导数练习

合集下载

高中数学导数练习题

高中数学导数练习题

高中数学导数练习题一、基础题1. 求函数 $f(x) = x^3 3x$ 的导数。

2. 求函数 $f(x) = \sqrt{1+x^2}$ 的导数。

3. 求函数 $f(x) = \frac{1}{x^2}$ 的导数。

4. 求函数 $f(x) = \ln(x^2 + 1)$ 的导数。

5. 求函数 $f(x) = e^{2x}$ 的导数。

二、应用题1. 已知函数 $f(x) = ax^2 + bx + c$,求 $f'(x)$ 并说明其几何意义。

2. 某物体做直线运动,其位移 $s$ 与时间 $t$ 的关系为 $s =t^2 2t + 1$,求物体在 $t=2$ 时的瞬时速度。

3. 已知函数 $f(x) = \frac{1}{\sqrt{x}}$,求曲线在$x=4$ 处的切线方程。

4. 求函数 $f(x) = \sin(x)$ 在区间 $[0, \pi]$ 上的最大值和最小值。

5. 已知函数 $f(x) = \ln(x 1)$,求 $f(x)$ 的单调区间。

三、综合题1. 设函数 $f(x) = (x^2 1)^3$,求 $f'(x)$。

2. 已知函数 $f(x) = \frac{2x + 3}{x 1}$,求 $f'(x)$。

3. 求函数 $f(x) = \sqrt{1 + \sqrt{1 + x^2}}$ 的导数。

4. 已知函数 $f(x) = e^{x^2}$,求曲线在 $x=0$ 处的切线方程。

5. 设函数 $f(x) = \ln(\sin^2 x)$,求 $f'(x)$。

四、拓展题1. 已知函数 $f(x) = \frac{1}{x^2 + 1}$,求 $f''(x)$。

2. 设函数 $f(x) = (x^3 + 1)^4$,求 $f'''(x)$。

3. 已知函数 $f(x) = \arctan(x)$,求 $f'(x)$。

导数的计算练习题及答案

导数的计算练习题及答案

导数的计算练习题及答案1. 计算函数f(x) = 3x^2 - 4x + 2的导数f'(x)。

解答:根据函数f(x) = 3x^2 - 4x + 2,使用导数的定义来计算导数f'(x)。

f'(x) = lim(delta x -> 0) (f(x + delta x) - f(x)) / delta x代入函数f(x)的表达式:f'(x) = lim(delta x -> 0) [(3(x + delta x)^2 - 4(x + delta x) + 2) -(3x^2 - 4x + 2)] / delta x化简并展开:f'(x) = lim(delta x -> 0) [3(x^2 + 2x * delta x + (delta x)^2) - 4x - 4 * delta x + 2 - 3x^2 + 4x - 2] / delta xf'(x) = lim(delta x -> 0) [3x^2 + 6x * delta x + 3(delta x)^2 - 4x - 4* delta x + 2 - 3x^2 + 4x - 2] / delta xf'(x) = lim(delta x -> 0) [6x * delta x + 3(delta x)^2 - 4 * delta x] / delta xf'(x) = lim(delta x -> 0) [6x + 3 * delta x - 4]由于求导数时delta x趋近于0,所以delta x也可以看作一个无穷小量,其平方项可以忽略不计,即delta x^2 = 0。

化简结果:f'(x) = 6x - 4所以函数f(x) = 3x^2 - 4x + 2的导数f'(x)为6x - 4。

2. 计算函数g(x) = 2sin(x) + 3cos(x)的导数g'(x)。

(完整版)导数基础练习.

(完整版)导数基础练习.

