北师大版数学八年级上册4.1函数

合集下载

北师大版八年级数学上册:4.1《函数》教案

北师大版八年级数学上册:4.1《函数》教案

北师大版八年级数学上册:4.1《函数》教案一. 教材分析《函数》是北师大版八年级数学上册第4章第1节的内容。

本节内容是学生学习数学的基础知识,对于学生理解数学的本质,培养学生的逻辑思维能力具有重要意义。

本节内容主要介绍了函数的概念、函数的表示方法以及函数的性质。

通过本节内容的学习,学生能够理解函数的基本概念,掌握函数的表示方法,理解函数的性质。

二. 学情分析学生在学习本节内容之前,已经学习了有理数、代数式等基础知识,对于数学的基本概念和逻辑思维能力有一定的掌握。

但是,对于函数这一概念,学生可能比较陌生,需要通过具体的教学活动来帮助学生理解和掌握。

三. 教学目标1.知识与技能:理解函数的基本概念,掌握函数的表示方法,理解函数的性质。

2.过程与方法:通过具体的教学活动,培养学生的逻辑思维能力,提高学生的问题解决能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,提高学生的自我表达能力。

四. 教学重难点1.重点:函数的概念、函数的表示方法、函数的性质。

2.难点:函数的概念的理解,函数的性质的推导。

五. 教学方法1.情境教学法:通过具体的生活实例,引导学生理解函数的概念,激发学生的学习兴趣。

2.小组合作学习:通过小组讨论,培养学生的团队合作精神,提高学生的问题解决能力。

3.启发式教学法:通过提问,引导学生思考,培养学生的逻辑思维能力。

六. 教学准备1.教学素材:函数的实例、函数的图片、函数的性质的推导过程。

2.教学工具:黑板、粉笔、多媒体设备。

七. 教学过程1.导入(5分钟)通过具体的生活实例,如气温、身高、体重等,引导学生理解函数的概念。

2.呈现(10分钟)介绍函数的表示方法,如解析式、图像等,并通过多媒体展示函数的图像,帮助学生理解函数的表示方法。

3.操练(10分钟)让学生通过小组合作学习,探讨函数的性质,如单调性、奇偶性等,并展示小组讨论的结果。

4.巩固(10分钟)通过提问和回答的方式,巩固学生对函数的概念、表示方法和性质的理解。

北师大版八年级数学上册:4.1《函数》教案1

北师大版八年级数学上册:4.1《函数》教案1

北师大版八年级数学上册:4.1《函数》教案1一. 教材分析《函数》是北师大版八年级数学上册第4章第1节的内容。

本节课的主要内容是让学生了解函数的概念,理解函数的性质,以及掌握函数的表示方法。

通过本节课的学习,使学生能够理解生活中的一些现象和问题,培养学生的数学思维能力。

二. 学情分析学生在学习本节课之前,已经掌握了代数的基础知识,对一些数学概念和符号有一定的理解。

但部分学生可能对生活中的实际问题与数学知识的联系还不够明确,对函数的概念和性质的理解可能存在一定的困难。

三. 教学目标1.让学生了解函数的概念,理解函数的性质,掌握函数的表示方法。

2.培养学生运用数学知识解决生活中问题的能力。

3.培养学生合作交流、积极思考的学习习惯。

四. 教学重难点1.函数的概念和性质。

2.函数的表示方法。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,引导学生主动探究、积极思考,培养学生的数学思维能力。

六. 教学准备1.课件、教案。

2.与生活相关的函数实例。

3.小组讨论的准备。

七. 教学过程1.导入(5分钟)利用生活中的实例,如温度、海拔等,引导学生思考这些现象与数学知识的联系,激发学生的学习兴趣。

2.呈现(10分钟)通过课件展示函数的概念和性质,让学生初步了解函数的定义,以及函数的表示方法。

3.操练(10分钟)让学生通过自主学习,理解函数的概念和性质,学会用函数表示一些实际问题。

4.巩固(10分钟)学生分组讨论,分析生活中的实际问题,运用函数的知识解决问题,巩固所学内容。

5.拓展(10分钟)引导学生思考函数在其他领域的应用,如经济学、物理学等,拓宽学生的知识视野。

6.小结(5分钟)对本节课的主要内容进行总结,使学生明确函数的概念、性质和表示方法。

7.家庭作业(5分钟)布置一些有关函数的练习题,巩固所学知识,提高学生的应用能力。

8.板书(5分钟)总结本节课的主要知识点,方便学生复习和记忆。

教学过程中每个环节所用的时间如上所示,供您参考。

北师大版八年级数学上册:4.1《函数》教学设计1

北师大版八年级数学上册:4.1《函数》教学设计1

北师大版八年级数学上册:4.1《函数》教学设计1一. 教材分析北师大版八年级数学上册4.1《函数》是学生在学习了初中数学基础知识和初步接触到函数概念后,进一步深入研究函数性质和图像的重要章节。

