【数学】贵州省贵阳市2017年高考一模试卷(理)(解析版)

合集下载

(完整word版)2017年高考全国理科数学试题及答案(1卷WORD版),推荐文档

(完整word版)2017年高考全国理科数学试题及答案(1卷WORD版),推荐文档

绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =<I B .A B =R U C .{|1}A B x x =>UD .A B =∅I2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π43.设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .13,p pB .14,p pC .23,p pD .24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .168.右面程序框图是为了求出满足3n −2n >1000的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1 000和n =n +1B .A >1 000和n =n +2C .A ≤1 000和n =n +1D .A ≤1 000和n =n +29.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 210.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1011.设xyz 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110二、填空题:本题共4小题,每小题5分,共20分。

贵州省贵阳市2017-2018学年高三上学期第一次模拟数学(理)试卷 Word版含解析

贵州省贵阳市2017-2018学年高三上学期第一次模拟数学(理)试卷 Word版含解析

贵州省贵阳市2017-2018学年高考数学一模试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合U={1,2,3,4},A={1,2},B={2,4},则∁U(A∪B)=( )A.{2} B.{3} C.{1,2,4} D.{1,4}2.已知为虚数单位,复数z=i(2﹣i),则|z|=( )A.B.C.1 D.33.对任意的实数k,直线y=kx+1与圆x2+y2=2的位置关系一定是( )A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心4.下列正确的是( )A.∂x0∈R,x02+2x0+3=0B.∀x∈N,x3>x2C.x>1是x2>1的充分不必要条件D.若a>b,则a2>b25.已知sin2α=,则cos2()=( )A.B.C.D.6.若等差数列{a n}的前n项和为S n,a4=4,S4=10则数列{}的前2015项和为( ) A.B.C.D.7.航空母舰“辽宁舰”在某次舰载机起降飞行训练中,有5架歼﹣15飞机准备着舰.如果甲、乙两机必须相邻着舰,而甲、丁两机不能相邻着舰,那么不同的着舰方法有( )A.12种B.16种C.24种D.36种8.如图三棱锥V﹣ABC,V A⊥VC,AB⊥BC,∠V AC=∠ACB=30°,若侧面V AC⊥底面ABC,则其主视图与左视图面积之比为( )A.4:B.4:C.:D.:9.已知函数:f(x)=x2+bx+c,其中:0≤b≤4,0≤c≤4,记函数f(x)满足条件:的事件为A,则事件A发生的概率为( )A.B.C.D.10.已知b为如图所示的程序框图输出的结果,则二项式(﹣)6的展开式中的常数项式( )A.﹣20 B.﹣540 C.20 D.54011.已知抛物线C1:y=x2(p>0)的焦点与双曲线C2:﹣y2=1的右焦点的连线交C1于第一象限的点M,若C1在点M处的切线平行于C2的一条渐近线,则p=( ) A.B.C.D.12.对于任意实数a,b,定义min{a,b}=,定义在R上的偶函数f(x)满足f(x﹣4)=f(x),且当0≤x≤2时,f(x)=min{2x﹣1,2﹣x},若方程f(x)﹣mx=0恰有4个零点,则m的取值范围是( )A.(﹣,)B.(﹣,)C.(,)D.(﹣.)∪(,)二、填空题(本大题共4小题,每小题5分,共20分.)13.若点(a,25)在函数y=5x的图象上,则tan的值为__________.14.若正项数列{a n}满足a2=,a6=,且=(n≥2,n∈N),则log2a4=__________.15.已知正四棱锥的侧棱与底面的边长都为3,则这个四棱锥的外接球的表面积为__________.16.如图,已知圆M:(x﹣3)2+(y﹣3)2=4,四边形ABCD为圆M的内接正方形,E、F 分别为AB、AD的中点,当正方形ABCD绕圆心M转动时,的最大值是__________.三、解答题(解答应写出文字说明,证明过程或演算步骤,解答过程书写在答题纸的对应位置.)17.已知A、B分别在射线CM、CN(不含端点C)上运动,∠MCN=π,在△ABC中,角A、B、C所对的边分别是a、b、c.(Ⅰ)若a、b、c依次成等差数列,且公差为2.求c的值;(Ⅱ)若c=,∠ABC=θ,试用θ表示△ABC的周长,并求周长的最大值.18.甲、乙、丙三位同学彼此独立地从A、B、C、D、E五所高校中,任选2所高校参加自主招生考试(并且只能选2所高校),但同学甲特别喜欢A高校,他除选A校外,在B、C、D、E中再随机选1所;同学乙和丙对5所高校没有偏爱,都在5所高校中随机选2所即可.(Ⅰ)求甲同学未选中E高校且乙、丙都选中E高校的概率;(Ⅱ)记X为甲、乙、丙三名同学中未参加E校自主招生考试的人数,求X的分布列及数学期望.19.如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,∠BAD=60°,PA=PD=AD=2,点M在线段PC上,且=λ(0≤λ≤1),N为AD的中点(1)求证:BC⊥平面PNB(2)若平面PAD⊥平面ABCD,且二面角M﹣BN﹣D为60°,求λ的值.20.定义:若两个椭圆的离心率相等,则称两个椭圆是“相似”的.如图,椭圆C1与椭圆C2是相似的两个椭圆,并且相交于上下两个顶点.椭圆C1:的长轴长是4,椭圆C2:短轴长是1,点F1,F2分别是椭圆C1的左焦点与右焦点,(Ⅰ)求椭圆C1,C2的方程;(Ⅱ)过F1的直线交椭圆C2于点M,N,求△F2MN面积的最大值.21.已知函数f(x)=(1)求函数f(x)的极值(2)设g(x)=[xf(x)﹣1],若对任意x∈(0,1)恒有g(x)<﹣2求实数a的取值范围.四、选做题(请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题记分)【选修4-1:几何证明选讲】22.AB是⊙O的一条切线,切点为B,过⊙O外一点C作直线CE交⊙O于G,E,连接AE交⊙O于D,连接CD交⊙O于F,连接AC,FG,已知AC=AB(1)证明:AD•AE=AC2;(2)证明:FG∥AC.【选修4-4:坐标系与参数方程】23.在平面直角坐标系xoy中,以坐标原点为极点,以x轴的非负半轴为极轴,建立极坐标系,已知直线l的参数方程为(t为参数),圆C的极坐标方程是ρ=1.(1)求直线l与圆C的公共点个数;(2)在平面直角坐标系中,圆C经过伸缩变换得到曲线C′,设M(x,y)为曲线C′上一点,求4x2+xy+y2的最大值,并求相应点M的坐标.【选修4-5:不等式选讲】24.(Ⅰ)已知a和b是任意非零实数.证明:≥4;(Ⅱ)若不等式|2x+1|﹣|x+1|>k(x﹣1)﹣恒成立,求实数k的取值范围.贵州省贵阳市2015届高考数学一模试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合U={1,2,3,4},A={1,2},B={2,4},则∁U(A∪B)=( )A.{2} B.{3} C.{1,2,4} D.{1,4}考点:交、并、补集的混合运算.专题:集合.分析:根据并集的含义先求A∪B,注意2只能写一个,再根据补集的含义求解.解答:解:集合A∪B={1,2,4},则C U(A∪B)={3},故选B.点评:本题考查集合的基本运算,较简单.2.已知为虚数单位,复数z=i(2﹣i),则|z|=( )A.B.C.1 D.3考点:复数求模.专题:数系的扩充和复数.分析:利用复数的运算法则、模的计算公式即可得出.解答:解:复数z=i(2﹣i)=2i+1,则|z|=.故选:A.点评:本题考查了复数的运算法则、模的计算公式,属于基础题.3.对任意的实数k,直线y=kx+1与圆x2+y2=2的位置关系一定是( )A.相离B.相切C.相交但直线不过圆心 D.相交且直线过圆心考点:直线与圆的位置关系.专题:探究型.分析:对任意的实数k,直线y=kx+1恒过点(0,1),且斜率存在,(0,1)在圆x2+y2=2内,故可得结论.解答:解:对任意的实数k,直线y=kx+1恒过点(0,1),且斜率存在∵(0,1)在圆x2+y2=2内∴对任意的实数k,直线y=kx+1与圆x2+y2=2的位置关系一定是相交但直线不过圆心故选C.点评:本题考查直线与圆的位置关系,解题的关键是确定直线y=kx+1恒过点(0,1),且斜率存在.4.下列正确的是( )A.∂x0∈R,x02+2x0+3=0B.∀x∈N,x3>x2C.x>1是x2>1的充分不必要条件D.若a>b,则a2>b2考点:特称;充要条件;全称.专题:计算题.分析:A和B选项按全称和特称的真假判断来看;C选项看从条件能否推出推结论,再看结论能否推出条件,从而做出最后的判断;D选项看从条件能否推出推结论.解答:解:A错,∵方程的根的判别式△=4﹣4×3<0,此方程没有实数解:B错,∵当x=1时,x3=x2;C对,∵x2>1⇔(x﹣1)(x﹣1)>0⇔x<﹣1或x>1∴x>1⇒x2>1成立,但x2>1⇒x>1不成立,∴x>1是x2>1的充分不必要条件;D错,∵若a>b,则a2﹣b2=(a+b)(a﹣b)不一定大于0.故选C.点评:本题主要考查了、条件、特称等的有关知识,与其它部分的知识联系密切,所以综合性较强.5.已知sin2α=,则cos2()=( )A.B.C.D.考点:二倍角的余弦;三角函数的化简求值.专题:三角函数的求值.分析:利用二倍角的余弦公式化简后,由诱导公式化简即可求值.解答:解:∵sin2α=,∴cos2()====.故选:B.点评:本题主要考查了二倍角的余弦公式,诱导公式的应用,属于基本知识的考查.6.若等差数列{a n}的前n项和为S n,a4=4,S4=10则数列{}的前2015项和为( )A.B.C.D.考点:数列的求和.专题:等差数列与等比数列.分析:利用等差数列通项公式与前n项和公式可得:a n=n.再利用“裂项求和”即可得出.解答:解:设等差数列{a n}的公差为d,∵a4=4,S4=10,∴a1+3d=4,=10,解得a1=d=1,∴a n=1+(n﹣1)×1=n.∴==,∴数列{}的前n项和S n=+…+=1﹣=.∴数列{}的前2015项和=.故选:B.点评:本题考查了等差数列通项公式与前n项和公式、“裂项求和”,考查了推理能力与计算能力,属于中档题.7.航空母舰“辽宁舰”在某次舰载机起降飞行训练中,有5架歼﹣15飞机准备着舰.如果甲、乙两机必须相邻着舰,而甲、丁两机不能相邻着舰,那么不同的着舰方法有( )A.12种B.16种C.24种D.36种考点:排列、组合及简单计数问题.专题:计算题;排列组合.分析:先考虑甲、乙两机是12、23、34、45位置,再考虑甲、乙两机,位置交换,即可得出结论.解答:解:先考虑甲、乙两机,若甲、乙两机是12位置,则其余3架飞机有=6种方法;甲、乙两机是23位置,则丁有,其余2架飞机有种方法,共有=4种方法;同理,甲、乙两机是34、45位置,均分别有4种方法,若乙、甲两机是12位置,则其余3架飞机有=4种方法;乙、甲两机是23位置,则丁有,其余2架飞机有种方法,共有=4种方法;同理,乙、甲两机是34位置,有4种方法乙、甲是45位置,则其余3架飞机有=6种方法故共有2(6+4+4+4)=36种不同的着舰方法.故选:D.点评:本题考查排列、组合知识的运用,考查分类讨论的数学思想,考查学生的计算能力,属于基础题.8.如图三棱锥V﹣ABC,V A⊥VC,AB⊥BC,∠V AC=∠ACB=30°,若侧面V AC⊥底面ABC,则其主视图与左视图面积之比为( )A.4:B.4:C.:D.:考点:简单空间图形的三视图.专题:常规题型;空间位置关系与距离.分析:主视图为Rt△V AC,左视图为以△V AC中AC的高为一条直角边,△ABC中AC的高为另一条直角边的直角三角形.解答:解:主视图为Rt△V AC,左视图为以△V AC中AC的高VD为一条直角边,△ABC 中AC的高BE为另一条直角边的直角三角形.设AC=X,则V A=x,VC=,VD=x,BE=x,则S主视图:S左视图==4:.故选:A.点评:由直观图到三视图,要注意图形的变化和量的转化.属于基础题.9.已知函数:f(x)=x2+bx+c,其中:0≤b≤4,0≤c≤4,记函数f(x)满足条件:的事件为A,则事件A发生的概率为( )A.B.C.D.考点:几何概型.专题:计算题;概率与统计.分析:根据二次函数解析式,可得事件A对应的不等式为,因此在同一坐标系内作出不等式组和对应的平面区域,分别得到正方形ODEF和四边形OHGF,如图所示.最后算出四边形OHGF与正方形ODEF的面积之比,即可得到事件A发生的概率.解答:解:∵f(x)=x2+bx+c,∴不等式,即,化简得以b为横坐标、a为纵坐标建立直角坐标系,将不等式组和对应的平面区域作出,如图所示不等式组对应图中的正方形ODEF,其中D(0.4),E(4,4),F(4,0),O为坐标原点,可得S正方形ODEF=4×4=16不等式组对应图中的四边形OHGF,可得S四边形OHGF=S正方形ODEF﹣S△DHG﹣S△EFG=16﹣2﹣4=10∵事件A=,∴事件A发生的概率为P(A)===故选:A点评:本题以二次函数与不等式的运算为载体,求事件A发生的概率.着重考查了二元一次不等式组表示的平面区域和几何概型计算公式等知识,属于中档题.10.已知b为如图所示的程序框图输出的结果,则二项式(﹣)6的展开式中的常数项式( )A.﹣20 B.﹣540 C.20 D.540考点:二项式定理.专题:综合题;二项式定理.分析:首先,根据程序框图的运算结果,得到参数b的值,然后根据二项式展开式,写出通项公式,然后,确定其展开式的常数项.解答:解:根据程序框图,得初始值:a=1,b=1,第一次循环:b=3,a=2第二次循环:b=5,a=3,第三次循环:b=7,a=4第四次循环:b=9,a=5,∵a=5>4,跳出循环,输出b=9,∴二项式(﹣)6的通项:T r+1=36﹣r(﹣1)r•x3﹣r令3﹣r=0,得r=3,∴展开式中的常数项是33••(﹣1)3=﹣540,故选:B.点评:本题重点考查了程序框图,二项式定理及其展开式等知识,属于中档题.解题关键是循环结构的程序框图的识图能力.11.已知抛物线C1:y=x2(p>0)的焦点与双曲线C2:﹣y2=1的右焦点的连线交C1于第一象限的点M,若C1在点M处的切线平行于C2的一条渐近线,则p=( )A.B.C.D.考点:抛物线的简单性质.专题:综合题;圆锥曲线的定义、性质与方程.分析:由曲线方程求出抛物线与双曲线的焦点坐标,由两点式写出过两个焦点的直线方程,求出函数y=x2(p>0)在x取直线与抛物线交点M的横坐标时的导数值,由其等于双曲线渐近线的斜率得到交点横坐标与p的关系,把M点的坐标代入直线方程即可求得p的值.解答:解:由抛物线C1:y=x2(p>0)得x2=2py(p>0),所以抛物线的焦点坐标为F(0,).由﹣y2=1得a=,b=1,c=2.所以双曲线的右焦点为(2,0).则抛物线的焦点与双曲线的右焦点的连线所在直线方程为,即①.设该直线交抛物线于M(),则C1在点M处的切线的斜率为.由题意可知=,得x0=,代入M点得M(,)把M点代入①得:.解得p=.故选:D.