中学生物理奥林匹克竞赛第32届试题

合集下载

第32届全国中学生物理竞赛决赛试题

第32届全国中学生物理竞赛决赛试题

第32届全国中学生物理竞赛决赛理论试卷(2015)一、(15分)一根轻杆两端通过两根轻质弹簧A 和B 悬挂在天花板下,一物块D 通过轻质弹簧C 连在轻杆上;A 、B 和C 的劲度系数分别为k 1、k 2和k 3,D 的质量为m,C 与轻杆的连接点到A 和B 的水平距离分别为a 和b ;整个系统的平衡时,轻杆接近水平,如图所示.假设物块D 在竖直方向做微小振动,A 、B 始终可视为竖直,忽略空气阻力.(1)求系统处于平衡位置时各弹簧相对于各自原长的伸长;(2)求物块D 上下微小振动的固有频率;(3)当a 和b 满足什么条件时,物块D 的固有频率最大?并求出该固有频率的最大值.二、(20分)如图,轨道型电磁发射器是由两条平行固定长直刚性金属导轨、高功率电源、接触导电性能良好的电枢和发射体等构成.电流从电流源输出,经过导轨、电枢和另一条导轨构成闭合回路,在空间中激发磁场.载流电枢在安培力作用下加速,推动发射体前进.已知电枢质量为m s ,发射体质量为m a ;导轨单位长度的电阻为R r ′,导轨每增加单位长度整个回路的电感的增加量为I r ′;电枢引入的电阻为R s 、电感为L s ;回路连线引入的电阻为R 0、电感为L 0.导轨与电枢间摩擦以及空气阻力可忽略.(1)试画出轨道型电磁发射器的等效电路图,并给出回路方程;(2)求发射体在导轨中运动加速度的大小与回路电流的关系;(3)设回路电流为恒流I (平顶脉冲电流)、电枢和发射体的总质量为m s +m a =0.50kg 、导轨长度为x sm =500m 、导轨上单位长度电感增加量L r ′=1.0μH/m ,若发射体开始时静,出口速度为v sm =3.0×103m s ⁄,求回路电流I 和加速时间τ.三、(15分)俄国火箭专家齐奥尔科夫斯基将火箭发射过程进行模型简化,得出了最早的理想火箭方程,为近代火箭、导弹工程提供了理论依据.该简化模型为:待发射火箭静止于惯性参考系S 中某点,忽略火箭所受的地球引力等外力的作用,b A B k 1k 2 k 3 C a D m 电枢 发射体 轨道 开关 电源v 2(相对于S 系) M v 1(相对于S 系) v e (相对于火箭)火箭(包含燃料)的初始静止质量为M i ;在t =0时刻点火,火箭向左排出气体,气体相对于火箭的速度恒为v e ,使火箭向右发射;在S 系中观测,火箭的速度为v 1,排出气体的速度为v 2,如图所示.根据此模型,火箭运行一段时间后,当其静止质量由M i 变为M 时,(1)用牛顿力学推导火箭所获得的速度v 1与质量比M M i ⁄之间的关系;(2)用狭义相对论力学推导火箭所获得的速度v 1与质量比M M i ⁄之间的关系;(3)当v 1远小于真空中的光速c 时,计算以上两种结果之差,保留至(v 1c ⁄)2项.四、(15分)光在物体表面反射或者被吸收时,光子将其动量传给物体,使光具有对物体的辐射压力(光压).利用光压,可实现对某些微小粒子的精确操控(光镊).设在|y |≪L 的区域有一匀强激光场,沿z 轴负方向入射,其强度(单位时间内通过单位横截面积的光能)为I ;在y ∈(−L,L )之间没有光场,其横截面如图所示.一密度为ρ的三棱柱形小物体(其横截面是底边长为2L 、底角为θ的等腰三角形)被置于光滑的水平面xy 上,其朝上的A 和B 两面均涂有特殊反射层,能完全反射入射光.小物体初始时静止,位置如图.(1)假定光子的反射角等于入射角,且反射前后光子的频率不变.试求:(a)小物体在受到激光场照射后的动力学方程;(b)小物体从初始位置向y 轴负方向移动3L 2⁄的距离所需的时间.(2)实际上,由于小物体的运动,反射光子频率会有微小的变化;在小物体从初始位置向y 轴负方向移动到距离为3L/2的过程中,定性比较反射光子与入射光子频率的大小及其随时间的变化.五、(20分)如图,一个上端固定、内半径为R 1的玻璃圆筒底部浸没在大容器中的水面之下,未与容器底接触;另将一个外半径为R 2(R 2略小于R 1)的同质玻璃制成的圆筒(上端固定)放置其中,不接触容器底,保持两玻璃圆筒的中轴线重合且竖直.设水与玻璃之间的接触角为θ(即气-液界面在水的最高处的切线与固-液界面的夹角为θ,见局部放大图).已知水的表面张力系数为α,地面重力加z y -L L 2L I I A B θO h h 2R 1 2R 2 θ速度大小为g.(1)在毛细现象中,系统毛细作用引起的势能变化,可以等效地看作固-液-气分界线上液体表面张力在液面上升或下降过程中做的功.试证:以大容器中的水面处为系统势能零点,则当水由于毛细作用上升高度为ℎ时,系统毛细作用的势能为E s(ℎ)=−2παcosθ(R1+R2)ℎ;(2)试导出系统在水由于毛细作用上升的过程中释放的热量;(3)如果在超万米高空飞机中短时间内做此实验,飞机可视为做匀速直线运动.测得该系统在同样过程中放出的热量为Q,试求此时飞机距离地面的高度.假定该飞机内水的表面张力系数和接触角与地面情形相同.以上计算不考虑地球的自转.六、(15分)太阳系内行星的公转方向是基本相同的.地球上的观测者所看到的行星位置实际上是该行星在遥远的背景星空中的投影.由于各行星的公转速度以及它们在轨道上位置的不同,地球上的观测者看到的行星在背景星空中移动的方向与地球的公转方向并非总是相同.人们把看到的行星移动方向与地球公转方向相同情形下行星的视运动叫顺行,方向相反的叫逆行.当行星位于由顺行转为逆行或由逆行转为顺行的转折点时,行星看起来好像停留在星空不动,该位置叫留.天文学把地外行星运行到太阳和地球所在的直线上、且太阳和地外行星位于地球两侧的情形叫行星冲日.火星冲日是常见的天文现象.设地球和火星都在同一平面内绕太阳做圆周运动,且只考虑太阳对行星的引力.已知火星轨道半径R m为地球轨道半径R0的1.524倍,不考虑地球的自转,试计算火星在经历相邻两次冲日的时间间隔内其视运动为逆行和顺行的时间间隔.七、(20分)飞行时间质谱仪(TOFMS)的基本原理如图1所示,主要由离子源区、漂移区和探测器三部分组成.带正电的离子在离子源区形成后被电场E S加速,经过漂移区(真空无场),到达离子探测器.设离子在离子源区加速的距离为S,在漂移区漂⁄移的距离为L.通过记录离子到达探测器的时刻,可以把不同的离子按质荷比m q 的大小进行分离,这里m和q分别表示离子的质量和电量.分辨率是TOFMS最重要的性能指标,本题将在不同情况下进行讨论或计算.忽略重力的影响.(1)对于理想的TOFMS,不同离子在离子源区X轴方向同一位置、同一时刻t=0产生,且初速度为零.探测器可以测定离子到达探测器的时刻t, 其最小分辨时间为⁄,其中Δm为最小Δt(即探测器所测时刻t的误差).定义仪器的分辨率为R=mΔm分辨时间Δt对应的最小分辨质量.此种情形下,R完全由Δt决定,试推导R与t和Δt之间的关系.(2)实际上,离子产生的位置也有微小的差别ΔS(ΔS≪S),这导致具有相同质荷比的离子不能同时到达探测器,从而影响质谱仪的分辨率.如图2所示,引入双加速场,即在离子源后引入第二加速电场E 1,该电场区域的长度为D 1.通过适当选择漂移区的长度L ,可使同一时刻在不同位置产生的质荷比相同的离子尽量同时到达探测器,以使分辨率受ΔS 的影响最小,试求L 的值. (3)为了进一步降低离子产生位置的离散性对分辨率的影响,通常采用如图3所示的反射式TOFMS .这里,在二级加速电场(E S 和E 1)的基础上增加了反射器,它由两级电场E 2和E 3组成.通过这两个电场对离子的飞行方向进行反转,以使分辨率受ΔS 的影响最小,试求L 的值.为简化计算,假设离子的运动是平行于X 方向的直线运动.(装置的各参数间满足E S S +E 1D 1≤E 2D 2+E 3D 3,以使所有离子飞行方向的反转都可以实现.)八、(20分)激光瞄准打击系统的设计需考虑空气折射率的变化.由于受到地表状况、海拔高度、气温、湿度和空气密度等多种因素的影响,空气的折射率在大气层中的分布是不均匀的,因而激光的传播路径并不是直线.为简化起见,假设某地的空气折射率随高度y 的变化如下式所示 n 2=n 02+α2y 其中n 0是y =0处(地面)空气的折射率,n 0和α均为大于零的已知常量.激光本身的传播时间可忽略.激光发射器位于坐标原点O (如图).(1)若激光的出射方向与竖直方向y 轴的夹角为θ0(0≤θ0≤π2⁄),求描述该激光传播路径的方程.(2)假定目标A 位于第一象限.当目标A 的高度为y a 时,求激光发射器可照射到的目标A 的最大x 坐标值x a−max .(3)激光毁伤目标需要一定的照射时间.若目标A 处在激光发射器的可照射范围内,其初始位置为(x 0,y 0),该目标在同一高度上以匀速度v 接近激光发射器.为了使激光能始终照射该目标,激光出射角θ0应如何随时间t 而变化?(4)激光发射器的攻击通常遵从安全击毁的原则,即既要击毁目标飞行器A ,又必须S E S 离子源区 漂移区 L 探测 器 X Y 图1S E S 离子源 漂移区 L 探 测 器 X Y E 1 D 1 ΔS 图2 S E S 反射器 漂移区 L 探 测器 XY E 1D 1E 2 E 3 D 2 D 3 图3 x y O θ0 v A使目标飞行器A水平投出的所有炸弹,都不能炸到激光发射器(炸弹在投出时相对于A静止).假定A一旦进入激光发射器可攻击范围,激光发射器便立即用激光照射它.己知水平飞行目标A的高度为y a,击毁A需要激光持续照射的时间为ta,且位于坐标原点O的激光器能安全击毁它;已知重力加速度大小为g,不考虑空气阻力,试求A的速度范围.。

