北师大版数学实数计算能力训练

合集下载

(常考题)北师大版初中数学八年级数学上册第二单元《实数》测试题(包含答案解析)(1)

(常考题)北师大版初中数学八年级数学上册第二单元《实数》测试题(包含答案解析)(1)

一、选择题1.下列算式中,运算错误的是( )A =B =C =D .2(=32.在-1.4141,π,2+,3.14这些数中,无理数的个数为( ) A .2B .3C .4D .5 3.一个边长为bcm 的正方形的面积与一个长为8cm 、宽为5cm 的长方形的面积相等,则b 的值在( )A .3与4之间B .4与5之间C .5与6之间D .6与7之间 4.与数轴上的点一—对应的数是( )A .分数或整数B .无理数C .有理数D .有理数或无理数 5.下列运算中正确的是( )A =B .+=C =D .1)3-= 6.若方程2(1)5x -=的解分别为,a b ,且a b >,下列说法正确的是( )A .a 是5的平方根B .b 是5的平方根C .1a -是5的算术平方根D .1b -是5的算术平方根 7.下列各式中,正确的是( )A .3=B 3=±C 3=-D 3=8.如x 为实数,在“1)□x ”的“□”中添上一种运算符号(在“+”、“-”、“×”、“÷”中选择),其运算结果是有理数,则x 不可能是( )A 1B 1C .D .1-9.8b =+ ).A .3±B .3C .5D .5±10.下列计算正确的是( )A +=B =C 4=D 3=-11.下列计算结果,正确的是( )A 3B +C .=1D .2=5 12.下列说法正确的是( )A .4的平方根是2B ±4C .-36的算术平方根是6D .25的平方根是±5二、填空题13.的整数部分是a .小数部分是b ,则2a b -=______.14.材料:一般地,n 个相同因数a 相乘:n a a a a a ⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____.15.已知10x ,小数部分是y ,求x ﹣y 的相反数_____.16.已知M 是满足不等式a <<N M N +的平方根为__________.17.=__________. 18.若3109,b a =-且b 的算术平方根为4,则a =__________.19.已知2x =,2y =+.则代数式x 2+y 2﹣2xy 的值为_____.20.若50x -=,则x y +=________.三、解答题 21.化简求值:21a ,b =,求1a b b a ++的值. 22.(1)计算:;).(2)解方程:①4(x -1)2-9 =0;②8x 3+125=0.23.已知某正数的两个不同的平方根是3a ﹣14和a +2;b +11的立方根为﹣3;c 的整数部分;(1)求a +b +c 的值;(2)求3a ﹣b +c 的平方根.24.如果n x y =,那么我们记为:(),x y n =.例如239=,则()3,92=.(1)根据上述规定,填空:()2,8=___________,12,4⎛⎫= ⎪⎝⎭__________; (2)若()4,2a =,(),83b =,求(),b a 的值.25.计算:(1)7|2|--(2)2 311 5422⎛⎫⎛⎫⨯-÷-⎪ ⎪⎝⎭⎝⎭26.|1-【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据二次根式的加减法则,乘法,除法,乘方法则计算判断即可.【详解】解:∵=∴A选项不合题意;∵=∴B选项不合题意;∵∵C选项符合题意;∵﹣2(=3,正确,∴D选项不合题意;故选:C.【点睛】本题考查了二次根式的混合运算,熟记二次根式运算的基本法则是解题的关键. 2.B解析:B【分析】根据无理数的定义判断即可.【详解】解:-1.4141是有限小数,不是无理数;是无理数;π是无理数;2+=2,不是无理数;3.14是有限小数,不是无理数;所以,无理数有3个,故选:B.【点睛】本题考查了无理数的定义,解题关键是知道无理数是无限不循环小数,常见的有π和开不尽方的算术平方根.3.D解析:D【分析】由于边长为bcm的正方形的面积与长、宽分别为8cm、5cm的长方形的面积相等,根据面积公式列出等量关系式,由此求出b的值,再估计b在哪两个整数之间即可解决问题.【详解】解:∵边长为bcm的正方形的面积与长、宽分别为8cm、5cm的长方形的面积相等,∴b2=5×8=40,,∵36<40<49,∴67.故选:D.【点睛】本题考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.4.D解析:D【分析】实数与数轴上的点一一对应,实数包括有理数和无理数.【详解】A. 分数或整数,只是有理数,不是数轴上所有点,故此项不正确;B. 只是无理数,不是数轴上所有点,故此项不正确;C. 只是有理数,不是数轴上所有点,故此项不正确;D. 有理数和无理数是实数的组成,实数与数轴上的点一一对应,故此项正确;故选D.【点睛】此题考查了实数的意义,能掌握实数与数轴的关系是解答此题的关键.5.A解析:A【分析】根据二次根式的除法法则对A进行判断;根据二次根式的加减法对B、C进行判断;利用二次根式的乘法法则对D进行判断.【详解】A=B 、=C ==D 、221)11=-=,原计算错误,不符合题意;故选:A .【点睛】本题考查了二次根式的加减乘除运算,解题的关键是熟悉二次根式的四则运算方法. 6.C解析:C【分析】根据方程解的定义和算术平方根的意义判断即可.【详解】∵方程2(1)5x -=的解分别为,a b ,∴2(1)5a -=,2(1)5b -=,∴a-1,b-1是5的平方根,∵a b >,∴11a b ->-,∴a-1是5的算术平方根,故选C.【点睛】本题考查了方程解的定义,算术平方根的定义,熟记定义,灵活运用定义是解题的关键. 7.D解析:D【分析】根据二次根式的性质化简判断.【详解】A 、3=±,故该项不符合题意;B 3=,故该项不符合题意;C 3=,故该项不符合题意;D 3=,故该项符合题意; 故选:D .【点睛】此题考查二次根式的化简,正确掌握二次根式的性质是解题的关键.8.C解析:C【分析】根据题意,添上一种运算符号后逐一判断即可.【详解】-=,故选项A不符合题意;解:A、1)1)0⨯=,故选项B不符合题意;B、1)1)2C1与C符合题意;+-=,故选项D不符合题意.D、1)(10故选:C.【点睛】本题主要考查了二次根式的混合运算,熟记二次根式的混合运算法则以及平方差公式是解答本题的关键.9.C解析:C【分析】根据二次根式的性质求出a=17,b=-8【详解】∵a-17≥0,17-a≥0,∴a=17,∴b+8=0,解得b=-8,∴==,5故选:C.【点睛】此题考查二次根式的性质,化简二次根式,熟记二次根式的性质是解题的关键.10.B解析:B【分析】由二次根式的乘法、除法,二次根式的性质,分别进行判断,即可得到答案.【详解】解:A A错误;B=,故B正确;C==C错误;=,故D错误;D3故选:B.【点睛】本题考查了二次根式的乘法、除法,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.11.D解析:D【分析】利用二次根式的性质对A、D进行判断;根据二次根式的加减法对B、C进行判断.【详解】解:A、原式=3,所以A选项错误;B B选项错误;C、原式C选项错误;D、原式=5,所以D选项正确.故选:D.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.12.D解析:D【分析】根据平方根和算术平方根的定义判断即可.【详解】解:A. 4的平方根是±2,故错误,不符合题意;±2,故错误,不符合题意;C. -36没有算术平方根,故错误,不符合题意;D. 25的平方根是±5,故正确,符合题意;故选:D.【点睛】本题考查了平方根和算术平方根的概念,解题关键是熟悉相关概念,准确进行判断.二、填空题13.6-16【分析】先估算确定ab的值进而即可求解【详解】∵<<∴3<<4又∵a是的整数部分b是的小数部分∴a=3b=−3∴3-(−3)2=3-(10-6+9)=3-10+6-9=6-16故答案是:6-解析:-16【分析】,确定a,b的值,进而即可求解.