点评:本题考查了双曲线的简单几何性质,考查了利用导数研究曲线上某点的切线方程,函数在曲线上某点处的切线的斜率等于函数在该点处的导数,是中档题.12.对于任意实数a,b,定义min{a,b}=,定义在R上的偶函数f(x)满足f(x﹣4)=f(x),且当0≤x≤2时,f(x)=min{2x﹣1,2﹣x},若方程f(x)﹣mx=0恰有4个零点,则m的取值范围是( )A.(﹣,)B.(﹣,)C.(,)D.(﹣.)∪(,)考点:根的存在性及根的个数判断;函数奇偶性的性质.专题:计算题;作图题;函数的性质及应用;直线与圆.分析:由题意可得函数f(x)是周期函数,从而作出函数f(x)与y=mx的图象,再结合图象求出四个临界点所形成的直线的斜率,从而得到答案.解答:解:∵f(x﹣4)=f(x),∴f(x)的周期T=4,方程f(x)﹣mx=0恰有4个零点可化为函数f(x)与y=mx有4个不同的交点,作函数f(x)与y=mx的图象如下,k OA=﹣,k OB=﹣,k OC=,k OD=,综合函数的图象可得,﹣<m<﹣,或<m<;故选D.点评:本题考查了函数的图象的作法及方程的根与函数的图象的交点的关系应用,同时考查了直线的斜率的求法与应用,属于基础题.二、填空题(本大题共4小题,每小题5分,共20分.)13.若点(a,25)在函数y=5x的图象上,则tan的值为.考点:运用诱导公式化简求值.专题:三角函数的求值.分析:利用指数函数的图象与性质求出a,然后求解三角函数的值即可.解答:解:点(a,25)在函数y=5x的图象上,可得25=5a,解得a=2,tan=tan=tan=.故答案为:.点评:本题考查指数函数的应用,三角函数的化简求值,考查计算能力.14.若正项数列{a n}满足a2=,a6=,且=(n≥2,n∈N),则log2a4=﹣3.考点:等比关系的确定.专题:等差数列与等比数列.分析:根据数列的递推关系得到数列{a n}为等比数列,结合等比数列的性质求出a4的值即可.解答:解:∵=(n≥2,n∈N),∴数列{a n}为等比数列,∵a2=,a6=,∴a42=a2a6=×=,则a4=,则log2a4=log2=﹣3,故答案为:﹣3.点评:本题主要考查等比数列的通项公式的应用,根据条件判断数列是等比数列是解决本题的关键.15.已知正四棱锥的侧棱与底面的边长都为3,则这个四棱锥的外接球的表面积为36π.考点:球的体积和表面积.专题:空间位置关系与距离.分析:先画出图形,正四棱锥外接球的球心在它的底面的中心,然后根据勾股定理解出球的半径,最后根据球的表面积公式解之即可.解答:解:如图,设正四棱锥底面的中心为O,则在直角三角形ABC中,AC=×AB=6,∴AO=CO=3,在直角三角形PAO中,PO===3,∴正四棱锥的各个顶点到它的底面的中心的距离都为3,∴正四棱锥外接球的球心在它的底面的中心,且球半径r=3,球的表面积S=4πr2=36π故答案为:36π点评:本题主要考查球的表面积,球的内接体问题,考查计算能力和空间想象能力,属于中档题.16.如图,已知圆M:(x﹣3)2+(y﹣3)2=4,四边形ABCD为圆M的内接正方形,E、F 分别为AB、AD的中点,当正方形ABCD绕圆心M转动时,的最大值是6.考点:平面向量数量积的运算.专题:平面向量及应用.分析:由题意可得=+.由ME⊥MF,可得=0,从而=.求得=6cos<,>,从而求得的最大值.解答:解:由题意可得=,∴==+.∵ME⊥MF,∴=0,∴=.由题意可得,圆M的半径为2,故正方形ABCD的边长为2,故ME=,再由OM=3,可得=•3•cos<,>=6cos<,>,即=6cos<,>,故的最大值是大为6,故答案为6.点评:本题主要考查两个向量的数量积的定义,两个向量的加减法的法则,以及其几何意义,余弦函数的值域,属于中档题.三、解答题(解答应写出文字说明,证明过程或演算步骤,解答过程书写在答题纸的对应位置.)17.已知A、B分别在射线CM、CN(不含端点C)上运动,∠MCN=π,在△ABC中,角A、B、C所对的边分别是a、b、c.(Ⅰ)若a、b、c依次成等差数列,且公差为2.求c的值;(Ⅱ)若c=,∠ABC=θ,试用θ表示△ABC的周长,并求周长的最大值.考点:余弦定理;正弦定理.专题:解三角形.分析:(Ⅰ)由题意可得a=c﹣4、b=c﹣2.又因,,可得,恒等变形得c2﹣9c+14=0,再结合c>4,可得c的值.(Ⅱ)在△ABC中,由正弦定理可得AC=2sinθ,.△ABC的周长f(θ)=|AC|+|BC|+|AB|=.再由,利用正弦函数的定义域和值域,求得f(θ)取得最大值.解答:解:(Ⅰ)∵a、b、c成等差,且公差为2,∴a=c﹣4、b=c﹣2.又∵,,∴,∴,恒等变形得c2﹣9c+14=0,解得c=7,或c=2.又∵c>4,∴c=7.…(Ⅱ)在△ABC中,由正弦定理可得,∴,AC=2sinθ,.∴△ABC的周长f(θ)=|AC|+|BC|+|AB|===,…又∵,∴,∴当,即时,f(θ)取得最大值.…点评:本题主要考查正弦定理、余弦定理的应用,正弦函数的定义域和值域,属于中档题.18.甲、乙、丙三位同学彼此独立地从A、B、C、D、E五所高校中,任选2所高校参加自主招生考试(并且只能选2所高校),但同学甲特别喜欢A高校,他除选A校外,在B、C、D、E中再随机选1所;同学乙和丙对5所高校没有偏爱,都在5所高校中随机选2所即可.(Ⅰ)求甲同学未选中E高校且乙、丙都选中E高校的概率;(Ⅱ)记X为甲、乙、丙三名同学中未参加E校自主招生考试的人数,求X的分布列及数学期望.考点:离散型随机变量的期望与方差;古典概型及其概率计算公式.专题:概率与统计.分析:(Ⅰ)由已知条件分别求出甲同学选中E高校的概率和乙、两同学选取中E高校的概率,由此能求出甲同学未选中E高校且乙、丙都选中E高校的概率.(Ⅱ)由题意知:X所有可能的取值为0,1,2,3,分另求出P(X=0),P(X=1),P(X=2),P(X=3),由此能求出X的分布列和EX.解答:解:(Ⅰ)由题意知:甲同学选中E高校的概率为,乙、两同学选取中E高校的概率为p乙=p丙==,∴甲同学未选中E高校且乙、丙都选中E高校的概率为:P(1﹣p甲)•p乙•p丙=(1﹣)••=.(Ⅱ)由题意知:X所有可能的取值为0,1,2,3,P(X=0)=p甲•p乙•p丙==,P(X=1)=(1﹣p甲)•p乙•p丙+p甲•(1﹣p乙)•p丙+p甲•p乙•(1﹣p丙)=++=,P(X=2)=(1﹣p甲)•(1﹣p乙)•p丙+(1﹣p甲)•p乙•(1﹣p丙)+p甲•(1﹣p乙)•(1﹣p丙)=++=,P(X=3)=(1﹣p甲)•(1﹣p乙)•(1﹣p丙)==,∴X的分布列为:X 0 1 2 3P∴EX=0×+1×+2×+3×=.点评:本题考查概率的计算,考查离散型随机变量的分布列和数学期望的求法,是中档题,在历年2015届高考中都是必考题型.19.如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,∠BAD=60°,PA=PD=AD=2,点M在线段PC上,且=λ(0≤λ≤1),N为AD的中点(1)求证:BC⊥平面PNB(2)若平面PAD⊥平面ABCD,且二面角M﹣BN﹣D为60°,求λ的值.考点:用空间向量求平面间的夹角;二面角的平面角及求法.专题:空间位置关系与距离;空间角.分析:(1)由已知得PN⊥AD,△ABD为等边三角形,BN⊥AD,从而AD⊥平面PNB,由AD∥BC,能证明BC⊥平面PNB.(2)分别以NA,NB,NP为x,y,z轴,建立空间直角坐标系,求出平面BMN的一个法向量和平面BCD的一个法向量,由此结合已知条件利用向量法能求出λ的值.解答:解:(1)证明:∵PA=AD,N为AD的中点,∴PN⊥AD,又底面ABCD为菱形,∠BAD=60°,∴△ABD为等边三角形,又∴N为AD的中点,∴BN⊥AD,又PN∩BN=N,∴AD⊥平面PNB,∵AD∥BC,∴BC⊥平面PNB.(2)解:∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PN⊥AD,如图,分别以NA,NB,NP为x,y,z轴,建立空间直角坐标系,则A(1,0,0),B(0,,0),C(﹣2,,0),D(﹣1,0,0),P(0,0,),设M(x,y,z),则=(x,y,z﹣),=(﹣2﹣x,,﹣z),∴=(﹣2λ,,﹣λz),由(0≤λ≤1),得,解得,y=,z=,∴M(,,),∴=(,﹣,),=(0,,0),设=(x,y,z)是平面BMN的一个法向量,则,取z=,得=(,0,),又平面BCD的一个法向量为=(0,0,),∵二面角M﹣BN﹣D为60°,∴cos<>===cos60°,解得.点评:本题考查直线与平面垂直的证明,考查满足条件的实数值的求法,解题时要认真审题,注意空间中线线、线面、面面间的位置关系和性质的合理运用,是中档题.20.定义:若两个椭圆的离心率相等,则称两个椭圆是“相似”的.如图,椭圆C1与椭圆C2是相似的两个椭圆,并且相交于上下两个顶点.椭圆C1:的长轴长是4,椭圆C2:短轴长是1,点F1,F2分别是椭圆C1的左焦点与右焦点,(Ⅰ)求椭圆C1,C2的方程;(Ⅱ)过F1的直线交椭圆C2于点M,N,求△F2MN面积的最大值.考点:直线与圆锥曲线的关系;椭圆的标准方程;椭圆的简单性质.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)设椭圆C1的半焦距为c,椭圆C2的半焦距为c',易知a=2,b=m,n=,根据椭圆C1与椭圆C2的离心率相等,可得关于a,b,m,n的方程,解出即可;(Ⅱ)由题意可设直线的方程为:.与椭圆C2的方程联立消掉x得y的二次方程,则△>0,由弦长公式可表示出|MN|,由点到直线的距离公式可表示出△F2MN的高h,则△F2MN的面积S=,变形后运用基本不等式即可求得S的最大值;解答:解:(Ⅰ)设椭圆C1的半焦距为c,椭圆C2的半焦距为c'.由已知a=2,b=m,.∵椭圆C1与椭圆C2的离心率相等,即,∴,即∴,即bm=b2=an=1,∴b=m=1,∴椭圆C1的方程是,椭圆C2的方程是;(Ⅱ)显然直线的斜率不为0,故可设直线的方程为:.联立:,得,即,∴△=192m2﹣44(1+4m2)=16m2﹣44>0,设M(x1,y1),N(x2,y2),则,,∴,△F2MN的高即为点F2到直线的距离.∴△F2MN的面积,∵,等号成立当且仅当,即时,∴,即△F2MN的面积的最大值为.点评:本题考查椭圆方程及其性质、直线方程、直线与椭圆的位置关系,考查基本不等式求函数的最值,考查学生的运算能力、分析解决问题的能力.21.已知函数f(x)=(1)求函数f(x)的极值(2)设g(x)=[xf(x)﹣1],若对任意x∈(0,1)恒有g(x)<﹣2求实数a的取值范围.考点:导数在最大值、最小值问题中的应用.专题:导数的综合应用.分析:(1)求出原函数的导函数,得到导函数的零点,由导函数的零点把定义域分段,由导函数在各区间段内的符号判断原函数的单调性,从而求得原函数的极值;(2)由题意可知,a≠0,且,又x∈(0,1),得到.然后分a<0和a>0讨论当a>0时,构造函数,问题转化为h max (x)<0.然后根据a的范围利用导数分析其最大值是否小于0得答案.解答:解:(1)由f(x)=,得,当0<x<1时,f′(x)>0;当x>1时,f′(x)<0,∴f(x)在(0,1)上单调递增,在(1,+∞)上单调递减,故f(x)在x=1处取得极大值,极大值为f(1)=;(2)由题意可知,a≠0,且,∵x∈(0,1),∴.当a<0时,g(x)>0,不合题意;当a>0时,由g(x)<﹣2,可得恒成立.设,则h max(x)<0.求导得:.设t(x)=x2+(2﹣4a)x+1,△=(2﹣4a)2﹣4=16a(a﹣1).①当0<a≤1时,△≤0,此时t(x)≥0,h′(x)≥0,∴h(x)在(0,1)内单调递增,又h(1)=0,∴h(x)<h(1)=0,此时0<a≤1符合条件;②当a>1时,△>0,注意到t(0)=1>0,t(1)=4(1﹣a)<0,∴存在x0∈(0,1),使得t(x0)=0,于是对任意x∈(x0,1),t(x)<0,h′(x)<0,则h(x)在(x0,1)内单调递减,又h(1)=0,∴当x∈(x0,1)时,h(x)>0,不合要求.综①②可得0<a≤1.点评:本题考查了利用导数研究函数的单调性,考查了利用导数求解函数的最值,体现了分类讨论的数学思想方法,解答此题的关键是对a>1时的分析,要求考生有敏锐的洞察力.四、选做题(请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题记分)【选修4-1:几何证明选讲】22.AB是⊙O的一条切线,切点为B,过⊙O外一点C作直线CE交⊙O于G,E,连接AE交⊙O于D,连接CD交⊙O于F,连接AC,FG,已知AC=AB(1)证明:AD•AE=AC2;(2)证明:FG∥AC.考点:与圆有关的比例线段.专题:直线与圆.分析:(1)由切割线定理得AB2=AD•AE,由此能证明AC2=AD•AE.(2)由,∠EAC=∠DAC,得△ADC∽△ACE,从而得到∠EGF=∠ACE,由此能证明GF∥AC.解答:证明:(1)∵AB是⊙O的一条切线,AE为割线,∴AB2=AD•AE,又∵AB=AC,∴AC2=AD•AE.(2)由(1)得,∵∠EAC=∠DAC,∴△ADC∽△ACE,∴∠ADC=∠ACE,∵∠ADC=∠EGF,∴∠EGF=∠ACE,∴GF∥AC.点评:本题考查AD•AE=AC2的证明,考查两直线平行的证明,是中档题,解题时要注意切割线定理和相似三角形的性质的合理运用.【选修4-4:坐标系与参数方程】23.在平面直角坐标系xoy中,以坐标原点为极点,以x轴的非负半轴为极轴,建立极坐标系,已知直线l的参数方程为(t为参数),圆C的极坐标方程是ρ=1.(1)求直线l与圆C的公共点个数;(2)在平面直角坐标系中,圆C经过伸缩变换得到曲线C′,设M(x,y)为曲线C′上一点,求4x2+xy+y2的最大值,并求相应点M的坐标.考点:参数方程化成普通方程.专题:坐标系和参数方程.分析:(Ⅰ)把直线l的参数方程、圆C的极坐标方程化为普通方程,根据圆心到直线的距离d与圆半径r的关系,判定直线l与圆C的公共点个数;(Ⅱ)由圆C的参数方程求出曲线C′的参数方程,代入4x2+xy+y2中,求出4x2+xy+y2取得最大值时对应的M点的坐标.解答:解:(Ⅰ)直线l的参数方程(t为参数)化为普通方程是x﹣y﹣=0,圆C的极坐标方程ρ=1化为普通方程是x2+y2=1;∵圆心(0,0)到直线l的距离为d==1,等于圆的半径r,∴直线l与圆C的公共点的个数是1;(Ⅱ)圆C的参数方程是,(0≤θ<2π);∴曲线C′的参数方程是,(0≤θ<2π);∴4x2+xy+y2=4cos2θ+cosθ•2sinθ+4sin2θ=4+sin2θ;当θ=或θ=时,4x2+xy+y2取得最大值5,此时M的坐标为(,)或(﹣,﹣).点评:本题考查了参数方程与极坐标方程的应用问题,解题时可以把参数方程、极坐标方程化为普通方程,以便正确解答问题,是基础题.【选修4-5:不等式选讲】24.(Ⅰ)已知a和b是任意非零实数.证明:≥4;(Ⅱ)若不等式|2x+1|﹣|x+1|>k(x﹣1)﹣恒成立,求实数k的取值范围.考点:函数恒成立问题.专题:函数的性质及应用.分析:(Ⅰ)利用双绝对值不等式的性质|2a+b|+|2a﹣b|≥|2a+b+2a﹣b|=4|a|即可证得结论成立;(Ⅱ)构造函数h(x)=|2x+1|﹣|x+1|=,作出y=h(x)与过定点(1,﹣)的直线y=k(x﹣1)﹣的图象,数形结合即可求得实数k的取值范围.解答:证明:(Ⅰ)|2a+b|+|2a﹣b|≥|2a+b+2a﹣b|=4|a|∴.(Ⅱ)记h(x)=|2x+1|﹣|x+1|=若不等式|2x+1|﹣|x+1|>k(x﹣1)﹣恒成立,则函数h(x)的图象在直线y=k(x﹣1)﹣的上方,∵y=k(x﹣1)﹣经过定点(1,﹣),当x=﹣时,y=h(x)取得最小值﹣,显然,当y=k(x﹣1)﹣经过定点P(1,﹣)与M(﹣,﹣)时,k PM==,即k>;当y=k(x﹣1)﹣经过定点P(1,﹣)与直线y=x平行时,k得到最大值1,∴.点评:本题考查函数恒成立问题,着重考查绝对值不等式的性质,突出构造函数思想与数形结合思想的应用,考查转化思想与运算求解能力,属于难题.。