第27届、第32届全国中学生物理竞赛复赛试卷(含答案)

第27届、第32届全国中学生物理竞赛复赛试卷(含答案)

解答一、参考解答: 1.以i l 表示第i 个单摆的摆长,由条件(b )可知每个摆的周期必须是40s 的整数分之一,即i i402T N == (N i 为正整数) (1) [(1)式以及下面的有关各式都是在采用题给单位条件下的数值关系.]由(1)可得,各单摆的摆长i 22i400πg l N = (2) 依题意,i 0.450m 1.000m l ≤≤,由此可得i N << (3) 即i 2029N ≤≤ (4) 因此,第i 个摆的摆长为i 22400π(19i)g l =+ (i 1,2,,10)= (5) 2.20s评分标准:本题15分.第1小问11分.(2)式4分,(4)式4分,10个摆长共3分.第2小问4分.二、参考解答:设该恒星中心到恒星-行星系统质心的距离为d ,根据题意有2L d θ∆= (1) 将有关数据代入(1)式,得AU 1053-⨯=d .又根据质心的定义有Md r d m-= (2) 式中r 为行星绕恒星做圆周运动的轨道半径,即行星与恒星之间的距离.根据万有引力定律有222πMm G Md r T ⎛⎫= ⎪⎝⎭(3) 由(2)、(3)两式得()23224π1md G TM m =+ (4) [若考生用r 表示行星到恒星行星系统质心的距离,从而把(2)式写为Md r m =,把(3)式写为()222πMmG Md T r d ⎛⎫= ⎪⎝⎭+,则同样可得到(4)式,这也是正确的.] 利用(1)式,可得 ()()3222π21L m GT Mm θ∆=+ (5) (5)式就是行星质量m 所满足的方程.可以把(5)试改写成下面的形式()()()33222π21m M L GMT m M θ∆=+ (6)因地球绕太阳作圆周运动,根据万有引力定律可得3S 22(1AU)(1y)4πGM = (7)注意到S M M =,由(6)和(7)式并代入有关数据得()()310S 8.6101S m M mM -=⨯+ (8) 由(8)式可知 S1m M << 由近似计算可得3S 110m M -≈⨯ (9)由于m M 小于1/1000,可近似使用开普勒第三定律,即3322(1AU)(1y)r T =(10) 代入有关数据得5AU r ≈ (11)评分标准:本题20分.(1)式2分,(2)式3分,(3)式4分,(5)式3分,(9)式4分,(11)式4分.三、参考解答:解法一一倾角为θ的直角三角形薄片(如图1所示)紧贴于半径为R 的圆柱面,圆柱面的轴线与直角三角形薄片的沿竖直方向的直角边平行,若把此三角形薄片卷绕在柱面上,则三角形薄片的斜边就相当于题中的螺线环.根据题意有π1tan 2π2R R θ== (1) 可得:sin 5θ=,cos 5θ= (2) 设在所考察的时刻,螺旋环绕其转轴的角速度为ω,则环上每一质量为i m ∆的小质元绕转轴转动线速度的大小都相同,用u 表示,u R ω= (3) 该小质元对转轴的角动量2i i i L m uR m R ω∆=∆=∆整个螺旋环对转轴的角动量22i i L L m R mR ωω=∆=∆=∑∑ (4)小球沿螺旋环的运动可视为在水平面内的圆周运动和沿竖直方向的直线运动的合成.在螺旋环的角速度为ω时,设小球相对螺旋环的速度为'v ,则小球在水平面内作圆周运动的速度为cos Rθω'=-v v(5)沿竖直方向的速度sin ⊥'=v v θ (6)对由小球和螺旋环组成的系绕,外力对转轴的力矩为0,系统对转轴的角动量守恒,故有0m R L=-v(7)由(4)、(5)、(7)三式得:'v cos θ-ωωR =R (8)在小球沿螺旋环运动的过程中,系统的机械能守恒,有()222i 1122mgh m m u ⊥=++∆∑v v(9) 由(3)、(5)、(6)、(9)四式得:()2222sin gh =R R θ-ωθω2''++v v 2cos(10)解(8)、(10)二式,并利用(2)式得ω=(11)'v =(12) 由(6)、(12)以及(2)式得⊥=v(13) 或有2123gh ⊥=v(14)(14)式表明,小球在竖直方向的运动是匀加速直线运动,其加速度13⊥=a g(15) 若小球自静止开始运动到所考察时刻经历时间为t ,则有212⊥h =a t (16) 由(11)和(16)式得3=ωgt R(17) (17)式表明,螺旋环的运动是匀加速转动,其角加速度3=βgR(18)小球对螺旋环的作用力有:小球对螺旋环的正压力1N ,在图1所示的薄片平面内,方向垂直于薄片的斜边;螺旋环迫使小球在水平面内作圆周运动的向心力2N '的反作用力2N .向心力2N '在水平面内,方向指向转轴C ,如图2所示.1N 、2N 两力中只有1N 对螺旋环的转轴有力矩,由角动量定理有1sin ∆=∆N R t L θ (19)由(4)、(18)式并注意到∆=∆ωβt得13sin mg N θ==(20) 而222N N m R '==v(21)图2由以上有关各式得22 3 =hN mgR(22)小球对螺旋环的作用力13N==(23)评分标准:本题22分.(1)、(2)式共3分,(7)式1分,(9)式1分,求得(11)式给6分,(20)式5分,(22)式4分,(23)式2分.解法二一倾角为θ的直角三角形薄片(如图1所示)紧贴于半径为R的圆柱面,圆柱面的轴线与直角三角形薄片的沿竖直方向的直角边平行,若把此三角形薄片卷绕在柱面上,则三角形薄片的斜边就相当于题中的螺线环.根据题意有:π1tan2π2RRθ==(1)可得:sinθ=cosθ=(2)螺旋环绕其对称轴无摩擦地转动时,环上每点线速度的大小等于直角三角形薄片在光滑水平地面上向左移动的速度.小球沿螺旋环的运动可视为在竖直方向的直线运动和在水平面内的圆周运动的合成.在考察圆周运动的速率时可以把圆周运动看做沿水平方向的直线运动,结果小球的运动等价于小球沿直角三角形斜边的运动.