【详解】∵∴3<4,又∵a b 的小数部分,∴a =3,b−3,∴2a b -=−3)2-16.故答案是:-16.【点睛】本题考查无理数的估算、完全平方公式,确定a 、b 的值是解决问题的关键.14.3;【分析】由可求出由可分别求出继而可计算出结果【详解】解:(1)由题意可知:则(2)由题意可知:则∴故答案为:3;【点睛】本题主要考查定义新运算读懂题意掌握运算方法是解题关键解析:3; 1173. 【分析】由239=可求出2log 93=,由4216=,43=81可分别求出2log 164=,3log 814=,继而可计算出结果.【详解】解:(1)由题意可知:239=,则2log 93=,(2)由题意可知: 4216=,43=81,则2log 164=,3log 814=, ∴223141(log 16)log 811617333+=+=, 故答案为:3;1173. 【点睛】本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键. 15.【分析】先判断在那两个整数之间用小于的整数与10相加得出整数部分再用10+减去整数部分即可求出小数部分【详解】解:∵∴的整数部分是1∴10+的整数部分是10+1=11即x =11∴10+的小数部分是112【分析】10相加,得出整数部分,再用10+减去整数部分即可求出小数部分.【详解】解:∵12<, ∴1,∴1010+1=11,即x =11,∴101011﹣1,即y 1,∴x ﹣y =111)=111=12∴x ﹣y 的相反数为﹣(1212.12.【点睛】在1~2之间.16.±3【分析】先通过估算确定MN 的值再求M+N 的平方根【详解】解:∵∴∵∴∵∴∴a 的整数值为:-1012M=-1+0+1+2=2∵∴N=7M+N=99的平方根是±3;故答案为:±3【点睛】本题考查了算解析:±3【分析】先通过估算确定M 、N 的值,再求M+N 的平方根.【详解】解:∵<< ∴221, ∵< ∴23<<,∵a <<∴23a -<<,∴a 的整数值为:-1,0,1,2,M=-1+0+1+2=2, ∵<∴78<<,N=7, M+N=9,9的平方根是±3;故答案为:±3.【点睛】本题考查了算术平方根的估算,用“夹逼法”估算算术平方根是解题关键.17.2a 【分析】根据二次根式的除法法则计算再将计算结果化为最简二次根式即可解题【详解】故答案为:【点睛】本题考查二次根式的除法最简二次根式等知识是重要考点难度较易掌握相关知识是解题关键解析:2a【分析】根据二次根式的除法法则计算,再将计算结果化为最简二次根式即可解题.【详解】2a==== 故答案为:2a .【点睛】本题考查二次根式的除法、最简二次根式等知识,是重要考点,难度较易,掌握相关知识是解题关键.18.5【分析】先求出b=16再代入根据立方根的定义即可解答【详解】解:∵的算术平方根为∴b=16∴∴∴a=5故答案为5【点睛】本题考查算术平方根的定义和立方根的定义熟知定义是解题关键解析:5【分析】先求出b=16,再代入3109b a =-,根据立方根的定义即可解答.【详解】解:∵b 的算术平方根为4,∴b=16,∴316109a =-,∴3125a =,∴a =5.故答案为5.【点睛】本题考查算术平方根的定义和立方根的定义,熟知定义是解题关键.19.【分析】根据二次根式的减法法则求出利用完全平方公式把原式化简代入计算即可【详解】解:则故答案为:12【点睛】本题考查的是二次根式的化简求值掌握完全平方公式二次根式的加减法法则是解题的关键解析:【分析】根据二次根式的减法法则求出x y -,利用完全平方公式把原式化简,代入计算即可.【详解】解:2x =-2y =+ 23x y, 则22222()(23)12x y xy x y , 故答案为:12.【点睛】本题考查的是二次根式的化简求值,掌握完全平方公式、二次根式的加减法法则是解题的关键.20.8【分析】根据绝对值的非负性及算术平方根的非负性得到x=5y=3再计算代数式即可【详解】∵∴x-5=0y-3=0∴x=5y=3∴x+y=5+3=8故答案为:8【点睛】此题考查代数式的代入求值正确掌握解析:8 【分析】根据绝对值的非负性及算术平方根的非负性得到x=5,y=3,再计算代数式即可.【详解】∵50x -+=,50x -≥≥,∴x-5=0,y-3=0,∴x=5,y=3,∴x+y=5+3=8,故答案为:8.【点睛】此题考查代数式的代入求值,正确掌握绝对值的非负性及算术平方根的非负性求得x=5,y=3是解题的关键.三、解答题21.()2a b ab ab +-;7【分析】 将a 、b 进行分母有理化,然后求出+a b 、ab 的值,对代数式变形,采用整体代入的方法求值 【详解】 ∵21a,b =,∴1a ==,1b ==, ∴)()21211ab =+=,11a b +=++=∴1a b b a++ 221a b ab+=+ 22a b ab ab++= ()2a b abab +-=(2171-==. 故1a b b a++的值为7. 【点睛】本题考察二次根式的有理化,根据二次根式的乘除法则进行二次根式有理化,代数式求值的问题可以先对代数式进行变形,采用整体代入的方法,可使运算简便22.(1)①5;②6-;(2)52x =或12x =-; ②52x =-. 【分析】(1)①先把各二次根式化为最简二次根式,然后合并后进行二次根式的除法运算; ②根据平方差公式计算即可;(2)①将方程移项,再整理为2x a =的的形式,再根据平方根定义求解即可; ②将方程移项,再整理为3x a =根据立方根定义求解即可;【详解】解:(1)解:①原式== 5=.②原式1218=-6=-.(2)解:①原方程可化为29(1)4x -=则312x -=或312x -=-, 解得,52x =或12x =-.②原方程可化为3125 8x=-,解得,52x=-.【点睛】本题考查了平方根、立方根及实数的运算,主要考查学生的运算能力,题目比较好,解题关键是理解平方根、立方根的意义.23.(1)-33;(2)7±【分析】(1)由平方根的性质知3a-14和a+2互为相反数,可列式,解之可得a=3,根据立方根定义可得b的值,根据23<<可得c的值;(2)分别将a,b,c的值代入3a-b+c,可解答.【详解】解:(1)∵某正数的两个平方根分别是3a-14和a+2,∴(3a-14)+(a+2)=0,∴a=3,又∵b+11的立方根为-3,∴b+11=(-3)3=-27,∴b=-38,又∵469<<,∴23<<,又∵c的整数部分,∴c=2;∴a+b+c=3+(-38)+2=-33;(2)当a=3,b=-38,c=2时,3a-b+c=3×3-(-38)+2=49,∴3a-b+c的平方根是±7.【点睛】本题主要考查了立方根、平方根及无理数的估算,解题的关键是熟练掌握平方根和立方根的定义.24.(1)3;-2;(2)4【分析】(1)理解题意,根据有理数乘方及负整数指数幂的计算求解;(2)根据题意,由有理数的乘方计算求得a与b的值,然后求解【详解】解:(1)∵328=∴()2,8=3∵-22112=24=∴12,4⎛⎫= ⎪⎝⎭-2 故答案为:3;-2(2)∵()4,2a =,2416=∴a=16∵(),83b =,328=∴b=2∴()(),=2,16b a又∵4216=∴(),b a 的值为4【点睛】此题主要考查了有理数的乘方及负整数指数幂的运算,正确将原式变形是解题关键. 25.(1)2;(2)5【分析】(1)先计算绝对值及开立方,再计算加减法;(2)先计算括号中的减法及乘方,再按顺序计算乘除法.【详解】解:(1)7|2|--=7-2-3=2;(2)23115422⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭=15144⨯÷ =5.【点睛】 此题考查实数的混合运算,掌握运算法则及运算顺序是解题的关键.26.1.【分析】根据二次根式的性质、绝对值的性质、立方根的性质依次化简再计算加减法.【详解】解:原式12=+1=. 【点睛】此题考查实数的混合运算,二次根式的加减运算,掌握二次根式的性质、绝对值的性质、立方根的性质是解题的关键.。

北师大版数学八上第1、2章实数培优练习(含答案)

北师大版数学八上第1、2章实数培优练习(含答案)