(最新整理)2017年高三深一模数学试卷(理科)(带完美解析)

(最新整理)2017年高三深一模数学试卷(理科)(带完美解析)
第 5 页(共 30 页)
2017 年高三深一模数学试卷(理科)(带完美解析)
(3)在满足(2)的条件下,若以这 100 户居民用电量的频率代替该月全市居民用户 用电量的概率,且同组中的数据用该组区间的中点值代替,记 Y 为该居民用户 1 月份 的用电费用,求 Y 的分布列和数学期望.
对∀n∈N*恒成立,则实数 λ 的取值范围是 . 三、解答题:解答应写出文字说明、证明过程或演算步骤。 17.(12 分) △ABC 的内角 A、B、C 的对边分别为 a、b、c,已知 2a= csinA﹣acosC. (1)求 C; (2)若 c= ,求△ABC 的面积 S 的最大值.
18.(12 分) 如图,四边形 ABCD 为菱形,四边形 ACEF 为平行四边形,设 BD 与 AC 相交于点 G,AB=BD=2,AE= ,∠EAD=∠EAB. (1)证明:平面 ACEF⊥平面 ABCD; (2)若 AE 与平面 ABCD 所成角为 60°,求二面角 B﹣EF﹣D 的余弦值.
A.
B.
C.
D.2
6.祖冲之之子祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积
计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体在同高处
截得的截面面积恒等,那么这两个几何体的体积相等.此即祖暅原理.利用这个原
理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图如图所示,
A.
B.
C.
D.
12.已知函数 f(x)= ,x≠0,e 为自然对数的底数,关于 x 的方程 + ﹣λ=0
有四个相异实根,则实数 λ 的取值范围是( ) A.(0, ) B.(2 ,+∞) C.(e+ ,+∞) D.( + ,+∞) 二、填空题:本大题共 4 小题,每小题 5 分,满分 20 分,将答案填在答题纸上 13.已知向量 =(1,2), =(x,3),若 ⊥ ,则| + |= . 14.( ﹣ )5 的二项展开式中,含 x 的一次项的系数为 (用数字作答).

2017-2018学年贵州省贵阳市普通高中高三(上)摸底数学试卷(理科)

2017-2018学年贵州省贵阳市普通高中高三(上)摸底数学试卷(理科)

