形ABEC=﹣a2+2a+3=﹣(a﹣1)2+4,当a=1时,b=2,∴当四边形ABEC的面积最大时,点E的坐标为(1,2),且四边形ABEC的最大面积为4.(3)如图2.设M(m,n),且m>0.∵点M在二次函数的图象上,∴n=﹣m2+m+2.∵⊙M与y轴相切,切点为D,∴∠MDC=90°.∵以C,D,M为顶点的三角形与△AOC相似,∴,或.①当n>2时,或,解得m1=0(舍去),m2=,或m3=0(舍去),m4=﹣1(舍去).②同理可得,当n<2时,m1=0(舍去),m2=,或m3=0(舍去),m4=3.综上,满足条件的点M的坐标为(,),(,),(3,﹣4).9.【分析】(1)把点A、B的坐标代入二次函数解析式,利用待定系数法求二次函数解析式解答;(2)先求出点C的坐标,再利用待定系数法求出直线AC的解析式,然后判断出平行于AC的直线与二次函数图象只有一个交点时△ACP的面积最大,再联立直线与二次函数解析式,消掉y,利用根的判别式Δ=0时方程只有一个根求解即可;(3)设点E的横坐标为c,表示出BE、QE,然后根据相似三角形对应边成比例,分OA 和BE,OA和QE是对应边两种情况列出比例式求解即可.【解答】解:(1)∵二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B(1,0)两点,∴,解得,∴二次函数的解析式为y=﹣x2﹣x+2;(2)令x=0,则y=2,∴点C(0,2),设直线AC的解析式为y=kx+m(k≠0),则,解得,∴直线AC的解析式为y=x+2,由三角形的面积可知,平行于AC的直线与二次函数图象只有一个交点时△ACP的面积最大,此时设过点P的直线为y=x+n,联立,消掉y得,﹣x2﹣x+2=x+n,整理得,2x2+6x﹣6+3n=0,△=62﹣4×2×(﹣6+3n)=0,解得n=,此时x1=x2=﹣=﹣,y=×(﹣)+=,∴点P(﹣,)时,△ACP的面积最大;(3)存在点Q(﹣2,2)或(﹣,)使以点B、Q、E为顶点的三角形与△AOC 相似.理由如下:设点E的横坐标为c,则点Q的坐标为(c,﹣c2﹣c+2),BE=1﹣c,①OA和BE是对应边时,∵△BEQ∽△AOC,∴=,即=,整理得,c2+c﹣2=0,解得c1=﹣2,c2=1(舍去),此时,﹣×(﹣2)2﹣×(﹣2)+2=2,点Q(﹣2,2);②OA和QE是对应边时,∵△QEB∽△AOC,∴=,即=,整理得,4c2﹣c﹣3=0,解得c1=﹣,c2=1(舍去),此时,﹣×(﹣)2﹣×(﹣)+2=,点Q(﹣,),综上所述,存在点Q(﹣2,2)或(﹣,)使以点B、Q、E为顶点的三角形与△AOC相似.10.【分析】(1)利用A(﹣1,0)、点B(0,﹣5)代入解析式求出即可;(2)利用轴对称图形的性质得出P点位置,进而得出直线BC的解析式,进而求出P点坐标;(3)利用相似三角形的性质利用对应边不同分别得出E点坐标即可.【解答】解:(1)根据题意,得,解得,故二次函数的表达式为y=x2﹣4x﹣5;(2)令y=0,得二次函数y=x2﹣4x﹣5的图象与x轴的另一个交点坐标C(5,0).由于P是对称轴x=2上一点,连接AB,由于AB==,要使△ABP的周长最小,只要P A+PB最小.由于点A与点C关于对称轴x=2对称,连接BC交对称轴于点P,则P A+PB=BP+PC=BC,根据两点之间,线段最短,可得P A+PB的最小值为BC=5,故△ABP的周长最小值为:+5.因为BC与对称轴x=2的交点P就是所求的点.设直线BC的解析式为y=kx+b,根据题意,可得:,解得,所以直线BC的解析式为y=x﹣5.因此直线BC与对称轴x=2的交点坐标是方程组的解,解得,所求的点P的坐标为(2,﹣3).(3)存在.∵A(﹣1,0),C(5,0),∴AC=6,∵P(2,﹣3),C(5,0),∴PC=3,∵B(0,﹣5),C(5,0),∴BC=5,当△PEC∽△ABC,∴=,∴=,解得:EC=5,∴E(0,0);当△EPC∽△ABC,∴=,∴=,解得:EC=3.6,∴OE=5﹣3.6=1.4,故E点坐标为:(1.4,0),综上所述:以C、P、E为顶点的三角形与三角形ABC相似,点E的坐标为:(0,0),(1.4,0).11.【分析】(1)首先设二次函数的解析式为y=a(x﹣1)2﹣2,由A点坐标为(3,0),则可将A点的坐标代入函数解析式,利用待定系数法即可求得这个二次函数的解析式;(2)首先利用待定系数法求得直线AB的解析式,然后由P在直线上,将x代入直线方程,即可求得P的纵坐标,又由E在抛物线上,则可求得E的纵坐标,它们的差即为PE 的长;(3)分别从当∠EDP=90°时,△AOB∽△EDP与当∠DEP=90°时,△AOB∽△DEP 两种情况去分析,注意利用相似三角形的对应边成比例等性质,即可求得答案,注意不要漏解.【解答】解:(1)设二次函数的解析式为y=a(x﹣1)2﹣2,∵A(3,0)在抛物线上,∴0=a(3﹣1)2﹣2∴a=,∴y=(x﹣1)2﹣2,(2)抛物线与y轴交点B的坐标为(0,),设直线AB的解析式为y=kx+m,∴,∴,∴直线AB的解析式为y=x﹣.∵P为线段AB上的一个动点,∴P点坐标为(x,x﹣).(0<x<3)由题意可知PE∥y轴,∴E点坐标为(x,x2﹣x﹣),∵0<x<3,∴PE=(x﹣)﹣(x2﹣x﹣)=﹣x2+x,(3)由题意可知D点横坐标为x=1,又D点在直线AB上,∴D点坐标(1,﹣1).①当∠EDP=90°时,△AOB∽△EDP,∴.过点D作DQ⊥PE于Q,∴x Q=x P=x,y Q=﹣1,∴△DQP∽△AOB∽△EDP,∴,又OA=3,OB=,AB=,又DQ=x﹣1,∴DP=(x﹣1),∴,解得:x=﹣1±(负值舍去).∴P(﹣1,)(如图中的P1点);②当∠DEP=90°时,△AOB∽△DEP,∴.由(2)PE=﹣x2+x,DE=x﹣1,∴,解得:x=1±,(负值舍去).∴P(1+,﹣1)(如图中的P2点);综上所述,P点坐标为(﹣1,)或(1+,﹣1).12.【分析】(1)运用待定系数法把点A、B、C的坐标代入求解即可;(2)连接BC与对称轴的交点即为点H,此时AH+CH=BH+CH=BC最小,故△AHC 周长最小,运用待定系数法求得直线BC的解析式为y=﹣x+3,即可求得答案;(3)当以B、E、G为顶点的三角形与△AOC相似时,分两种情况:①△BEG∽△AOC,②△GEB∽△AOC,分别利用相似三角形性质建立方程求解即可.