指数函数与对数函数图像及交点问题
同底指数函数与对数函数图象交点个数

同底指数函数与对数函数图象交点个数必修一教材第76页有这样一个探究:指数函数)10(≠>=a a a y x 且与对数函数)10(log ≠>=a a x y a 且互为反函数,那么它们图象有什么关系呢?通过探究发现,我们容易知道它们的图象关于直线x y =对称,那么它们图象交点有几个呢?教科书上为何没有把它们两者图象画在同一坐标系下?这是一个探究价值很高的问题,教材这样处理,主要原因是这两个函数图象交点个数不定.下面我们一起来研究下.分1>a 和10<<a 两者情况进行讨论.1. 当1>a 时在几何画板中,画出x y 2=与x y 2log =图象,发现它们没有公共点(如图1).当底数a )1(>a 逐渐变小时,)1(>=a a y x 与)1(log >=a x y a 图象与x y =逐渐接近,然后相切(如图2),再相交(如图3),而且我们清楚地看到它们交点在x y =上.图1 图2 图3 事实上,由反函数图象对称性知,确实如此,所以研究)1(>=a a y x 与)1(log >=a x y a 图象交点情况即研究)1(>=a a y x 与x y =图象交点情况.下面,我们从“临界状态”入手研究,从代数角度看只需联立方程0=-⇒⎩⎨⎧==x a xy a y x x让方程只有一个根即可,属于超越方程,无法用常规方法解,利用导数(选修2-2中知识)解法如下:()1ln 1ln 1ln 111=⇒=⎪⎩⎪⎨⎧⇒==⎩⎨⎧⇒='=x x x a a x a a x a x x x x x ∴e e ea e a e x 1,,===即得 所以,当e e a 1=时,函数x a y =与x y a log =图象与x y =相切.根据指对数函数单调性以及以上分析得:当e e a 1>时,函数x a y =与x y a log =图象有0个交点; 当e e a 1=时,函数x a y =与x y a log =图象有1个交点; 当e e a 11<<时,函数x a y =与x y a log =图象有2个交点.2. 当10<<a 时 同样地,我们也在几何画板中画出x y ⎪⎭⎫ ⎝⎛=21与x y 21log =图象,发现它们有一个交点(如图4).当底数a )10(<<a 逐渐变小时,我们惊奇地发现)10(<<=a a y x 与)10(log <<=a x y a 图象出现了3个交点(如图5).图4 图5 由函数的单调性和连续性知,当10<<a 时,)10(<<=a a y x 与)10(log <<=a x y a 图象不可能相切,所以交点情况只有1个或者3个.同样地,我们也可以用导数解出临界状态时的a 的值,类似的,我们得到以下结论: 当1<≤-a e a 时,函数x a y =与x y a log =图象有1个交点;当a ea -<<0时,函数xa y =与x y a log =图象有3个交点. 综上所述, 当ee a 1>时,函数x a y =与x y a log =图象有0个交点; 当e e a 1=或1<≤-a ea 时,函数x a y =与x y a log =图象有1个交点; 当e e a 11<<时,函数x a y =与x y a log =图象有2个交点;当a e a -<<0时,函数xa y =与x y a log =图象有3个交点.微练习:1.下列命题① 若点)(n m ,在函数x a y =图象上,则点)(m n ,在函数x y a log =图象上② 当1>a 时,函数x y a log =的图象与直线x y =无公共点③ 若点)(n m ,既在函数x a y =图象上,也在函数x y a log =图象上,则n m =④ 当10<<a 时,函数x a y =的图象与直线x y =有且只有一个公共点其中正确的命题的个数为( )A .0个B .1个C .2个D .3个2.已知1>a ,则方程|log |x a a x =实根的个数为( )A .1个B .2个C .1个或2个D .1个或2个或3个3.已知10<<a ,则方程|log |||x a a x =的实根的个数为( )A .2个B .3个C .2个或3个D .2个或4个【答案】1.①由反函数图象对称性知正确;②当1>a 时,函数x y a log =的图象与直线x y =可能有0个或1个或2个交点,所以错误;③当10<<a 时,函数x a y =与函数x y a log =交点有3个时,其中2个不在x y =上,所以错误;④当10<<a 时,函数x a y =与直线只有一个交点,所以正确.