本节内容主要包括函数的定义、函数的性质、函数的图像等,是学生理解函数概念、掌握函数解题方法的关键。

二. 学情分析学生在学习本节内容时,已具备一定的数学基础知识和初步的函数概念,但对于函数的深入理解和灵活运用还有待提高。

因此,在教学过程中,需要关注学生的认知水平,引导学生通过自主学习、合作探讨等方式,逐步理解和掌握函数的相关知识。

三. 教学目标1.理解函数的定义,掌握函数的性质和图像。

2.培养学生运用函数解决实际问题的能力。

3.培养学生的数学思维能力和团队协作能力。

四. 教学重难点1.函数的定义及其性质。

2.函数图像的特点和绘制方法。

五. 教学方法1.情境教学法:通过生活实例引入函数概念,让学生感受函数在实际生活中的应用。

2.启发式教学法:引导学生主动思考、探究函数的性质和图像。

3.合作学习法:学生进行小组讨论,培养学生的团队协作能力。

六. 教学准备1.教学PPT:制作包含函数定义、性质、图像等内容的PPT。

2.教学素材:准备一些与生活相关的函数实例,如温度、身高等。

3.练习题:挑选一些具有代表性的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用PPT展示一些与生活相关的函数实例,如温度随时间的变化、身高与年龄的关系等,引导学生关注函数在实际生活中的应用。

提问:这些实例中有什么共同特点?从而引出函数的定义。

2.呈现(10分钟)通过PPT展示函数的定义、性质和图像,让学生初步了解函数的基本概念。

同时,教师进行讲解,确保学生能够理解函数的相关概念。

3.操练(10分钟)让学生独立完成一些具有代表性的练习题,检验学生对函数概念的理解。

教师在过程中进行个别辅导,帮助学生解决问题。

4.巩固(10分钟)学生进行小组讨论,让学生分享自己的解题心得,互相学习。

4.1 函数(课件)北师大版数学八年级上册

4.1 函数(课件)北师大版数学八年级上册
(2)函数不是数,函数的实质是两个变量的对应关系.
2. 判断一个关系是否是函数关系的方法
知1-讲
一看是否在一个变化过程中;
二看是否存在两个变量;
三看对于变量每取一个确定的值,另一个变量是否
都有唯一确定的值与其对应.
以上三者(简称“三要素”)缺一不可.
知1-讲
特别提醒 函数的定义中包括了对应值的存在性和唯一性两重
知3-讲
类型
自变量在整 式中
自变量在分 母中
特点
等号右边是整式
等号右边的自变 量在分母的位置 上
举例
y=2x2-1( x 为全体实数)
y=
1 x+1
(
x

-1)
自变量的 取值范围
全体实数
使分母不为 0 的 实数
自变量在 等号右边是开平 y= x-3 (x 使被开方数大于
二次根号下 方的式子
≥ 3)
或等于 0 的实数
(2)当每月乘客至少达到多少人时,该公交车才不会亏损?
知3-练
解题秘方:根据题意列出函数表达式,紧扣函数 表达式解题即可 .
(1)请写出 y 与 x 之间的关系式,并列表格表示当 x 的值 知3-练 分别是 1 000,1 500,2 000,2 500,3 000 时, y 的值; 解:y 与 x 之间的关系式为 y=2x-4 000,列表如下:
知2-练
(1)这个人的最高体温和最低体温分别是多少摄氏度?在什 么时刻达到最高或最低?
(2)若用x(时)表示时间,y(℃)表示体温,将相应数据填入 下表.
x/时 2 4 8 12 16 18 20 22 y/℃
(3) y是x的函数吗?
知2-练
解题秘方:紧扣函数三种表示方法的优点,从每种 表示方法中获取信息解决问题.