导数基础练习(共2页,共17题)一.选择题(共14题)1.函数f(x)=sin2x的导数f′(x)=( )A.2sinx B.2sin2x C.2cosx D.sin2x2.曲线f(x)=lnx+2x在点(1,f(1))处的切线方程是( )A.3x﹣y+1=0 B.3x﹣y﹣1=0 C.3x+y﹣1=0 D.3x﹣y﹣5=0 3.若函数f(x)=sin2x,则f′()的值为()A. B.0 C.1 D.﹣4.函数f(x)=xsinx+cosx的导数是()A.xcosx+sinx B.xcosx C.xcosx﹣sinx D.cosx﹣sinx5.的导数是( )A.B.C.D.6.y=xlnx的导数是()A.x B.lnx+1 C.3x D.17.函数y=cose x的导数是( )A.﹣e x sine x B.cose x C.﹣e x D.sine x8.已知,则f′()=()A.﹣1+B.﹣1 C.1 D.09.函数的导数是( )A.B. C.e x﹣e﹣x D.e x+e﹣x10.函数y=x2﹣2x在﹣2处的导数是()A.﹣2 B.﹣4 C.﹣6 D.﹣811.设y=ln(2x+3),则y′=()A.B.C.D.12.已知函数,则f′(x)等于()A.B. C.0 D.13.曲线y=x2+3x在点A(2,10)处的切线的斜率k是( )A.4 B.5 C.6 D.714.曲线y=4x﹣x2上两点A(4,0),B(2,4),若曲线上一点P处的切线恰好平行于弦AB,则点P的坐标为()A.(1,3)B.(3,3)C.(6,﹣12) D.(2,4)二.填空题(共2题)15.求导:()′=_________ .16.函数y=的导数是_________ .三.解答题(共1题)17.求函数y=e x5 +2的导数.导数基础练习(试题解析)一.选择题(共14题)1.函数f(x)=sin2x的导数f′(x)=( )A.2sinx B.2sin2x C.2cosx D.s in2x考点:简单复合函数的导数.考查学生对复合函数的认识,要求学生会对简单复合函数求导.分析:将f(x)=sin2x看成外函数和内函数,分别求导即可.解答:将y=sin2x写成,y=u2,u=sinx的形式.对外函数求导为y′=2u,对内函数求导为u′=cosx,∴可以得到y=sin2x的导数为y′=2ucosx=2sinxcosx=sin2x.∴选D.红色sin2x、蓝色sin2x2.曲线f(x)=lnx+2x在点(1,f(1))处的切线方程是( )A.3x﹣y+1=0B.3x﹣y﹣1=0C.3x+y﹣1=0D.3x﹣y﹣5=0考点:简单复合函数的导数;直线的点斜式方程.考查学生对切线方程的理解,要求写生能够熟练掌握.分析:先要求出在给定点的函数值,然后再求出给定点的导数值.将所求代入点斜式方程即可.解答:对f(x)=lnx+2x求导,得f′(x)=+2.∴在点(1,f(1))处可以得到f(1)=ln1+2=2,f′(1)=1+2=3.∴在点(1,f(1))处的切线方程是:y﹣f(1)=f′(1)(x﹣1),代入化简可得,3x﹣y﹣1=0.∴选B.红色lnx+2x、蓝色3x﹣y﹣1=0(即y=3x-1)3.若函数f(x)=sin2x,则f′()的值为()A.B.0C.1D.﹣考点:简单复合函数的导数.计算题.求函数在某点处的导数值,应该先利用导数的运算法则及初等函数的导数公式求出导函数,再求导函数值.分析:先利用复合函数的导数运算法则求出f(x)的导函数,将x=代入求出值.解答:解:f′(x)=cos2x(2x)′=2cos2x,∴f′()=2cos=1,∴选C.红色sin2x、蓝色2cos2x4.函数f(x)=xsinx+cosx的导数是()A.x cosx+sinx B.x cosx C.x cosx﹣sinx D.c osx﹣sinx考点:导数的乘法与除法法则;导数的加法与减法法则.计算题.本题考查导数的运算法则、基本初等函数的导数公式.属于基础试题.分析:利用和及积的导数运算法则及基本初等函数的导数公式求出函数的导数.解答:解:∵f(x)=xsinx+cosx,∴f′(x)=(xsinx+cosx)′=(xsinx)′+(cosx)′=x′sinx+x(sinx)′﹣sinx=sinx+xcosx﹣sinx=xcosx,∴选B.红色xsinx+cosx、蓝色xcosx5.的导数是()A.B.C.D.考点:导数的乘法与除法法则.计算题.本题考查导数的除法运算法则,解题时认真计算即可,属于基础题.分析:利用导数的四则运算法则,按规则认真求导即可解答:解:y′===∴选A.红色、绿色y′=6.y=xlnx的导数是()A.x B.l nx+1C.3x D.1考点:导数的乘法与除法法则.导数的综合应用.