故选C.2.由函数与方程思想知,方程的根的个数即函数x a y =与函数x y a log =图象交点个数,而x y a log =是把x y a log =图象在x 轴下方部分作关于x 轴对称,又因为当1>a 时,函数xa y =与函数x y a log =图象交点可能有0个或1个或2个,所以|log |x a a x =实根个数可能是1个或2个或3个,故选D.3.当10<<a 时,方程|log |||x a a x =在区间)(1,0内实根个数是1个或3个,在区间[)∞+,1内的实根个数为1个,所以10<<a 时,方程|log |||x a a x =实根个数为2个或4个,故选D.。
指数函数与对数函数关系的典型例题

经典例题透析类型一、求函数的反函数例1.已知f(x)=225x - (0≤x ≤4), 求f(x)的反函数.思路点拨:这里要先求f(x)的范围(值域).解:∵0≤x ≤4,∴0≤x 2≤16, 9≤25-x 2≤25,∴ 3≤y ≤5,∵ y=225x -, y 2=25-x 2,∴ x 2=25-y 2.∵ 0≤x ≤4,∴x=225y - (3≤y ≤5)将x , y 互换,∴ f(x)的反函数f -1(x)=225x - (3≤x ≤5). 例2.已知f(x)=21(0)1(0)x x x x +≥⎧⎨-<⎩,求f -1(x). 思路点拨:求分段函数的反函数问题,应逐段求其反函数,再合并.解:当x ≥0时,y=x+1≥1,∴y ∈[1,+∞),∴ f -1(x)=x-1 (x ≥1);当x<0时,y=1-x 2<1,∴ y ∈(-∞,1),反解 x 2=1-y ,,∴ f -1; ∴ 综上f -1(x)=1(1)(1)x x x -≥⎧⎪⎨<⎪⎩. 类型二、利用反函数概念解题例3.已知f(x)=112-+x x (x ≥3), 求f -1(5). 思路点拨:这里应充分理解和运用反函数的自变量就是原函数的函数值,所求的反函数的函数值就是原函数的自变量这一事实,转化成方程问题.解:设f -1(5)=x 0, 则 f(x 0)=5,即 20011x x +-=5 (x 0≥3)∴ x 02+1=5x 0-5, x 02-5x 0+6=0. 解得x 0=3或x 0=2(舍),∴ f -1(5)=3.举一反三:【变式1】记函数y=1+3-x 的反函数为()y g x =,则g(10)=( ) A .2 B .-2 C .3 D .-1(法一)依题意,函数13x y -=+的反函数y=-log 3(x-1),因此g(10)=-2.(法二)依题意,由互为反函数的两个函数的关系,得方程1+3-x=10,解得x=-2,即g(10)=-2.答案B.例4.设点(4,1)既在f(x)=ax 2+b (a<0,x>0)的图象上,又在它的反函数图象上,求f(x)解析式.思路点拨:由前面总结的性质我们知道,点(4,1)在反函数的图象上,则点(1,4)必在原函数的图象上.这样就有了两个用来确定a ,b 的点,也就有了两个求解a ,b 的方程.解: ⎝⎛+⋅=+⋅=)2......(14)1......(4122b a b a 解得.a=-51, b=521,∴ f(x)=-51x+521. 另:这个题告诉我们,函数的图象若与其反函数的图象相交,交点不一定都在直线y=x 上. 例5.已知f(x)=ax b x c ++的反函数为f -1(x)=253x x +-,求a ,b ,c 的值. 思路点拨:注意二者互为反函数,也就是说已知函数f -1(x)=253x x +-的反函数就是函数f(x). 解:求f -1(x)=253x x +-的反函数,令f -1(x)=y 有yx-3y=2x+5. ∴(y-2)x=3y+5 ∴ x=352y y +-(y ≠2),f -1(x)的反函数为 y=352x x +-.即ax b x c ++=352x x +-,∴ a=3, b=5, c=-2.类型三、互为反函数图象间关系例6.将y=2x的图象先______,再作关于直线y=x 对称的图象,可得到函数y=log 2(x +1)的图象( )A .先向上平行移动一个单位B .先向右平行移动一个单位C .先向左平行移动一个单位D .先向下平行移动一个单位解析:本题是关于图象的平移变换和对称变换,可求出解析式或利用几何直观推断.