八年级上册第一、二章培优题一、填空题1、(1)81的算术平方根是 ,平方根是 。

(2)平方根等于本身的数是 。

(3)已知322=-a ,则a= 。

2)32(-= 。

(4)某正数的两个平方根之差为8,则这个正数是 。

(5)4的立方根是 。

-8的立方根是 。

64-的立方根是 。

2、直角三角形的面积为2,斜边为4,则这个直角三角形的周长是 。

3、已知数轴上点A 表示的数是2-,点B 表示的数是1,那么数轴上到点A 、点B 的距离相等的点C 表示的数是 。

4、已知a 为实数,则代数式21-+-+a a a 的最小值是 。

5、如图:在△ABC 中,∠BAC=90°,AB=AC=7cm ,点F 在边AC 上,且AF=3 cm ,过点F 作DF ⊥BC 于点D ,交BA 的延长线于点E ,则△AEF 与△CFD 的周长之和 cm 。

(结果保留根号)。

6、观察下列各等式:(1)33722722⨯=+ ; (2)3326332633⨯=+; (3)3363446344⨯=+; (4)331245512455⨯=+; ……, 根据你找到的规律写出第5个等式: 。

二、选择题1、大于-25,且不大于32的整数的个数是( )A. 9B. 8C. 7D. 52、小明同学估算一个无理数的大小时,不慎将墨水瓶打翻,现只知道被开方数是260,估算的结果约等于6或7,则根指数应为( )A. 2B. 3C. 4D. 5 3、下列几种说法:(1)无理数都是无限小数;(2)带根号的数是无理数;(3)实数分为正实数和负实数;(4)无理数包括正无理数、零和负无理数。

其中正确的有( ) A.(1)(2)(3)(4) B.(2)(3) C.(1)(4) D. 只有(1) 4、下列四个命题中,正确的是( )A. 数轴上任意一点都表示唯一的一个有理数B. 数轴上任意一点都表示唯一的一个无理数C. 两个无理数之和一定是无理数D. 数轴上任意两个点之间还有无数个点 5、a ,b 的位置如图,则下列各式有意义的是( )A. b a +B. b a -C. abD. a b - 6、△ABC 中,∠A:∠B:∠C=1:2:3,则BC:AC:AB 为( ) A. 1:2:3 B. 1:2:3 C. 1:3:2 D. 3:1:2 三、计算题 (1)12+271-31 (2)5352045-+(3)1(312248)233-+÷ (4)20)21()23(36318-+-++-A第5题 BD FE四、解答题1、在数轴上作出-8所表示的点A 。

(常考题)北师大版初中数学八年级数学上册第二单元《实数》测试(有答案解析)(4)

(常考题)北师大版初中数学八年级数学上册第二单元《实数》测试(有答案解析)(4)