【解答】解:(1)∵抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,∴,解得:,∴该抛物线的解析式为y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3,∴抛物线的对称轴为直线x=﹣=1,∵点A(﹣1,0)和点B(3,0)关于抛物线的对称轴对称,∴连接BC与对称轴的交点即为点H,此时AH+CH=BH+CH=BC最小,如图,∴AC+AH+CH=AC+BH最小,即△AHC周长最小,设直线BC的解析式为y=kx+d,则,解得:,∴直线BC的解析式为y=﹣x+3,∵当x=1时,y=﹣1+3=2,∴点H的坐标为(1,2);(3)存在.理由如下:由题意得:OA=1,OC=3,∵抛物线对称轴为直线x=1,∴E(1,0),设G(1,m),则EG=|m|,∵B(3,0),∴BE=3﹣1=2,当以B、E、G为顶点的三角形与△AOC相似时,①△BEG∽△AOC,∴=,即=,∴|m|=6,解得:m=±6,∴点G的坐标为(1,6)或(1,﹣6);②△GEB∽△AOC,∴=,即=,∴|m|=,解得:m=±,∴点G的坐标为(1,)或(1,﹣);综上所述,以B、E、G为顶点的三角形与△AOC相似时,点G的坐标为(1,6)或(1,﹣6)或(1,)或(1,﹣).13.【分析】(1)由OA和OB的长得到点A和点B的坐标,然后用待定系数法求得抛物线的解析式;(2)先求得点C的坐标得到OC的长,然后求得直线m与坐标轴的两个交点的坐标,最后利用相似三角形的性质分类讨论求得k的值;(3)先求得直线AC的解析式,过点D作DE⊥x轴,交AC于点E,设点D的坐标得到点E的坐标,从而表示出△ACD的面积,再求得△ABC的面积,从而列出方程求得点D 的坐标,最后求得△COD的面积.【解答】(1)解:∵OA=4,OB=2,∴A(﹣4,0),B(2,0),将点A和点B的坐标代入y=ax2+bx+8,得,解得:,∴抛物线的解析式为y=﹣x2﹣2x+8.(2)对y=﹣x2﹣2x+8,令x=0,得y=8,∴点C的坐标为(0,8),∴OC=8,对直线y=kx+8,当x=0时,y=8,当y=0时,x=﹣,∴直线y=kx+8与y轴的交点为点C(0,8),与x轴的交点为(﹣,0),记为点M,∴OM=|﹣|,如图1,当△MOC∽△BOC时,∴=1,∴MO=BO=2,∴M1(﹣2,0),代入y=kx+8中,得﹣2k+8=0,解得:k=4;当△MOC∽△COB时,,∴==4,∴MO=32,∴M2(﹣32,0),M3(32,0),分别代入y=kx+8中,得﹣32k+8=0或32k+8=0,解得:k=或k=﹣;综上所述,k=4或k=或k=﹣.(3)设直线AC的解析式为y=kx+b,则,解得:,∴直线AC的解析式为y=2x+8,如图2,当点D在AC之间的抛物线上时,过点D作DE⊥x轴,交AC于点E,设点D的坐标为(x,﹣x2﹣2x+8),则点E的坐标为(x,2x+8),∴DE=﹣x2﹣2x+8﹣(2x+8)=﹣x2﹣4x,∴S△ACD=S△AED+S△ECD==,∴S△ACD==﹣2x2﹣8x,∵OA=4,OB=2,OC=8,∴S△ABC==24,又∵S△ACD=S△ABC,∴﹣2x2﹣8x=×24,解得:x=﹣2+或x=﹣2﹣,∵S△COD=,∴S△COD==8﹣4或S△COD==8+4;如图3,当点D在点A左侧抛物线上时,过点D作DE⊥x轴,交AC于点E,设点D的坐标为(x,﹣x2﹣2x+8),则点E的坐标为(x,2x+8),∴DE=2x+8﹣(﹣x2﹣2x+8)=x2+4x,∴S△ACD=S△ECD﹣S△AED==,∴S△ACD==2x2+8x,∵OA=4,OB=2,OC=8,∴S△ABC==24,又∵S△ACD=S△ABC,∴2x2+8x=×24,解得:x=﹣2﹣或x=﹣2+(舍),∵S△COD=,∴S△COD==8+4;综上所述,△COD的面积为8﹣4或8+4或8+4.14.【分析】(1)把A(1,0)代入y=a(x﹣2)2+1即可求解;(2)作A点关于直线BC的对称点A',连接A'D交BC于点E,连接AE,A'B,当A'、D、E三点共线时,△ADE的周长最小,求出A'(3,﹣2),再求A'D=,AD=,即可求解;(3)分三种情况讨论:①当∠CMP=90°时,过点M作MG⊥y轴交于点G,过点P作PH⊥y轴交于点H,可得△GCM∽△HPC,设M(t,t﹣3),当∠CPM=∠ACO时,=,则P(3t,﹣3﹣3t),可求P(5,﹣8);当∠CMP=∠ACO时,=3,可求P(5,﹣8);②当∠CMP=90°时,过点M作EF∥x轴,交y轴于点E,过点P作PF ⊥EF交于点F,证明△ECM∽△FMP,设M(t,t﹣3),则P(4t,﹣2t﹣3),可求P (,﹣);当∠CMP=∠OCA时,=3,则P(t,t﹣3),可求P(,﹣);③当∠CPM=90°时,过点P作KL⊥y轴交于点L,过点M作MK⊥LK交于K 点,证明△CLP∽△PKM,设P(m,﹣m2+4m﹣3),则M(3m2﹣11m,﹣m2+7m﹣3),可求P(,﹣);当∠MCP=∠OCA时,=3,M(m2﹣m,﹣m2+m﹣3),可求P(,﹣).【解答】解:(1)把A(1,0)代入y=a(x﹣2)2+1得:a+1=0,∴a=﹣1,∴抛物线的解析式为y=﹣(x﹣2)2+1=﹣x2+4x﹣3,在y=﹣x2+4x﹣3中,令x=0得y=﹣3,∴C(0,﹣3);(2)设直线BC的解析式为y=kx+b,∴,∴,∴y=x﹣3,作A点关于直线BC的对称点A',连接A'D交BC于点E,连接AE,A'B,∴AE+DE+AD=A'E+DE+AD≥A'D+DE,当A'、D、E三点共线时,△ADE的周长最小,∵OB=OC,∴∠OBC=45°,∴∠ABA'=90°,∵AB=A'B,∴A'(3,﹣2),∵D(2,1),∴A'D=,AD=,∴△ADE周长的最小值为+;(3)存在以P,M,C为顶点的三角形与△AOC相似,理由如下:∵A(1,0),C(0,﹣3),∴OA=1,OC=3,∴tan∠OCA=,①当∠CMP=90°时,过点M作MG⊥y轴交于点G,过点P作PH⊥y轴交于点H,∴∠GCM+∠HCP=90°,∵∠GCM+∠GMC=90°,∴∠HCP=∠GMC,∴△GCM∽△HPC,∴==,设M(t,t﹣3),∴GM=t,GC=t,当∠CPM=∠ACO时,=,∴CH=3t,HP=3t,∴P(3t,﹣3﹣3t),∴﹣3﹣3t=﹣9t2+12t﹣3,解得t=0(舍)或t=,∴P(5,﹣8);当∠CMP=∠ACO时,=3,∴CH=t,HP=t,∴P(t,﹣3﹣t),∴﹣3﹣t=﹣t2+t﹣3,解得t=0(舍)或t=15,∴P(5,﹣8);②当∠CMP=90°时,过点M作EF∥x轴,交y轴于点E,过点P作PF⊥EF交于点F,∴∠EMC+∠FMP=90°,∵∠EMC+∠ECM=90°,∴∠FMP=∠ECM,∴△ECM∽△FMP,∴==,设M(t,t﹣3),∴EM=EC=t,当∠CPM=∠OCA时,=,∴MF=FP=3t,∴P(4t,﹣2t﹣3),∴﹣2t﹣3=﹣16t2+16t﹣3,解得t=0(舍)或t=,∴P(,﹣);当∠CMP=∠OCA时,=3,∴MF=FP=t,∴P(t,t﹣3),∴﹣t﹣3=﹣t2+t﹣3,解得t=0(舍)或t=,∴P(,﹣);③如图3,当∠CPM=90°时,过点P作KL⊥y轴交于点L,过点M作MK⊥LK交于K点,∴∠CPL+∠MPK=90°,∵∠CPL+∠PCL=90°,∴∠MPK=∠PCL,∴△CLP∽△PKM,∴==,设P(m,﹣m2+4m﹣3),∴LP=m,CL=m2﹣4m,当∠CMP=∠OCA时,=,∴MK=3m,PK=3m2﹣12m,∴M(3m2﹣11m,﹣m2+7m﹣3),∴﹣m2+7m﹣3=3m2﹣11m﹣3,解得m=0(舍)或m=,∴P(,﹣);当∠MCP=∠OCA时,=3,∴MK=m,PK=m2﹣m,∴M(m2﹣m,﹣m2+m﹣3),∴﹣m2+m﹣3=m2﹣m﹣3,解得m=0(舍)或m=,∴P(,﹣);综上所述:P点坐标为(5,﹣8)或(,﹣)或(,﹣)或(,﹣)或(,﹣).15.【分析】(1)过点C作CE⊥x轴于点E,先求得点C的坐标,然后由点B和点D的坐标设函数的交点式,再将点C的坐标代入求得函数的解析式即可;(2)过点P作PH⊥x轴,交BC于点H,先求得直线BC的解析式,再设点P的坐标,得到点H的坐标,然后求得△PBC的面积,结合点B、C、D求得△BCD的面积,从而求得四边形PBDC的面积,最后由二次函数的性质求得四边形PBDC的面积最大值,及点P的坐标;(3)①分别求得tan∠ABO和tan∠CDE的大小,从而得到∠ABO=∠CDE,然后得证CD∥AB;②由∠ABO=∠CDE,∠ABC=90°得到BC⊥CD,即∠BCD=90°,由旋转得BC=AB,然后分情况讨论,(i)△BCM∽△AOB;(ii)△BCM∽△BOA,先由相似三角形的性质求得CM的长,再求得直线CD的解析式,设点M的坐标,借助两点间的距离公式求得点M的坐标即可.【解答】(1)解:如图1,过点C作CE⊥x轴于点E,则∠BEC=∠AOB=90°,由旋转得,∠ABC=90°,AB=CB,∴∠ABO+∠CBE=90°,∵∠ABO+∠OAB=90°,∴∠CBE=∠OAB,∴△AOB≌△BEC(AAS),∴BE=AO,CE=OB,∵点A(0,2),B(1,0),∴BE=2,CE=1,∴点C的坐标为(3,1),由点B(1,0),点D(3.5,0)可设函数的解析式为y=a(x﹣1)(x﹣3.5),将点C(3,1)代入,得a(3﹣1)×(3﹣3.5)=1,解得:a=﹣1,∴抛物线的解析式为y=﹣(x﹣1)(x﹣3.5)=﹣x2+x﹣.(2)解:过点P作PH⊥x轴,交BC于点H,设直线BC的解析式为y=kx+b,则,解得:,∴直线BC的解析式为y=x﹣,设点P的坐标为(x,﹣x2+x﹣),则点H的坐标为(x,x﹣),∴PH=﹣x2+x﹣﹣x+=﹣x2+4x﹣3=﹣(x﹣2)2+1,∵S△PBC=S△PBH+S△PCH=,∴S△PBC=×2×[﹣(x﹣2)2+1]=﹣(x﹣2)2+1,∵B(1,0),C(3,1),D(3.5,0),∴BD=2.5,CE=1,∴S△BCD==,∴S四边形PBDC=S△PBC+S△BCD=﹣(x﹣2)2+1+=﹣(x﹣2)2+,∴当x=2时,四边形PBDC的面积最大值为,此时,点P的坐标为(2,).(3)①证明:由(1)得,AO=BE=2,BO=CE=1,BD=2.5,∴tan∠ABO=,ED=BD﹣BE,2.5﹣2=0.5,∴tan∠CDE==2,∴∠ABO=∠CDE,∴CD∥AB.②解:∵∠ABC=90°,∴∠ABO+∠CBD=90°,由①得,∠ABO=∠CDB,∴∠CBD+∠CDB=90°,∴∠BCD=90°,由旋转得,BC=AB==,设直线CD的解析式为y=mx+n,则,解得:,∴直线CD的解析式为y=﹣2x+7,设点M(x,﹣2x+7),则CM=,如图2,(i)当△BCM∽△AOB时,,∴,∴CM=,∴=,解得:x1=,x2=,∴点M1(,2),M2(,0);(ii)当△BCM∽△BOA时,,∴,∴CM=2,∴=2,解得:x3=1,x4=5,∴点M3(1,5),M4(5,﹣3);综上所述,当点M的坐标为(,2)或(,0)或(1,5)或(5,﹣3)时,△MBC 与△AOB相似.16.【分析】(1)根据线段关系求出A点、B点、C点的坐标,用待定系数法求出解析式即可;(2)求出直线AB的解析式,设出D点坐标,得出DE的表达式,根据二次函数的性质求出最大值即可;(3)根据(2)设出P点的坐标,分请款根据线段比例关系求出P点的坐标即可.【解答】解:(1)∵4CO=2BO=OA=4,∴OA=4,OB=2,OC=1,即A(4,0),B(0,2),C(﹣1,0),设抛物线的解析式为y=ax2+bx+c,∵抛物线与坐标轴交于A,B,C三点,∴,解得,∴抛物线的解析式为y=﹣x2+x+2;(2)由(1)知A(4,0),B(0,2),设直线AB的解析式为y=kx+d,∴,解得,∴直线AB的解析式为y=﹣x+2,设D(t,﹣t+2),则E(t,﹣t2+t+2),∴DE=﹣t2+t+2﹣(﹣t+2)=﹣t2+2t=﹣(t﹣2)2+2,∴当t=2时DE有最大值,最大值为2,即D点坐标为(2,1)时,DE有最大值为2;(3)存在,由(2)知F点和P点的横坐标为2,OA=4,OB=2,OC=1,∴F(2,0),AB==2,BC==,AC=4+1=5,。
二次函数与角有关的问题整理

二次函数与角有关的问题整理二次函数与角有关的问题整理二次函数背景下与角有关的存在性问题是各地中考和模拟考试的热点问题。
这种类型的题目综合性较强,更重要的是涉及方程与函数思想、数形结合思想、分类讨论等重要的思想方法,对学生分析、解决问题的能力具有较高的要求。