小球自静止开始沿螺旋环运动到在竖直方向离初始位置的距离为h的位置时,设小球相对薄片斜边的速度为'v,沿薄片斜边的加速度为'a.薄片相对地面向左移动的速度为u,向左移动的加速度为a.u就是螺旋环上每一质元绕转轴转动的线速度,若此时螺旋环转动的角速度为ω,则有u Rω=(3)而a就是螺旋环上每一质元绕转轴转动的切向加速度,若此时螺旋环转动的角加速度为β,则有=a Rβ(4)小球位于斜面上的受力情况如图2所示:图1a 图2重力mg ,方向竖直向下,斜面的支持力N ,方向与斜面垂直,以薄片为参考系时的惯性力f *,方向水平向右,其大小0*=f ma (5)由牛顿定律有cos sin mg θN f θ*--=0 (6) sin cos *'+=mg f ma θθ (7) 0sin =N ma θ (8)解(5)、(6)、(7)、(8)四式得2sin sin '1+2a =g θθ (9) 2cos =1sin +N mg θθ (10)02sin cos 1+sin =a g θθθ (11)利用(2)式可得'a =g(12) 3N =mg (13) 013=a g (14) 由(4)式和(14)式,可得螺旋环的角加速度1=3βg R(15) 若小球自静止开始运动到所考察时刻经历时间为t ,则此时螺旋环的角速度=ωβt (16)因小球沿螺旋环的运动可视为在水平面内的圆周运动和沿竖直方向的直线运动的合成,而小球沿竖直方向的加速度sin ⊥⊥''==a a a θ(17) 故有212⊥h =a t (18) 由(15)、(16)、(17)、(18)、以及(2)式得=ω (19)小球在水平面内作圆周运动的向心力由螺旋环提供,向心力位于水平面内,方向指向转轴,故向心力与图2中的纸面垂直,亦即与N 垂直.向心力的大小21N mR=v (20)式中v 是小球相对地面的速度在水平面内的分量.若a 为小球相对地面的加速度在水平面内的分量,则有a t =v (21)令a '为a '在水平面内的分量,有00cos a a a a a θ''=-=- (22)由以上有关各式得123=hN mg R(23) 小球作用于螺旋环的力的大小0N =(24)由(13)、(23)和(24)式得0N = (25)评分标准:本题22分.(1)、(2)式共3分,(9)或(12)式1分,(10)或(13)式5分,(11)或(14)式1分,(19)式6分,(23)式4分,(25)式2分.四、参考解答:而R ω=v (2)由(1)、(2)两式得m B q ω=(3)如图建立坐标系,则粒子在时刻t 的位置()cos x t R t ω=,()sin y t R t ω= (4)取电流的正方向与y 轴的正向一致,设时刻t 长直导线上的电流为()i t ,它产生的磁场在粒子所在处磁感应强度大小为()()i t B kd x t =+ (5) 方向垂直圆周所在的平面.由(4)、(5)式,可得()(cos )m i t k d R t q ωω=+(6)评分标准:本题12分.(3)式4分,(4)式2分,(5)式4分,(6)式2分.五、参考解答:1.质点在A B →应作减速运动(参看图1).设质点在A 点的最小初动能为k0E ,则根据能量守恒,可得质点刚好能到达B 点的条件为 k03/225/2kqQ kqQ kqQ kqQmgR E R R R R -+=+-(1) 由此可得:k0730kqQE mgR R=+(2) 2. 质点在B O →的运动有三种可能情况:i .质点在B O →作加速运动(参看图1),对应条件为249kqQmg R≤ (3) 此时只要质点能过B 点,也必然能到达O 点,因此质点能到达O 点所需的最小初动能由(2)式给出,即k0730kqQE mgR R =+(4) 若(3)式中取等号,则最小初动能应比(4)式给出的k0E 略大一点.ii .质点在B O →作减速运动(参看图1),对应条件为 24kqQmg R ≥ (5) 此时质点刚好能到达O 点的条件为图1k0(2)/225/2kqQ kqQ kqQ kqQmg R E R R R R -+=+-(6) 由此可得k011210kqQE mgR R=-(7) iii .质点在B O →之间存在一平衡点D (参看图2),在B D →质点作减速运动,在D O →质点作加速运动,对应条件为22449kqQ kqQmg R R <<(8) 设D 到O 点的距离为x ,则()2(/2)kqQ mg R x =+ (9)即2R x =(10)根据能量守恒,质点刚好能到达D 点的条件为()k0(2)/225/2kqQ kqQ kqQ kqQ mg R x E R R xR R -+-=+-+ (11)由(10)、(11)两式可得质点能到达D 点的最小初动能为k059210kqQ E mgR R=+- (12)只要质点能过D 点也必然能到达O 点,所以,质点能到达O 点的最小初动能也就是(12)式(严格讲应比(12)式给出的k0E 略大一点.)评分标准:本题20分.第1小问5分.求得(2)式给5分.第2小问15分.算出第i 种情况下的初动能给2分;算出第ii 种情况下的初动能给5分;算出第iii 种情况下的初动能给8分,其中(10)式占3分.六、参考解答:1n =时,A 、B 间等效电路如图1所示, A 、B 间的电阻rLAB图 1图211(2)2R rL rL == (1)2n =时,A 、B 间等效电路如图2所示,A 、B 间的电阻21141233R rL R ⎛⎫=+ ⎪⎝⎭(2) 由(1)、(2)两式得256R rL = (3)3n =时,A 、B 间等效电路如图3所示,A 、B 间的电阻3211331233229443R rL R ⎡⎤⎛⎫=++++++ ⎪⎢⎥⎝⎭⎣⎦(4) 由(3)、(4)式得379R rL =(5)评分标准:本题20分.(1)式4分,(3)式6分,(5)式10分.七、参考解答:1.根据题意,太阳辐射的总功率24S S S 4πP R T σ=.太阳辐射各向同性地向外传播.