一、选择题1.若表示a ,b 两个实数的点在数轴上的位置如图所示,则化简()2a b a b -++的结果等于( )A .2b -B .2bC .2a -D .2a2.若用我们数学课本上采用的科学计算器进行计算,其按键顺序如图,则输出结果应为( )A .8B .4C .12D .143.81的算术平方根是( ) A .3B .﹣3C .±3D .64.下列运算中错误的是( ) A .235+=B .236⨯=C .822÷=D .2 (3)3-=5.若方程2(1)5x -=的解分别为,a b ,且a b >,下列说法正确的是( ) A .a 是5的平方根 B .b 是5的平方根 C .1a -是5的算术平方根D .1b -是5的算术平方根6.式子1x -在实数范围内有意义,则x 的取值范围是( ) A .0x ≥ B .1x ≤C .1x ≥-D .1≥x7.在数227,7,0,18,2(2),316,112π-,3.2020020002…(相邻的两个2之间依次多一个0)中,无理数有( ) A .3个 B .4个 C .5个 D .6个8.实数a ,b 在数轴上对应点的位置如图所示,则化简代数式2-a b a +的结果是( ).A .-bB .2aC .-2aD .-2a-b9.1x -x 的取值范围是( ) A .x <1B .x >1C .x≥1D .x≤11013( ) A .1与2之间B .2与3之间C .3与4之间D .5与6之间11.已知﹣1<a <0,化简2211()4()4a a a a+---+的结果为( ) A .2aB .﹣2aC .2a-D .2a12.如图,在数轴上作长、宽分别为2和1的长方形,以原点为圆心,长方形对角线的长为半径画弧,与数轴相交于点A .若点A 对应的数字为a ,则下列说法正确的是( )A .a>-2.3B .a<-2.3C .a=-2.3D .无法判断二、填空题13.若x =2﹣1,则x 3+x 2﹣3x +2035的值为_____. 14.计算:()235328-+---=__________.15.对于正整数n ,规定111()(1)1f n n n n n ==-++,例如:111(1)1212f ==-⨯,111(2)2323f ==-⨯,111(3)3434f ==-⨯,…则(1)(2)(3)(2021)f f f f ++++= _______16.若一个正数的平方根是3m +和215m -,n 的立方根是2-,则2n m -+的算术平方根是______. 17.已知223y x x =-+-+,则xy 的值为__________.18.比较大小:23_____32(填“>”、“<”或“=”).19.如图所示,在数轴上点A 所表示的数为a ,则a 的值为____________________.20.4102541025-+++=_______.三、解答题21.计算. (1503288⨯(2. 22.计算:(102021; (2)求x 值:2425x =. 23.24.本学期第四章《实数》中,我们学习了平方根和立方根,下表是平方根和立方根的部分内容:(类比探索)(1)探索定义:填写下表. (2)探究性质:①1的四次方根是 ;②16的四次方根是 ;③8116的四次方根是 ;④12的四次方根是 ; ⑤0的四次方根是 ;⑥625- (填“有"或"“没有”)四次方根. 类比平方根和立方根的性质,归纳四次方根的性质:(3)在探索过程中,你用到了哪些数学思想?请写出两个: . (拓展应用)(1)(2= ;(3.25.计算:21-.26.先阅读,后回答问题:x 解:要使该二次根式有意义,需x(x-3)≥0, 由乘法法则得030? x x ≥⎧⎨-≥⎩或030x x ≤⎧⎨-≤⎩,解得x 3≥或x 0≤,即当x 3≥或x 0≤体会解题思想后,解答:x【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由数轴可判断出a <0<b ,|a|>|b|,得出a−b <0,a +b <0,然后再根据这两个条件对式子化简. 【详解】解:∵由数轴可得a <0<b ,|a|>|b|, ∴a−b <0,a +b <0,∴a b -|a−b|+|a +b|=b- a −(a +b ) =b- a –a-b =−2a . 故选:C .此题考查数轴,二次根式的化简,绝对值的化简,先利用条件判断出绝对值符号里代数式的正负性,掌握求绝对值的法则以及二次根式的性质,是解题的关键.2.D解析:D 【分析】根据2ndf 键是功能转换键列算式,然后解答即可. 【详解】14==. 故选:D . 【点睛】本题考查了利用计算器进行数的开方,是基础题,要注意2ndf 键的功能.3.A解析:A 【分析】9,再利用算术平方根的定义求出答案. 【详解】 ∵9,∴3,故选:A . 【点睛】.4.A解析:A 【分析】根据合并同类二次根式的法则对A 进行判断;根据二次根式的乘法法则对B 进行判断;根据二次根式的除法法则对C 进行判断;根据二次根式的性质对D 进行判断. 【详解】==2÷,故此项正确,不符合要求;D. 2 (3=,故此项正确,不符合要求; 故选A . 【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.5.C解析:C 【分析】根据方程解的定义和算术平方根的意义判断即可. 【详解】∵方程2(1)5x -=的解分别为,a b , ∴2(1)5a -=,2(1)5b -=,∴a-1,b-1是5的平方根, ∵a b >, ∴11a b ->-,∴a-1是5的算术平方根, 故选C. 【点睛】本题考查了方程解的定义,算术平方根的定义,熟记定义,灵活运用定义是解题的关键.6.D解析:D 【分析】利用二次根式有意义的条件可得x-1≥0,再解即可. 【详解】解:由题意得:x-1≥0, 解得:x≥1, 故选:D . 【点睛】本题考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.7.C解析:C 【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 【详解】227,0,22=,这些数都是有理数;,=112π-,3.2020020002…(相邻的两个2之间依次多一个0),是无理数,无理数共有5个. 故选:C .【点睛】本题考查了无理数的定义.解题的关键是掌握无理数的定义和各种类型.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.A解析:A【分析】根据数轴得b<a<0,判断a+b<0,即可化简绝对值及二次根式,计算加减法即可得到答案.【详解】由数轴得b<a<0,∴a+b<0,∴a b+=-a-b+a=-b,故选:A.【点睛】此题考查数轴与数的表示,利用数轴比较数的大小,化简绝对值,化简二次根式,依据数轴化简绝对值及二次根式是解题的关键.9.C解析:C【分析】直接利用二次根式有意义的条件分析得出答案.【详解】∵∴x−1≥0,解得:x≥1.故选:C.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.10.C解析:C【分析】【详解】解:<∴<<,34故选:C.【点睛】本题考查无理数的估算,掌握几个非负整数的算术平方根的大小比较方法是解决问题的关键.11.A解析:A 【分析】先把被开方数化为完全平方式的形式,再根据a 的取值范围去根号再合并即可. 【详解】解:2211()4()4a a a a+---+2222112()42()4a a a a =++---++2222112()2()a a a a=-+-++2211()()a a a a=--+∵-1<a <0,∴2110a a a a--=>,10a a +<∴原式1111()2a a a a a a a a a⎡⎤=---+=-++=⎢⎥⎣⎦. 故选:A . 【点睛】本题考查了二次根式的化简,能够熟练运用完全平方公式对被开方数进行变形,是解答此题的关键.12.A解析:A 【分析】先利用勾股定理求出长方形对角线OB 的长,即为OA 的长,然后根据A 在原点的左边求出数轴上的点A 所对应的实数为5-,再根据22.3 5.295=>判断出5 2.3->-即可得答案. 【详解】解:如图,连接OB ,长方形对角线的长OB =OA OB ∴==,点A 在原点的左边,∴点A 所对应的实数为a =又∵22.3 5.295=>, ∴2.3,∴2.3>-,即 2.3a >-. 