2017-2018学年贵州省贵阳市普通高中高三(上)摸底数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|(x﹣1)(x+2)<0},,则A∪B=()A.(﹣2,1)B.(﹣2,3)C.(﹣1,3)D.(﹣1,1)2.(5分)复数等于()A.1 B.﹣1 C.i D.﹣i3.(5分)sin15°sin75°=()A.B.C.1 D.4.(5分)已知命题P:∃x0∈R,x02+2x0+2≤0,则¬p是()A.∃x0∈R,x02+2x0+2>0 B.∀x∈R,x2+2x+2≤0C.∀x∈R,x2+2x+2>0 D.∀x∈R,x2+2x+2≥05.(5分)设等差数列{a n}的前n项和为S n,若a6=2a3,则=()A.B.C.D.6.(5分)20世纪30年代为了防范地震带来的灾害,里克特(C.F.Richter)制定了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,地震仪记录的地震曲线的振幅就越大,这就是我们常说的里氏震级M,其计算公式为M=lgA﹣lgA0,其中A为被测地震的最大振幅,A0是标准地震振幅,5级地震给人的震感已经比较明显,则7级地震的最大振幅是5级地震最大振幅的多少倍?()A.10倍B.20倍C.50倍D.100倍7.(5分)一算法的程序框图如图所示,若输出的,则输入的x最大值为()A.﹣1 B.1 C.2 D.08.(5分)如图在边长为1的正方形组成的网格中,平行四边形ABCD的顶点D 被阴影遮住,请找出D点的位置,计算的值为()A.10 B.11 C.12 D.139.(5分)点集Ω={(x,y)|0≤x≤e,0≤y≤e},A={(x,y)|y≥e x,(x,y)∈Ω},在点集Ω中任取一个元素a,则a∈A的概率为()A.B.C. D.10.(5分)某实心几何体是用棱长为1cm的正方体无缝粘合而成,其三视图如图所示,则该几何体的表面积为()A.50cm2B.61cm2C.84cm2D.86cm211.(5分)函数f(x)=a+(a,b∈R)是奇函数,且图象经过点(ln3,),则函数f(x)的值域为()A.(﹣1,1)B.(﹣2,2)C.(﹣3,3)D.(﹣4,4)12.(5分)椭圆C:的左顶点为A,右焦点为F,过点F且垂直于x轴的直线交C于两点P,Q,若cos∠PAQ=,则椭圆C的离心率e为()A.B.C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知=2,则tanα=.14.(5分)实数x,y满足条件,则z=2x﹣y的最大值为.15.(5分)展开式中x3的系数为﹣84,则展开式的系数和为.16.(5分)已知函数f(x)=x n﹣x n+1(n∈N*),曲线y=f(x)在点(2,f(2))处的切线与y轴的交点的纵坐标为b n,则数列{b n}的前n项和为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)在△ABC中,内角A,B,C的对边a,b,c成公差为2的等差数列,C=120°.(1)求a;(2)求AB边上的高CD的长.18.(12分)某高校学生社团为了解“大数据时代”下大学生就业情况的满意度,对20名学生进行问卷计分调查,得到如图所示的茎叶图:(1)计算男生打分的平均分,观察茎叶图,评价男女生打分的分散程度;(2)从打分在80分以上的同学随机抽3人,求被抽到的女生人数X的分布列和数学期望.19.(12分)如图AB,CD是圆柱的上、下底面圆的直径,ABCD是边长为2的正方形,E是底面圆周上不同于A,B两点的一点,AE=1.(1)求证:BE⊥平面DAE;(2)求二面角C﹣DB﹣E的余弦值.20.(12分)过抛物线C:y2=4x的焦点F且斜率为k的直线l交抛物线C于两点A,B,且|AB|=8.(1)求l的方程;(2)若A关于x轴的对称点为D,求证:直线BD恒过定点并求出该点的坐标.21.(12分)已知函数f(x)=kx﹣lnx﹣1(k>0).(1)若函数f(x)有且只有一个零点,求实数k的值;(2)证明:当n∈N*时,.选做题22.(10分)曲线C的参数方程为(φ为参数),以坐标原点为极点,x的正半轴为极轴建立极坐标系,直线l的极坐标方程为.(1)写出C的直角坐标方程,并且用(α为直线的倾斜角,t为参数)的形式写出直线l的一个参数方程;(2)l与C是否相交,若相交求出两交点的距离,若不相交,请说明理由.23.已知函数f(x)=x+|x+2|.(1)解不等式f(x)≥6的解集M;(2)记(1)中集合M中元素最小值为m,若a,b∈R+,且a+b=m,求的最小值.24.数列{a n}的前n项和为S n,且满足,a1=1.(1)求数列{a n}的通项公式;(2)若,求数列{b n}的前n项和T n.2017-2018学年贵州省贵阳市普通高中高三(上)摸底数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|(x﹣1)(x+2)<0},,则A∪B=()A.(﹣2,1)B.(﹣2,3)C.(﹣1,3)D.(﹣1,1)【解答】解:∵集合A={x|(x﹣1)(x+2)<0}={x|﹣2<x<1},={x|﹣1<x<3},∴A∪B={x|﹣2<x<3}=(﹣2,3).故选:B.2.(5分)复数等于()A.1 B.﹣1 C.i D.﹣i【解答】解:====i,故选:C.3.(5分)sin15°sin75°=()A.B.C.1 D.【解答】解:因为sin15°sin75°=sin15°cos15°==.故选D.4.(5分)已知命题P:∃x0∈R,x02+2x0+2≤0,则¬p是()A.∃x0∈R,x02+2x0+2>0 B.∀x∈R,x2+2x+2≤0C.∀x∈R,x2+2x+2>0 D.∀x∈R,x2+2x+2≥0【解答】解:因为特称命题的否定是全称命题,所以,命题P:∃x0∈R,x02+2x0+2≤0,则¬p是:∀x∈R,x2+2x+2>0.故选:C.5.(5分)设等差数列{a n}的前n项和为S n,若a6=2a3,则=()A.B.C.D.【解答】解:设等差数列{a n}的公差为d,∵a6=2a3,∴a1+5d=2(a1+2d),化为:a1=d.则==.故选:D.6.(5分)20世纪30年代为了防范地震带来的灾害,里克特(C.F.Richter)制定了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,地震仪记录的地震曲线的振幅就越大,这就是我们常说的里氏震级M,其计算公式为M=lgA﹣lgA0,其中A为被测地震的最大振幅,A0是标准地震振幅,5级地震给人的震感已经比较明显,则7级地震的最大振幅是5级地震最大振幅的多少倍?()A.10倍B.20倍C.50倍D.100倍【解答】解:由题意可得:7=lgA1﹣lgA0,5=(lgA2﹣lgA0两式相减得2=lgA1﹣lgA2,∴lg=2,∴=102=100.故选:D.7.(5分)一算法的程序框图如图所示,若输出的,则输入的x最大值为()A.﹣1 B.1 C.2 D.0【解答】解:这是一个用条件分支结构设计的算法,该程序框图所表示的算法的作用是求分段函数y=的函数值,输出的结果为y=,当x≤2时,sin x=,解得x=1+12k,或x=5+12k,k∈Z,即x=1,﹣7,﹣11,…当x>2时,2x=,解得x=﹣1(不合,舍去),则输入的x可能为1.故选:B.8.(5分)如图在边长为1的正方形组成的网格中,平行四边形ABCD的顶点D 被阴影遮住,请找出D点的位置,计算的值为()A.10 B.11 C.12 D.13【解答】解:以A为原点,建立如图所示的坐标系,则A(0,0),B(4,1),C(6,4),平行四边形ABCD,则=,设D(x,y),∴(4,1)=(6﹣x,4﹣y),∴4=6﹣x,1=4﹣y,解得x=2,y=3,∴D(2,3),∴•=2×4+3×1=11,故选:B9.(5分)点集Ω={(x,y)|0≤x≤e,0≤y≤e},A={(x,y)|y≥e x,(x,y)∈Ω},在点集Ω中任取一个元素a,则a∈A的概率为()A.B.C. D.【解答】解:点集Ω表示的平面区域的面积为:,集合A所表示的平面区域如图所示,其面积为:,结合几何概型计算公式可得所求的概率值为:.故选:B.10.(5分)某实心几何体是用棱长为1cm的正方体无缝粘合而成,其三视图如图所示,则该几何体的表面积为()A.50cm2B.61cm2C.84cm2D.86cm2【解答】解:由三视图可知几何体共有3三层,第一层有5×5=25个小正方体,第二层有3×3=9个小正方体,第三层由1个小正方体.∴几何体的表面积为25×2+5×4+3×4+1×4=86.故选D.11.(5分)函数f(x)=a+(a,b∈R)是奇函数,且图象经过点(ln3,),则函数f(x)的值域为()A.(﹣1,1)B.(﹣2,2)C.(﹣3,3)D.(﹣4,4)【解答】解:函数是奇函数,则:,①结合函数所过的点可得:,②①②联立可得:,则函数的解析式为:,结合指数函数的性质可得:.故选:A.12.(5分)椭圆C:的左顶点为A,右焦点为F,过点F且垂直于x轴的直线交C于两点P,Q,若cos∠PAQ=,则椭圆C的离心率e为()A.B.C.D.【解答】解:不妨设P位于第一象限,由x P=c,则y P=,∴丨AF丨=a+c,丨PF丨=,丨AP丨=,则cos∠PAF==,由图形的对称性及二倍角公式可得:cos∠PAQ=2cos2∠PAF﹣1=2×﹣1=,结合b2=a2﹣c2,整理得:4c4﹣9a2c2﹣2a3c+3a4=0,由e=,则4e4﹣9e2﹣2e+3=0,因式分解有(e+1)2(e﹣)(e﹣)=0,由0<e<1,则e=,故选A.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知=2,则tanα=﹣3.【解答】解:∵==2,即tanα﹣1=2tanα+2,∴tanα=﹣3,故答案为:﹣314.(5分)实数x,y满足条件,则z=2x﹣y的最大值为4.【解答】解:画出满足条件的平面区域,如图示:由z=2x﹣y得:y=2x﹣z,显然直线过(2,0)时,z最大,z的最大值是4,故答案为:4.15.(5分)展开式中x3的系数为﹣84,则展开式的系数和为0.==x9﹣2r.【解答】解:T r+1令9﹣2r=3,解得r=3.∴=﹣84,解得a=﹣1.∴令x=1,可得的展开式的系数和=0.故答案为:0.16.(5分)已知函数f(x)=x n﹣x n+1(n∈N*),曲线y=f(x)在点(2,f(2))处的切线与y轴的交点的纵坐标为b n,则数列{b n}的前n项和为n•2n+1.