设地球半径为E r ,可以认为地球所在处的太阳辐射是均匀的,故地球接收太阳辐射的总功率AB图321rL1211rL 1rL 9rL9rL11R 2rL 2rL23rL113R23rL图2为242S I S E πR P T r d σ⎛⎫= ⎪⎝⎭(1)地球表面反射太阳辐射的总功率为I P α.设地球表面的温度为E T ,则地球的热辐射总功率为24E E E 4πP r T σ= (2)考虑到温室气体向地球表面释放的热辐射,则输入地球表面的总功率为I E P P β+.当达到热平衡时,输入的能量与输出的能量相等,有I E I E P P P P βα+=+ (3)由以上各式得1/41/2S E S 121R T T d αβ⎫-⎛⎫=⎪⎪-⎝⎭⎝⎭(4)代入数值,有E 287K T = (5)2.当地球表面一部分被冰雪覆盖后,以α'表示地球表面对太阳辐射的平均反射率,根据题意这时地球表面的平均温度为E 273K T =.利用(4)式,可求得0.43α'= (6)设冰雪覆盖的地表面积与总面积之比为x ,则12(1)x x ααα'=+- (7)由(6)、(7)两式并代入数据得%30=x (8)评分标准:本题15分.第1小问11分.(1)式3分,(2)式1分,(3)式4分,(4)式2分,(5)式1分.第2小问4分.(6)式2分,(8)式2分.八、参考解答:方案一:采光装置由平面镜M 和两个凸透镜L 1、L 2组成.透镜组置于平面镜M 后面,装置中各元件的相对方位及光路图如图1所示.L 1、L 2的直径分别用D 1、D 2表示,其焦距的大小分别为f 1 、f 2.两透镜的距离12d f f =+ (1)直径与焦距应满足关系1212f fD D = (2) 设射入透镜L 1的光强为10I ',透过透镜L 1的光强为1I ',考虑到透镜L 1对光的吸收有 1100.70I I ''=(3) 从透镜L 1透出的光通量等于进入L 2的光通量,对应的光强与透镜的直径平方成反比,进入L 2的光强用20I 表示,即2220112122I D f I f D ⎛⎫== ⎪'⎝⎭故有212012f I I f ⎛⎫'= ⎪⎝⎭(4)透过L 2的光强2200.70I I '=,考虑到(3)式,得 2121020.49f I I f ⎛⎫''= ⎪⎝⎭(5) 由于进入透镜L 1的光强10I '是平面镜M 的反射光的光强,反射光是入射光的80%,设射入装置的太阳光光强为0I ,则1000.80I I '= L 22.5图1代入(5)式有212020.39f I I f ⎛⎫'= ⎪⎝⎭(6)按题设要求202I I '= 代入(6)式得2100220.39f I I f ⎛⎫= ⎪⎝⎭从而可求得两透镜的焦距比为122.26f f = (7) L 2的直径应等于圆形窗户的直径W ,即210cm D =,由(2)式得112222.6cm f D D f == (8) 由图可知,平面镜M 参与有效反光的部分为一椭圆,其半短轴长度为1/211.3cm b D == (9)半长轴长度为1(2sin 22.5)29.5cm a D == (10)根据装置图的结构,可知透镜组的光轴离地应与平面镜M 的中心等高,高度为H . 评分标准:本题20分.作图8分(含元件及其相对方位,光路),求得(7)、(8)两式共10分,(9)、(10)式共2分.方案二:采光装置由平面镜M 和两个凸透镜L 1、L 2组成,透镜组置于平面镜M 前面,装置中各元件的相对方位及光路图如图2所示.对透镜的参数要求与方案一相同.但反射镜M 的半短轴、半长轴的长度分别为2/2 5.0cm b D == 和2(2sin 22.5)13.1cm a D ==评分标准:参照方案一.方案三、采光装置由平面镜M 和一个凸透镜L 1、一个凹透镜L 2组成,透镜组置于平面镜M 后面(也可在M 前面),装置中各元件的相对方位及光路图如图3所示.有关参数与方案一相同,但两透镜的距离12d f f =-如果平面镜放在透镜组之前,平面镜的尺寸和方案一相同;如果平面镜放在透镜组之后,平面镜的尺寸和方案二相同. 评分标准:参照方案一.九、参考解答:1.假设碰撞后球1和球2的速度方向之间的夹角为α(见图),1L 22.5图 322.5图2W则由能量守恒和动量守恒可得22220000102m c m c m c m c γγγ+=+ (1)()()()()()2220000110220110222cos m m m m m γγγγγα=++v v v v v(2)其中0γ=,1γ=,2γ=.由(1)、(2)式得2101γγγ+=+ (3)2222012121212(/)cos c γγγγγα+=++v v (4)由(3)、(4)式得222220121212121212111cos 02()()()c c γγγγγαγγγγ+-+--==>v v v v (5)π2α<(6) 即为锐角.在非相对论情况下,根据能量守恒和动量守恒可得2202100212121v v v m m m +=20 (7) ()()()()()22200010201022cos m m m m m α=++v v v v v(8)对斜碰,1v 的方向与2v 的方向不同,要同时满足(1)和(2)式,则两者方向的夹角π2α=(9) 即为直角.2.根据能量守恒和动量守恒可得22220m c +=+(10)1=+(11)令0γ=,1γ=,2γ=则有:0=v1=v2=v 代入(10)、(11)式得2101γγγ+=+ (12)111222120-+-=-γγγ(13)解(12)、(13)两式得11=γ 02γγ= (14)或01γγ= 21γ= (15)即10=v , 20=v v (16)(或10=v v ,20=v ,不合题意)评分标准:本题16分.第1小问10分.(1)、(2)式各2分,(6)式4分,(9)式2分. 第2小问6分.(10)、(11)式各1分,(16)式4分.第32届全国中学生物理竞赛复赛理论考试试题及答案2015年9月19日说明:所有解答必须写在答题纸上,写在试题纸上无效。