为此,我们将与角有关的压轴题常见的题型及解法做一整理。
首先,我们将这些题大致分成两大类:相等角问题和半角或倍角问题。
相等角问题又分为三种:第一种是将等角问题转化成等腰三角形或平行线问题。
例如,在例1中,抛物线y=-x2+3x+4与坐标轴交于点A、B、C,CP⊥y轴交抛物线与点P,点M为A、C间抛物线上一点(包括端点),求满足∠MPO=∠POA的点M的坐标。
我们可以发现符合条件的点M有两个,一个在OP上方,一个在OP下方。
当M在OP上方时,由∠MPO=∠POA可知PM//OA,则M与C点重合。
当M在OP下方时,这两角组成的三角形是等腰三角形。
设PM与x轴交于点D,坐标为D(n,0),由两点间距离公式可表示出OD2、PD2长,根据OD2=PD2列方程即可求出D点坐标,再求出PD直线表达式与抛物线表达式联立,进而求出M点坐标。
第二种是将等角问题转化成等角所在三角形相似或等角对应的三角函数(通常是正切值)相等问题。
这类问题有两种情况:一种是所求角的一边与坐标轴平行(重合);例如,在例2中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=6.1)求抛物线的解析式及点D的坐标;2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标。
通过已知条件易得抛物线表达式为y=x2-2x-6及各定点坐标。
第二问中的F有两种情况:x轴上方一个,x轴下方一个。
在Rt⊿BDE中,可知tan∠EDB=2,则tan∠FAB=2.过F作x轴垂线,构造∠FAB所在直角三角形,接着通过设F点坐标,表示FH和AH长,根据XXX∠FAB=AH/FH,列方程求解即可。
初中数学二次函数,三角函数,相似的总结

二次函数的有关知识:1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.2.抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x . 几种特殊的二次函数的图像特征如下:函数解析式开口方向 对称轴顶点坐标 2ax y =当0>a 时 开口向上 当0<a 时 开口向下0=x (y 轴) (0,0) k ax y +=20=x (y 轴)(0, k ) ()2h x a y -=h x = (h ,0) ()k h x a y +-=2h x =(h ,k )c bx ax y ++=2 ab x 2-= (ab ac a b 4422--,) 4.求抛物线的顶点、对称轴的方法5. (1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=. (2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的交点是顶点。
若已知抛物线上两点12(,)(,)、x y x y (及y 值相同),则对称轴方程可以表示为:122x x x +=9.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线a b x 2-=,故:①0=b 时,对称轴为y 轴;②0>ab(即a 、b 同号)时,对称轴在y 轴左侧;③0<ab(即a 、b 异号)时,对称轴在y 轴右侧. (3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则 0<ab. 11.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 12.直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(0, c ). (2)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔(0>∆)⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔(0=∆)⇔抛物线与x 轴相切; ③没有交点⇔(0<∆)⇔抛物线与x 轴相离. (3)平行于x 轴的直线与抛物线的交点同(2)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(4)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组cbx ax y n kx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点; ③方程组无解时⇔l 与G 没有交点.(5)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,则12AB x x =-锐角三角函数:①设∠A 是Rt △ABC 的任一锐角,则∠A 的正弦:sin A =,∠A 的余弦:cos A=-,∠A 的正切:tan A =.并且sin 2A +cos 2A =1.0<sin A <1,0<cos A <1,tan A >0.∠A 越大,∠A 的正弦和正切值越大,余弦值反而越小. ②余角公式:sin (90º-A )=cos A ,cos (90º-A )=sin A . ③特殊角的三角函数值:sin30º=cos60º=,sin45º=cos45º=,sin60º=cos30º=, tan30º=,tan45º=1,tan60º=.④斜坡的坡度:i =铅垂高度水平宽度=.设坡角为α,则i =tan α=.相似三角形一、基本知识及需要说明的问题: (一)比例的性质1.比例的基本性质:bc ad dcb a =⇔=此性质非常重要,要求掌握把比例式化成等积式、把等积式转化成比例的方法.2.合、分比性质:ddc b b ad c b a d d c b b a d c b a -=-⇒=+=+⇒=或注意:此性质是分子加(减)分母比分母,不变的是分母.如:已知d c cb a a dc b a +=+=:,求证证明:∵d c b a = ∴c d a b = ∴c d c a b a +=+ ∴dc cb a a +=+3.