【解答】解:∵函数f(x)=x n﹣x n+1(n∈N*),∴f′(x)=nx n﹣1﹣(n+1)x n,∴f′(2)=n•2n﹣1﹣(n+1)•2n=(﹣1﹣)•2n,f(2)=2n﹣2n+1=﹣2n,∴曲线y=f(x)在点(2,f(2))处的切线方程为:y+2n=(﹣1﹣)•2n(x﹣2),∵曲线y=f(x)在点(2,f(2))处的切线与y轴的交点的纵坐标为b n,∴b n=(n+1)•2n,∴数列{b n}的前n项和为:S n=2×2+3×22+4×23+…+(n+1)×2n,①2S n=2×22+3×23+4×24+…+(n+1)×2n+1,②①﹣②,得:﹣S n=4+22+23+24+…+2n﹣(n+1)×2n+1=4+﹣(n+1)×2n+1=﹣n•2n+1,∴S n=n•2n+1.故答案为:n•2n+1.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)在△ABC中,内角A,B,C的对边a,b,c成公差为2的等差数列,C=120°.(1)求a;(2)求AB边上的高CD的长.【解答】解:(1)由题意,a,b,c成公差为2的等差数列,得b=a+2,c=a+4,由余弦定理得:,即a2﹣a﹣6=0,∴a=3或a=﹣2(舍去),∴a=3.(2)解法1:由(1)知a=3,b=5,c=7,由三角形的面积公式得:,∴,即AB边上的高.解法2:由(1)知a=3,b=5,c=7,由正弦定理得,即,在Rt△ACD中,,即AB边上的高.18.(12分)某高校学生社团为了解“大数据时代”下大学生就业情况的满意度,对20名学生进行问卷计分调查,得到如图所示的茎叶图:(1)计算男生打分的平均分,观察茎叶图,评价男女生打分的分散程度;(2)从打分在80分以上的同学随机抽3人,求被抽到的女生人数X的分布列和数学期望.【解答】解:(1)男生打的平均分为:=,由茎叶图知,女生打分比较集中,男生打分比较分散;(2)因为打分在80分以上的有3女2男,∴X的可能取值为1,2,3,计算,,,∴X的分布列为:数学期望为.19.(12分)如图AB,CD是圆柱的上、下底面圆的直径,ABCD是边长为2的正方形,E是底面圆周上不同于A,B两点的一点,AE=1.(1)求证:BE⊥平面DAE;(2)求二面角C﹣DB﹣E的余弦值.【解答】证明:(1)由圆柱性质知:DA⊥平面ABE,又BE⊂平面ABE,∴BE⊥DA,又AB是底面圆的直径,E是底面圆周上不同于A,B两点的一点,∴BE⊥AE,又DA∩AE=A,DA,AE⊂平面DAE,∴BE⊥平面DAE.(2)解法1:过E作EF⊥AB,垂足为F,由圆柱性质知平面ABCD⊥平面ABE,∴EF⊥平面ABCD,又过F作FH⊥DB,垂足为H,连接EH,则∠EHF即为所求的二面角的平面角的补角,AB=AD=2,AE=1易得,,,∴,由(1)知BE⊥DE,∴,∴,∴,∴所求的二面角的余弦值为.解法2:过A在平面AEB作Ax⊥AB,建立如图所示的空间直角坐标系,∵AB=AD=2,AE=1,∴,∴,D(0,0,2),B(0,2,0),∴,,平面CDB的法向量为,设平面EBD的法向量为,,即,取,∴,∴所求的二面角的余弦值为.解法3:如图,以E为原点,EB,EA分别为x轴,y轴,圆柱过点E的母线为z 轴建立空间直角坐标系,则A(0,1,0),,,D(0,1,2),E(0,0,0),∴,,,,设是平面BCD的一个法向量,则,,即,令x=1,则,z=0,∴,,设是平面BDE的一个法向量,则,,即,令z=1,则y=﹣2,x=0.∴,,∴,∴所求的二面角的余弦值为.解法4:由(1)知可建立如图所示的空间直角坐标系:∵AB=AD=2,AE=1,∴,∴E(0,0,0),D(1,0,2),,,∴,,,,设平面CDB的法向量为,平面EBD的法向量为,∴,,即,,,取,∴.∴所求的二面角的余弦值为.20.(12分)过抛物线C:y2=4x的焦点F且斜率为k的直线l交抛物线C于两点A,B,且|AB|=8.(1)求l的方程;(2)若A关于x轴的对称点为D,求证:直线BD恒过定点并求出该点的坐标.【解答】解:(1)F的坐标为(1,0),设l的方程为y=k(x﹣1)代入抛物线y2=4x得k2x2﹣(2k2+4)x+k2=0,由题意知k≠0,且[﹣(2k2+4)]2﹣4k2•k2=16(k2+1)>0,设A(x1,y1),B(x2,y2),∴,x1x2=1,由抛物线的定义知|AB|=x1+x2+2=8,∴,∴k2=1,即k=±1,∴直线l的方程为y=±(x﹣1).(2)直线BD的斜率为,∴直线BD的方程为,即,∵y2=4x,x1x2=1,∴,即y1y2=﹣4(因为y1,y2异号),∴BD的方程为4(x+1)+(y1﹣y2)y=0,恒过(﹣1,0).21.(12分)已知函数f(x)=kx﹣lnx﹣1(k>0).(1)若函数f(x)有且只有一个零点,求实数k的值;(2)证明:当n∈N*时,.【解答】解:(1)方法1:f(x)=kx﹣lnx﹣1,,时,f'(x)=0;时,f'(x)<0;时,f'(x)>0;∴f(x)在上单调递减,在上单调递增,∴,∵f(x)有且只有一个零点,故lnk=0,∴k=1.方法2:由题意知方程kx﹣lnx﹣1=0仅有一实根,由kx﹣lnx﹣1=0得(x>0),令,,x=1时,g'(x)=0;0<x<1时,g'(x)>0;x>1时,g'(x)<0,∴g(x)在(0,1)上单调递增,在(1,+∞)上单调递减,∴g(x)max=g(1)=1,所以要使f(x)仅有一个零点,则k=1.方法3:函数f(x)有且只有一个零点即为直线y=kx与曲线y=lnx+1相切,设切点为(x0,y0),由y=lnx+1得,∴,∴k=x0=y0=1,所以实数k的值为1.(2)证明:由(1)知x﹣lnx﹣1≥0,即x﹣1≥lnx当且仅当x=1时取等号,∵n∈N*,令得,,,即.选做题22.(10分)曲线C的参数方程为(φ为参数),以坐标原点为极点,x的正半轴为极轴建立极坐标系,直线l的极坐标方程为.(1)写出C的直角坐标方程,并且用(α为直线的倾斜角,t为参数)的形式写出直线l的一个参数方程;(2)l与C是否相交,若相交求出两交点的距离,若不相交,请说明理由.【解答】解:(1)利用平方关系可得:C的直角坐标方程为,由,展开可得:(cosθ﹣sinθ)=,利用互化公式可得直角坐标方程:x﹣y﹣2=0.可得直线l的倾斜角.可得直线l的一个参数方程(t为参数).(2)将l的参数方程代入C的直角坐标方程得,t1=0,,显然l与C有两个交点A,B且.23.已知函数f(x)=x+|x+2|.(1)解不等式f(x)≥6的解集M;(2)记(1)中集合M中元素最小值为m,若a,b∈R+,且a+b=m,求的最小值.【解答】解:(1)f(x)≥6,即为x+|x+2|≥6,∴或即x≥2∴M={x|x≥2}.(2)由(1)知m=2,即a+b=2,且a,b∈R+,∴,=.当且仅当a=b=1时,取得最小值4.24.数列{a n}的前n项和为S n,且满足,a1=1.(1)求数列{a n}的通项公式;(2)若,求数列{b n}的前n项和T n.【解答】解:(1)由已知①,得,(n≥2)②,①﹣②得,即a n=3a n﹣1(n≥2),又a1=1,所以数列{a n}是以1为首项,3为公比的等比数列,即.(2)由(1)知,∴,∴.。

2017年高三深一模数学试卷(理科)(带完美解析)(2021年整理)

2017年高三深一模数学试卷(理科)(带完美解析)(2021年整理)

(完整word)2017年高三深一模数学试卷(理科)(带完美解析)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word)2017年高三深一模数学试卷(理科)(带完美解析)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word)2017年高三深一模数学试卷(理科)(带完美解析)(word版可编辑修改)的全部内容。

2017年广东省深圳市高考数学一模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若集合A={2,4,6,8},B={x|x2﹣9x+18≤0},则A∩B=()A.{2,4} B.{4,6} C.{6,8} D.{2,8}2.若复数(a∈R)为纯虚数,其中i为虚数单位,则a=()A.2 B.3 C.﹣2 D.﹣33.袋中装有大小相同的四个球,四个球上分别标有数字“2”,“3”,“4”,“6”,现从中随机选取三个球,则所选的三个球上的数字能构成等差数列的概率是()A. B.C. D.4.等比数列{a n}的前n项和为S n=a•3n﹣1+b,则=()A.﹣3 B.﹣1 C.1 D.35.直线l:kx+y+4=0(k∈R)是圆C:x2+y2+4x﹣4y+6=0的一条对称轴,过点A(0,k)作斜率为1的直线m,则直线m被圆C所截得的弦长为()A. B. C. D.26.祖冲之之子祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体在同高处截得的截面面积恒等,那么这两个几何体的体积相等.此即祖暅原理.利用这个原理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图如图所示,用一个与该几何体的下底面平行相距为h(0<h<2)的平面截该几何体,则截面面积为()A.4π B.πh2 C.π(2﹣h)2 D.π(4﹣h)2 7.函数f(x)=•cosx的图象大致是()8.已知a>b>0,c<0,下列不等关系中正确的是()A.ac>bc B.a c>b cC.log a(a﹣c)>log b(b﹣c) D.>9.执行如图所示的程序框图,若输入p=2017,则输出i的值为( )A.335 B.336 C.337 D.33810.已知F是双曲线E:﹣=1(a>0,b>0)的右焦点,过点F作E的一条渐近线的垂线,垂足为P,线段PF与E相交于点Q,记点Q到E的两条渐近线的距离之积为d2,若|FP|=2d,则该双曲线的离心率是( )A. B.2 C.3 D.411.已知棱长为2的正方体ABCD﹣A1B1C1D1,球O与该正方体的各个面相切,则平面ACB1截此球所得的截面的面积为()A.B. C. D.12.已知函数f(x)=,x≠0,e为自然对数的底数,关于x的方程+﹣λ=0有四个相异实根,则实数λ的取值范围是( )A.(0,) B.(2,+∞) C.(e+,+∞)D.(+,+∞)二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上13.已知向量=(1,2),=(x,3),若⊥,则|+|= .14.(﹣)5的二项展开式中,含x的一次项的系数为(用数字作答).15.若实数x,y满足不等式组,目标函数z=kx﹣y的最大值为12,最小值为0,则实数k= .16.已知数列{a n}满足na n+2﹣(n+2)a n=λ(n2+2n),其中a1=1,a2=2,若a n<a n+1对∀n∈N*恒成立,则实数λ的取值范围是.三、解答题:解答应写出文字说明、证明过程或演算步骤。