中学生物理奥林匹克竞赛第32届答案

中学生物理奥林匹克竞赛第32届答案

第32届全国中学生物理竞赛复赛理论考试试题解答2015年9月19日0一、(15分)(1)图中X 和Y 代表的核素分别为15O 和 13C ①(2)一个循环所有的核反应方程式依循换次序为1213p C N +→ ② 1313e N C e ν+→++ ③ 1314p C N +→ ④ 1415p N O +→ ⑤ 1515e O N e ν+→++ ⑥15124p N C He +→+ ⑦(3)整个循环的核反应,相当于4e 4p He 2e 2+→++ν ⑧完成一个碳循环过程释放的核能为4e2p e H (42) [(4 1.0078 4.0026)931.49420.511] MeV 25.619 MeV E m M m c ∆=--=⨯-⨯-⨯≈⑨评分参考:第(1)问4分,X 和Y 正确,各2分;第(2)问6分,②③④⑤⑥⑦式各1分;第(3)问5分,⑧式2分,⑨式3分。

二、(15分) (1)(解法一)取碰前B 球所在位置O 为原点,建立坐标系(如图)。

碰撞前后系统的 动量及其对细杆中心的角动量都守恒,有0A B x x x m m MV MV =++v v ①A By 0y y m MV MV =++v ② 0AB 2222x x x L L L Lm m M V M V =+-v v ③ 式中,x v 和y v 表示球C 碰后的沿x 方向和y 方向的速度分量。

由于轻杆长度为L ,按照图中建立的坐标系有222A B A B [()()][()()]x t x t y t y t L -+-= ④由上式对时间求导得A B A B A B A B [()()][()()][()()][()()]0x x y y x t x t V t V t y t y t V t V t --+--=⑤在碰撞后的瞬间有A B A B (0)(0),(0)(0)x t x t y t y t L ====-== ⑥利用⑥式,⑤式在碰撞后的瞬间成为A AB B (0)(0)y y y y V V t V t V ≡===≡⑦由①②⑦式得A By 2y ym V V M ==-v⑧由①②③式得0vCA 0()x x mV M=-v v ⑨ B 0x V = ⑩利用⑧⑨⑩式,碰撞后系统的动能为222222A Ay Bx By 2222A Ay 22220111()()()22211 ()(2)22112 ()224x y x x y x x x yE m M V V M V V m M V V m M m m m M M=+++++=++++=+-+v v v v v v v v ⑪ (解法二)取碰前B 球所在位置O 为原点,建立坐标系(如图)。

第32届全国中学生物理竞赛预赛试卷及解析

第32届全国中学生物理竞赛预赛试卷及解析

第32届全国中学生物理竞赛预赛试卷I-5678总分910111213141516本卷共16题,满分200分。

一、选择题.本题共5小题,每小题6分.在毎小题给出的4个选项中,有的小题只有一项符合题意,有的小题有多项符合题意。

把符合题意的选项前面的英文字母写在每小题后面的方括号内.全部选对的得6分,选对但不全的得3分,有选错或不答的得0分.1. 2014年3月8日凌晨2点40分,马来四亚航空公司一架波音777-200飞机与管制中心失去联系.2014 年3月24日晚,初步确泄失事地点位于南纬31°52,、东经115°52z的澳大利亚西南城市珀斯附近的海域.有一颗绕地球做匀速圆周运动的卫星,每天上午同一时刻在该区域正上方对海面舶照,则A. 该卫星一定是地球同步卫星B. 该卫星轨道平而与南纬31 ° 52’所确左的平面共而C. 该卫星运行周期一立是地球自转周期的整数倍D. 地球自转周期一泄是该卫星运行周期的整数倍2. 23892U (铀核)衰变为22288Rn (轼核)要经过A. 8次a衰变,16次8衰变B. 3次a衰变,4次B衰变C. 4次a衰变,16次B衰变D. 4次a衰变,4次B衰变3. 如图,一半径为R的固定的光滑绝缘圆环,位于竖直平面内;环上有两个相同的带电小球a和b(可视为质点),只能在环上移动,静I匕时两小球之间的距离为R。