等比性质:若)0(≠+⋅⋅⋅+++=⋅⋅⋅===n f d b n mf e d c b a 则b a n f d b m ec a =+⋅⋅⋅++++⋅⋅⋅+++. 4.比例中项:若c a b c a b cbb a ,,2是则即⋅==的比例中项. (二)平行线分线段成比例定理1.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 已知l 1∥l 2∥l 3,A D l 1B E l 2C F l 3hlα可得EFBC DE AB DF EF AC BC DF EF AB BC DF DE AC AB EF DE BC AB =====或或或或等. 2.推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. AD EB C由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或.此推论较原定理应用更加广泛,条件是平行.3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.4.定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的....三边..与原三角形三边......对应成比例. AD E B C说明:①此定理和平行线分线段成比例定理的异同 相同点:都是平行线不同点:平行线分线段成比例定理的推论是两条平行线截其它两边所成的对应线段成比例,即AD 与AE,DB 与EC,AB 与AC 这六条线段,而此定理是三角形的三边对应成比例.即ACAEAB AD BC DE AC AE BC DE AB AD ===或或,只要有图形中的BC DE ,它一定是△ADE 的三边与△ABC 的三边对应成比例.②注意:条件(平行线的应用)在作图中,辅助线往往做平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比.如:如图(1),已知BD:CD=2:3,AE:ED=3:4 求:AF:FCAF A A F F E EG EB DC BD C B D G C 图(1) 图(2) 图(3) 辅助线当然是添加平行线。
第八讲 二次函数与几何图形的综合运用1(含答案)

第八讲 二次函数与几何图形的运用一、知识梳理二次函数与三角形的综合运用:1、求面积及最值2、与三角形的综合运用3、与相似三角形的综合运用4、与四边形的综合运用二、例题例1:如图,已知抛物线y=﹣x 2+mx+3与x 轴交于A ,B 两点,与y 轴交于点C ,点B 的坐标为(3,0)(1)求m 的值及抛物线的顶点坐标.(2)点P 是抛物线对称轴l 上的一个动点,当PA+PC 的值最小时,求点P 的坐标.变式 1 如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0). (1)求该抛物线的解析式;(2)动点P 在x 轴上移动,当△PAE 是直角三角形时,求点P 的坐标.例2、如图,已知点A(0,2),B(2,2),C(﹣1,﹣2),抛物线F:y=x2﹣2mx+m2﹣2与直线x=﹣2交于点P.(1)当抛物线F经过点C时,求它的表达式;(2)设点P的纵坐标为y P,求y P的最小值,此时抛物线F上有两点(x1,y1),(x2,y2),且x1<x2≤﹣2,比较y1与y2的大小;(3)当抛物线F与线段AB有公共点时,直接写出m的取值范围.例3:在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.例4:已知二次函数y=ax2﹣2ax+c(a>0)的图象与x轴的负半轴和正半轴分别交于A、B 两点,与y轴交于点C,它的顶点为P,直线CP与过点B且垂直于x轴的直线交于点D,且CP:PD=2:3(1)求A、B两点的坐标;(2)若tan∠PDB=,求这个二次函数的关系式.例5、如图1,二次函数y1=(x﹣2)(x﹣4)的图象与x轴交于A、B两点(点A在点B的左侧),其对称轴l与x轴交于点C,它的顶点为点D.(1)写出点D的坐标.(2)点P在对称轴l上,位于点C上方,且CP=2CD,以P为顶点的二次函数y2=ax2+bx+c (a≠0)的图象过点A.①试说明二次函数y2=ax2+bx+c(a≠0)的图象过点B;②点R在二次函数y1=(x﹣2)(x﹣4)的图象上,到x轴的距离为d,当点R的坐标为时,二次函数y2=ax2+bx+c(a≠0)的图象上有且只有三个点到x轴的距离等于2d;③如图2,已知0<m<2,过点M(0,m)作x轴的平行线,分别交二次函数y1=(x﹣2)(x ﹣4)、y2=ax2+bx+c(a≠0)的图象于点E、F、G、H(点E、G在对称轴l左侧),过点H 作x轴的垂线,垂足为点N,交二次函数y1=(x﹣2)(x﹣4)的图象于点Q,若△GHN∽△EHQ,求实数m的值.三、课堂练习1、如图,在Rt∠AOB的平分线ON上依次取点C,F,M,过点C作DE⊥OC,分别交OA,OB于点D,E,以FM为对角线作菱形FGMH.已知∠DFE=∠GFH=120°,FG=FE.设OC=x,图中阴影部分面积为y,则y与x之间的函数关系式是 ( )A.y=32x2 B.y=3x2 C.y=23x2 D.y=33x22、已知抛物线y=2x2+bx+c与直线y=﹣1只有一个公共点,且经过A(m﹣1,n)和B(m+3,n),过点A,B分别作x轴的垂线,垂足记为M,N,则四边形AMNB的周长为.3、直线y=kx+b与抛物线y=x2交于A(x1,y1)、B(x2,y2)两点,当OA⊥OB时,直线AB 恒过一个定点,该定点坐标为.4、如图,抛物线y=ax2+bx﹣经过点A(1,0)和点B(5,0),与y轴交于点C.(1)求抛物线的解析式;(2)以点A为圆心,作与直线BC相切的⊙A,请判断⊙A与y轴有怎样的位置关系,并说明理由;(3)在直线BC上方的抛物线上任取一点P,连接PB、PC,请问:△PBC的面积是否存在最大值?若存在,求出这个值和此时点P的坐标;若不存在,请说明理由.5、如图,在平面直角坐标系中,抛物线y=ax 2+bx+c 的顶点坐标为(2,9),与y 轴交于点A (0,5),与x 轴交于点E 、B . (1)求二次函数y=ax 2+bx+c 的表达式;(2)过点A 作AC 平行于x 轴,交抛物线于点C ,点P 为抛物线上的一点(点P 在AC 上方),作PD 平行与y 轴交AB 于点D ,问当点P 在何位置时,四边形APCD 的面积最大?并求出最大面积;(3)若点M 在抛物线上,点N 在其对称轴上,使得以A 、E 、N 、M 为顶点的四边形是平行四边形,且AE 为其一边,求点M 、N 的坐标.六、课后作业1、已知抛物线y=ax 2﹣3x+c (a ≠0)经过点(﹣2,4),则4a+c ﹣1= .2、a 、b 、c 是实数,点A (a+1、b )、B (a+2,c )在二次函数y=x 2﹣2ax+3的图象上,则b 、c 的大小关系是b c (用“>”或“<”号填空)3、已知二次函数n mx x y ++=2的图像经过点()1,3-P ,对称轴是经过()0,1-且平行于y轴的直线。