【贵州省】2017年高考模拟理科数学试卷-答案

【贵州省】2017年高考模拟理科数学试卷-答案

贵州省2017年高考模拟理科数学试卷答 案一、选择题(本大题共12小题,每小题5分,共60分)1~5.BDCAD6~10.BACCA 11~12.DA 二、填空题(本小题共4小题,每小题5分,共20分) 13.﹣5.14.2.15.36π.16.10或11.三、解答题(本题共70分)17.解:(Ⅰ)在ABC △中,由cos 4a B =,sin 3b A =, 两式相除,有4cos cos cos 13sin sin sinB tan a B a B b B b A A b b B ====g g , 所以3tan 4B =, 又cos 4a B =,故cos 0B >,则4cos 5B =, 所以5a =. …(6分) (2)由(1)知3sin 5B =, 由1sin 2S ac B =,得到6c =.由2222cos b a c ac B -=+,得b =故5611l =+ABC △的周长为11+.…(12分)18.解:(1)根据乙地20天PM2.5日平均浓度的频率分布表作出相应的频率分组直方图,如下图:由频率分布直方图得:甲地PM2.5日平均浓度的平均值低于乙地PM2.5日平均浓度的平均值,而且甲地的数据比较集中,乙地的数据比较分散.(2)记1A 表示事件:“甲地市民对空气质量的满意度等级为满意或非常满意”,2A 表示事件:“甲地市民对空气质量的满意度等级为非常满意”,1B 表示事件:“乙地市民对空气质量的满意度等级为不满意”,2B 表示事件:“乙地市民对空气质量的满意度等级为满意”,则1A 与1B 独立,2A 与2B 独立,1B 与2B 互斥,1122C B A B A =U ,11221122()(()))((())P C P B A B A P B P A P B P A ==+U ), 由题意19)1(0P A =,21)1(0P A =,111)0(2P B =,27)2(0P B =, 119715320102010100()P C ∴⨯+⨯==. 19.解.(1)证明:由题意,DE BC ∥, DE AD DE BD AD BD D ⊥⊥=Q I ,,,DE ADB ∴⊥平面,BC ABD ∴⊥平面;BC ABC ⊂Q 平面,ABD ABC ∴⊥平面平面;(2)由已知可得二面角A DE C --的平面角就是ADB ∠设等腰直角三角形42ABC AB ADB AD DB AB ====的直角边,则在△中,,取DB O AO DB ⊥中点,,由(1)得平面ABD EDBC ⊥平面,AO EDBC ∴⊥面,所以以O 为原点,建立如图坐标系,则A ,(1,0,0)B ,(1,4,0)C ,(1,2,0)E -设ABC 平面的法向量为(,,)m x y z =u r ,AB =u u u r,(1,4,AC =u u u r.由040m AB x m AC x y ⎧==⎪⎨=+=⎪⎩u r u u u r g u r u u u r g,取m =u r ,(1,2,AE =-u u u r ,∴直线AE 与ABC 平面所成角的θ,sin |cos ,|||||m AE m AE AE m θ==u r u u u r u r u u u r g u u u u r u r <> 即直线AE 与ABC 平面所成角的正弦值为:420.解:(1)由椭圆的焦点在x轴上,椭圆的离心率c e a ==a =,由2222b ac c -==,将2P 代入椭圆方程222212x y c c +=, 解得:1c =,a 1b =, ∴椭圆的标准方程:2212x y +=; (2)在x 轴上假设存在定点(,0)M m ,使得MA MB u u u r u u u r g 为定值.若直线的斜率存在,设AB 的斜率为k ,(1,0)F ), 由22(1)12y k x x y =-⎧⎪⎨+=⎪⎩,整理得2222()124220k x k x k +--+=, 2122412k x x k +=+,21222212k x x k -=+, 22222121222222241)(1)1)(2(1211k k k y y k x x k k k k k -==+-=---=+++, 则21212121212)()(()x m x m y y x x m m M x x MB y y A +=---+=++u u u r u u u r g ,2222222222222412121122(241)k k k m m m m m k k k k k -+-=+++-+-++=-g , 欲使得MA MB u u u r u u u r g 为定值,则222412(2)m m m +=--, 解得:54m =, 此时25721616MA MB =-=-u u u r u u u r g ; 当AB 斜率不存在时,令1x =,代入椭圆方程,可得y = 由5(,0)4M ,可得716MA MB =-u u u r u u u r g ,符合题意. 故x x 轴上存在定5(,0)4M ,使得716MA MB =-u u u r u u u r g . 21.解:(1)()ln 1f x x a '=++, (1)12f a '=+=,解得:1a =,故()ln f x x x x =+,()ln 2f x x '=+,令()0f x '>,解得:2x e ->,令()0f x '<,解得:20x e -<<,故()f x 在2(0)e -,递减,在2()e -+∞,递增;(2)要证()xe f x '>,即证2n 0l x e x -->,即证ln 2x e x +>, 0x >时,易得1x e x +>,即只需证明1ln 2x x ++≥即可,即只需证明ln 1x x +>即可令()ln 1h x x x =-+,则1()1h x x'=-, 令()0h x '=,得1x = ()h x 在(0,1)递减,在(1,)+∞递增,故()(1)0h x h =≥.即1ln 2x x ++≥成立,即2x e lnx +>,()x e f x '∴>.22.解:(1)曲线1C 的参数方程为22cos y 2sin x αα=+⎧⎨=⎩(α为参数),普通方程为22(2)4x y -+=,即224x y x +=,极坐标方程为4cos ρθ=;曲线1C 的极坐标方程为2cos sin ρθθ=,普通方程为:2y x =;(2)射线l 的参数方程为cos sin x t y t αα=⎧⎨=⎩(t 为参数,ππ64α<≤). 把射线l 的参数方程代入曲线1C 的普通方程得:24cos 0t t α=﹣,解得10t =,24cos t α=.2|||4cos |OA t α∴==.把射线l 的参数方程代入曲线2C 的普通方程得:22cos sin t t αα=,解得10t =,22sin cos t αα=. 22|sin |||cos OB t αα∴==. 2sin ||||4cos 4tan 4cos OA OB k αααα∴===g g.k ∈Q,4k ∴∈. ||||OA OB ∴g的取值范围是. 23.解:(1)26,1||4,1526,)1||55(x x x x f x x x x -+⎧⎪=⎨⎪-=-+-⎩≤<<≥,()f x ∴在(,1]-∞上单调递减,在222118a b =+++++221142a b +++=Q ≤, 2(()())16g a g b ∴+≤,()()4g a g b ∴+≤.2017年贵州省高考理科数学模拟试卷解析一、选择题(本大题共12小题,每小题5分,共60分)1.【考点】1E:交集及其运算.【分析】解不等式求出集合M,再根据交集的定义写出M∩N.【解答】解:集合集合M={x|x2﹣2x<0}={x|0<x<2},N={x|x≥1},则M∩N={x|1≤x<2}故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.【考点】A5:复数代数形式的乘除运算.【分析】利用复数的运算法则、复数相等即可得出.【解答】解:∵y=(2x+i)(1﹣i)=2x+1+(1﹣2x)i,∴,解得y=2故选:D.【点评】本题考查了复数的运算法则、复数相等,考查了计算能力,属于基础题.3.【考点】88:等比数列的通项公式.【分析】根据已知条件可以求得公比q=2.【解答】解:∵数列{a n}满足a n=a n+1,∴=2.则该数列是以2为公比的等比数列.由a3+a4=2,得到:4a1+8a1=2,解得a1=,则a4+a5=8a1+16a1=24a1=24×=4,故选:C.【点评】本题考查了等比数列的通项公式,是基础的计算题.4.【考点】96:平行向量与共线向量.【分析】由题意可得∥,再根据两个向量共线的性质可得=,由此可得结论.【解答】解:由题意可得∥,∴=λ•,故有=,∴mn=1,故选:A.【点评】本题主要考查两个向量共线的性质,两个向量坐标形式的运算,属于中档题.5.【考点】EF:程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的a,b的值,当a=28,b=28时,不满足条件a≠b,退出循环,输出a的值.【解答】解:模拟程序的运行,可得a=56,b=140,满足条件a≠b,不满足条件a>b,b=140﹣56=84,满足条件a≠b,不满足条件a>b,b=84﹣56=28,满足条件a≠b,满足条件a>b,a=56﹣28=28,不满足条件a≠b,退出循环,输出a的值为28.故选:D.【点评】本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的a,b的值是解题的关键,属于基本知识的考查.6.【考点】F7:进行简单的演绎推理.【分析】根据题意,由祖暅原理,分析可得图1的面积等于图2梯形的面积,计算梯形的面积即可得出结论.【解答】解:根据题意,由祖暅原理,分析可得图1的面积等于图2梯形的面积,又由图2是一个上底长为1、下底长为2的梯形,其面积S==;故选:B.【点评】本题考查演绎推理的运用,关键是理解题目中祖暅原理的叙述.7.【考点】L7:简单空间图形的三视图.【分析】分析三棱锥P﹣BCD的正视图与侧视图的形状,并求出面积,可得答案.【解答】解:设棱长为1,则三棱锥P﹣BCD的正视图是底面边长为1,高为1的三角形,面积为:;三棱锥P﹣BCD的俯视图取最大面积时,P在A1处,俯视图面积为:;故三棱锥P﹣BCD的俯视图与正视图面积之比的最大值为1,故选:A.【点评】本题考查的知识点是简单空间图形的三视图,根据已知分析出三棱锥P﹣BCD的正视图与侧视图的形状,是解答的关键.8.【考点】HP:正弦定理.【分析】由题意判断出三角形有两解时A的范围,通过正弦定理及正弦函数的性质推出a的范围即可.【解答】解:由AC=b=2,要使三角形有两解,就是要使以C为圆心,半径为2的圆与BA有两个交点,当A=90°时,圆与AB相切;当A=45°时交于B点,也就是只有一解,∴45°<A<135°,且A≠90°,即<sinA<1,由正弦定理以及asinB=bsinA.可得:a==2sinA,∵2sinA∈(2,2).∴a的取值范围是(2,2).故选:C.【点评】此题考查了正弦定理,正弦函数的图象与性质,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键,属于中档题.9.【考点】CF:几何概型.【分析】首先明确几何概型测度为区域面积,利用定积分求出A的面积,然后由概型公式求概率.【解答】解:由已知得到事件对应区域面积为=4,由直线x=﹣,x=,曲线y=cosx与x轴围成的封闭图象所表示的区域记为A,面积为2=2sinx|=,由急火攻心的公式得到所求概率为:;故选C【点评】本题考查了几何概型的概率求法;明确几何测度是关键.10.【考点】3O:函数的图象.【分析】根据图象的对称关系和条件可知C(6)=0,C(12)=10,再根据气温变化趋势可知在前一段时间内平均气温大于10,使用排除法得出答案.【解答】解:∵气温图象在前6个月的图象关于点(3,0)对称,∴C(6)=0,排除D;注意到后几个月的气温单调下降,则从0到12月前的某些时刻,平均气温应大于10℃,可排除C;∵该年的平均气温为10℃,∴t=12时,C(12)=10,排除B;故选A.【点评】本题考查了函数图象的几何意义,函数图象的变化规律,属于中档题.11.【考点】K8:抛物线的简单性质.【分析】过P作准线的垂线,垂足为N,则由抛物线的定义,结合|PA|=m|PF|,设PA的倾斜角为α,则当m取得最大值时,sinα最小,此时直线PA与抛物线相切,求出P的坐标,即可求得|PA|的值.【解答】解:抛物线的标准方程为x2=4y,则抛物线的焦点为F(0,1),准线方程为y=﹣1,过P作准线的垂线,垂足为N,则由抛物线的定义可得|PN|=|PF|,∵|PA|=m|PF|,∴|PA|=m|PN|,设PA的倾斜角为α,则sinα=,当m取得最大值时,sinα最小,此时直线PA与抛物线相切,设直线PA的方程为y=kx﹣1,代入x2=4y,可得x2=4(kx﹣1),即x2﹣4kx+4=0,∴△=16k2﹣16=0,∴k=±1,∴P(2,1),∴|PA|==2.故选D.【点评】本题考查抛物线的性质,考查抛物线的定义,考查学生分析解决问题的能力,解答此题的关键是明确当m取得最大值时,sinα最小,此时直线PA与抛物线相切,属中档题.12.【考点】54:根的存在性及根的个数判断.【分析】求出函数y=f(x)+g(x)的表达式,构造函数h(x)=f(x)+f(2﹣x),作出函数h(x)的图象,利用数形结合进行求解即可.【解答】解:函数g(x)=f(2﹣x)﹣b,由f(x)+g(x)=0,得f(x)+f(2﹣x)=,设h(x)=f(x)+f(2﹣x),若x≤0,则﹣x≥0,2﹣x≥2,则h(x)=f(x)+f(2﹣x)=2+x+x2,若0≤x≤2,则﹣2≤﹣x≤0,0≤2﹣x≤2,则h(x)=f(x)+f(2﹣x)=2﹣x+2﹣|2﹣x|=2﹣x+2﹣2+x=2,若x>2,﹣x<﹣2,2﹣x<0,则h(x)=f(x)+f(2﹣x)=(x﹣2)2+2﹣|2﹣x|=x2﹣5x+8.作出函数h(x)的图象如图:当x≤0时,h(x)=2+x+x2=(x+)2+≥,当x>2时,h(x)=x2﹣5x+8=(x﹣)2+≥.由图象知要使函数y=f(x)+g(x)恰有4个零点,即h(x)=恰有4个根,∴,解得:b∈(7,8)故选:A.【点评】本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键,属于难题.二、填空题(本小题共4小题,每小题5分,共20分)13.【考点】3L:函数奇偶性的性质.【分析】根据偶函数f(x)的定义域为R,则∀x∈R,都有f(﹣x)=f(x),建立等式,解之求出a,即可求出f(2).【解答】解:因为函数f(x)=(x﹣a)(x+3)是偶函数,所以∀x∈R,都有f(﹣x)=f(x),所以∀x∈R,都有(﹣x﹣a)•(﹣x+3)=(x﹣a)(x+3),即x2+(a﹣3)x﹣3a=x2﹣(a﹣3)x﹣3a,所以a=3,所以f(2)=(2﹣3)(2+3)=﹣5.故答案为:﹣5.【点评】本题主要考查了函数奇偶性的性质,同时考查了运算求解的能力,属于基础题.14.【考点】DB:二项式系数的性质.【分析】利用(x+1)(x+a)4=(x+1)(x4+4x3a+…),进而得出.【解答】解:(x+1)(x+a)4=(x+1)(x4+4x3a+…),∵展开式中含x4项的系数为9,∴1+4a=9,解得a=2.故答案为:2.【点评】本题考查了二项式定理的展开式,考查了推理能力与计算能力,属于基础题.15.【考点】LG:球的体积和表面积.【分析】当点C位于垂直于面AOB时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为,求出半径,即可求出球O的体积【解答】解:如图所示,当点C位于垂直于面AOB时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时V O﹣ABC=V C﹣AOB=×R2×sin60°×R=,故R=3,则球O的表面积为4πR2=36π,故答案为:36π.【点评】本题考查球的半径,考查体积的计算,确定点C位于垂直于面AOB时,三棱锥O﹣ABC的体积最大是关键.属于中档题16.【考点】8H:数列递推式.【分析】na n+1﹣(n+1)a n=2n2+2n,化为﹣=2,利用等差数列的通项公式可得a n,再利用二次函数的单调性即可得出.【解答】解:∵na n+1﹣(n+1)a n=2n2+2n,∴﹣=2,∴数列{}是等差数列,首项为﹣40,公差为2.∴=﹣40+2(n﹣1),化为:a n=2n2﹣42n=2﹣.则a n取最小值时n的值为10或11.故答案为:10或11.【点评】本题考查了等差数列的通项公式、二次函数的单调性,考查了推理能力与计算能力,属于中档题.三、解答题(本题共70分)17.【考点】HT:三角形中的几何计算.【分析】(1)由acosB=4,bsinA=3,两式相除,结合正弦定理可求tanB=,又acosB=4,可得cosB>0,从而可求cosB,即可解得a的值.(2)由(1)知sinB=,利用三角形面积公式可求c,由余弦定理可求b,从而解得三角形周长的值.【点评】本题主要考查了正弦定理,余弦定理,同角三角函数基本关系式,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.18.【考点】CC:列举法计算基本事件数及事件发生的概率;B8:频率分布直方图.【分析】(1)根据乙地20天PM2.5日平均浓度的频率分布表能作出相应的频率分组直方图,由频率分布直方图能求出结果.(2)记A1表示事件:“甲地市民对空气质量的满意度等级为满意或非常满意”,A2表示事件:“甲地市民对空气质量的满意度等级为非常满意”,B1表示事件:“乙地市民对空气质量的满意度等级为不满意”,B2表示事件:“乙地市民对空气质量的满意度等级为满意”,则A1与B1独立,A2与B2独立,B1与B2互斥,C=B1A1∪B2A2,由此能求出事件C的概率.【点评】本题考查频率分布直方图的应用,考查概率的求法,是基础题,解题时要认真审题,注意互斥事件加法公式和相互独立事件事件概率乘法公式的合理运用.19.【考点】MI:直线与平面所成的角;LY:平面与平面垂直的判定.【分析】(1)证明:DE⊥平面ADB,DE∥BC,可证BC⊥平面ABD,即可证明平面ABD⊥平面ABC.(2)取DB中点O,AO⊥DB,由(1)得平面ABD⊥平面EDBC,AO⊥面EDBC,所以以O为原点,建立如图坐标系,则A(0,0,),B(1,0,0),C(1,4,0),E(﹣1,2,0),利用平面ABC的法向量求解.【点评】本题考查线面垂直,考查向量法求二面角,考查学生分析解决问题的能力,属于中档题.20.【考点】KL:直线与椭圆的位置关系.【分析】(1)由题意的离心率公式求得a=c,b2=a2﹣c2=c2,将直线方程代入椭圆方程,即可求得a和b,求得椭圆方程;(2)在x轴上假设存在定点M(m,0),使得•为定值.若直线的斜率存在,设AB的斜率为k,F (1,0),由y=k(x﹣1)代入椭圆方程,运用韦达定理和向量数量积的坐标表示,结合恒成立思想,即可得到定点和定值;检验直线AB的斜率不存在时,也成立.【点评】本题考查椭圆方程的求法,注意运用离心率公式,考查存在性问题的解法,注意运用分类讨论的思想方法和联立直线方程和椭圆方程,运用韦达定理和向量的数量积的坐标表示,考查化简整理的运算能力,属于中档题.21.【考点】6B:利用导数研究函数的单调性;6H:利用导数研究曲线上某点切线方程.【分析】(1)由f′(1)=1+a=2,解得:a=1,利用导数求解单调区间.(2)要证e x>f′(x),即证e x>lnx+2,x>0时,易得e x>x+1,即只需证明x>lnx+1即可【点评】本题考查了导数的综合应用,构造合适的新函数,放缩法证明函数不等式,属于难题.22.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【分析】(1)先将C1的参数方程化为普通方程,再化为极坐标方程,将C2的极坐标方程两边同乘ρ,根据极坐标与直角坐标的对应关系得出C2的直角坐标方程;(2)求出l的参数方程,分别代入C1,C2的普通方程,根据参数的几何意义得出|OA|,|OB|,得到|OA|•|OB|关于k的函数,根据k的范围得出答案.【点评】本题考查参数方程与极坐标与普通方程的互化,考查参数的几何意义的应用,属于中档题.23.【考点】3H:函数的最值及其几何意义.【分析】(1)化简f(x)的解析式,得出f(x)的单调性,利用单调性求出f(x)的最小值;(2)计算2,利用基本不等式即可得出结论.【点评】本题考查了函数的单调性,分段函数的最值计算,基本不等式的应用,属于中档题.。