故选A . 【点睛】本题考查实数与数轴上的点的对应关系,勾股定理、比较无理数大小,求出OA =题的关键.二、填空题13.2034【分析】直接利用二次根式的混合运算法则代入计算即可【详解】解:x3+x2﹣3x +2035=x2(x +1)﹣3x +2035∵x =﹣1∴原式=(﹣1)2(﹣1+1)﹣3(﹣1)+2035=(3﹣解析:2034 【分析】直接利用二次根式的混合运算法则代入计算即可. 【详解】解:x 3+x 2﹣3x +2035, =x 2(x +1)﹣3x +2035, ∵x﹣1,∴1)2﹣1+1)﹣3﹣1)+2035,=(3﹣)3+2035,=4﹣+3+2035, =2034. 故答案为:2034. 【点睛】本题主要考查了二次根式的混合运算,准确计算是解题的关键.14.7-【分析】首先利用绝对值的性质和二次根式算术平方根立方根的性质化简然后再计算加减即可【详解】解:【点睛】此题主要考查了实数运算关键是掌握绝对值的性质和二次根式的性质解析:【分析】首先利用绝对值的性质和二次根式、算术平方根、立方根的性质化简,然后再计算加减即可.【详解】3()=322--=32+2=7【点睛】此题主要考查了实数运算,关键是掌握绝对值的性质和二次根式的性质.15.【分析】根据题意可得:原式=再根据加法的结合律相加计算即可【详解】解:原式=故答案为:【点睛】本题考查了数字类规律探究和新定义问题正确理解题意准确计算是关键解析:2021 2022【分析】根据题意可得:原式=111111112233420212022-+-+-++-,再根据加法的结合律相加计算即可.【详解】解:原式=111111112021 11223342021202220222022 -+-+-++-=-=.故答案为:2021 2022.【点睛】本题考查了数字类规律探究和新定义问题,正确理解题意、准确计算是关键.16.4【分析】首先根据平方根的定义求出m值再根据立方根的定义求出n代入-n+2m求出这个值的算术平方根即可【详解】解:∵一个正数的两个平方根分别是m+3和2m-15∴m+3+2m-15=0解得:m=4∵解析:4【分析】首先根据平方根的定义,求出m值,再根据立方根的定义求出n,代入-n+2m,求出这个值的算术平方根即可.【详解】解:∵一个正数的两个平方根分别是m+3和2m-15,∴m+3+2m-15=0,解得:m=4,∵n的立方根是-2,∴n=-8,把m=4,n=-8代入-n+2m=8+8=16,所以-n+2m的算术平方根是4.故答案为:4.【点睛】本题考查了平方根、算术平方根、立方根.解题的关键是掌握平方根、算术平方根、立方根的定义,能够利用定义求出m、n值,然后再求-n+2m的算术平方根.17.6【分析】根据二次根式有意义的条件可得关于x的不等式组进而可求出xy 然后把xy的值代入所求式子计算即可【详解】由题意得:所以x=2当x=2时y=3所以故答案为:6【点睛】本题考查了二次根式有意义的条解析:6【分析】根据二次根式有意义的条件可得关于x的不等式组,进而可求出x、y,然后把x、y的值代入所求式子计算即可.【详解】由题意得:2020xx-≥⎧⎨-≥⎩,所以x=2,当x=2时,y=3,所以236xy=⨯=.故答案为:6.【点睛】本题考查了二次根式有意义的条件、代数式求值和一元一次不等式组,属于基础题目,熟练掌握基本知识是解题的关键.18.<【分析】先把根号的外的因式移入根号内再比较大小即可【详解】∵==<∴<故答案为:<【点睛】本题考查了比较二次根式的大小能选择适当的方法比较两个实数的大小是解此题的关键解析:<【分析】先把根号的外的因式移入根号内,再比较大小即可.【详解】∵,∴故答案为:<【点睛】本题考查了比较二次根式的大小,能选择适当的方法比较两个实数的大小是解此题的关键.19.【分析】根据图示得到圆的半径为所以A点表示的数为【详解】∵圆的半径为∴A点表示的数为故答案为【点睛】此题主要考查了实数与数轴之间的对应关系关键是要判断出圆的半径然后根据实数计算法则求解即可解析:1-【分析】A点表示的数为1--【详解】∵圆的半径为,∴A点表示的数为1--故答案为1【点睛】此题主要考查了实数与数轴之间的对应关系,关键是要判断出圆的半径,然后根据实数计算法则求解即可.20.【分析】设将等式的两边平方然后根据完全平方公式和二次根式的性质化简即可得出结论【详解】解:设由算术平方根的非负性可得t≥0则故答案为:【点睛】此题考查的是二次根式的化简掌握完全平方公式和二次根式的性【分析】t=,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】t=,由算术平方根的非负性可得t≥0,则244t=+8=+=+8=+81)=+62=1)∴=.t1.【点睛】此题考查的是二次根式的化简,掌握完全平方公式和二次根式的性质是解题关键.三、解答题21.(1)2)【分析】(1)先利用二次根式的乘除法则运算,然后化简后合并;(2)先把二次根式化为最简二次根式,然后合并即可.【详解】解:(1=﹣=(2)原式==【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22.(1)0;(2)52x =±. 【分析】(1)先求算术平方根、立方根、0指数,再计算;(2)方程两边除以4,再开方即可.【详解】解:(102021=4-3-1=0(2)2425x =,系数化为1得,2254x =, 开方得,52x =±. 【点睛】本题考查了算术平方根、立方根和0指数,解题关键是熟练的运用相关知识求值,并准确计算,注意:一个正数的平方根有两个.23.-4【分析】利用立方根的定义、二次根式的乘法法则及二次根式的性质进行化简,再合并化简结果即可.【详解】1342=-+--4=-.【点睛】此题考查了实数的混合运算,掌握立方根的定义、二次根式的乘法法则以及二次根式的性质是解题的关键.24.【类比探索】(1)依次为:±1,±2,±3;一般地,如果一个数x 的四次方等于a ,即4x a =,那么这个数x 就叫做a 的四次方根;(2)①±1;②2±;③32±;④⑤0;⑥没有;一个正数有两个四次方根,它们互为相反数;0的四次方根是0;负数没有四次方根;(3)类比、分类讨论、从特殊到一般等.【拓展应用】(1)4±;(2)25;(3)>. 【分析】(1)先计算填表,在类比平方根,立方根的定义,即可给四次方根下定义;(2)根据四次方根的定义求解,类比平方根,立方根的的性质即可得到四次方根的性质特征;(3)探索四次方根的定义和性质时,运用了类比,分类讨论的和由特殊到一般的思想,利用四次方根的定义求解,再计算并比较两个数的四次方,进而得出答案.【详解】(1)类比平方根,立方根的定义,当41x =时1x =±,当416x =时2x =±,当481x =时3x =±,所以填表如下:四次方根等于a ,那么这个数叫做a 的四次方根,这就是说,如果4x a =,那么x 叫做 a 的四次方根.(2)根据四次方根的定义计算:①1的四次方根是±1;②16的四次方根是2±;③8116的四次方根是32±;④12的四次方根是;⑤0的四次方根是0;⑥625-没有四次方根;类比平方根,立方根的性质可得四次方根的性质为:一个正数由两个四次方根,他们互为相反数;0的四次方根是0;负数没有四次方根.(3)探索四次方根的定义和性质时,运用了类比,分类讨论的和由特殊到一般的思想,【拓展应用】根据四次方根的定义计算得:(1)4=±;(225=(3)49=,48=,98>,>【点睛】本题考查了方根的定义,类比平方根,立方根的定义和性质,学习四次方根,解题关键是在求四次方根时,注意正数的四次方根有2个,它们互为相反数.25.1.【分析】按照二次根式性质,立方根的定义,绝对值的意义,化简即可.【详解】解:原式12412=-⨯=1.【点睛】本题考查了二次根式的性质,立方根的定义,绝对值的化简,熟记性质是解题的关键. 26.x 2≥或1x 3<-. 【分析】根据题目信息,列出不等式组求解即可得到x 的取值范围.【详解】 解:要使该二次根式有意义,需x 23x 1-≥+0, 由乘法法则得20310x x -≥⎧⎨+>⎩或20310x x -≤⎧⎨+<⎩, 解得x 2≥或1x 3<-,即当x 2≥或1x 3<- 【点睛】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.。