优秀课件北师大版八年级数学上册4.1《函数》教学课件 (共26张PPT)

优秀课件北师大版八年级数学上册4.1《函数》教学课件 (共26张PPT)

读一读: 数学世家的光荣——函数的出现
17世纪,在瑞士的巴塞尔有一个祖孙五代数学家,成员数十人 的家族——贝努利家族,其中最著名的是雅各、约翰、丹尼尔.欧 拉从12岁起,就是这个家族成员的好朋友.他和同龄人尼古拉、丹 尼尔结识,成为终生盟友,这两位兄长给欧拉讲了许多有趣的数学 故事,吸引了他那颗幼小好奇的心灵,使欧拉从小立志,将来能像 贝努利家族成员一样,腾飞于数学长空.1720年,欧拉在约翰· 贝努 利教授的推荐下,13岁成为巴塞尔大学的学生,从此他在约翰· 贝努 利的指导下迅速成长着.欧拉成为了贝努利家庭的一个成员,被世人 传为佳话. 函数是中学数学中最重要的概念之一,函数 概念产生于300年前.笛卡儿引入了坐标系,使数 学发生了巨大变革,但他没用变量这个词.在数学 上使用变量这个词最早的是欧拉的老师约翰· 贝努 利,他给函数下了这样的定义:“所谓变量的函数, 就是变量与常量组成的表达式”. 1775年,欧拉在《微分学》中给出了我们教科书中的定义.
v s 300
一般地,在某个变化过程中,有两个变量x和y, 并且对于变量x的每一个值,变量y都有唯一确定的值 与它对应,那么我们称y是x的函数,其中x是自变量, 1 2 3 4 5 · · · · · · n y层数 是因变量 . · · · · · · 物体总数y 1 3 6 15 10 关键词:两个变量,一个x值对应唯一确定的一个y值.
v2 滑行s米,一般地有经验公式 s ,其中v表示刹车 300 前汽车的速度(单位:千米/时).
速度v
在该问题中,有两个变量v和s, 其中:给定一个v(自变量)的值, 相应的就确定了一个s(因变量) 的值.
v s 300
距离s
2
想一想: 以上三个问题,从变量的个数及变量之间

北师大版八年级数学上册 第4章 教学课件 4.1 函数(共15张PPT)

北师大版八年级数学上册 第4章 教学课件 4.1 函数(共15张PPT)
Байду номын сангаас
一般的,如果在一个变化过程中有两个变量x和y ,并且对于变量x的每一个值,变量y都有唯一的 值与它对应,那么我们称y是x的函数,其中x是 自变量, y是因变量.
表示函数的方法一般有:列表法、关系式法和图 象法.
想一想 上述问题中,自变量能取哪些值?
对于自变量在可取值范围内的一个确定的值a,函 数有唯一确定的对应值,这个对应值称为当自变 量等于a时的函数值.
量x和y,并且对于变量x的每一个值,变 量y都有唯一的值与它对应,那么我们称y 是x的函数,其中x是自变量, y是因变量.
(1)图象法
2、函数的表示方法: (2)列表法
(3)关系式法
3、函数的自变量的取值范围: 4、函数值的求法:
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/8/312021/8/312021/8/312021/8/318/31/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年8月31日星期二2021/8/312021/8/312021/8/31 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年8月2021/8/312021/8/312021/8/318/31/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/8/312021/8/31August 31, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/8/312021/8/312021/8/312021/8/31
长与半径. 3、班长的身高与老师的年龄. 4、三角形的面积一定,它的一边和这边上的高. 5、正方形的面积和梯形的面积. 6、水管中水流的速度和水管的长度. 7、圆的面积和它的周长. 8、底是定长的等腰三角形的周长与底边上的高.

4.1函数北师大版)

4.1函数北师大版)
北师大版八年级上 数学
4.1
函数
靳军强
一、教材分析 1、本节课的地位和作用
《函数》是北京师范大学出版的八年级上册第六章《一次函数》 的第一节内容。 它是在七年级下册《变量之间的关系》的基础上,继续对变量 间关系进行的考察,它是对变量之间关系的承接与深化。本节课从 变量间的关系来描绘函数概念,是对函数本质特征的进一步认识, 也是学生认识上的一次飞跃。 函数的学习对学生思维能力的发展具有重要意义,它要求学生 进行数形结合的思维运算,符号语言与图形语言的灵活转换;函数 与代数式、方程、不等式有直接的联系,这些内容对学生今后的学 习起着深刻的影响。 因此,函数的学习是初中数学阶段的一个重要内容。
2、教学目标
(1)知识与技能:
初步掌握函数概念,能判断两个变量间的关系是否可看作函数。
(2)过程与方法:
①能举出生活中函数的实例,并能初步形成利用函数的观点认识
现实世界的意识和能力; ②经历具体实例的抽象概括过程,进一步发展学生的抽象思维能 力; ③进一步发展学生从图象中获取信息的能力 。
(3)情感、态度和价值观: 让学生在民主、和谐的共同活动中感受学习的乐趣。
h(米)
45
37
11
3
t(分)
O 1 2 3 4 5 6 7 8 9 10 11 12
h(米)
45
37
11
3
t(分)
O 1 2 3 4 5 6 7 8 9 10 11 12
h(米)
45
37
11
38 9 10 11 12
下图反映了旋转时间t(分)与摩天轮上一点 的高度h(米)之间的关系。
一般地,在某个变化过程中,有 两个变量x和y,如果给定一个x值, 相应地就确定了一个y值,那么我们