现用外力缓慢推左球a使英到达圆环最低点c,然后撤除外力.下列说法正确的是A. 在左球a到达c点的过程中,圆环对b球的支持力变大B. 在左球a到达c点的过程中,外力做正功,电势能增加。

C. 在左球a到达c点的过程中,a、b两球的重力势能之和不变D. 撤除外力后,a、b两球在轨道上运动过程中系统的能量守恒4. 如图,0点是小球平抛运动抛岀点;在O点有一个频闪点光源,闪光频率为30Hz:在抛岀点的正前方,竖直放置一块毛玻璃,小球初速度与毛玻璃平而垂直.在小球抛出时点光源开始闪光.当点光源闪光时,在毛玻碣上有小球的一个投影点.已知图中O点与毛玻璃水平距离21. 20 m,测得第一、二个投影点之间的距离为0.05 m.取重力加速度g=10m/s2.下列说法正确的是A. 小球平抛运动的初速度为4m/sB. 小球平抛运动过程中,在相等时间内的动量变化不相等C. 小球投影点的速度在相等时间内的变化量越来越大D.小球第二、三个投影点之间的距离0・15m5・某同学用电荷量计(能测岀一段时间内通过导体横截而的电荷量)测量地磁场强度,完成了如下实验:如 图,将而积为S,电阻为F 勺矩形导线框abed 沿图示方位水平放置于 地而上某处,将其从图示位宜绕东西轴转180°,测得通过线框的电 荷量为Q :将其从图示位程绕东四轴转90。

全国中学生第30届——32届物理决赛实验试题和答案Doc1

全国中学生第30届——32届物理决赛实验试题和答案Doc1

第30届全国物理竞赛决赛实验试题实验题目二“研究小灯泡的发光问题”题解与评分标准【问题1】确定灯泡灯丝温度与电阻的关系(18分)1.1设计出确定环境温度下灯泡灯丝电阻R0的路线图(3分)(若申请了提示卡1,扣除6分)测量原理电路图如图1所示。

线路图评分标准:(1).电路原理正确2分(2).元件符号使用正确0.5分,连线无断点0.5分。

1.2简述测量原理及步骤(6分)测量原理(4.5分):通过测量在环境温度(室温)下灯泡的灯丝电阻,由公式T=aR0.83计算得出a,即可确定灯泡的灯丝温度与其电阻的关系。

小灯泡由于其通电之后的热效应,其环境温度下的电阻不能直接测量。

(在原理部分,可能出现以下三种答案)答案1:利用小功率下的灯丝电阻与电功率关系外推到零功率的情况下获得,此部分测量线路如图1所示。

图中R1为电位器,R2为标准电阻,L是小灯泡。

记录灯丝电压及标阻电压,从而获得灯丝电阻与其电功率的关系,画出他们的关系曲线,外推到功率为零即可获得环境温度下的电阻。

为测出环境温度下的灯丝电阻,可不必进行大功率围的测量,只测量小功率下的即可。

答案2.利用低电流下的灯丝电阻与电流关系外推到零电流的情况下获得,此部分测量线路如图1所示。

图中R1为电位器,R2为标准电阻,L是小灯泡。

记录灯丝电压及标阻电压,从而获得灯丝电阻与其电流的关系,画出他们的关系曲线,外推到电流为零即可获得环境温度下的电阻。

为测出环境温度下的灯丝电阻,可不必进行大电流围的测量,只测量小电流下的即可。

答案3.利用低电压下的灯丝电阻与电压关系外推到零电压的情况下获得,此部分测量线路如图1所示。

图中R1为标准电阻,L是小灯泡。

记录灯丝电压及标阻电压,从而获得灯丝电阻与其电压的关系,画出他们的关系曲线,外推到电压为零即可获得环境温度下的电阻。

为测出环境温度下的灯丝电阻,可不必进行大电压围的测量,只测量低电压下的即可。

原理部分评分标准:(1)明确需要测量室温下的电阻,利用测量到的室温度和电阻来确定a,1分(2)①由于小灯泡的热效应直接与其电功率相对应,因此用功率为零来获得室温下的电阻较为合理,得3分。

第32届全国中学生物理竞赛预赛试卷及复习资料(标准word版)

第32届全国中学生物理竞赛预赛试卷及复习资料(标准word版)

第32届全国中学生物理竞赛预赛试卷1~567 8总分910111213141516一、选择题•本题共 5小题,每小题6分•在每小题给出的 4个选项中,有的小 题只有一项符合题意,有的小题有多项符合题意。

把符合题意的选项前面的英文 字母写在每小题后面的方括号内.全部选对的得 6分,选对但不全的得 3分,有1.2014年3月8日凌晨2点40分,马来西亚航空公司一架波音 777-200飞机与管制中心失去联系.2014年3月24日晚,初步确定失事地点位于南纬 31o52'、东经115 o 52'的澳大利亚西南城市珀斯附近的海域•有一颗绕地球做匀速圆周运动的卫星,每天上午同一时刻在该区域正上方对海面拍照,则A. 该卫星一定是地球同步卫星B.该卫星轨道平面与南纬 31 o 52'所确定的平面共面C •该卫星运行周期一定是地球自转周期的整数倍D •地球自转周期一定是该卫星运行周期的整数倍 2.23892U (铀核)衰变为22288Rn (氡核)要经过 A. 8次a 衰变,16次B 衰变 B.3次a 衰变,4次B 衰变 C. 4次a 衰变,16次B 衰变 D. 4次a 衰变,4次B 衰变3. 如图,一半径为 R 的固定的光滑绝缘圆环,位于竖直平面内;环上有两个相 同的带电小球 a 和b (可视为质点),只能在环上移动,静止时两小球之间的距 离为R 。