答案:D总结升华:本题主要考查互为反函数的两个函数的图象的对称关系与函数图象的平移变换等基本知识,以及基本计算技能和几何直观思维能力.举一反三:【变式1】函数y=f(x+1)与函数y=f -1(x+1)的图象( )A.关于直线y=x 对称B.关于直线y=x+1对称C.关于直线y=x-1对称D.关于直线y=-x 对称解:y=f(x+1)与y=f -1(x+1)图象是分别将y=f(x), y=f -1(x)的图象向左平移一个单位所得,∵ y=f(x)与y=f -1(x)的图象关于直线y=x 对称,y=x 向左平移一个单位而得y=x+1. 故选B.【变式2】已知函数y=log 2x 的反函数是y=f —1(x),则函数y= f —1(1-x)的图象是( )【答案】由y=log 2x 得f —1(x)=2x ,所以y=f —1(1-x)=21-x, 选择C. 【变式3】(2011 四川理7)若()f x 是R 上的奇函数,且当0x >时,1()12xf x ⎛⎫=+ ⎪⎝⎭,则()f x 的反函数的图象大致是( )解:当0x >时,函数()f x 单调递减,值域为()1,2,此时,其反函数单调递减且图象在1x =与2x =之间,故选A .类型四、指数函数和对数函数的综合问题例7.已知函数)2(log )(221x x x f -=.(1)求函数的单调增区间;(2)求其单调增区间内的反函数.解:复合函数y=f[g(x)]的单调性与y=f(t),t=g(x)的单调性的关系:同增异减.(1)函数的定义域{x|x<0或x>2},又t=x 2-2x=(x-1)2-1.∴x ∈(-∞,0),t 是x 的减函数.而)0(log 21>=t t y 是减函数,∴函数f(x)在(-∞,0)为增函数.(2)函数f(x)的增区间为(-∞,0), 令)2(log 221x x y -=,则y x x )21(22=-.∴0)21(22=--y x x ,1x =∵x<0,∴y x -+-=211.∴R)(211)(1∈x x f x --+-=.总结升华:研究函数单调性首先要确定定义域;在函数的每个单调区间内存在反函数,因此要注意反函数存在的条件.。
指对幂函数图像总结

指对幂函数图像特征总结(必修一)
————以第一象限为研究对象
指数函数图像:
在第一象限:底大图高!0<b<a<1<d<c
对数函数图像:
在第一象限做一条y=1的直线,此时观察
其与图像的交点:底大图右!
0<c<d<1<a<b
指数函数与对数函数共同特征: 当a>1时,函数在定义域内单调递增; 当0<a<1时,函数在定义域内单调递减。
幂函数图像特征总结:
在x=1的右侧,作一条垂直于x轴的直线,指大图高!当a<0时,图像为双曲线,图像单调递减;
当a>0,图像单调递增。
{a>1,图像为向上的抛物线,下凸函数
0<a<1,图像为向下的抛物线,上凸函数。
(完整)指数函数、对数函数、幂函数图像与性质

指数函数、对数函数、幂函数的图像与性质(一)指数与指数函数1.根式 (1)根式的概念(2).两个重要公式①⎪⎩⎪⎨⎧⎩⎨⎧<-≥==)0()0(||a a a a a aa n n ;②a a n n =)((注意a 必须使n a 有意义)。
2.有理数指数幂 (1)幂的有关概念①正数的正分数指数幂:0,,1)m na a m n N n *=>∈>、且。
②正数的负分数指数幂: 10,,1)mnm naa m n N n a-*==>∈>、且③0的正分数指数幂等于0,0的负分数指数幂没有意义.注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算. (2)有理数指数幂的性质 ①a r a s=a r+s(a>0,r 、s ∈Q). ②(a r )s=a rs(a>0,r 、s ∈Q)。
③(ab )r=a r b s(a 〉0,b>0,r ∈Q )。
. 3.指数函数的图象与性质n 为奇数n 为偶y=a xa 〉1 0〈a<1图象定义域 R值域 (0,+∞)性质(1)过定点(0,1) (2)当x 〉0时,y>1。
x 〈0时,0<y<1(2) 当x>0时,0<y 〈1。
x<0时, y>1(3)在(—∞,+∞)上是增函数(3)在(—∞,+∞)上是减函数注:如图所示,是指数函数(1)y=a x,(2)y=b x,(3),y=c x(4),y=d x的图象,如何确定底数a,b ,c,d 与1之间的大小关系?提示:在图中作直线x=1,与它们图象交点的纵坐标即为它们各自底数的值,即c 1〉d 1>1〉a 1>b 1,∴c>d 〉1>a 〉b 。