2017年贵州省黔东南州高考一模数学试卷(理科)【解析版】

2017年贵州省黔东南州高考一模数学试卷(理科)【解析版】

2017年贵州省黔东南州高考数学一模试卷(理科)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.)1.(5分)若复数是虚数单位,则z的共轭复数在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)已知集合,则A∩B=()A.[﹣1,3]B.(﹣1,3]C.(0,1]D.(0,3]3.(5分)等差数列{a n}的前n项和为s n,若a2+a3=5,S5=20,则a5=()A.6B.8C.10D.124.(5分)已知三个数a=0.60.3,b=log0.63,c=lnπ,则a,b,c的大小关系是()A.c<b<a B.c<a<b C.b<c<a D.b<a<c 5.(5分)秦九韶是我国南宋时期著名的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入x的值为3,每次输入a的值均为4,输出s的值为484,则输入n的值为()A.6B.5C.4D.36.(5分)二次函数y=﹣x2﹣4x(x>﹣2)与指数函数的交点个数有()A.3个B.2个C.1个D.0个7.(5分)已知M为△ABC的边AB的中点,△ABC所在平面内有一个点P,满足,若,则λ的值为()A.2B.1C.D.48.(5分)已知点P(x,y)是圆x2+y2=4上任意一点,则z=2x+y的最大值为()A.B.C.6D.9.(5分)已知三棱锥P﹣ABC中,P A⊥底面ABC,AB⊥BC,P A=AC=2,且该三棱锥所有顶点都在球O的球面上,则球O的表面积为()A.4πB.8πC.16πD.20π10.(5分)任取x、y∈[0,2],则点P(x,y)满足的概率为()A.B.C.D.11.(5分)已知抛物线y2=4x与双曲线﹣=1(a>0,b>0)有相同的焦点F,点A是两曲线的一个交点,点B是点F关于坐标原点的对称点,且以AB为直径的圆过点F,则双曲线的离心率为()A.2﹣1B.+1C.8﹣8D.2﹣2 12.(5分)设f'(x)是函数f(x)(x∈R)的导数,且满足xf'(x)﹣2f(x)>0,若△ABC中,∠C是钝角,则()A.f(sin A)•sin2B>f(sin B)•sin2AB.f(sin A)•sin2B<f(sin B)•sin2AC.f(cos A)•sin2B>f(sin B)•cos2AD.f(cos A)•sin2B<f(sin B)•cos2A二、填空题(本大题共计4小题,每小题5分.)13.(5分)若的展开式中x4的系数为7,则实数a=.14.(5分)黔东南州雷山西江千户苗寨,是目前中国乃至全世界最大的苗族聚居村寨,每年来自世界各地的游客络绎不绝.假设每天到西江苗寨的游客人数ξ是服从正态分布N(2000,10000)的随机变量.则每天到西江苗寨的游客人数超过2100的概率为.(参考数据:若ξ服从N(μ,δ2),有P (μ﹣δ<ξ≤μ+δ)=0.6826,P(μ﹣2δ<ξ≤μ+2δ)=0.9544,P(μ﹣3δ<ξ≤μ+3δ)=0.9974)15.(5分)已知数列{a n}的前n项和为S n,满足:a1=1,,则该数列的前2017项和S2017=.三、解答题(本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.)16.(12分)△ABC的内角A,B,C所对的边分别为a,b,c,且(2a﹣c)cos B =b cos C,•=﹣3.(I)求△ABC的面积;(II)若sin A:sin C=3:2,求AC边上的中线BD的长.17.(12分)从某校高三上学期期末数学考试成绩中,随机抽取了60名学生的成绩得到如图所示的频率分布直方图:(1)根据频率分布直方图,估计该校高三学生本次数学考试的平均分;(2)若用分层抽样的方法从分数在[30,50)和[130,150]的学生中共抽取6人,该6人中成绩在[130,150]的有几人?(3)在(2)抽取的6人中,随机抽取3人,计分数在[130,150]内的人数为ξ,求期望E(ξ).18.(12分)已知如图:三棱柱ABC﹣A1B1C1的各条棱均相等,AA1⊥平面ABC,E为AA1的中点.(1)求证:平面BC1E⊥平面BCC1B1;(2)求二面角C1﹣BE﹣A1的余弦值.19.(12分)椭圆的左右焦点分别为F1,F2,点P在椭圆C上,满足.(1)求椭圆C的方程.(2)设O为坐标原点,过椭圆C的左焦点F1的动直线l与椭圆C相交于M,N 两点,是否存在常数t,使得为定值,若存在,求t的值;若不存在,请说明理由.20.(12分)已知函数f(x)=e ax+b在(0,f(0))处的切线为y=x+1.(1)若对任意x∈R,有f(x)≥kx成立,求实数k的取值范围.(2)证明:对任意t∈(﹣∞,2],f(x)>t+lnx成立.请考生在第22、23二道题中任选一题作答.如果多做,则按所做的第一题计分.作答时请写清题号.[选修4-4:坐标系与参数方程]21.(10分)在极坐标系中,点M的坐标为,曲线C的方程为;以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,斜率为﹣1的直线l经过点M.(1)求直线l和曲线C的直角坐标方程;(2)若P为曲线C上任意一点,曲线l和曲线C相交于A、B两点,求△P AB 面积的最大值.[选修4-5:不等式选讲]22.已知函数f(x)=|x+t|的单调递增区间为[﹣1,+∞).(3)求不等式f(x)+1<|2x+1|的解集M;(4)设a,b∈M,证明:|ab+1|>|a+b|.2017年贵州省黔东南州高考数学一模试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.)1.(5分)若复数是虚数单位,则z的共轭复数在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:复数z==3+2i,则z的共轭复数=3﹣2i在复平面内对应的点(3,﹣2)在第四象限.故选:D.2.(5分)已知集合,则A∩B=()A.[﹣1,3]B.(﹣1,3]C.(0,1]D.(0,3]【解答】解:由A中不等式变形得:(x+1)(x﹣3)≤0,且x+1≠0,解得:﹣1<x≤3,即A=(﹣1,3],由B中不等式变形得:lgx≤1=lg10,解得:0<x≤10,即B=(0,10],则A∩B=(0,3],故选:D.3.(5分)等差数列{a n}的前n项和为s n,若a2+a3=5,S5=20,则a5=()A.6B.8C.10D.12【解答】解:设等差数列{a n}的公差为d,∵a2+a3=5,S5=20,∴2a1+3d=5,d=20,解得a1=﹣2,d=3.则a5=﹣2+3×4=10.故选:C.4.(5分)已知三个数a=0.60.3,b=log0.63,c=lnπ,则a,b,c的大小关系是()A.c<b<a B.c<a<b C.b<c<a D.b<a<c【解答】解:三个数a=0.60.3∈(0,1),b=log0.63<0,c=lnπ>1,∴c>a>b.故选:D.5.(5分)秦九韶是我国南宋时期著名的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入x的值为3,每次输入a的值均为4,输出s的值为484,则输入n的值为()A.6B.5C.4D.3【解答】解:模拟程序的运行,可得x=3,k=0,s=0,a=4s=4,k=1不满足条件k>n,执行循环体,a=4,s=16,k=2不满足条件k>n,执行循环体,a=4,s=52,k=3不满足条件k>n,执行循环体,a=4,s=160,k=4不满足条件k>n,执行循环体,a=4,s=484,k=5由题意,此时应该满足条件k>n,退出循环,输出s的值为484,可得:5>n≥4,所以输入n的值为4.故选:C.6.(5分)二次函数y=﹣x2﹣4x(x>﹣2)与指数函数的交点个数有()A.3个B.2个C.1个D.0个【解答】解:因为二次函数y=﹣x2﹣4x=﹣(x+2)2+4(x>﹣2),且x=﹣1时,y=﹣x2﹣4x=3,=2,则在坐标系中画出y=﹣x2﹣4x(x>﹣2)与的图象:由图可得,两个函数图象的交点个数是1个,故选:C.7.(5分)已知M为△ABC的边AB的中点,△ABC所在平面内有一个点P,满足,若,则λ的值为()A.2B.1C.D.4【解答】解:由题意满足,可得:四边形P ACB是平行四边形,又M为△ABC的边AB的中点,∴PC=2PM,,∴λ=2.故选:A.8.(5分)已知点P(x,y)是圆x2+y2=4上任意一点,则z=2x+y的最大值为()A.B.C.6D.【解答】解:由题意,圆的圆心(0,0)到直线2x+y﹣z=0的距离d=≤2,∴﹣2≤z≤2,∴z=2x+y的最大值为2,故选:B.9.(5分)已知三棱锥P﹣ABC中,P A⊥底面ABC,AB⊥BC,P A=AC=2,且该三棱锥所有顶点都在球O的球面上,则球O的表面积为()A.4πB.8πC.16πD.20π【解答】解:由题意,将三棱锥扩充为长方体,长方体的对角线PC为外接球的直径,PC=2,半径为,∴球O的表面积为4π•2=8π,故选:B.10.(5分)任取x、y∈[0,2],则点P(x,y)满足的概率为()A.B.C.D.【解答】解:任取x、y∈[0,2],其面积为4,点P(x,y)满足,其面积为1+=1+2ln2,∴任取x、y∈[0,2],则点P(x,y)满足的概率为,故选:A.11.(5分)已知抛物线y2=4x与双曲线﹣=1(a>0,b>0)有相同的焦点F,点A是两曲线的一个交点,点B是点F关于坐标原点的对称点,且以AB为直径的圆过点F,则双曲线的离心率为()A.2﹣1B.+1C.8﹣8D.2﹣2【解答】解:由题意可知:双曲线﹣=1(a>0,b>0)焦点坐标为(1,0),(﹣1,0),c=1,由点B是点F关于坐标原点的对称点,则B(﹣1,0),以AB为直径的圆过点F,则AF⊥BF,设A点在第一象限,∴|AF|=2,∴A(1,2),∵点A在双曲线上,∴,∵c=1,b2=c2﹣a2,∴a=﹣1,∴e==+1,故选:B.12.(5分)设f'(x)是函数f(x)(x∈R)的导数,且满足xf'(x)﹣2f(x)>0,若△ABC中,∠C是钝角,则()A.f(sin A)•sin2B>f(sin B)•sin2AB.f(sin A)•sin2B<f(sin B)•sin2AC.f(cos A)•sin2B>f(sin B)•cos2AD.f(cos A)•sin2B<f(sin B)•cos2A【解答】解:∵=,x>0时,>0,∴在(0,+∞)递增,又∵∠C是钝角,∴cos A>sin B>0,∴>,∴f(cos A)sin2B>f(sin B)cos2A,故选:C.二、填空题(本大题共计4小题,每小题5分.)13.(5分)若的展开式中x4的系数为7,则实数a=.【解答】解:由通项公式T r+1==,∵的展开式中x4的系数为7,∴,解得.故答案为.14.(5分)黔东南州雷山西江千户苗寨,是目前中国乃至全世界最大的苗族聚居村寨,每年来自世界各地的游客络绎不绝.假设每天到西江苗寨的游客人数ξ是服从正态分布N(2000,10000)的随机变量.则每天到西江苗寨的游客人数超过2100的概率为0.1587.(参考数据:若ξ服从N(μ,δ2),有P(μ﹣δ<ξ≤μ+δ)=0.6826,P(μ﹣2δ<ξ≤μ+2δ)=0.9544,P(μ﹣3δ<ξ≤μ+3δ)=0.9974)【解答】解:∵服从正态分布N(μ,σ2)的随机变量在区间(μ﹣σ,μ+σ)内取值的概率分别为0.6826,随机变量ξ服从正态分布N(2000,1002),∴每天到西江苗寨的游客人数超过2100的概率为×(1﹣0.6826)=0.1587,故答案为0.1587.15.(5分)已知数列{a n}的前n项和为S n,满足:a1=1,,则该数列的前2017项和S2017=31009﹣2.【解答】解:∵a1=1,,∴a n+1a n=3n,n=1时,a2=3.n≥2时,a n a n﹣1=3n﹣1,可得=3.∴数列{a n}的奇数项与偶数项都成等比数列,公比为3.∴S2017=(a1+a3+…+a2017)+(a2+a4+…+a2016)=+=31009﹣2.故答案为:31009﹣2.三、解答题(本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.)16.(12分)△ABC的内角A,B,C所对的边分别为a,b,c,且(2a﹣c)cos B =b cos C,•=﹣3.(I)求△ABC的面积;(II)若sin A:sin C=3:2,求AC边上的中线BD的长.【解答】(本题满分为12分)解:(I)已知等式(2a﹣c)cos B=b cos C,利用正弦定理化简得:(2sin A﹣sin C)cos B=sin B cos C,整理得:2sin A cos B=sin B cos C+cos B sin C=sin(B+C)=sin A,∵sin A≠0,∴cos B=,则B=60°.又∵•=﹣3.∴ac cos(π﹣B)=﹣3,∴解得ac=6,=ac sin B=×=…6分∴S△ABC(II)∵由sin A:sin C=3:2,可得:a:c=3:2,解得:a=,又∵由(I)可得:ac=6,∴解得:a=3,c=2,又∵=(+),∴42=2+2+2=c2+a2﹣2=22+32﹣2×(﹣3)=19,∴||=,即AC边上的中线BD的长为…12分17.(12分)从某校高三上学期期末数学考试成绩中,随机抽取了60名学生的成绩得到如图所示的频率分布直方图:(1)根据频率分布直方图,估计该校高三学生本次数学考试的平均分;(2)若用分层抽样的方法从分数在[30,50)和[130,150]的学生中共抽取6人,该6人中成绩在[130,150]的有几人?(3)在(2)抽取的6人中,随机抽取3人,计分数在[130,150]内的人数为ξ,求期望E(ξ).【解答】解:(1)由频率分布直方图,得该校高三学生本次数学考试的平均分为0.0050×20×40+0.0075×20×60+0.0075×20×80+0.0150×20×100+0.0125×20×120+0.0025×20×140=92;…(4分)(2)样本中分数在[30,50)和[130,150]的人数分别为6人和3人,所以抽取的6人中分数在[130,150]的人有(人);…(8分)(3)由(2)知:抽取的6人中分数在[130,150]的人有2人,依题意ξ的所有取值为0、1、2,当ξ=0时,;当ξ=1时,;当ξ=2时,;∴.…(12分)18.(12分)已知如图:三棱柱ABC﹣A1B1C1的各条棱均相等,AA1⊥平面ABC,E为AA1的中点.(1)求证:平面BC1E⊥平面BCC1B1;(2)求二面角C1﹣BE﹣A1的余弦值.【解答】证明:(1)如图1,连接CB1交BC1于点O,则O为CB1与BC1的中点,连接EC,EB1依题意有;EB=EC1=EC=EB1…(2分)∴EO⊥CB1,EO⊥BC1,∴EO⊥平面BCC1B1,OE⊆平面BC1∴平面EBC1⊥平面BCC1B1.…(5分)解:(2)如图2,由(1)知EO⊥CB1,EO⊥BC1,∵三棱柱ABC﹣A1B1C1的各条棱均相等,∴BC1⊥CB1,即EO、BC1、CB1两两互相垂直,∴可建立如图2所示的空间直角坐标系,令棱长为2a,则,,,,…(7分)=(0,,),=(﹣,,0),依题意得向量为平面C 1BE的一个法向量,令平面BEA 1的一个法向量为,则,∴,设f=1,则,∴,…(10分)令二面角C1﹣BE﹣A1的平面角为θ则=所以二面角C1﹣BE﹣A1的余弦值为…(12分)19.(12分)椭圆的左右焦点分别为F1,F2,点P在椭圆C上,满足.(1)求椭圆C的方程.(2)设O为坐标原点,过椭圆C的左焦点F1的动直线l与椭圆C相交于M,N 两点,是否存在常数t,使得为定值,若存在,求t的值;若不存在,请说明理由.【解答】解:(1),得,由=|PF2|2,得c=2,由c2=a2﹣b2得b=1,∴椭圆方程为;…..(4分)(2)当直线L的斜率存在时,设点M(x1,y1),N(x2,y2),直线L为y=k(x+2)把y=k(x+2)代入得:….(6分)由,得,,所以,所以…(8分)当时,t=﹣11,此时即当t=﹣11时,可得为定值6;,(10分)当直线L的斜率不存在时,直线L为x=﹣2,则,当t=﹣11时,可得为定值6,由上综合可知,当t=﹣11时,可得为定值6.…(12分)20.(12分)已知函数f(x)=e ax+b在(0,f(0))处的切线为y=x+1.(1)若对任意x∈R,有f(x)≥kx成立,求实数k的取值范围.(2)证明:对任意t∈(﹣∞,2],f(x)>t+lnx成立.【解答】解:(1)由f′(x)=e ax得k=f′(0)=a=1,由切点(0,f(0))在切线y=x+1上,得f(0)=1,所以切点为(0,1),由点(0,1)在f(x)=e ax+b上,得b=0,所以f(x)=e x…(2分)当k<0时,对于x∈R,e x≥kx显然不恒成立当k=0时,e x≥kx显然成立…(3分)当k>0时,若要e x﹣kx≥0恒成立,必有(e x﹣kx)min≥0设t(x)=e x﹣kx,则t′(x)=e x﹣k易知t(x)在(﹣∞,lnk)上单调递减,在(lnk,+∞)上单调递增,则t(x)=k(1﹣lnk)min若e x﹣kx≥0恒成立,即t(x)min=k(1﹣lnk)≥0,得0<k≤e综上得0≤k≤e…(6分)(2)证法1:由(1)知e x≥ex成立,构造函数h(x)=ex﹣lnx﹣t(x>0)(t ≤2)h′(x)=e﹣=所以(t≤2)有ex≥lnx+t成立(当时取等号).由(1)知e x≥ex成立(当x=1时取等号),所以有e x>t+lnx成立,即对任意t∈(﹣∞,2],f(x)>t+lnx成立…(12分)证法2,因为t≤2,所以要证e x>t+lnx,只须证e x>2+lnx令h(x)=e x﹣lnx﹣2,h′(x)=e x﹣=(x>0),令t(x)=xe x﹣1,t′(x)=e x+xe x>0,所以t(x)在(0,+∞)递增,t(x)>t(0)=﹣1,由于t(0)=﹣1<0,t(1)=e﹣1>0所以存在x0∈(0,1),有,则,x0=﹣lnx0即h′(x)>0得x>x0,h′(x)<0得0<x<x0所以所以e x﹣2﹣lnx>0成立,即e x>t+lnx成立即对任意t∈(﹣∞,2],f(x)>t+lnx成立…(12分)请考生在第22、23二道题中任选一题作答.如果多做,则按所做的第一题计分.作答时请写清题号.[选修4-4:坐标系与参数方程]21.(10分)在极坐标系中,点M的坐标为,曲线C的方程为;以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,斜率为﹣1的直线l经过点M.(1)求直线l和曲线C的直角坐标方程;(2)若P为曲线C上任意一点,曲线l和曲线C相交于A、B两点,求△P AB 面积的最大值.【解答】解:(1)∵在极坐标系中,点M的坐标为,∴x=3cos=0,y=3sin=3,∴点M的直角坐标为(0,3),∴直线方程为y=﹣x+3,….(2分)由,得ρ2=2ρsinθ+2ρcosθ,∴曲线C的直角坐标方程为x2+y2﹣2x﹣2y=0,即(x﹣1)2+(y﹣1)2=2…(5分)(2)圆心(1,1)到直线y=﹣x+3的距离,∴圆上的点到直线L的距离最大值为,而弦∴△P AB面积的最大值为.…(10分)[选修4-5:不等式选讲]22.已知函数f(x)=|x+t|的单调递增区间为[﹣1,+∞).(3)求不等式f(x)+1<|2x+1|的解集M;(4)设a,b∈M,证明:|ab+1|>|a+b|.【解答】(1)解:由已知得t=1,….(1分)所以|x+1|+1<|2x+1|当x<﹣1时,﹣(x+1)+1<﹣(2x+1),得x<﹣1当时,(x+1)+1<﹣(2x+1)得x∈ϕ当时,(x+1)+1<(2x+1)得x>1综上得M={x|x<﹣1或x>1}…..(5分)(2)证明:要证|ab+1|>|a+b|,只须证(ab)2+2ab+1>a2+2ab+b2即证(ab)2﹣a2﹣b2+1>0因为(ab)2﹣a2﹣b2+1=a2(b2﹣1)﹣b2+1=(b2﹣1)(a2﹣1)由于a,b∈{x|x<﹣1,x>1},所以(b2﹣1)(a2﹣1)>0成立即|ab+1|>|a+b|成立.…..(10分)。