本题考查导数的乘法法则,考查了基本初等函数的导数公式,属于基础题.分析:直接由导数的乘法法则结合基本初等函数的导数公式求解.解答:解:∵y=xlnx,∴y′=(xlnx)′=x′lnx+x(lnx)′=.∴选B.红色xlnx、绿色lnx+17.函数y=cose x的导数是()A.﹣e x sine x B.c ose x C.﹣e x D.s ine x考点:导数的乘法与除法法则.导数的概念及应用.本题主要考查导数的基本运算,要求熟练掌握常见函数的导数公式以及导数的运算法则.分析:根据导数的运算法则即可得到结论.解答:解:函数的导数为f′(x)=﹣sine x•(e x)′=﹣e x sine x,∴选A.红色cose x、绿色﹣e x sine x8.已知,则f′()=()A.﹣1+B.﹣1C.1D.0考点:导数的加法与减法法则.计算题.本题主要考查了导数的运算,以及求函数值,解题的关键是正确求解导函数,属于基础题.分析:本题先对已知函数进行求导,再将代入导函数解之即可.解答:解:∴选B.红色、绿色-sinx9.函数的导数是( )A.B.C.e x﹣e﹣x D.e x+e﹣x考点:导数的加法与减法法则.计算题.本题考查导数的运算,牢记求导公式是解本题的关键.分析:根据求导公式(u+v)′=u′+v′及(e x)′=e x即可求出函数的导数.解答:解:∵,∴y′==.∴选A.红色、蓝色10.函数y=x2﹣2x在﹣2处的导数是( )A.﹣2B.﹣4C.﹣6D.﹣8考点:导数的加法与减法法则.计算题;导数的概念及应用.本题考查导数的加法与减法法则,考查基本初等函数的导数公式,是基础的计算题.分析:求出原函数的导函数,在导函数解析中取x=﹣2计算即可得到答案.=2×(﹣2)﹣2=﹣6.∴选C.解答:解:由y=x2﹣2x,得y′=2x﹣2.∴y′|x=﹣2红色y=x2﹣2x、蓝色y′=2x﹣211.设y=ln(2x+3),则y′=()A.B.C.D.考点:导数的运算.导数的概念及应用.本题主要考查导数的计算,要求熟练掌握复合函数的导数公式,属于基础题.分析:根据复合函数的导数公式即可得到结论.解答:解:∵y=ln(2x+3),∴,∴选:D红色ln(2x+3)、蓝色12.已知函数,则f′(x)等于()A.B.C.0D.考点:导数的运算.导数的概念及应用.本题考查了常数的导数,只要理解常数c′=0即可解决此问题.分析:我们知道:若函数f(x)=c为常数,则f′(x)=0,∴可得出答案.解答:解:∵函数,∴f′(x)=0.∴选C.13.曲线y=x2+3x在点A(2,10)处的切线的斜率k是()A.4B.5C.6D.7考点:导数的几何意义.计算题.本题考查函数在某点导数的几何意义的应用.分析:曲线y=x2+3x在点A(2,10)处的切线的斜率k就等于函数y=x2+3x在点A(2,10)处的导数值.解答:解:曲线y=x2+3x在点A(2,10)处的切线的斜率,k=y′=2x+3=2×2+3=7,∴答案为7.红色x2+3x、蓝色2x+314.曲线y=4x﹣x2上两点A(4,0),B(2,4),若曲线上一点P处的切线恰好平行于弦AB,则点P的坐标为()A.(1,3)B.(3,3)C.(6,﹣12)D.(2,4)考点:导数的几何意义.考核导数的几何意义及两条直线平行斜率的关系.分析:首先求出弦AB的斜率,再利用导数的几何意义求出P点坐标.解答:解:设点P(x0,y),∵A(4,0),B(2,4),∴kAB==﹣2.∵过点P的切线l平行于弦AB,∴kl=﹣2,∴根据导数的几何意义得知,曲线在点P的导数y′=4﹣2x=4﹣2x=﹣2,即x=3,∵点P(x0,y)在曲线y=4x﹣x2上,∴y=4x﹣x2=3.∴选B.红色4x﹣x2、蓝色4﹣2x二.填空题(共2题)15.求导:()′=,.考点:简单复合函数的导数.导数的概念及应用.本题主要考查导数的计算,根据复合函数的导数公式是解决本题的关键.分析: 根据复合函数的导数公式进行求解即可. 解答: 解:=(x 2+1)21,则函数的导数为y′=(x 2+1)21-(x 2+1)′=(x 2+1)21-×2x=,∴答案为:红色、蓝色16.函数y =的导数是 .考点: 简单复合函数的导数.导数的概念及应用.本题主要考查导数的计算,根据复合函数的导数公式进行计算是解决本题的关键.分析: 根据复合函数的导数公式进行计算即可. 解答:解:函数的导数为y′==,∴答案为:红色、蓝色三.解答题(共1题)17.求函数y=e x5-+2的导数.考点:简单复合函数的导数.导数的概念及应用.本题考查导数的运算,以及导数基本知识的考查.分析:直接利用复合函数的导数求解运算法则求解即可.解答:解:函数y=e x5-+2的导数:y′=﹣5e x5-.∴答案为:y′=﹣5e x5-.红色e x5-+2、蓝色﹣5e x5-。