即无论在轴的左侧还是右侧,底数按逆时针方向变大。
(二)对数与对数函数 1、对数的概念 (1)对数的定义如果(01)x a N a a =>≠且,那么数x 叫做以a 为底,N 的对数,记作log N a x =,其中a 叫做对数的底数,N 叫做真数。
同底的指数函数与对数函数的交点问题

∙同底的指数函数与对数函数的交点问题∙需要具备的知识点指数函数一般地,形如y=a^x(a>0且a≠1) (x∈R)的函数叫做指数函数(exponential function) ,。
单调性:单调递减(0<a<1),单调递增(a>1);对数函数单调性:单调递减(0<a<1),单调递增(a>1);以上指数函数和对数函数的底数都用a表示。
求同底指数函数对数函数的交点方法:假设+渐近简要分析:首先看a>1还是0<a<1,高中范围内一般只考虑这两种情况.a>1交点数可能有三种情况,0个1个或2个.如下图0<a<1时图象有且仅有一个交点,我稍作说明。
Q:存在函数y=a^x与y=logax(a>1,a≠1)在x属于(0,+∞),求其交点个数。
(a^x意思是a的x次方,logax指以a为底x 的对数)A:假设一个x,使得y=a^x与y=logax为可比较的数,可以设为a的平方或立方,(因为logaa^n=n,而a^n也是一个可以求的实数,所以可以进行比较。
如a=2,则可设x=1/2,2,4,8...)用所得的指数函数值减去对数函数值。
设指数函数值减去对数函数值为delta y,如果delta y等于或小于零时,函数有交点,如果delta y大于零则函数在x处无交点。
如何验证只有一个交点?首先找到一个x使得delta y为零,然后取x左右的横坐标值x1,x2,如果x1,x2使delta y都大于零,那么可以说指数函数与对数函数有且仅有一个交点。
(如果x1,x2对应的delta y一正一负,则函数图像有两个交点。
)如何验证有二个交点?(已证)如何计算两个交点的交点坐标?(如果出题的老师没有恶意的话,是可以用这种方法算出来的)首先找到一个横坐标值x使得delta y小于零,然后在x左侧或右侧找到一个x1使得delta y大于零,则交点横坐标点在(x,x1)或(x1,x)之间,可以继续假设,知道找到使delta y等于零的x值。
同底的指数函数与对数函数的交点问题

同底的指数函数与对数函数的交点问题问题:()log ,0,1xa y x y aa a ==>≠的图像在0x >上的交点个数。
解答:1.当1a >时,由二者图像的对称性知,二者图像的交点都在直线y x =上,故原问题等价于讨论()1xy aa =>与y x =在0x >上的交点的个数,等价于讨论()ln 1y x a a =>与ln y x =在0x >上的交点的个数。
令()ln ln f x x a x =-,则()1ln ,0f x a x x '=->。
当10ln x a <<时,()0f x '<,()f x 在10,ln a ⎛⎤ ⎥⎝⎦严格递减;当1ln x a >时,()0f x '>,()f x 在1,ln a ⎡⎫+∞⎪⎢⎣⎭严格递增;因此()f x 在01ln x a =处取得最小值()01lnln f x a =+。
图1 1ea e >图2 1ea e =图3 11ea e <<当()01lnln 0f x a =+>,即当1e a e >时,()0f x >在0x >上恒成立,()f x 在0x >上没有零点(如图1);当1e a e =时,()0f x ≥在0x >上恒成立,且()010ln f x x x e a=⇔===,此时()f x 在0x >上有且仅有一个零点0x e =(如图2);当11ea e <<时,最小值()00f x <,又因为()0111ln 1ln e x a a a<<=<-,且 ()()()()111ln 0,ln 1ln ln 01ln 1f a f a a a a a ⎛⎫=>=+-+> ⎪ ⎪--⎝⎭后式求导讨论即可验证(如下图),故()f x 在()01,x 和()01,1ln x a a ⎛⎫ ⎪ ⎪-⎝⎭上各有一个零点,又由()f x 在0x 两侧的严格单调性知这两个零点都是唯一的,故()f x 在0x >上有且仅有两个零点。