【贵州省】2017年高考模拟理科数学试卷

【贵州省】2017年高考模拟理科数学试卷

贵州省2017年高考模拟理科数学试卷一、选择题(本大题共12小题,每小题5分,共60分)1.设集合20{}|2M x x x =﹣<,{|1}N x x =≥,则M N =I ( )A.{|1}x x ≥B.|12}{x x ≤<C.|01}{x x <≤D.{|1}x x ≤2.已知x y R ∈,,i 是虚数单位,且(2i)(1i)x y +=﹣,则y 的值为( ) A.1- B.1 C.2- D.23.已知数列{}n a 满足112n n a a +=,若342a a +=,则45a a +=( ) A.12B.1C.4D.8 4.已知向量1e u r 与2e u u r 不共线,且向量12AB e me =+u u u r u r u u r ,12AC ne e =+u u u r u r u u r ,若A ,B ,C 三点共线,则实数m ,n ( )A.1mn =B.1mn =-C. 1m n +=D.1m n +=- 5.执行如图所示的程序框图,如果输入的a ,b 分别为56,140,则输出的a =( )A.0B.7C.14D.286.我国南北朝时代的数学家祖暅提出体积的计算原理(组暅原理):“幂势既同,则积不容异”.“势”即是高,“幂”是面积.意思是:如果两等高的几何体在同高处截得两几何体的截面积总相等,那么这两个几何体的体积相等,类比祖暅原理,如图所示,在平面直角坐标系中,图1是一个形状不规则的封闭图形,图2是一个上底长为1、下底长为2的梯形,且当实数t 取上的任意值时,直线y t =被图1和图2所截得的两线段长总相等,则图1的面积为( )A.4B.92C.5D.1127.如图,在正方体1111ABCD A B C D -中,点P 是线段11A C 上的动点,则三棱锥P BCD -的俯视图与正视图面积之比的最大值为( )A.1D.28.已知ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,2b =,45B =︒,若三角形有两解,则a 的取值范围是( )A.2a >B.02a <<C.2a <<D.2a <<9.已知区域|{||x y x Ω=(,)0y ≤,机取一点P ,则点P 在区域A 的概率为( )B.1210.某地一年的气温()Q t (单位:℃)与时间t (月份)之间的关系如图所示.已知该年的平均气温为10℃,令()C t 表示时间段的平均气温,下列四个函数图象中,最能表示()C t 与t 之间的函数关系的是( )A B C D11.已知点A 是抛物线24x y =的对称轴与准线的交点,点F 为抛物线的焦点,P 在抛物线上且满足||||PA m PF =,当m 取最大值时||PA 的值为( )A.1D.12.已知函数22||,2()(2),2x x f x x x -⎧=⎨-⎩≤>,函数1()(2)4g x f x b =--,其中b R ∈,若函数()()y f x g x =+恰有4个零点,则b 的取值范围是( )A.(7,8)B.(8,)+∞C.(7,0)-D.(,8)-∞二、填空题(本小题共4小题,每小题5分,共20分)13.若函数()()(3)f x x a x =-+为偶函数,则(2)f =________.14.4()x a +的展开式中含4x 项的系数为9,则实数a 的值为________.15.设A,B 是球O 的球面上两点,π3AOB ∠=,C 是球面上的动点,若四面体OABC 的体积V,则此时球的表面积为_________.16.已知数列{}n a 满足140a =-,且211)22(n n na n a n n ++=+-,则n a 取最小值时n 的值为______.三、解答题(本题共70分)17.(12分)设ABC △的内角A ,B ,C 所对的边分别为a,b,c,且cos 4a B =,sin 3b A =.(1)求tan B 及边长a 的值;(2)若ABC △的面积9S =,求ABC △的周长.18.(12分)为检测空气质量,某市环保局随机抽取了甲、乙两地2016年20天PM2.5日平均浓度(单位:微克/立方米)监测数据,得到甲地PM2.5日平均浓度频率分布直方图和乙地PM2.5日平均浓度的频数分布表.乙地20天PM2.5日平均浓度频数分布表PM2.5日平均浓度(微克/立方米)(20,40] (40,60] (60,80] (80,100] 频数(天) 2 3 4 6 5(1)根据乙地20天PM2.5日平均浓度的频率分布表作出相应的频率分组直方图,并通过两个频率分布直方图比较两地PM2.5日平均浓度的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)通过调查,该市市民对空气质量的满意度从高到低分为三个等级:满意度等级 非常满意 满意不满意 PM2.5日平均浓度(微克/立方米) 不超过20大于20不超过60 超过60 记事件C :“甲地市民对空气质量的满意度等级高于乙地市民对空气质量的满意度等级”,假设两地市民对空气质量满意度的调查结果相互独立,根据所给数据,利用样本估计总体的统计思想,以事件发生的频率作为相应事件发生的概率,求事件C 的概率.19.(12分)如图1,在等腰直角三角形ABC 中,90B ∠=︒,将ABC △沿中位线DE 翻折得到如图2所示的空间图形,使二面角A DE C --的大小为π(0)2θθ<<.(1)求证:ABD ABC ⊥平面平面;(2)若3πθ=,求直线AE 与平面ABC 所成角的正弦值.20.(12分)已知椭圆E :22221(0)x y a b a b +=>>点P 在椭圆E 上,直线l 过椭圆的右焦点F 且与椭圆相交于A ,B 两点. (1)求E 的方程;(2)在x 轴上是否存在定点M ,使得MA MB u u u r u u u r g 为定值?若存在,求出定点M 的坐标;若不存在,说明理由.21.(12分)已知函数()ln f x x x ax =+,函数()f x 的图象在点1x =处的切线与直线210x y +-=垂直. (1)求a 的值和()f x 的单调区间;(2)求证:()xe f x '>. 22.(10分)曲线1C 的参数方程为22cos y 2sin x αα=+⎧⎨=⎩(α为参数)在以原点O 为极点,x 轴的非负半轴为极轴的极坐标系中,曲线2C 的极坐标方程为2cos sin ρθθ=.(1)求曲线1C 的极坐标方程和曲线2C 的直角坐标方程;(2)过原点且倾斜角为ππ()64αα<≤的射线l 与曲线1C ,2C 分别相交于A ,B 两点(A ,B 异于原点),求||||OA OB g 的取值范围.23.已知函数()1|5|||f x x x =-+-,()g x =(1)求()f x 的最小值;(2)记()f x 的最小值为m ,已知实数a ,b 满足226a b +=,求证:()()g a g b m +≤.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

贵州省贵阳市2017届高考数学一模试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.已知i为虚数单位,则z=i+i2+i3+…+i2017=()A.0 B.1 C.﹣i D.i2.满足{1,2}⊆P⊊{1,2,3,4}的集合P的个数是()A.2 B.3 C.4 D.53.数列{a n}满足a1=0,﹣=1(n≥2,n∈N*),则a2017=()A.B.C.D.4.如图的程序框图,如果输入三个数a,b,c,(a2+b2≠0)要求判断直线ax+by+c=0与单位圆的位置关系,那么在空白的判断框中,应该填写下面四个选项中的()A.c=0?B.b=0?C.a=0?D.ab=0?5.某一空间几何体的三视图如图所示,则该几何体的最长棱长为()A.2 B.C.2D.36.函数曲线y=x与y=x2所围成的封闭区域的面积为()A.B.C.D.7.圆C与x轴相切于T(1,0),与y轴正半轴交于两点A、B,且|AB|=2,则圆C的标准方程为()A.(x﹣1)2+(y﹣)2=2 B.(x﹣1)2+(y﹣2)2=2C.(x+1)2+(y+)2=4 D.(x﹣1)2+(y﹣)2=48.设M为边长为4的正方形ABCD的边BC的中点,N为正方形区域内任意一点(含边界),则•的最大值为()A.32 B.24 C.20 D.169.若m∈(,1),a=lg m,b=lg m2,c=lg3m,则()A.a<b<c B.c<a<b C.b<a<c D.b<c<a10.已知球O的半径为2,四点S、A、B、C均在球O的表面上,且SC=4,AB=,∠SCA=∠SCB=,则点B到平面SAC的距离为()A.B.C.D.111.斜率为k(k>0)的直线经过抛物线y2=2px(p>0)的焦点,与抛物线交于A、B两点,与抛物线的准线交于C点,当B为AC中点时,k的值为()A.B.C.2D.312.已知M是函数f(x)=e﹣2|x﹣1|+2sin[π(x﹣)]在x∈[﹣3,5]上的所有零点之和,则M 的值为()A.4 B.6 C.8 D.10二、填空题(共4小题,每小题5分,满分20分)13.已知tan(π+α)=2,则cos2α+sin2α=.14.n的展开式中,所有二项式系数之和为512,则展开式中x3的系数为(用数字作答).15.我国古代数学家刘徽是公元三世纪世界上最杰出的数学家,他在《九章算术圆田术》注重,用割圆术证明了圆面积的精确公式,并给出了计算圆周率的科学方法,所谓“割圆术”,即通过圆内接正多边形细割圆,并使正多边形的周长无限接近圆的周长,进而求得较为精确的圆周率(圆周率指周长与该圆直径的比率).刘徽计算圆周率是从正六边形开始的,易知圆的内接正六边形可分为六个全等的正三角形,每个三角形的边长均为圆的半径R,此时圆内接正六边形的周长为6R,此时若将圆内接正六边形的周长等同于圆的周长,可得圆周率为3,当正二十四边形内接于圆时,按照上述算法,可得圆周率为(参考数据:cos15°≈0.966,≈0.26)16.已知数列{a n}满足:2a1+22a2+23a3+…+2n a n=n(n∈N*),数列{}的前n项和为S n,则S1•S2•S3…S10=.三、解答题(共5小题,满分60分)17.(12分)已知锐角△ABC中,角A,B,C所对的边分别为a,b,c,b=sin(A+C),cos(A﹣C)+cos B=c.(1)求角A的大小;(2)求b+c的取值范围.18.(12分)2017年1月1日,作为贵阳市打造“千园之城”27个示范性公元之一的泉湖公园正式开园,元旦期间,为了活跃气氛,主办方设置了水上挑战项目向全体市民开放,现从到公园游览的市民中随机抽取了60名男生和40名女生共100人进行调查,统计出100名市民中愿意接受挑战和不愿意接受挑战的男女生比例情况,具体数据如图表:(1)根据条件完成下列2×2列联表,并判断是否在犯错误的概率不超过1%的情况下愿意接受挑战与性别有关?(2)水上挑战项目共有两关,主办方规定:挑战过程依次进行,每一关都有两次机会挑战,通过第一关后才有资格参与第二关的挑战,若甲参加每一关的每一次挑战通过的概率均为,记甲通过的关数为X,求X的分布列和数学期望.参考公式与数据:K2=.19.(12分)底面为菱形的直棱柱ABCD﹣A1B1C1D1中,E、F分别为棱A1B1、A1D1的中点.(Ⅰ)在图中作一个平面α,使得BD⊂α,且平面AEF∥α,(不必给出证明过程,只要求作出α与直棱柱ABCD﹣A1B1C1D1的截面.)(II)若AB=AA1=2,∠BAD=60°,求平面AEF与平面α的距离d.20.(12分)经过原点的直线与椭圆C:+=1(a>b>0)交于A、B两点,点P为椭圆上不同于A、B的一点,直线PA、PB的斜率均存在,且直线PA、PB的斜率之积为﹣.(1)求椭圆C的离心率;(2)设F1、F2分别为椭圆的左、右焦点,斜率为k的直线l经过椭圆的右焦点,且与椭圆交于M、N两点,若点F1在以|MN|为直径的圆内部,求k的取值范围.21.(12分)设f(x)=ln x,g(x)=x|x|.(1)求g(x)在x=﹣1处的切线方程;(2)令F(x)=x•f(x)﹣g(x),求F(x)的单调区间;(3)若任意x1,x2∈[1,+∞)且x1>x2,都有m[g(x1)﹣g(x2)]>x1f(x1)﹣x2f(x2)恒成立,求实数m的取值范围.四、请考生在第22.23题中任选一题作答,如多做,则按所做的第一题记分选修4-4:坐标系与参数方程选讲22.(10分)在直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ﹣2cosθ﹣6sinθ+=0,直线l的参数方程为(t为参数).(1)求曲线C的普通方程;(2)若直线l与曲线C交于A,B两点,点P的坐标为(3,3),求|PA|+|PB|的值.选修4-5:不等式选讲23.设f(x)=|x+1|﹣|x﹣4|.(1)若f(x)≤﹣m2+6m恒成立,求实数m的取值范围;(2)设m的最大值为m0,a,b,c均为正实数,当3a+4b+5c=m0时,求a2+b2+c2的最小值.参考答案一、选择题1.D2.B3.C4.A5.D6.A7.A8.B9.C10.B11.C12.C二、填空题13.14.12615.3.1216.三、解答题17.解:(1)∵b=sin(A+C),可得:b=sin B,∴由正弦定理,可得:a=sin A,c=sin C,∵cos(A﹣C)+cos B=c,可得:cos(A﹣C)﹣cos(A+C)=c,可得:cos A cos C+sin A sin C﹣(cos A cos C﹣sin A sin C)=,∴2sin A sin C=,∴2ac=,可得:a==sin A,∵A为锐角,∴A=.(2)∵a=,A=,∴由余弦定理可得:()2=b2+c2﹣2bc cos,即=b2+c2﹣bc,整理可得:(b+c)2=+bc,又∵=b2+c2﹣bc≥2bc﹣bc=bc,当且仅当b=c时等号成立,∴(b+c)2=+bc≤+=,解得:b+c≤,当且仅当b=c时等号成立,又b+c>a=,∴b+c∈(,].18.解:(1)由统计表格可得:∴K2=≈6.594<6.635,在犯错误的概率不超过1%的情况下不能接受挑战与性别有关.(2)由题意可得:X=0,1,2.则P(X=0)==,P(X=2)==,P(X=1)=1﹣P(X=0)﹣P(X=2)=.E(X)=0+1×=.19.解:(Ⅰ)取B1C1的中点H,C1D1的中点G,连结BH、GH、DH,则平面BHGD就是所求平面α,α与直棱柱ABCD﹣A1B1C1D1的截面为平面BHGD.(Ⅱ)∵菱形的直棱柱ABCD﹣A1B1C1D1中,AB=AA1=2,∠BAD=60°,∴取BC中点M,以D为原点,DA为x轴,DM为y轴,DD1为z轴,建立空间直角坐标系,A(2,0,0),D(0,0,0),B(1,,0),H(0,,2),=(2,0,0),=(1,,0),=(0,,2),设平面α(即平面BHGD)的法向量=(x,y,z),则,取y=2,得=(﹣2,2,﹣),∴平面AEF与平面α的距离d===.20.解:(1)设P(x0,y0),A(x1,y1),B(﹣x1,﹣y1),则,∴,∵•=,∴=,∴椭圆C的离心率e==.(2)∵e=,∴,∴=1,c=,焦点F1(﹣,0),设MN:y=k(x﹣),联立,得,设M(x1,y1),N(x2,y2),则,,=,∴<0,∴(x1+,y1)•(,y2)=()+y1y2=+=(1+k2)x1x2﹣(x1+x2)(1﹣k2)+3b2(1+k2)=++<0,∴(1+k2)(12k2﹣4)+24k2(1﹣k2)+3(1+k2)(4k2+1)<0,整理,得,解得k的取值范围是(﹣).21.解:(1)x<0时,g(x)=﹣x2,g′(x)=﹣x,故g(﹣1)=﹣,g′(﹣1)=1,故切线方程是:y+=(x+1),即x﹣y+=0;(2)F(x)=x ln x﹣x|x|=x ln x﹣x2,(x>0),F′(x)=ln x﹣x+1,F″(x)=﹣1,令F″(x)>0,解得:0<x<1,令F″(x)<0,解得:x>1,故F′(x)在(0,1)递增,在(1,+∞)递减,故F′(x)≤F′(1)=0,故F(x)在(0,+∞)递减;(3)已知可转化为x1>x2≥1时,mg(x1)﹣x1f(x1)≥mg(x2)﹣x2f(x2)恒成立,令h(x)=mg(x)﹣xf(x)=x2﹣x ln x,则h(x)为单调递增的函数,故h′(x)=mx﹣ln x﹣1≥0恒成立,即m≥恒成立,令m(x)=,则m′(x)=﹣,∴当x∈[1,+∞)时,m′(x)≤0,m(x)单调递减,m(x)≤m(1)=1,故m≥1.四、请考生在第22.23题中任选一题作答,如多做,则按所做的第一题记分选修22.解:(1)曲线C的极坐标方程为ρ﹣2cosθ﹣6sinθ+=0,可得:ρ2﹣2ρcosθ﹣6ρsinθ+1=0,可得x2+y2﹣2x﹣6y+1=0,曲线C的普通方程:x2+y2﹣2x﹣6y+1=0.(2)由于直线l的参数方程为(t为参数).把它代入圆的方程整理得t2+2t﹣5=0,∴t1+t2=﹣2,t1t2=﹣5,|PA|=|t1|,|PB|=|t2|,|PA|+|PB|=|t1|+|t2|==2.∴|PA|+|PB|的值2.23.解(1)﹣5≤|x+1|﹣|x﹣4|≤5.,由于f(x)≤﹣m2+6m的解集为R,∴﹣m2+6m≥5,即1≤m≤5.(2)由(1)得m的最大值为5,∴3a+4b+5c=5由柯西不等式(a2+b2+c2)(32+42+52)≥(3a+4b+5c)2=25故a2+b2+c2≥.(当且仅当a=,b=c=时取等号)∴a2+b2+c2的最小值为.。

相关文档
最新文档