必修一数学导数练习题

必修一数学导数练习题

必修一数学导数练习题一、基础题1. 求函数f(x) = x^3 3x的导数。

2. 求函数g(x) = 2x^2 + 4x 1的导数。

3. 求函数h(x) = (1/2)x^4 3x^2 + 2的导数。

4. 求函数k(x) = 3x^5 5x^3 + 2x的导数。

5. 求函数m(x) = (2/3)x^3 (4/5)x^2 + (1/2)x的导数。

二、应用题1. 一物体做直线运动,其位移s(单位:米)与时间t(单位:秒)的关系为s = 3t^2 2t + 1,求物体在t=2秒时的瞬时速度。

2. 某企业生产一种产品,其成本函数为C(x) = 1000 + 5x^2,其中x为生产数量。

求生产100件产品时的边际成本。

3. 一辆汽车以v(t) = 4t^2 3t + 2(单位:米/秒)的速度行驶,求汽车在t=3秒时的加速度。

4. 某商品的需求函数为Q(p) = 100 p,其中p为商品价格。

求当价格为30元时的需求弹性。

5. 已知某函数f(x)的导数为f'(x) = 6x^2 4x + 1,求f(x)的一个原函数。

三、综合题1. 设函数f(x) = x^3 3x^2 + 2x,求f(x)在x=1处的切线方程。

2. 已知函数g(x) = e^x x^2,求g(x)的单调区间。

3. 求函数h(x) = ln(x^2 + 1)的极值。

4. 设函数k(x) = (1/2)x^4 (2/3)x^3 + x^2,求k(x)的拐点。

5. 已知函数m(x) = arcsin(x 1),求m(x)的凹凸区间。

四、拓展题1. 已知函数f(x) = x^4 4x^3 + 6x^2,求f(x)的二阶导数。

2. 设函数g(x) = (x^2 + 1)^3,求g(x)的三阶导数。

3. 已知函数h(x) = sin(x) + cos(x),求h(x)的四阶导数。

4. 设函数k(x) = e^(2x) 2e^x,求k(x)的五阶导数。

导数的运算练习题

导数的运算练习题

导数的运算练习题在微积分学中,导数是非常重要的概念之一,它用于描述函数在某一点附近的变化率。

掌握导数的运算是学习微积分的基础,本文将为大家提供一些导数的运算练习题,帮助读者巩固掌握导数的计算方法。

1. 计算下列函数的导数:(1)f(x) = x^3 + 2x^2 - 5x + 1(2)g(x) = sin(x) - cos(x)(3)h(x) = e^x + ln(x)(4)i(x) = √(x^2 + 1)2. 计算下列函数的导数:(1)f(x) = 2x^3 - 3x^2 + 4x - 1(2)g(x) = cos(x) + sin(x) + tan(x)(3)h(x) = ln(x^2) - e^(2x)(4)i(x) = √x + 1/x3. 计算下列函数的导数:(1)f(x) = x^4 + 2x^3 - 3x^2 + 4x - 1(2)g(x) = sin(2x) - cos(2x)(3)h(x) = e^(x^2) + ln(x^3)(4)i(x) = ln(x) + e^x4. 计算下列函数的导数:(1)f(x) = x^5 + 2x^4 - 3x^3 + 4x^2 - 5x + 1(2)g(x) = sin(x)cos(x)(3)h(x) = ln(x) + e^x - x(4)i(x) = e^(2x) + ln(x^2)通过以上的练习题,读者可以熟悉导数的计算方法,掌握常用函数的导数运算规则。

在计算导数时,读者需要注意以下几点:1. 基本函数的导数规则:对于多项式函数,求导后,指数降低1,系数不变;对于三角函数,求导后,正弦变余弦,余弦变负正弦;对于指数函数,求导后,底数不变,指数变形式的导数。