现用外力缓慢推左球 a 使其到达圆环最低点 c ,然后撤除外力.下列 说法正确的是 A. 在左球a 到达c 点的过程中,圆环对 b 球的支持力变大 B. 在左球a 到达c 点的过程中,外力做正功,电势能增加。

C. 在左球a 到达c 点的过程中,a 、b 两球的重力势能之和不变 D. 撤除外力后,a 、b 两球在轨道上运动过程中系统的能量守恒得分阅卷复核选错或不答的得0分.4. 如图,O点是小球平抛运动抛出点;在O 点有一个频闪点光源,闪光频率为30Hz ;在抛出点的正前方,竖直放置一块毛玻璃,小球初速度与毛玻璃平面垂直.在小球抛出时点光源开始闪光.当点光源闪光时,在毛玻璃上有小球的一个投影点.已知图中O点与毛玻璃水平距离L=1 . 20 m,测得第一、二个投影点之间的距离为0.05 m .取重力加速度g=10m/s2.下列说法正确的A.小球平抛运动的初速度为4m/sB .小球平抛运动过程中,在相等时间内的动量变化不相等C .小球投影点的速度在相等时间内的变化量越来越大D.小球第二、三个投影点之间的距离0. 15m5.某同学用电荷量计(能测出一段时间内通过导体横截面的电荷量)测量地磁场强度,完成了如下实验:如图,将面积为S,电阻为”的矩形导线框abed沿图示方位水平放置于地面上某处,将其从图示位置绕东西轴转180。

32届全国物理竞赛决赛理论考试试题

32届全国物理竞赛决赛理论考试试题

32届全国物理竞赛决赛理论考试试题第32届全国中学生物理竞赛决赛理论考试试题考生须知1.考生考试前务必认真阅读本须知。

2.考试时间为3个小时。

3.试题从本页开始,共4页,含八道大题,总分为140分。

试题的每一页下面标出了该页的页码和试题的总页数。

请认真核对每一页的页码和总页数是否正确,每一页中是否有印刷不清楚的地方,发现问题请及时与监考老师联系。

4.考生可以用发的草稿纸打草稿,但需要阅卷老师评阅的内容一定要写到答题纸上;阅卷老师只评阅答题纸上的内容,写在草稿纸和本试题纸上的解答一律无效。

——————————————————以下为试题————————————————本试卷解答过程中可能需要用到下列公式;1 22 21ln;2;ln(1),2x xxdx dx xx C x x x x x x==+≈-⎰⎰当||<<1一、(15分)一根轻杆两端通过两根轻质弹簧A和B悬挂在天花板下,一物块D通过轻质弹簧C连在轻杆上;A、B和C的劲度系的电阻为0R 、电感为0L 。

导轨与电电枢间摩擦以及空气阻力可忽略.(1)试画出轨道型电磁发射器的等效电路图,并给出回路方程;(2)求发射体在导轨中运动加速度的大小与回路电流的关系:(3)设回路电流为恒流I(平顶脉冲龟流)、电枢和发射体的总质量为m s +m a =0.50kg 、导轨长度为x m =500m 、导轨上单位长度电感增加'10/r LH m μ=,若发射体开始时静止,出口速度v sm =3.0×103m/s ,求回路电流I 和加速时间τ。

三、(15分)俄国火箭专家齐奥尔科夫斯基将火箭发射过程进行模型简化,得出了最早的理想火箭方程,为近代火箭、导弹工程提供了理论依据。

该简化模型为:待发射火箭静止于惯性参考系S 中某点,忽略火箭所受的地球引力等外力的作用,火箭(包含燃料)的初始静止质量为M i ;在t=0时刻点火,火箭向左排出气体,气体相对于火箭的速度恒为V S ,使火箭向右发射;在S 系中观测,火箭的速度为V 1,排出气体的速度为V 2,如图所示。

中学生物理竞赛1 32力学试题分类汇编

中学生物理竞赛1 32力学试题分类汇编

中学生物理竞赛1 32力学试题分类汇编中学生物理竞赛1-32力学试题分类汇编动力学(32-3)如图,一个半径为r的固定的光滑绝缘圆环,位于竖直平面内;环上有两个相同的带电小球a和b(可视为质点),只能在环上移动,静止时距离为r。

现用外力缓慢推小球a至圆环最低点c,然后撤出外力,下列说法正确的是()。

a.在左球a到达c点的过程中,圆环对b球的支持力变大。

b.在左球a到达c点的过程中,外力做正功,电势能增加。

c.在左球a到达c点的过程中,a、b两球的重力势能之和不变.d.撤出外力后,a、b两球在运动的过程中系统的能量守恒。

(32-4)如图,o点时小球平抛运动抛出点;在o点有一个频闪点闪光频率为30赫兹的光源;在投掷点正前方垂直放置一块磨砂玻璃。

小球的初速垂直于毛玻璃平面。

小球投掷后,点光源开始闪烁。

当点光源开始闪烁时,毛玻璃上有一个小球的投影点。

假设O点和磨砂玻璃之间的水平距离为L=1.20m,第一个和第二个投影之间的测量距离为0.05m,重力加速度g=10ms2,则以下是正确的()。

a、在平抛过程中,小球的初始速度为4msb,同时小球的动量变化不均匀。

c、小球投射点的速度在同一时间内变化越来越大。

d、小球的第二和第三投影点之间的距离为0.15米。

(32-6)水平力f方向确定,大小随时间变化如图a所示;用力f拉块体加速度a随时间变化的图像如图B所示。

重力加速度为10ms2。

从图中可以看出,木块与水平桌面之间的最大静摩擦力为___________;木块与水平桌面间的动摩擦因数为___________;在0~4s的时间内,合外力对木块做的功为______________。

(32-7)如图所示,a座和C座放置在光滑的水平面上,B座通过轻型滑轮和绳索悬挂。

a区和B区的质量为2kg,C区的质量为1kg,重力加速度为10ms2。

(1)若固定物块c,释放物块a、b,则a、b的加速度之比为____________;细绳的张力为______________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第32届全国中学生物理竞赛复赛理论考试试题
2015年9月19日
说明:所有解答必须写在答题纸上,写在试题纸上无效。