二次函数与相似三角形综合1

二次函数与相似三角形综合1、P (-3,m )和Q (1,m )是二次函数y =2x 2+bx +1图象上的两点.(1)求b 的值;(2)将二次函数y =2x 2+bx +1的图象向上平移k (k 是正整数)个单位,使平移后的图象与x 轴无交点,求k 的最小值.2、如图,在矩形ABCD 中,4AB =,6AD =,点P 是射线DA 上的一个动点,将三角板的直角顶点重合于点P ,三角板两直角中的一边始终经过点C ,另一直角边交射线BA 于点E . (1)判断△EAP 与△PDC 一定相似吗?请证明你的结论;(2)设PD x =,AE y =,求y 与x 的函数关系式,并写出它的定义域;(3)是否存在这样的点P ,是△EAP 周长等于△PDC 周长的2倍?若存在,请求出PD 的长度;若不存在,请简要说明理由.3、如图,四边形ABCD 中,AD =CD ,∠DAB =∠ACB =90°,过点D 作DE ⊥AC ,垂足为F ,DE 与AB 相交于点E , AB =15 cm ,BC =9 cm ,(1)点E 是AB 的中点吗?为什么? (2)若P 是射线DE 上的动点.设DP =x cm (0x >),四边形BCDP 的面积为y cm 2.①求y 关于x 的函数关系式;②当x 为何值时,△PBC 的周长最小,并求出此时四边形BCDP 的面积.EPDCBA4、如图,点A 在x 正半轴上,点B 在y 正半轴上,OB :OA=2,抛物线22y x mx =++的顶点为D ,且经过A 、B 两点.(1)求抛物线解析式;(2)将OAB Δ绕点A 旋转90˚后,点B 落在点C 处,将上述抛物线沿y 轴上下平移后过C 点,写出点C 坐标及平移后的抛物线解析式;(3)设(2)中平移后抛物线交y 轴于1B ,顶点为1D ,点P 在平移后的图像上,且112PBB PDD S S =ΔΔ,求点P 坐标.5、如图,二次函数x x y 31322—=的图像经过△AOC 的三个顶点,其中A(-1,m),B(n,n). (1)求A 、B 的坐标;(2)在坐标平面上找点C ,使以A 、O 、B 、C 为顶点的四边形是平行四边形①这样的点C 有几个?②能否将抛物线x x y 31322—=平移后经过A 、C 两点,若能求出平移后经过A 、C 两点的一条抛物线的解析式;若不能,说明理由。
中考数学二次函数复习类型六相似三角形问题课件

62 ∴OM=23, ∴点 M 的坐标为(0,23)或(0,-23);
M1 M2 例题图①
类型六 类似三角形问题 (2)点 N 是 y 轴上一点,若△AON∽△CAN,求点 N 的坐标;
例题图②
【思维教练】要证△AON∽△CAN,已知∠ANO=∠CNA,∴点 N 在 y 轴负半轴,此时∠NAO=∠ACO,根据相似三角形的对应边成比例即可 求解;
相似,则分∠QCG=∠ACO 和∠QCG=∠CAO 两种情况讨论. (5)存在.如解图,过点 Q 作 QH⊥x 轴交 BC 于点 H,
则△QGH 是等腰直角三角形,
由 B(6,0),C(0,6)易知直线 BC 的解析式为 y=-x+6,
Q
设 Q(n,-1n2+2n+6),则 H(n,-n+6)(0<n<6), 2
例题图③
类型六 类似三角形问题
(3)存在,
由点 A、B、C 的坐标知,AB=8,BC=6 2.
∵∠CBA=∠DCB,
要使以 B,C,D 为顶点的三角形与△ABC 相似,
∴分∠BAC=∠CDB 和∠BAC=∠CBD 两种情况:
①当∠BAC=∠CDB
时, A B =B C,即 CD CB
CD=AB=8,
第 1 题图
类型六 类似三角形问题
(3)存在,符合条件的点 P 的坐标为(68,34)或(6+2 41,3+ 41).
99
5
5
理由:在△ABC 中,AB=5,AC= 5,BC=2 5,
∴AB2=AC2+BC2,
∴△ABC 为直角三角形.
∵△PQB∽△CAB,
∴PPQB =CCAB=12.
第 1 题图
P E
第2题图
二次函数相似三角形问题

∴CD=2AD. 设 C(t,-14t2+t-1), ∴-(-14t2+t-1)=2(t-2). 解得 t1=2(与 A 点重合,舍去),t2=10. ∴点 C 的坐标为(10,-16).
2.如图,在平面直角坐标系中,已知抛物线 y=x2-4x-5 与 x 轴交于 A, B 两点,与 y 轴交于点 C.若点 D 是 y 轴上的一点,且以 B,C,D 为顶点的 三角形与△ABC 相似,求点 D 的坐标.
(1)求抛物线的表达式; (2)连接 AC,AP,当直线 l 运动时, 求使得△PEA 和△AOC 相似的点 P 的坐标.
解:(1)将点 A,B,C 的坐标代入二次函数表达式,得
4a-2b+c=0,
16a+4b+c=0, c=8,
a=-1式为 y=-x2+2x+8.
∴OE=4k-2. 将点 P 坐标(4k-2,k)代入二次函数表达式,得 k=-(4k-2)2+2(4k-2)+8, 解得 k=0(不合题意,舍去)或2136. ∴点 P(145,2136).
解:令 y=0,则 x=-1 或 5, ∴A(-1,0),B(5,0).∴AB=6. 令 x=0,则 y=-5,∴C(0,-5). ∴OC=OB,∴∠OBC=∠OCB=45°. ∴BC=5 2. 要使以 B,C,D 为顶点的三角形与△ABC 相似,需有CADB=BBCC或ABCB= BC CD.
①当CADB=BBCC时,CD=AB=6,∴D(0,1); ②当ABCB=CBCD时,5 6 2=5CD2, ∴CD=235. ∴D(0,130). 综上,点 D 的坐标为(0,1)或(0,130).