2. 乘法法则:若函数为两个函数的乘积,则导数等于其中一个函数的导数乘以另一个函数,再加上另一个函数的导数乘以第一个函数。

3. 除法法则:若函数为两个函数的商,则导数等于分子函数的导数乘以分母函数,减去分母函数的导数乘以分子函数,再除以分母函数的平方。

高二数学导数练习题及答案

高二数学导数练习题及答案

高二数学导数练习题及答案导数是高中数学中的重要概念之一,它在数学和实际问题中具有广泛的应用。

为了帮助高二学生巩固导数的知识和提高解题能力,本文为大家准备了一些高二数学导数练习题及答案。

希望通过这些练习题的训练,同学们能够更好地理解导数的概念和运用。

练习题一:1. 求函数 f(x) = 2x^3 - 3x^2 + 4x - 1 在点 x = 2 处的导数。

2. 已知函数 f(x) = x^2 + 3x,求函数 f(x) = x^2 + 3x 的导函数。

3. 求函数 f(x) = (x + 1)(x - 2)(x + 3) 在点 x = -1 处的导数。

答案一:1. 函数 f(x) = 2x^3 - 3x^2 + 4x - 1 的导数为:f'(x) = 6x^2 - 6x + 4。

2. 函数 f(x) = x^2 + 3x 的导函数为:f'(x) = 2x + 3。

3. 函数 f(x) = (x + 1)(x - 2)(x + 3) 在点 x = -1 处的导数为:f'(-1) = 0。

练习题二:1. 求函数 f(x) = 3x^4 - 2x^3 + 5x^2 - 4x + 1 的极值点及极值。

2. 已知函数 f(x) = x^3 - 6x^2 + 9x + 2,求函数 f(x) = x^3 - 6x^2 + 9x+ 2 的拐点。

3. 求函数 f(x) = x^3 - 3x 在其定义域内的极值点。

答案二:1. 函数 f(x) = 3x^4 - 2x^3 + 5x^2 - 4x + 1 的极值点为 x = 1/2,极值为 f(1/2) = 47/16。

2. 函数 f(x) = x^3 - 6x^2 + 9x + 2 的拐点为 x = 2。

3. 函数 f(x) = x^3 - 3x 在其定义域内的极值点为 x = 1。

练习题三:1. 求函数 f(x) = e^x 的导数。

2. 已知函数 f(x) = ln(x),求函数 f(x) = ln(x) 的导函数。

导数基础练习题

导数基础练习题

导数基础练习题1.与直线2x-y+4=的平行的抛物线y=x的切线方程是A。

2x-y+3=B。

2x-y-3=C。

2x-y+1=D。

2x-y-1=2.函数y=(x+1)(x-1)在x=1处的导数等于A。

1B。

2C。

33.过抛物线y=x上的点M(-π/4,11/4)的切线的倾斜角为A。

π/24B。

3π/42C。

3π/144.函数y=1+3x-x^2有()A。

极小值-1,极大值1 B。

极小值-2,极大值3 C。

极小值-2,极大值2 D。

极小值-1,极大值35.已知f(x)=x,则f'(3)等于A。

2B。

6C。

1D。

96.f(x)=的导数是A。

1B。

不存在C。

2x7.y=3x^2的导数是A。

3x^2B。

x^2/11C。

-2/3x^38.曲线y=x^n在x=2处的导数是12,则n等于A。

1B。

2C。

3D。

49.若f(x)=3x,则f'(1)等于A。

-3B。

3C。

1D。

610.y=x^2的斜率等于2的切线方程是A。

2x-y+1=B。

2x-y+1=或2x-y-1=C。

2x-y-1=D。

2x-y=11.在曲线y=x^2上的切线的倾斜角为π/4的点是A。

(0,0)B。

(2,4)C。

(11/24,11/16)D。

(11/16,11/24)12.已知f(x)=x-5+3sinx,则f'(x)等于A。

-5x-6-3cosxB。

x-6+3cosxC。

-5x-6+3cosxD。

x-6-3cosx13.函数y=cos^-2x的导数是A。

-2cosxsinxB。

sin2xcos^-4xC。

-2cos^2xD。

-2sin^2x14.设y=f(sinx)是可导函数,则y'等于A。

f'(sinx)B。

f'(sinx)cosxC。

f'(sinx)sinxD。

f'(cosx)cosx15.函数y=4(2-x+3x^2)的导数是A。

8(2-x+3x^2)B。

2(-1+6x)^2C。

导数的运算专项练习(含答案)

导数的运算专项练习(含答案)