北师大版八年级上册数学第二章-实数练习题(带解析)

北师大版八年级上册数学第二章-实数练习题(带解析)

北师大版八年级上册数学第二章实数练习题(带解析)考试范围:xxx ;考试时间:100分钟;命题人:xxx题号一二三四<五总分得分[1. 答题前填写好自己的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上分卷I分卷I 注释评卷人得分.一、单选题(注释)1、下列各式计算正确的是A.B.(>)C.=、D.2、下列计算中,正确的是()A.B.C.5=5·D.=3a(3、实数a在数轴上的位置如图所示,则a,-a,,a2的大小关系是()A.a<-a<<a2B.-a<<a<a2 C.<a<a2<-a D.<a2<a<-a 4、下列各式中,计算正确的是()A.+=~B.2+=2C.a-b=(a-b)D.=+=2+3=55、在实数中,有()A.最大的数B.最小的数C.绝对值最大的数。

D.绝对值最小的数6、下列说法中正确的是()A.和数轴上一一对应的数是有理数B.数轴上的点可以表示所有的实数C.带根号的数都是无理数D.不带根号的数都不是无理数(7、一个正方形的草坪,面积为658平方米,问这个草坪的周长是()A.B.C.D.8、下列各组数,能作为三角形三条边的是()A.,,<B.,,C.,,D.,, 9、将,,用不等号连接起来为()A.<<B.<<C.<<@D.<<10、用计算器求结果为(保留四个有效数字)()A.B.±C.D.-!11、2nd x2 2 2 5 ) enter显示结果是()A.15B.±15C.-15D.25更多功能介绍、一个正方体的体积为28360立方厘米,正方体的棱长估计为()A.22厘米B.27厘米*C.厘米D.40厘米13、设=,=,下列关系中正确的是()A.a>b B.a≥b C.a<b D.a≤b-14、化简的结果为()A.-5B.5-C.--5D.不能确定15、在无理数,,,中,其中在与之间的有()^A.1个B.2个C.3个D.4个16、的算术平方根在()A.与之间B.与之间,C.与之间D.与之间17、下列说法中,正确的是()A.一个有理数的平方根有两个,它们互为相反数B.一个有理数的立方根,不是正数就是负数C.负数没有立方根D.如果一个数的立方根是这个数本身,那么这个数一定是-1,0,1。

北师大版八年级数学上册实数测试题及答案(C)

北师大版八年级数学上册实数测试题及答案(C)

北八上第二章《实数》水平测试(C)一、 选择题(每小题3分,共30分)1、-|-3|的倒数是( )A 、3B 、31C 、-31 D 、-3 2、估算24+3的值( )A 、 在5和6之间B 、 在6和7之间C 、 在7和8之间D 、在8和9之间3、已知x ,y 是实数,43+x +(y-3)2=0,若axy-3x=y ,则实数a 的值是( )A 、41 B 、-41 C 、47 D 、-47 4、某正数的平方根为3a 和392-a ,则这个数为( ) A 、1 B 、2 C 、4 D 、95、已知|a|=5,2b =3,且ab >0,则a+b 的值为( )A 、8B 、-2C 、8或-8D 、2或-26、制作一个表面积为12的正方体纸盒,则这个正方体的棱长是( )A 、23B 、2C 、2D 、3127、一个数的立方根是4,这个数的平方根是( )A 、8B 、-8C 、8或-8D 、4或-48、在实数0.3、3π、71、3.6024×103、2、-1中无理数的个数为( ) A 、 1个 B 、2个 C 、3个 D 、4个9、下列语句中,正确的是( )A 、 一个无理数与一个有理数的和一定是无理数B 、 一个无理数与一个有理数的积一定是无理数C 、 两个无理数的积一定是无理数D 、 两个无理数的差一定是无理数10、有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④-17是的平方根,其中正确的有( )A 、 0个B 、1个C 、2个D 、3个二、 填空题(每小题3分,共30分)11、已知2x+1的平方根是±5,则5x+4的立方根是 .12、点P 在数轴上和原点相距5单位,点Q 在数轴和原点相距4个单位,且点Q 在点P 左边,则P 、Q 之间的距离为 .13、一个数的立方根等于它本身,这个数是 .14、由下列等式322+=232,833+=383,1544+=4154…所提示的规律,可得出一般性的结论是 (用含n 的式子表示)15、已知x 3+1=87,则x= . 16、若a 、b 互为相反数,c 、d 互为倒数,|x|=1,则(a+b )3-x 2+4cd = . 17、若xx 4|33--=-2,则x 0. 18、用计算器探索,按一定规律排列的一组数:1,2,-3,2,5,-6,7,…如果从1开始一次连续选取若干个数,使它们的和大于5,那么至少要选 个数.19、当x= 时,4-29x -有最小值,其最小值为 .20、一个圆的面积变为原来的n 倍,则半径变为原来的 倍;一个正方体的体积变为原来的n 倍,则棱长变为原来的 倍.三﹑解答题(共60分)21、(每小题3分,共12分)计算下列各题(细心算对哟)(1)18315.012+-- (2))278(183⨯÷(3))62()8213316(-⨯--(4)|)32(31|)313(3.01])1()22([22222--⨯÷-⨯---22、(6分)已知一个正方体盒子的容积为64cm 3,问做一个这样的正方体盒子(无盖)需要多大的木板?23、(6分)已知|a-b-1|与3(a-2b+3)2互为相反数,求a 和b 的值.24、(6分)若a 的倒数是a 、b 的相反数是b ,c 的算术平方根等于c ,求a+b+c 的值(你有能力考虑全)25、(6分)已知2a-1的平方根是±3,4是3a+b-1的算术平方根,求a+2b 的值.26、(6分)设2+6的整数部分和小数部分分别是x 、y ,试求x 、y 的值与x-1的算术平方根.27、(6分)已知三角形三边长分别为a 、b 、c ,其中a 、b 满足08)6(2=-+-b a ,那么这个三角形最长边c 的取值范围是多少?。