一、(15分)在太阳内部存在两个主要的核聚变反应过程:
碳循环和质子-质子循环;其中碳循环是贝蒂在1938年提出的,碳循环反应过程如图所示。

图中p 、+e 和e ν分别表示质子、正电子和电子型中微子;粗箭头表示循环反应进行的先后次序。

当从循环图顶端开始,质子p 与12C 核发生反应生成13N 核,反应按粗箭头所示的次序进行,直到完成一个循环后,重新开始下一个循环。

已知+e 、p 和He 核的质量分别为0.511 MeV/c 2、1.0078 u 和 4.0026 u (1u≈931.494 MeV/c 2),电子型中微子e ν的质量可以忽略。

(1)写出图中X 和Y 代表的核素;
(2)写出一个碳循环所有的核反应方程式; (3)计算完成一个碳循环过程释放的核能。

二、(15分)如图,在光滑水平桌面上有一长为L 的轻杆,轻杆两端各固定一质量均为M 的小球A 和B 。

开始时细杆静止;有一质量为m 的小球C 以垂直于杆的速度0v 运动,与A 球碰撞。

将小球和细杆视为一个系统。

(1)求碰后系统的动能(用已知条件和球C 碰后的速度表出); (2)若碰后系统动能恰好达到极小值,求此时球C 的速度和系统的动能。

三、(20分)如图,一质量分布均匀、半径为r 的刚性薄圆环落到粗糙的水平地面前的
瞬间,圆环质心速度v 0与竖直方向成θ(π3π
22
θ<<)角,并同时以角速度0ω(0ω的
正方向如图中箭头所示)绕通过其质心O 、且垂直环面的轴转动。

已知圆环仅在其所
在的竖直平面内运动,在弹起前刚好与地面无相对滑动,圆环与地面碰撞的恢复系数为k ,重力加速度大小为g 。

忽略空气阻力。

(1)求圆环与地面碰后圆环质心的速度和圆环转动的角速度; (2)求使圆环在与地面碰后能竖直弹起的条件和在此条件下圆环能上升的最大高度;
(3)若让θ角可变,求圆环第二次落地点到首次落地点之间的水平距离s 随θ变化的函数关系式、s 的最大值以及s 取最大值时r 、0v 和0ω应满足的条件。

四、(25分)如图,飞机在距水平地面(xz 平面)等高的航线KA (沿x 正方向)上,以大小为v (v 远小于真空中的光速c )的速度匀速飞行;机载雷达天线持续向航线正右侧地面上的被测固定目标P 点(其x 坐标为P x )发射扇形无线电波束(扇形的角平分线与航线垂直),波束平面与水平地面交于线段BC (BC 随着飞机移动,且在测量时应覆盖被测目标P 点),取K 点在地面的正投影O 为坐标原点。

已知BC 与航线KA 的距离为
0R 。

天线发出的无线电波束是周期性的等幅高频脉冲余弦波,其频率为0f 。

(1)已知机载雷达天线经过A 点(其x 坐标为A x )及此后朝P 点相继发出无线电波信号,由P 反射后又被机载雷达天线接收到,求接收到的回波信号的频率与发出信号的频率之差(频移)。

(2)已知BC 长度为s L ,讨论上述频移分别为正、零或负的条件,并求出最大的正、负频移。

(3)已知0s R L >>,求从C 先到达P 点、直至B 到达P 点过程中最大频移与最小频移之差(带宽),并将其表示成扇形波束的张角θ的函数。

已知:当1y <<时,2
2
112
y y +≈+。

五、(20分)如图,“田”字形导线框置于光滑水平面上,
其中每个小正方格每条边的长度l 和电阻R 分别为0.10 m 和1.0 Ω。

导线框处于磁感应强度 1.0 T B =的均匀磁场中,磁场方向竖直向下,边界(如图中虚线所示)与de 边平行。

今将导线框从磁场中匀速拉出,拉出速度的大小为 2.0 m/s =v ,方向与de 边垂直,与ae 边平行。

试求将导线框整体从磁场中拉出的过程中外力所做的功。

六、(23分)如图,一固定的竖直长导线载有恒定电流I ,
其旁边有一正方形导线框,导线框可围绕过对边中心的竖直轴O 1O 2转动,转轴到长直导线的距离为b 。

已知导线框的边长为2a (a b <),总电阻为R ,自感可忽略。

现使导线框绕轴以匀角速度ω逆时针(沿轴线从上往下看)方向转动,以导线框平面与长直导线和竖直轴所在平面重合时开始计时。

求在t 时刻
(1)导线框中的感应电动势E ; (2)所需加的外力矩M 。

V
p O a
b c
d
V 1 3V 1
p 1
3p 1 c '
2p 5V 1
七、(22分)如图,1mol 单原子理想气体构成的系统分别经历循环过程abcda 和abc a '。

已知理想气体在任一缓慢变化过程中,压强p 和体积V 满足函数关系()=p f V 。

(1)试证明:理想气体在任一缓慢变化过程的摩尔热容可表示为
V pR C C dp p V
dV
π=+
+
式中,V C 和R 分别为定容摩尔热容和理想气体
常数;
(2)计算系统经bc '直线变化过程中的摩尔热容;
(3) 分别计算系统经bc '直线过程中升降温的转折点在p-V 图中的坐标A 和吸放热的转折点在p-V 图中的坐标B ;
(4)定量比较系统在两种循环过程的循环效率。

八、(20分)如图,介质薄膜波导由三层均匀介质组成:中间层1为波导薄膜,其折射率为1n ,光波在其中传播;底层0为衬底,其折射率为0n ;上层2为覆盖层,折射率为2n ;102n n n >≥。

光在薄膜层1里来回反射,沿锯齿形向波导延伸方向传播。

图中,i j θ是光波在介质j 表面上的入射角,t j θ是光波在介质j 表面
上的折射角。

(1)入射角i1θ在什么条件下光波可被完全限制在波导
薄膜里(即光未折射到衬底层和覆盖层中)?
(2)已知波导薄膜的厚度为d ,求能够在薄膜波导中传输的光波在该介质中的最长波长max λ。

已知:两介质j 与k 的交界面上的反射系数(即反射光的电场强度与入射光的电场强度之比)为
i t i t cos cos cos cos jk
i j j k k jk jk j j k k
n n r r e
n n ϕθθθθ--=
=+
式中,i j θ和t j θ是分别是光波在介质j 的表面上的入射角和折射角,余类推;正弦函数和余弦函数在复数域中可定义为
sin 2i i e e i θθθ--=
,cos 2
i i e e θθ
θ-+=
n 0
n
1
θt2 θi1
θi1
θt0 n 2
d。

相关文档
最新文档