导数的运算一、单选题(共33题;共66分)1.f′(x)是函数f(x)=x3+2x+1的导函数,则f′(-1)的值为()A. 0B. 3C. 4D. -2.函数的导数为()A. B. C. D.3.设函数,若,则等于()A. B. C. D.4.设则等于( )A. B. C. D.5.已知函数的导函数,且满足,则=( )A. B. C. 1 D.6.已知函数的导函数为,且,则()A. 2B. 3C. 4D. 57.下列求导运算的正确是()A. 为常数B.C.D.8.已知函数的值为()A. B. C. D.9.下列求导运算正确的是()A. B. C. D.10.已知函数f(x)=sinx-cosx,则f'()=()A. B. C. D.11.若函数f(x)=2+xcos2x,则f'(x)=()A. cos 2x-xsin 2xB. x-sin 2xC. 1-2sin 2xD. cos2x-2sin2x12.函数的导数为()A. =2B. =C. =2D. =13.设函数的导函数为,且,则=( )A. 0B. -4C. -2D. 214.设,若,则()A. B. C. D.15.已知函数,则其导数()A. B. C. D.16.若函数,则的值为()A. 0B. 2C. 1D. -117.已知函数,且,则的值为()A. B. C. D.18.已知函数,为的导函数,则的值为()A. B. C. D.19.下列求导运算正确的是()A. B. C. D.20.已知函数的导函数为,且满足,则()A. B. C. D.21.若,则函数的导函数()A. B. C. D.22.函数的导数为()A. B. C. D.23.下列导数式子正确的是()A. B. C. D.24.已知,则等于()A. -2B. 0C. 2D. 425.已知函数,则()A. B. C. D.26.已知,则()A. B. C. D.27.设,,则x0=( )A. e2B. eC.D. ln 228.下列求导数运算正确的是()A. B. C. D.29.若f(x)=x2-2x-4ln x,则f′(x)>0的解集为()A. (0,+∞)B. (-1,0)∪(2,+∞)C. (-1,0)D. (2,+∞)30.下列求导运算正确的是( )A. B. C. D.31.已知,则 ( )A. B. C. D. 以上都不正确32.设f(x)=xln x,若f′(x0)=2,则x0等于( )A. e2B. eC.D. ln 233.下列导数运算正确的是()A. B. C. D.二、填空题(共11题;共11分)34.已知函数的导函数为,若,则的值为________.35.若函数,则的值为________.36.已知,则________.37.若函数,则________.38.已知函数,则________.39.已知函数,是的导函数,则________.40.若f(x)=x3,f′(x0)=3,则x0的值为________.41.已知在上可导,,则________.42.已知函数的导函数为,且,则________.43.已知f(x)=2x+3xf′(0),则f′(1)=________.44.已知函数f(x)=2e x﹣x的导数为,则的值是________.三、解答题(共6题;共60分)45.求下列函数的导函数.①②③④⑤⑥46.求下列函数的导函数①②③④⑤⑥47.求下列函数的导数:(1);(2).48.求下列函数的导数:(1);(2);(3);(4).49.求下列函数的导数.(1);(2).50.求下列函数的导数.(1)y=3x2+xcos x;(2)y=lgx-;答案解析部分一、单选题1.【答案】B【考点】导数的运算【解析】【解答】解:因为,则,所以,故答案为:B.【分析】先由函数,求得导函数,再求即可得解.2.【答案】D【考点】导数的运算【解析】【解答】因为,则函数的导函数,故答案为:D.【分析】先根据完全平方公式对展开,再运用常见初等函数的求导公式和求导运算法则可求解.3.【答案】D【考点】导数的运算【解析】【解答】,,,解得,故答案为:D,【分析】对函数求导,再由可求出实数的值.4.【答案】D【考点】导数的运算【解析】【解答】由,得.故答案为:D.【分析】由已知利用导数的运算性质进行计算,即可得结果.5.【答案】B【考点】导数的运算【解析】【解答】对函数进行求导,得把代入得,直接可求得。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1课时 变化率与导数、导数的计算1.导数的概念:函数y =)(x f 的导数)(x f ',就是当Δx →0时,函数的增量Δy 与自变量的增量Δx 的比xy∆∆的 ,即)(x f '= = . 2.导函数:函数y =)(x f 在区间(a, b)内 的导数都存在,就说)(x f 在区间( a, b )内 ,其导数也是(a ,b )内的函数,叫做)(x f 的 ,记作)(x f '或x y ',函数)(x f 的导函数)(x f '在0x x =时的函数值 ,就是)(x f 在0x 处的导数.3.导数的几何意义:设函数y =)(x f 在点0x 处可导,那么它在该点的导数等于函数所表示曲线在相应点),(00y x M 处的 . 4.求导数的方法(1) 八个基本求导公式)('C = ; )('n x = ;(n∈Q) )(sin 'x = , )(cos 'x =)('x e = , )('x a =)(ln 'x = , )(log 'x a =(2) 导数的四则运算)('±v u = ])(['x Cf =)('uv = ,)('vu = )0(≠v(3) 复合函数的导数设)(x u θ=在点x 处可导,)(u f y =在点)(x u θ=处可导,则复合函数)]([x f θ在点x 处可导, 且)(x f '= ,即x u x u y y '⋅'='. 12+x 在x 0到x 0+Δx 之间的平均变化率.变式训练1. 求y=x 在x=x 0处的导数.例2. 求下列各函数的导数: (1);sin 25x xx x y ++= (2));3)(2)(1(+++=x x x y(3);4cos 212sin 2⎪⎭⎫⎝⎛--=x x y (4).1111xxy ++-=变式训练2:求y=tanx 的导数.例3. 已知曲线y=.34313+x(1)求曲线在x=2处的切线方程; (2)求曲线过点(2,4)的切线方程.变式训练3:若直线y=kx 与曲线y=x 3-3x 2+2x 相切,则k= .例4. 设函数bx ax x f ++=1)( (a,b∈Z ),曲线)(x f y =在点))2(,2(f 处的切线方程为y=3. (1)求)(x f 的解析式;(2)证明:曲线)(x f y =上任一点的切线与直线x=1和直线y=x 所围三角形的面积为定值,并求出此定值.变式训练4:偶函数f (x )=ax 4+bx 3+cx 2+dx+e 的图象过点P (0,1),且在x=1处的切线方程为y=x-2,求y=f (x )的解析式.1.理解平均变化率的实际意义和数学意义。