专题2.7实数的混合运算专项训练(40题)(北师大版)

专题2.7实数的混合运算专项训练(40题)(北师大版)

专题2.7 实数的混合运算专项训练(40题)【北师大版】考卷信息:本套训练卷共40题,题型针对性较高,覆盖面广,选题有深度,可加强学生对实数混合运算的理解!1.(2023春·黑龙江齐齐哈尔·八年级统考期中)计算√116−√614+|√3−1|−√3【答案】−134【分析】先根据算术平方根的定义,去绝对值的方法化简,再合并即可.【详解】解:原式=14−√254+√3−1−√3=14−52+√3−1−√3=14−52−1+√3−√3=−134【点睛】本题考查求一个数的算术平方根,去绝对值,实数的运算等知识,掌握相关法则和公式是解题的关键.2.(2023春·广西玉林·八年级统考期末)计算:(−1)2023−√9+|1−√2|−√−83.【答案】√2−3【分析】先计算乘方运算,化简绝对值,求解算术平方根与立方根,再合并即可.【详解】解:原式=−1−3+√2−1+2=√2−3.【点睛】本题考查的是实数的混合运算,掌握化简绝对值,求解算术平方根与立方根是解本题的关键.3.(2023春·河南洛阳·八年级统考期末)计算:−32×2+√(−4)2+√−643.【答案】−18【分析】原式利用立方根,平方根,以及平方的定义化简即可得到结果.【详解】解:−32×2+√(−4)2+√−643=−9×2+4−4=−18【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.4.(2023春·四川广元·八年级校联考期末)计算:√−83+|√3−2|−(−1)2021+|−√3|. 【答案】1【分析】先计算立方根、去绝对值、计算乘方,再计算加减即可. 【详解】解:原式=−2+2−√3+1+√3 =1.【点睛】本题主要考查实数的运算,掌握实数的运算顺序及有关运算法则是解答本题的关键. 5.(2023春·四川德阳·八年级四川省德阳中学校校考期中)计算:−22+√36−√−273−|2−√5|. 【答案】7−√5【分析】首先计算乘方、开方,去绝对值,然后从左向右依次计算,求出算式的值是多少即可. 【详解】解:−22+√36−√−273−|2−√5|=−4+6−(−3)−(√5−2) =−4+6+3−√5+2=7−√5.【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用. 6.(2023春·四川泸州·八年级统考期末)计算:−32×29+√2516÷58+√−273. 【答案】−3【分析】先计算平方、开平方和开立方,再计算加减. 【详解】解:原式=−9×29+54×85+(−3) =−2+2+(−3) =−3.【点睛】本题考查平方、算术平方根、立方根,解题关键是熟练掌握定义.7.(2023春·四川绵阳·八年级校联考期中)计算:√196×√−643÷√12425−√(−3)2−|√3+√−83|.【答案】−45+√3【分析】根据实数的混合计算法则求解即可. 【详解】解:原式=14×(−4)÷√4925−3−|√3−2|=−56÷75−3−(2−√3)=−40−3−2+√3=−45+√3.【点睛】本题主要考查了实数的混合计算,正确计算是解题的关键. 8.(2023春·四川绵阳·八年级统考期中)计算:√−83+√9−√1916+(−1)2022+|1−√2|【答案】−14+√2【分析】先化简各式,再进行加减运算. 【详解】解:原式=−2+3−54+1+√2−1=−14+√2.【点睛】本题考查开方运算,乘方运算,去绝对值.熟练掌握相关运算法则,是解题的关键. 9.(2023春·山东临沂·八年级统考期中)计算: (1)√9+√52+√−273(2)(−3)2−|−12|−√9【答案】(1)5 (2)512【分析】(1)根据算术平方根、立方根的性质化简,再计算加减即可; (2)根据乘方、绝对值、算术平方根的性质化简,再计算加减即可. 【详解】(1)解:√9+√52+√−273=3+5−3=5;(2)解:(−3)2−|−12|−√9=9−12−3=512.【点睛】本题考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减.10.(2023春·山西临汾·八年级统考期中)计算: (1)√0.04+√−83−√125;(2)−√214+√0.1253+√1−6364. 【答案】(1)−2 (2)−78【分析】(1)首先计算开平方和开立方,然后从左向右依次计算,求出算式的值即可; (2)首先计算开平方和开立方,然后从左向右依次计算,求出算式的值即可. 【详解】(1)解:原式=0.2−2−15=−2(2)解:原式=−32+12+18=−78【点睛】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.11.(2023春·河南驻马店·八年级统考期中)(1)计算∶ √16+√−643−2√3+|√3−2|; (2)求下列式子中的x : 9x 2−16=0. 【答案】(1)2−3√3;(2)x =±43【分析】(1)先计算算术平方根,立方根,化简绝对值,再合并即可; (2)把方程化为x 2=169,再利用直接平方根的含义解方程即可.【详解】(1)解:原式=4−4−2√3+2−√3=2−3√3 (2)解:∶9x 2−16=0, ∶9x 2=16, ∶x 2=169,解得:x =±43;【点睛】本题考查的是实数的混合运算,利用平方根的含义解方程,熟记平方根的含义是解本题的关键.12.(2023春·重庆彭水·八年级统考期中)(1)计算√83−√16+|√3−2|; (2)(12)0+(−2)3×18−√273×√19.【答案】(1)−√3;(2)−1【分析】(1)先根据立方根定义、算术平方根计算,再利用绝对值的代数意义化简,计算即可得到结果; (2)先将零指数幂、立方根、算术平方根、乘方计算,再进行计算即可 【详解】解:(1)√83−√16+|√3−2|=2−4+2−√3=−√3;(2)(12)0+(−2)3×18−√273×√19=1−8×18−3×13=1−1−1=−1.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 13.(2023春·湖北十堰·八年级统考期末)计算下列各式的值: (1)√16−√−13+|2−√3| (2)√7(√7√7)−√83【答案】(1)7−√3 (2)6【分析】(1)先化简各式,再进行加减运算; (2)先算乘法,求立方根,再进行加减运算. 【详解】(1)解:原式=4−(−1)+2−√3=5+2−√3=7−√3;(2)原式=√7×√7+√7√72=7+1−2=6.【点睛】本题考查实数的混合运算.熟练掌握相关运算法则,正确的计算是解题的关键. 14.(2023春·湖北省直辖县级单位·八年级统考期末)计算: (1)√16+√−643−√(−3)2+|√3−1|; (2)已知(x +1)2=16,求x 的值. 【答案】(1)−4+√3 (2)x =3或x =−5【分析】(1)原式先化简算术平方根、立方根和绝对值,然后再进行加减运算即可即可; (2)直接运用开平方法求解方程即可.【详解】(1)解:√16+√−643−√(−3)2+|√3−1| =4−4−3+√3−1 =−4+√3; (2)(x +1)2=16, x +1=±4, ∶x =3或x =−5.【点睛】本题主要考查了实数的混合运算和运用开平方法解方程,熟练掌握算术平方根的定义是解答本题的关键.15.(2023春·天津静海·八年级校考期中)计算: (1)(−1)3+|1−√2|+√83; (2)√0.01+√−83−√14 【答案】(1)√2 (2)−2.4【分析】(1)根据立方、立方根、实数绝对值化简后再去计算即可; (2)根据算术平方根、立方根化简后计算即可. 【详解】(1)原式=−1+√2−1+2=√2; (2)原式=0.1−2−12=−2.4.【点睛】本题考查实数的混合运算,解题的关键是先化简再去计算.16.(2023春·黑龙江哈尔滨·八年级统考期中)计算(1)8x3+125=0;(2)√−83+√(−3)2−|√3−2|.【答案】(1)−52(2)−1+√3【分析】(1)先整体求得x3,然后再根据立方根的知识求得x即可;(2)先根据立方根、算术平方根、绝对值的知识化简,然后再计算即可.【详解】(1)解:8x3+125=0,8x3=125,x3=−1258,x=−52.(2)解:√−83+√(−3)2−|√3−2|,=−2+3−2+√3,=−1+√3.【点睛】本题主要考查了立方根、算术平方根、绝对值、实数的运算等知识点,灵活运用相关运算法则是解答本题的关键.17.(2023春·广东广州·八年级广州大学附属中学校考期中)计算:(1)√3+|√3−2|−√−83+√(−2)2.(2)√81+√(−3)2×√169−√1214+√−273.【答案】(1)6(2)132【分析】(1)分别计算化简绝对值,开立方根和开算术平方根,再按照实数加减混合运算即可.(2)分别计算开立方根、开算术平方根和实数乘除,再按照有理数加减乘除混合运算即可.【详解】(1)解:√3+|√3−2|−√−83+√(−2)2=√3+2−√3+2+2=6故答案为:6.(2)解:√81+√(−3)2×√169−√1214+√−273=9+3×43−72−3=9+4−72−3=132故答案为:132.【点睛】本题考查了实数的加减乘除混合运算,解题的关键在于熟练掌握实数的运算法则. 18.(2023春·广东汕头·八年级校考期中)计算 (1)√9−√(−5)33÷√(34)2(2)(−1)2021−√9+√−83+|√3−2| 【答案】(1)293;(2)−4−√3;【分析】(1)先分别计算算术平方根、立方根,再进行实数的加减运算即可;(2)先分别计算乘方、算术平方根、立方根和化简绝对值,再进行实数的加减运算即可;【详解】(1)解:√9−√(−5)33÷√(34)2=3−(−5)÷34=3+5×43=293;(2)(−1)2021−√9+√−83+|√3−2|=−1−3+(−2)+(2−√3)=−4−2+2−√3=−4−√3;【点睛】本题考查实数的加减运算,解题的关键是掌握立方根和绝对值相关知识.19.(2023春·山西吕梁·八年级统考期中)(1)计算:(−1)2022−(√16+√214)+√273+12 (2)解方程:2x 2=18 【答案】(1)−1;(2)x =±3【分析】(1)原式分别根据乘方的意义、算术平方根以及立方根的意义化简各项后,再进行加减运算即可得到结果;(2)方程两边同除以2后,再进行开平方运算即可. 【详解】解:(1)(−1)2022−(√16+√214)+√273+12 =1−(4+32)+3+12=1−4−32+3+12 =−1; (2)2x 2=18 x 2=9 x =±3.【点睛】本题主要考查了实数的混合运算以及运用平方根解方程,熟练掌握相关知识是解答本题的关键. 20.(2023春·山东临沂·八年级统考期中)(1)计算:(−1)2017−√(−2)2−√−83+|√3−2|; (2)求x 的值:2(x −3)2=32.【答案】(1)1−√3;(2)x 的值为7或−1【分析】(1)先计算乘方、算术平方根、立方根、化简绝对值,再计算实数的加减法即可得; (2)利用平方根解方程即可得.【详解】解:(1)原式=−1−√4−(−2)+2−√3=−1−2+2+2−√3=1−√3;(2)2(x −3)2=32, (x −3)2=16,x −3=4或x −3=−4, 解得x =7或x =−1, 所以x 的值为7或−1.【点睛】本题考查了算术平方根、立方根、实数的运算、利用平方根解方程,熟练掌握各运算法则是解题关键.21.(2023春·辽宁鞍山·八年级校联考期中)计算:(1)√273−√25+|√3−2|−(1−√3)(2)√13×(√13√13)−√273【答案】(1)−1(2)0【分析】(1)根据实数的混合计算法则求解即可;(2)根据实数的混合计算法则求解即可.【详解】(1)解:原式=3−5+2−√3−1+√3=−1;(2)解:原式=√13×√13−√13×√13−3=13−10−3=0.