(2)∵点 A(-2,0)、C(0,8),∴OA=2,OC=8. ∵l⊥x 轴,∴∠PEA=∠AOC=90°. ∵∠PAE≠∠CAO, ∴只有当∠APE=∠CAO 时,△PEA∽△AOC. ∴CAOE=APEO,即A8E=P2E. ∴AE=4PE. 设点 P 的纵坐标为 k,则 PE=k,AE=4k.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数与相似三角形如图,已知抛物线()122+--=x y 的图像与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C. (1)试判断△AOC 与△COB 是否相似;(2)若点D 是抛物线的顶点,DH 垂直于x 轴,垂足为H ,试判断直角三角形DHA 与直角三角形COB 是否相似?说明理由. 变式1:若点M 在抛物线上且在x 轴上方,过点M 作MG 垂直于x 轴,垂足为点G ,是否存在M ,使得△AMG 与△AOC 相似. 变式2:若点D 是抛物线的顶点,点M 在抛物线上且在x 轴上方,过点M 做x 轴的垂线,垂足为点G ,是否存在M ,使得△AMG 与△DCB 相似.1.已知:如图,抛物线c bx x y ++-=2与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D.(1)求该抛物线的解析式;(2)若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积;(3)△AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax 2+bx+c(a≠0)的顶点坐标为)2.如图①,已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一交点为B. (1)求抛物线的解析式;(2)若点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为顶点的四边形为平行四边形,求D 点的坐标; (3)连接OA 、AB ,如图②,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似?若存在,求出P 点的坐标;若不存在,说明理由.AA B B O O x x y y图①图②1.如图,已知△ABC 中,∠ACB =90°以AB 所在直线为x 轴,过c 点的直线为y 轴建立平面直角坐标系.此时,A 点坐标为(-1,0), B 点坐标为(4,0) (1)试求点C 的坐标(2)若抛物线2y ax bx c =++过△ABC 的三个顶点,求抛物线的解析式.(3)点D ( 1,m )在抛物线上,过点A 的直线y=-x -1 交(2)中的抛物线于点E ,那么在x 轴上点B 的左侧是否存在点P ,使以P 、B 、D 为顶点的三角形与△ABE 相似?若存在,求出P 点坐标;若不存在,说明理由.2.如图,四边形ABCD 是平行四边形,AB=4,OB =2,抛物线过A 、B 、C 三点,与x 轴交于另一点D .一动点P 以每秒1个单位长度的速度从B 点出发沿BA 向点A 运动,运动到点A 停止,同时一动点Q 从点D 出发,以每秒3个单位长度的速度沿DC 向点C 运动,与点P 同时停止. (1)求抛物线的解析式; (2)若抛物线的对称轴与AB 交于点E ,与x 轴交于点F ,当点P 运动时间t 为何值时,四边形POQE 是等腰梯形?(3)当t 为何值时,以P 、B 、O 为顶点的三角形与以点Q 、B 、O 为顶点的三角形相似?3. 如图,图中的小方格都是边长为1的正方形,△ABC 与 △A ′B ′C ′是关于点0为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点0; (2)求出△ABC 与△A ′B ′C ′的位似比; (3)以点0为位似中心,再画一个△111C B A , 使它与△ABC 的位似比等于1.5.1. 如图,在Rt △ABC 中,∠C=90°,BC=4,AC=8.点D 在斜边AB 上,过点D 分别作DE ⊥AC,DF ⊥BC,垂足分别为点E 、F,得四边形的DECF.设DE=x,DF=y.(1)AE 用含y 的代数式表示为:AE =________________; (2)求y与x之间的函数关系式,并求出x的取值范围; (3)设四边形DECF 的面积为S,求S 与x 之间的函数关系式, 并求出S 的最大值.2. 如图,已知过A (2,4)分别作x 轴、y 轴的垂线,垂足分别为M 、N ,若点P 从O 点出发,沿OM 作匀速运动,1分钟可到达M 点,点Q 从M 点出发,沿MA 作匀速运动,1分钟可到达A 点。
(1)经过多少时间,线段PQ 的长度为2?(2)写出线段PQ 长度的平方y 与时间t 之间的函数关系式和t 的取值范围;(3)在P 、Q 运动过程中,是否可能出现PQ ⊥MN ?若有可能,求出此时间t ;若不可能,请说明理由;、、CN如图,在平面直角坐标系中,直角三角形AOB 的顶点A 、B 分别落在坐标轴上.O 为原点,点A 的坐标为(6,0),点B 的坐标为(0,8).动点M 从点O 出发.沿OA 向终点A 以每秒1个单位的速度运动,同时动点N 从点A 出发,沿AB 向终点B 以每秒35个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M 、N 运动的时间为t 秒(t >0).(1)当t=3秒时.直接写出点N 的坐标,并求出经过O 、A 、N 三点的抛物线的解析式;(2)在此运动的过程中,△MNA 的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由;(3)当t 为何值时,△MNA 是一个等腰三角形?2. 如图正方形ABCD 的边长为2,AE=EB ,线段MN 的两端点分别在CB 、CD 上滑动,且MN=1,当CM 为何值时△AED 与以M 、N 、C 为顶点的三角形相似?3. 某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到赢利的过程,下面的二次函数图象(部分)刻画了该公司年初以来累积利润s (万元)与销售时间t (月)之间的关系(即前t 个月的利润总和s 与t 之间的关系).(1)由已知图象上的三点坐标,求累积利润s (万元)与销售时间t (月)之间的函数关系式;(2)求截止到几月累积利润可达到30万元; (3)求第8个月公司所获利润是多少万元?1.如图,在△ABC 中,AB=8,BC=7,AC=6,有一动点P 从A 沿AB 移动到B ,移动速度为2单位/秒,有一动点Q 从C 沿CA 移动到A ,移动速度为1单位/秒,问两动点同时移动多少时间时,△PQA 与△BCA 相似。