2.要熟记求导公式,对于复合函数的导数要层层求导.3.搞清导数的几何意义,为解决实际问题,如切线、加速度等问题打下理论基础.第2课时 导数的概念及性质1. 函数的单调性⑴ 函数y =)(x f 在某个区间内可导,若)(x f '>0,则)(x f 为 ;若)(x f '<0,则)(x f 为 .(逆命题不成立)(2) 如果在某个区间内恒有0)(='x f ,则)(x f .注:连续函数在开区间和与之相应的闭区间上的单调性是一致的. (3) 求可导函数单调区间的一般步骤和方法: ① 确定函数)(x f 的 ;② 求)(x f ',令 ,解此方程,求出它在定义区间内的一切实根;③ 把函数)(x f 的间断点(即)(x f 的无定义点)的横坐标和上面的各个实根按由小到大的顺序排列起来,然后用这些点把函数)(x f 的定义区间分成若干个小区间;④ 确定)(x f '在各小开区间内的 ,根据)(x f '的符号判定函数)(x f 在各个相应小开区间内的增减性.2.可导函数的极值 ⑴ 极值的概念设函数)(x f 在点0x 附近有定义,且对0x 附近的所有点都有 (或 ),则称)(0x f 为函数的一个极大(小)值.称0x 为极大(小)值点.⑵ 求可导函数极值的步骤: ① 求导数)(x f ';② 求方程)(x f '=0的 ;③ 检验)(x f '在方程)(x f '=0的根左右的符号,如果在根的左侧附近为正,右侧附近为负,那么函数y =)(x f 在这个根处取得 ;如果在根的左侧附近为负,右侧为正,那么函数y =)(x f 在这个根处取得 .3.函数的最大值与最小值: ⑴ 设y =)(x f 是定义在区间[a ,b ]上的函数,y =)(x f 在(a ,b )内有导数,则函数y =)(x f 在[a ,b ]上 有最大值与最小值;但在开区间内 有最大值与最小值. (2) 求最值可分两步进行:① 求y =)(x f 在(a ,b )内的 值;② 将y =)(x f 的各 值与)(a f 、)(b f 比较,其中最大的一个为最大值,最小的一个为最小值. (3) 若函数y =)(x f 在[a ,b ]上单调递增,则)(a f 为函数的 ,)(b f 为函数的 ;若函数y =)(x f 在[a ,b ]上单调递减,则)(a f 为函数的 ,)(b f 为函数的 . 例1. 已知f(x)=e x-ax-1. (1)求f(x)的单调增区间;(2)若f(x )在定义域R 内单调递增,求a 的取值范围;(3)是否存在a,使f(x)在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出a 的值;若不存在,说明理由.变式训练1.已知函数f(x)=x3-ax-1.(1)若f(x)在实数集R上单调递增,求实数a的取值范围;(2)是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a的取值范围;若不存在,说明理由;(3)证明:f(x)=x3-ax-1的图象不可能总在直线y=a的上方.2时,y=f(x)例2.已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=1处的切线为l:3x-y+1=0,若x=3有极值.(1)求a,b,c的值;(2)求y=f(x)在[-3,1]上的最大值和最小值.变式训练2. 函数y=x4-2x2+5在区间[-2,2]上的最大值与最小值.例3. 已知函数f(x)=x2e-ax (a>0),求函数在[1,2]上的最大值.变式训练3. 设函数f(x)=-x(x-a)2(x∈R),其中a∈R.(1)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)当a≠0时,求函数f(x)的极大值和极小值.例4. 某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a元(3≤a≤5)的管理费,预计当每件产品的售价为x元(9≤x≤11)时,一年的销售量为(12-x)2万件. (1)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式;(2)当每件产品的售价为多少元时,分公司一年的利润L最大,并求出L的最大值Q(a).变式训练4:某造船公司年造船量是20艘,已知造船x艘的产值函数为R(x)=3 700x+45x2-10x3(单位:万元),成本函数为C(x)=460x+5 000(单位:万元),又在经济学中,函数f(x)的边际函数Mf(x)定义为Mf(x)=f(x+1)-f(x).(1)求利润函数P(x)及边际利润函数MP(x);(提示:利润=产值-成本)(2)问年造船量安排多少艘时,可使公司造船的年利润最大?(3)求边际利润函数MP(x)的单调递减区间,并说明单调递减在本题中的实际意义是什么?研究可导函数)('xf=0('xf,再找出) (xf的单调性、极值(最值)时,应先求出函数)(xf的导函数)的x取值或)f<0)的x的取值范围.('xf>0()('x导数及其应用单元检测题一、选择题1.曲线y=e x 在点(2,e 2)处的切线与坐标轴所围三角形的面积为( )A.49e 2B.2e 2C.e 2D.2e 22.如果函数y=f(x)的图象如图所示,那么导函数y=)(x f '的图象可能是 ( )3.设f(x)=x 2(2-x),则f(x)的单调增区间是 ( )A.(0,)34B.(,34+∞) C .(-∞,0) D.(-∞,0)∪(34,+∞) 4.