指数函数对数函数与幂函数指数函数的性质与图像

指数函数对数函数与幂函数指数函数的性质与图像xx年xx月xx日CATALOGUE 目录•指数函数的定义与性质•对数函数的定义与性质•幂函数的定义与性质•指数函数、对数函数与幂函数的比较•指数函数、对数函数与幂函数的应用案例•总结与展望01指数函数的定义与性质指数函数的定义02指数函数:y=f(x)=a^x03a>0时,函数图像过一三象限;a<0时,函数图像过二四象限。
指数函数的性质函数图像恒过(0,1)点值域:R a>1时,函数为单调递增函数;0<a<1时,函数为单调递减函数奇偶性:当a>0时,为奇函数;当a=0时,既不是奇函数也不是偶函数;当a<0时,为偶函数指数函数的图像图像恒过(0,1)点当a>1时,函数的增长速度随着x的增大而逐渐加快;当0<a<1时,函数的增长速度随着x的增大而逐渐减慢。
a>1时,函数为单调递增函数,图像位于一三象限;0<a<1时,函数为单调递减函数,图像位于二四象限。
当a>1时,函数的最大值无限趋近于正无穷大;当0<a<1时,函数的最小值无限趋近于0。
02对数函数的定义与性质1 2 3自然对数:以数学常数e为底数的对数,记作ln(x)。
常用对数:以10为底数的对数,记作lg(x)。
底数为任意正数的对数,记作log(x)。
对数的运算性质log(a*b)=log(a)+log(b);log(a/b)=log(a)-log(b);log(a^n)=nlog(a)。
对数恒等式log(a/b)=log(a)-log(b);log(a^n)=nlog(a)。
对数的运算律如果a>0且a不等于1,M>0,N>0,那么log(a)(MN)=log(a)M +log(a)N;log(a)(M/N)=log(a)M -log(a)N;log(a)M^n=nlog(a)M。
•对数函数的图像与性质:图像与x轴交点为1,当x>1时,函数值大于0;当0<x<1时,函数值小于0。
探究同底指数函数与对数函数交点个数

探究同底指数函数与对数函数交点个数每次教高一,我都将“同底的指数函数与对数函数的交点个数问题”作为学生的一个自主探究材料,并在课堂教学中让学生通过即兴说题,激发学生的理性思维。
本文摘录一次对这一课题的探究过程,供中学同仁教学参考。
一、提出课题在指数函数和对数函数的基础上学完反函数后,我特意安排了一节复习课,目的是加深学生对指数函数和对数函数的相关性质的认识,同时也向学生展示一个完整的数学探究案例。
一上课,我就特意营造气氛引导学生提出探究课题,先提问学生所学过的有哪些反函数,然后要求学生画出其图像。
不一会,台下叽叽喳喳起来,已有学生按捺不住向我举手提问,好戏开场了。
生A:老师!我们知道,互为反函数的两个函数其图像关于直线y=x对称,那教材上和您为什么都不把它们的图像画在同一坐标系中以更好地研究其相关性质呢?师:这个问题你提得很好,其他同学也应有类似疑问。
(教师板书:为什么不将指数函数y= 与对数函数y= (a>0,且a≠1)的图像画在同一坐标系中???)众生:是啊!为什么呢?师:这个问题的内涵很丰富,探究价值也很高,很值得我们一起来思考。
同学们!你们能告诉生A为什么吗?生B:可能是因为这两个函数图像的交点个数不定。
师:大家说是吗?生C:(微笑)应该是这个原因。
因为底数a是一个参数,同底的指数函数与对数函数两图像的交点个数应与底数值有关。
师:英雄所见略同,我也持与你们相同的看法。
那大家能不能就生A的问题及其他同学的分析提出一个探究课题?生D:同底的指数函数与对数函数两图像的交点个数与底数值的关系。
生E:生D的提法太抽象,目标也不明确。
我的题目是:求指数函数y= 与对数函数y= 的图像的交点个数。
掌声猛然响起。
师:改得非常好,一个“求”字就让课题生动起来了。
这节课我们就来弄清楚这两个函数图像的交点个数。
(老师板书探究课题:求指数函数y= 与对数函数y= 的图像的交点个数。
)二、数学探究师:这节课我们的探究课题是:求指数函数y= 与对数函数y= 的图像的交点个数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于指数函数与对数函数的问题
一、指数函数
底数对指数函数的影响:
①在同一坐标系内分别作函数的图象,易看出:当a>l时,底数越大,函数图象在第一象限越靠近y轴;同样地,当0<a<l时,底数越小,函数图象在第一象限越靠近x轴.
②底数对函数值的影响如图.