2.如图,已知△ABC 是边长为6cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 匀速运动,其中点P 运动的速度是1cm/s ,点Q 运动的速度是2cm/s ,当点Q 到达点C 时,P 、Q 两点都停止运动,设运动时间为t (s ),解答下列问题:(1)当t =2时,判断△BPQ 的形状,并说明理由;(2)设△BPQ 的面积为S (cm 2),求S 与t 的函数关系式;(3)作QR //BA 交AC 于点R ,连结PR ,当t 为何值时,△APR ∽△PRQ ? 、3. 如右图,抛物线n x x y ++-=52经过点)0,1(A ,与y 轴交于点B .(1)求抛物线的解析式;(2)P 是y 轴正半轴上一点,且△P AB是以AB 为腰的等腰三角形,试求点P 的坐标.1. 如图,有一座抛物线形拱桥,在正常水位时水面AB 的宽为20m ,如果水位上升3m 时,水面CD 的宽是10m.(1)求此抛物线的解析式;(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km (桥长忽略不计). 货车正以每小时40km 的速度开往乙地,当行驶1小时时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m 的速度持续上涨(货车接到通知时水位在CD 处,当水位达到桥拱最高点O 时,禁止车辆通行). 试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过每小时多少千米?2. 某机械租赁公司有同一型号的机械设备40套. 经过一段时间的经营发现:当每套机械设备的月租金为270元时,恰好全部租出. 在此基础上,当每套设备的月租金提高10元时,这种设备就少租出一套,且未租出的一套设备每月需要支出费用(维护费、管理费等)20元,设每套设备的月租金为x (元),租赁公司出租该型号设备的月收益(收益=租金收入-支出费用)为y (元).(1)用含x 的代数式表示未租出的设备数(套)以及所有未租出设备(套)的支出费用; (2)求y 与x 之间的二次函数关系式;(3)当月租金分别为4300元和350元时,租赁公司的月收益分别是多少元?此时应该租出多少套机械设备?请你简要说明理由;(4)请把(2)中所求的二次函数配方成ab ac a b x y 44)2(22-++=的形式,并据此说明:当x 为何值时,租赁公司出租该型号设备的月收益最大?最大月收益是多少?1.如图,抛物线c bx x y ++=2过点M (1,—2).N (—1,6). (1)求二次函数c bx x y ++=2的关系式.(2)把Rt △ABC 放在坐标系内,其中∠CAB = 90°,点A .B 的坐标分别为(1,0).(4,0),BC = 5,将△ABC 沿x 轴向右平移,当点C 落在抛物线上时,求△ABC 平移的距离.2.如图,在直角坐标系中,矩形ABCD 的边AD 在x 轴上,点A 在原点,AB =3,AD =5.若矩形以每秒2个单位长度沿x 轴正方向作匀速运动.同时点P 从A 点出发以每秒1个单位长度沿A -B -C -D 的路线作匀速运动.当P 点运动到D 点时停止运动,矩形ABCD 也随之停止运动. (1)求P 点从A 点运动到D 点所需的时间; (2)设P 点运动时间为t (秒).①当t =5时,求出点P 的坐标;②若△OBP 的面积为s ,试求出s 与t 之间的函数关系式(并写出相应的自变量t 的取值范围).1. 如图,直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,已知AD =AB =3,BC =4,动点P 从B 点出发,沿线段BC 向点C 作匀速运动;动点Q 从点D 出发,沿线段DA 向点A 做匀速运动.过Q 点垂直于AD 的射线交AC 于点M ,交BC 于点N .P 、Q 两点同时出发,速度都为每秒1个单位长度.当Q 点运动到A 点,P 、Q 两点同时停止运动.设运动时间为t 秒.(1)当t 为何值时,四边形PCDQ 构成平行四边形? (2)试用含t 的代数式分别表示NC 与MN ;(3)若设△PMC 的面积为S ,试求出S 关于t 的函数关系式.2. 如图,已知抛物线32-+=bx ax y 的对称轴为直线1=x ,抛物线交x 轴于A 、B 两点,交y 轴于C 点,其中B 点的坐标为(3,0). (1)直接写出A 点的坐标;(2)求二次函数32-+=bx ax y 的解析式,并用配方法确定抛物线的顶点坐标; (3)求△BOC 的面积.3. ()21223273-+÷1. 计算:)23)(23(51520)3(30-++---π2. 观察下列各式:===请你将发现的规律用含自然数n(n ≥1)的等式表示出来 . 3. 如图,抛物线2517144y x x =-++与y 轴交于点A ,过点A 的直线与抛物线交于另一点B ,过点B 作BC ⊥x 轴,垂足为点C (3,0).(1)A 点的坐标是( ),B 点的坐标是( ); (2)求直线AB 的函数关系式;(3)动点P 在线段OC 上,从原点O 出发以每钞一个单位的速度向C 移动,过点P 作x 轴的垂线,交直线AB 于点M ,抛物线于点N ,设点P 移动的时间为x 秒,线段MN 的长为s 个单位,求s 与x 的函数关系式,并写出此时x 的取值范围;(4)在(3)的条件下(不考虑点P 与点O 、点C 重合的情况),连接CM ,BN ,四边形BCMN 能否为平行四边形?若能求出点P 的坐标,若不能请说明理由.(第26题图)(第24题图)AO BxCyNM P(第26题图)1. .填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值是 .2. 先化简,再求值:224242x x x +---,其中2x =.3.如图24-1,将三角板放在正方形ABCD 上,使三角板的直角顶点E 与正方形ABCD 的顶点A 重合,三角板的一边交CD 于点F ,另一边交CB 的延长线于点G .(1)则线段EF 与线段EG 的数量关系是 ;(2)如图24-2,移动三角板,使顶点E 始终在正方形ABCD 的对角线AC 上,其他条件不变.(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由; (3)如图24-3,将(2)中的“正方形ABCD ”改为“矩形ABCD ”,且使三角板的一边经过点B ,其他条件不变,若AB =a ,BC =b ,求EGEF的值.1. 阅读下列材料,然后回答问题:(1)以2、3为根的一元二次方程为x 2-5x+6=0,以21、31为根的一元二次方程为6x 2-5x+1=0; (2)以4、7为根的一元二次方程为x 2-11x+28=0,以41、71为根的一元二次方程为28x 2-11x+1=0;问题:以a 、b 为根的一元二次方程为x 2-mx+n=0,则以a 1、b1为根的一元二次方程为 .2.亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图10,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部M ,颖颖的头顶B 及亮亮的眼睛A 恰在一条直线上时,两人分别标定自己的位置C ,D .然后测出两人之间的距离 1.25m CD =,颖颖与楼之间的距离30m DN =(C ,D ,N 在一条直线上),颖颖的身高 1.6m BD =,亮亮蹲地观测时眼睛到地面的距离0.8m AC =.请你根据以上测量数据帮助他们求出住宅楼的高度.2. 已知:如图11,抛物线y =-x 2+b x +c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D .求该抛物线的解析式;(1) 该抛物线与x 轴的另一个交点为E ,求四边形ABDE 的面积; (注:抛物线y =a x 2+b x +c(a ≠0)的顶点坐标为⎪⎪⎭⎫⎝⎛--a b ac ab 44,22)(24-1)(24-2)(24-3)(第18题图)0 2 48… MNBAC D 图10yxDEA B O图1. 已知抛物线. y =12x 2+x -52.把y =12x 2+x -52配方成2()y a x h k =-+的形式; (2)写出它的顶点坐标和对称轴。