设a∈R ,若函数y=e x+ax,x∈R 有大于零的极值点,则 ( ) A.a<-1 B.a>-1C.a<-e 1D.a>-e15.已知函数y=f(x)=x 3+px 2+qx 的图象与x 轴切于非原点的一点,且y 极小值=-4,那么p 、q 的值分别为 ( )A.6,9B.9,6C.4,2D.8,66.已知x≥0,y≥0,x+3y=9,则x 2y 的最大值为 ( )A.36B.18C.25D.427.下列关于函数f(x)=(2x-x 2)e x的判断正确的是 ( ) ①f(x)>0的解集是{x|0<x<2};②f(-2)是极小值,f(2)是极大值; ③f(x)没有最小值,也没有最大值.A.①③B.①②③C.②D.①② 8.函数f(x)的图象如图所示,下列数值排序正确的是 ( ) A.0<)2('f <)3('f <f(3)-f(2) B.0<)3('f <f(3)-f(2) <)2('f C.0<f(3)<)2('f <f(3)-f(2) D.0<f(3)-f(2)<)2('f <)3('f9.若函数f(x)=x 3-ax 2+1在(0,2)内单调递减,则实数a 的取值范围为 ( ) A.a ≥3 B.a=3 C.a ≤3 D.0<a<310.函数f(x)=x 3-ax 2-bx+a 2,在x=1时有极值10,则a 、b 的值为 ( ) A.a=3,b=-3,或a=-4,b=11 B.a=-4,b=11 C.a=3,b=-3 D.以上都不正确 11.使函数f(x)=x+2cosx 在[0,2π]上取最大值的x 为 ( ) A.0 B.6π C.3π D.2π 12.若函数f(x)=x 3-3bx+3b 在(0,1)内有极小值,则 ( )1A.0<b<1B.b<1C.b>0D.b<2二、填空题13.若f(x)=x3+3ax2+3(a+2)x+1没有极值,则a的取值范围为 .14.如图是y=f(x)导数的图象,对于下列四个判断:①f(x)在[-2,-1]上是增函数;②x=-1是f(x)的极小值点;③f(x)在[-1,2]上是增函数,在[2,4]上是减函数;④x=3是f(x)的极小值点.其中判断正确的是 .15.函数f(x)的导函数y=)f'的图象如右图,则函数f(x)的单调递增区间为 .(x16.已知函数f(x)的导函数为)f',且满足f(x)=3x2+2x)2('f,则)5('f= .(x三、解答题1x2+bx+c.17.已知函数f(x)=x3-2(1)若f(x)在(-∞,+∞)上是增函数,求b的取值范围;(2)若f(x)在x=1处取得极值,且x∈[-1,2]时,f(x)<c2恒成立,求c的取值范围.18.设p:f(x)=(x2-4)(x-a)在(-∞,-2)和(2,+∞)上是单调增函数;q:不等式x2-2x>a的解集为R. 如果p与q有且只有一个正确,求a的取值范围.19.已知函数f(x)=x(x-1)(x-a)在(2,+∞)上是增函数,试确定实数a的取值范围.20.已知定义在R上的函数f(x)=-2x3+bx2+cx(b,c∈R),函数F(x)=f(x)-3x2是奇函数,函数f(x)在x=-1处取极值.(1)求f(x)的解析式;(2)讨论f(x)在区间[-3,3]上的单调性.1x2上一点,直线l过点P并与抛物线21.如图所示,P是抛物线C:y=2C在点P的切线垂直,l与抛物线C相交于另一点Q,当点P在抛物线C上移动时,求线段PQ的中点M的轨迹方程,并求点M到x轴的最短距离.1,4]时,22.已知某质点的运动方程为s(t)=t3+bt2+ct+d,下图是其运动轨迹的一部分,若t∈[2s(t)<3d2恒成立,求d的取值范围.五年高考荟萃 2009年高考题一、选择题1.(2009年广东卷文)函数x e x x f )3()(-=的单调递增区间是( )A. )2,(-∞B.(0,3)C.(1,4)D. ),2(+∞2.(2009全国卷Ⅰ理) 已知直线y=x+1与曲线y ln()x a =+相切,则α的值为( )A.1 B. 2 C.-1 D.-23.(2009安徽卷理)已知函数()f x 在R 上满足2()2(2)88f x f x x x =--+-,则曲线()y f x =在点(1,(1))f 处的切线方程是( )A.21y x =-B.y x =C.32y x =-D.23y x =-+4.(2009江西卷文)若存在过点(1,0)的直线与曲线3y x =和21594y ax x =+-都相切,则a 等于( )A .1-或25-64 B .1-或214 C .74-或25-64D .74-或75.(2009江西卷理)设函数2()()f x g x x =+,曲线()y g x =在点(1,(1))g 处的切线方程为21y x =+,则曲线()y f x =在点(1,(1))f 处切线的斜率为( )A .4B .14-C .2D .12- 6.(2009全国卷Ⅱ理)曲线21xy x =-在点()1,1处的切线方程为( )A. 20x y --=B. 20x y +-=C.450x y +-=D. 450x y --= 7.(2009湖南卷文)若函数()y f x =的导函数...在区间[,]a b 上是增函数, 则函数()y f x =在区间[,]a b 上的图象可能是( )A .B .C .D .8.(2009辽宁卷理)若1x 满足2x+2x =5, 2x 满足2x+22log (x -1)=5, 1x +2x =( ) A.52 B.3 C.72D.4 9.(2009天津卷理)设函数1()ln (0),3f x x x x =->则()y f x = ( ) A 在区间1(,1),(1,)e e 内均有零点。

相关文档
最新文档