数学北师大版八年级上册4.1函数

数学北师大版八年级上册4.1函数
t/时 s/千米 1 2 3 4
60
120
180
240
问:你能写出上面的关系式吗? 答: s=60t 问:速度与路程的图像:
速度与路程的图像:
s
s=60t
60
0
2
t
问:在以上过程中,有没有变化的量?有没有不变的量?
答:变化的量是时间和里程,不变的量的速度。 从上面的过程中可以看出随着时间的变化,里程数相应的 发生变化的过程,这个问题反映了匀速行驶的汽车所行驶 的里程随时间变化的过程,在生活中有许多类似的问题, 今天我们一起探究这个问题。
一.函数概念: 一般的,如果在一个变化过程中有两个变量x和 y,并且对于变量x的每一个值,变量y都有唯一 的值与它对应,其中x是自变量, y是因变量, 那么我们称y是x的函数。 二.函数的三种表达形式: ①图象法 ②列表法 ③关系式法
一.函数概念: 一般的,如果在一个变化过程中有两个变量x和 y,并且对于变量x的每一个值,变量y都有唯一 的值与它对应,那么我们称y是x的函数,其中x 是自变量, y是因变量。y就是对应x取值的函数值。 二.函数的三种表达形式: ①图象法 ②列表法 ③关系式法 三.函数值: 对于自变量在可取值范围内的一个确定的值a,函数 有唯一确定的对应值,这个对应值称为当自变量等 于a 时的函数值.

- x x<0


4 y=

x x 0

- x x<0

2.下面各题中分别有几个变量?你能将其中某个变量看成是 另一个变量的函数吗?
① 每一个同学购一本代数书,书的单价为2元,则x个同学 共付y元。
y = 2x y= x
② 计划购买50元的乒乓球,则所购的总数y (个)与单价x (元)的关系。 50
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学第一学期导学案
4.1 函数
班级:姓名:
【学习目标】
1.结合具体情景理解函数的概念,能判断两个变量之间的关系是否可看做函数.
2.逐步形成利用函数观点认识现实世界的意识和能力.
学习重点:理解函数的概念,能判断两个变量之间的关系是否可看做函数.
学习难点:培养利用函数观点认识现实世界的意识和能力.
【复习引入】
1.若面积用S,半径用r表示,则表示圆的面积的关系式是,在这个关系式中,常量是;变量是.
2.小明骑车从家到学校速度是15千米/时,他走过的路程s与时间t之间的变化关系是.在路程s与时间t的两个变量中,是自变量,是因变量.
3.图4-1反映了摩天轮上一点的高度h(m)与旋转时间t(min)之间的关系.
(1)根据图4-1填表:
t/分012345…
h/米
(2)对于给定的时间t,相应的高度h确定吗?
【自主学习】
1.瓶子或罐头盒等圆柱形的物体,常常如下图这样堆放。

随着层数的增加,物体的总数是如何变化的?填写下表:
2.一定质量的气体在体积不变时,假若温度降低到-273℃,则气体的压强为零.因此,物理学把-273℃作为热力学温度的零度.热力学温度T(K)与摄氏温度t(℃)之间有如下数量关系:T=t+273,T≥0.
(1)当t分别等于-43,-27,0,18时,相应的热力学温度T是多少?
(2)给定一个大于-273 ℃的t值,你能求出相应的T值吗?
【探究学习】
1.认真阅读课本P76的内容,并与同伴进行交流:上面的几个例子有什么共同的特征?你是怎么理解函数的?它的表示方法有哪些?函数值是什么?
【巩固练习】
1.完成课本P77的“随堂练习”.
2.若1吨民用自来水的价格为2.8元,则所交水费金额y(元)与使用自来水的数量x(吨)之间的函数关系式为________________,自变量是.
3.已知矩形的周长为12,它的长与宽之间存在着函数关系.当长为4时,宽是;当
宽为1时,长是.
4.完成课本P77习题4.1的第1题.
5.(选做题) 完成课本P78习题4.1的第4题.
【课堂小结】
说说你是如何理解函数关系的?
【布置作业】。

相关文档
最新文档