③当a>0,且a≠l时,函数与函数y=的图象关于y轴对称。
利用指数函数的性质比较大小:
若底数相同而指数不同,用指数函数的单调性比较:
若底数不同而指数相同,用作商法比较;
若底数、指数均不同,借助中间量,同时要注意结合图象及特殊值
二、对数函数
底数对函数值大小的影响:
1.在同一坐标系中分别作出函数的图象,如图所示,可以看出:当a>l时,底数越大,图象越靠近x轴,同理,当O<a<l时,底数越小,函数图象越靠近x轴.利用这一规律,我们可以解决真数相同、对数不等时判断底数大小的问题.
2.类似地,在同一坐标系中分别作出的图象,如图所示,它们的图象在第一象限的规律是:直线x=l把第一象限分成两个区域,每个区域里对数函数的底数都是由右向左逐渐减小,比如分别对应函数
,则必有
对数函数的图象与性质:
三、对数函数与指数函数的对比:
(1)对数函数与指数函数互为反函数,它们的定义域、值域互换,图象关于直线y=x对称.
(2)它们都是单调函数,都不具有奇偶性.当a>l时,它们是增函数;当O<a<l时,它们是减函数.
(3)指数函数与对数函数的联系与区别:
四、关于同底指数函数与对数函数的交点问题
一、1a >时方程
x log a a x =的解 先求如图3所示曲线x log y a y a x ==与相切时a 的值。
设曲线x log y a y a x
==与相切
于点M (00x ,x ),由于曲线x
a y =在点M 处的切线斜率为1,
所以⎪⎩⎪⎨⎧==⎪⎩⎪⎨⎧===1a ln a ,
x a 1|)'a (,x a 0000x 0x x x x
0x 即
所以
a
ln
1
a
x
a
ln
1
,
x
a
a
ln
1
x0
=
⎪
⎩
⎪
⎨
⎧
=
=
则
即
e
x
,
e
a
,
a
ln
1
e
e
1
=
=
=此时
所以。
以上说明,当e
1
e
a=时,两条曲线)e,e(
M
x
log
y
a
y
a
x相切于点
与=
=。
因此有以下结论:
①当(*)
,
e
a e
1
方程
>无解(见图1所示);
②当e
1
e
a
1<
<,方程(*)有且只有两解(见图2所示);
③当e
1
e
a=,方程(*)有且只有一解(见图3所示)。
用计算器可算得44467
.1
e e
1
≈。
二、x
log
a
1
a
a
x=
<
<时方程的解
先求如图5所示曲线x
log
y
a
y
a
x=
=与相切时a的值。
设曲线x log y a y a x
==与相切于点
P ,由对称性知,点P 在直线x y =上,设)y ,x (P 00。
由于曲线
)a y (x log y x
a ==或在点P 处切线的斜为1-, 所以⎪⎩
⎪⎨
⎧-==1|)'x (log ,x a 0x 0
x a 0x 即
⎪⎩⎪⎨⎧-==1a ln x 1
,x a 0
0x 0
所以
⎪⎪⎩⎪⎪⎨
⎧=-=⎪⎪⎩⎪⎪⎨⎧-=-=-e 1
x ,a ln 1e 1a ln 1x ,a ln 1a 00a ln 1即 则
e )e 1(a =。
此时,e 1
x 0=。
以上说明,当
e )e 1(a =时,两条曲线x log y a y a x
==与相切于点P (e 1
,e 1)。
因此有以下结论:
①
e
)e 1
(a 0<<时,方程(*)有且只有三解(见图4所示);
②当
e
)e 1(a =时,方程(*)有且只有一解(如图5所示);
③当1a )e 1
(e <<时,方程(*)有且只有一解(如图6所示)。
用计算器可算出06599
.0)e 1
(e ≈。
由于此数非常小,因此,人们在平时较难观察到这种
较小数值所示的函数图像,这也是人们易产生错误认识的—个重要原因。
综上所述,得:
当))e 1(,0(a e ∈时,方程x log a a x
=有且只有三解; 当x
log a ,)e 1
(a a x e ==方程时有且只有一解; 当)1,)e 1((a e ∈时,方程
x log a a x
=有且只有一解; 当
)e ,1(a e
1
∈时,方程x log a a x =有且只有两解;
当e
1e a =时,方程x log a a x
=有且只有一解;
当)
,e (a e 1
+∞∈时,方程x log a a x
=无解。