【点睛】本题主要考查了实数的混合计算,熟知相关计算法则是解题的关键.22.(2023春·重庆江津·八年级校联考期中)计算:(1)−42×(−1)2023+√83−√25;(2)2√14−|2−√3|+√(−9)2+√−273.【答案】(1)13;(2)5+√3【分析】(1)根据幂的运算法则,根式性质,立方根的定义直接计算即可得到答案;(2)根据根式的性质,立方根的定义直接计算即可得到答案;【详解】(1)解:原式=−16×(−1)+2−5=16+2−5=13;(2)解:原式=2×12−2+√3+9+(−3)=1−2+√3+9−3=5+√3;【点睛】本题考查根式的性质,立方根的定义,幂的运算,解题的关键是熟练掌握√a 2=|a | ,√a 33=a . 23.(2023春·山东聊城·八年级统考期中)计算: (1)2−2+√−13+(√83+4)÷√(−6)2 (2)(π−2023)0+√1.21−√−33263−√0.0083【答案】(1)14 (2)2.65【分析】(1)先计算负整数指数幂、立方根、算术平方根,再根据实数的混合计算法则求解即可; (2)先计算零指数幂、算术平方根及立方根,再根据实数的混合计算法则求解即可. 【详解】(1)解:原式=14−1+(2+4)÷6=14−1+6÷6 =14−1+1 =14;(2)解:原式=1+1.1−(−322)−0.2=1+1.1−(−34)−0.2=1+1.1+34−0.2=2.65.【点睛】本题主要考查了实数的混合计算,零指数幂和负整数指数幂,熟知相关计算法则是解题的关键. 24.(2023春·四川德阳·八年级四川省德阳市第二中学校校考期中)计算: (1)√(−3)2×(−13)−√273÷√14(2)√−83−√2+(√3)2+|1−√2|−(−1)2023 【答案】(1)−7 (2)1【分析】(1)先分别求解算术平方根、立方根,然后进行乘除运算,最后进行减法运算即可;(2)先分别求解立方根,乘方,绝对值,然后进行加减运算即可. 【详解】(1)解:√(−3)2×(−13)−√273÷√14=3×(−13)−3÷12=−1−6=−7;(2)解:√−83−√2+(√3)2+|1−√2|−(−1)2023=−2−√2+3+√2−1−(−1) =−2+3−1+1−√2+√2=1.【点睛】本题考查了算术平方根、立方根,乘方,绝对值,实数的混合运算.解题的关键在于正确的运算. 25.(2023春·河北唐山·八年级统考期中)计算: (1)(√2)2−√273+|√3−3|; (2)√9×√4+√102−(−4)2; 【答案】(1)2−√3 (2)0【分析】(1)先计算平方、立方根,去绝对值符号,再进行加减运算; (2)先计算开平方,有理数的乘方,再进行乘法运算,最后进行加减运算. 【详解】(1)解:原式=2−3+(−√3+3)=2−3−√3+3=2−√3;(2)解:原式=3×2+10−16=6+10−16=0.【点睛】本题考查了实数的混合运算,平方、平方根、立方根,绝对值的性质,有理数的乘方,熟练掌握运算法则及运算顺序是解题的关键.26.(2023春·浙江宁波·八年级校考期中)计算下列各式: (1)√4+|−2|+√−273+(−1)2017;(2)(−3)2÷(−23)+(−2)3×(−32).【答案】(1)0 (2)−32【分析】(1)分别根据算术平方根的定义,绝对值的性质,立方根的定义计算出各数,再根据实数的加减法则进行计算;(2)先算乘方,再算乘除,最后算加减即可. 【详解】(1)解:原式=2+2−3−1 =0;(2)解:原式=9÷(−23)+(−8)×(−32)=9×(−32)+12=−272+12 =−32.【点睛】本题考查的是实数的运算,熟知实数混合运算的法则是解题的关键. 27.(2023春·广东广州·八年级校考期中)计算: (1)(√5)2+√(−3)2+√−83; (2)(−2)3×18−√273×(−√19). 【答案】(1)6 (2)0【分析】(1)原式利用乘方的意义,平方根、立方根定义计算即可得到结果; (2)原式利用乘方的意义,立方根定义,以及乘法法则计算即可得到结果. 【详解】(1)解:原式=5+3+(−2)=8−2=6; (2)解:原式=(−8)×18−3×(−13)=−1+1=0.【点睛】本题考查实数的运算,涉及立方根、平方根、乘方运算,掌握实数的运算顺序是关键. 28.(2023春·河南鹤壁·八年级校考期中)计算:(1)√14+√−83−11−√21;(2)0.1252022×(−8)2023. 【答案】(1)−1212−√21 (2)−8【分析】(1)根据算术平方根、立方根定义先化简,再利用实数加减运算法则计算即可得到答案; (2)先将小数化为分数,再利用积的乘方运算的逆运算求解即可得到答案. 【详解】(1)解:√14+√−83−11−√21=12−2−11−√21 =−112−11−√21=−1212−√21;(2)解:0.1252022×(−8)2023=(18)2022×(−8)2023=[18×(−8)]2022×(−8) =(−1)2022×(−8)=−8.【点睛】本题考查实数混合运算,涉及算术平方根、立方根、实数加减运算、分数与小数互化、积的乘方运算的逆运算等知识,熟练掌握相关运算法则是解决问题的关键.29.(2023春·山东枣庄·八年级统考期末)(1)计算:√16−√19+√273−|3−√5|;(2)求x 的值:(x +1)3=−827.【答案】(1)113+√5;(2)x =−53【分析】(1)首先计算开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可. (2)根据立方根的含义和求法,求出x +1的值,进而求出x 的值即可. 【详解】解:(1)√16−√19+√273−|3−√5| =4−13+3−(3−√5)=4−13+3−3+√5=113+√5.(2)∵(x +1)3=−827, ∴x +1=−23, 解得:x =−53.【点睛】此题主要考查了立方根的含义和求法,以及实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.30.(2023春·天津河北·八年级统考期中)(1)计算:√0.04+√−83−√14+2;(2)求下式中x 的值: 4(x +5)2=16. 【答案】(1)−0.3;(2)x =−7或x =−3【分析】(1)首先进行开平方和开立方运算,再进行有理数的加减即可求解;(2)首先求出(x +5)2的值,然后根据平方根的定义求出x +5的值,进而求出x 的值即可. 【详解】解:(1)√0.04+√−83−√14+2 =0.2+(−2)−12+2 =−0.3;(2)4(x +5)2=16, 即(x +5)2=4,∴x +5=−2或x +5=2, 解得x =−7或x =−3.【点睛】此题主要考查了平方根、立方根的定义,以及实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行. 31.(2023春·黑龙江牡丹江·八年级校考期中)计算: (1)√−83−√3+(√5)2+|1−√3| (2)√36+√214+√−273【答案】(1)2 (2)92【分析】(1)根据立方根定义、平方根的性质、绝对值的意义等计算即可; (2)根据立方根、算术平方根的定义计算即可. 【详解】(1)解:√−83−√3+(√5)2+|1−√3| =−2−√3+5+√3−1 =2;(2)解:√36+√214+√−273=6+32−3=92.【点睛】本题考查了实数的混合运算,掌握立方根、算术平方根的定义等是解题的关键. 32.(2023春·湖北十堰·八年级统考期中)计算: (1)√−8273×√14−√(−2)2; (2)√3−√25+|√3−3|+√1−63643.【答案】(1)−213 (2)−74【分析】(1)先利用立方根,算术平方根的性质化简,再进行计算; (2)先利用立方根,算术平方根、绝对值的性质化简,再进行计算. 【详解】(1)解:原式=−23×12−√4=−13−2=−213;(2)解:原式=√3−5+3−√3+√1643=−2+14=−74.【点睛】本题考查了实数的混合运算,熟练掌握运算法则是解题的关键.33.(2023春·云南红河·八年级校考期中)计算(1)√25−√273+|−√9|(2)|2−√5|+|3−√7|+|√7−√5|【答案】(1)5(2)1【分析】(1)先化简根式再计算(2)先化简再进行实数的混合运算(1)解:原式=5−3+3=5(2)解:原式=√5−2+3−√7+√7−√5=1【点睛】本题考查了根式的化简,去绝对值运算,熟练掌握运算法则是解题关键.34.(2023春·江苏泰州·八年级校考期中)计算或解方程:(1)8(x−1)3=−1258;(2)3(x−1)2−15=0.(3)−14×√4+|√9−5|+√214+√−0.1253.【答案】(1)x=−14(2)x=1±√5(3)1【分析】(1)利用立方根解方程即可;(2)移项,利用平方根解方程即可;(3)先化简各式,再加减运算即可.【详解】(1)解:8(x−1)3=−1258,∶(x −1)3=−12564∶x −1=√−125643=−54,∶x =−14;(2)解:3(x −1)2−15=0, ∶3(x −1)2=15, ∶(x −1)2=5, ∶x −1=±√5, ∶x =1±√5;(3)原式=−1×2+|3−5|+32−0.5=−2+|−2|+32−12=−2+2+32−12=1.【点睛】本题考查利用平方根和立方根解方程,实数的混合运算.熟练掌握相关运算法则,正确计算,是解题的关键.35.(2023春·北京西城·八年级北京市回民学校校考期中)按要求计算下列各题 (1)计算:|1−√2|−√(−2)2+√273;(2)已知√a −1+√b −5=0,则(a −b )2的算术平方根; (3)已知4x 2=25,求x 的值; (4)已知(x +1)2=1,求x 的值. 【答案】(1)√2 (2)4(3)x 1=52,x 2=−52(4)x 1=0,x 2=−2【分析】(1)先根据绝对值、算术平方根、立方根的知识化简,然后再结束即可;(2)先根据算术平方根的非负性求得a 、b 的值,然后再代入(a −b )2求出其算术平方根即可; (3)先求出x 2,然后再运用平方根解方程即可解答;(4)运用平方根解方程即可解答.【详解】(1)解:|1−√2|−√(−2)2+√273, =√2−1−2+3, =√2.(2)解:∶√a −1+√b −5=0, ∶a −1=0,b −5=0, ∶a =1,b =5,∶(a −b )2=(1−5)2=16, ∶(a −b )2的算术平方根是4. (3)解:4x 2=25, x 2=254,∶x 1=52,x 2=−52. (4)解:(x +1)2=1, x +1=±1, ∶x 1=0,x 2=−2.【点睛】本题主要考查了实数的混合运算、算术平方根的非负性、立方根、运用平方根解方程等知识点,灵活运用相关知识成为解答本题的关键.36.(2023春·浙江宁波·八年级校联考期中)计算: (1)−2+(−7)−3+8;(2)−12021+(12−13)×|−6|÷22; (3)(14−23−56)×(−12); (4)−23+√−273−(−2)2÷√1681.【答案】(1)−4 (2)−34 (3)15 (4)−20【分析】(1)先将减法运算变成加法,再计算求解; (2)先计算乘方、绝对值和括号里面的,再计算加法; (3)先运用乘法分配律,再计算加减运算;(4)先计算乘方、立方根和平方根,再计算除法,最后计算加减. 【详解】(1)−2+(−7)−3+8=−2−7−3+8=−4;(2)−12021+(12−13)×|−6|÷22=−1+16×6×14=−1+14=−34;(3)(14−23−56)×(−12)=−14×12+23×12+56×12=−3+8+10=15;(4)−23+√−273−(−2)2÷√1681=−8−3−4×94=−11−9=−20.【点睛】此题考查了有理数的混合运算,以及实数混合运算的能力,关键是能准确确定运算顺序和方法. 37.(2023春·山东德州·八年级统考期中)计算: (1) −22−(√−38+8)÷√(−6)2−|√7−3|(2)√−1253−√279+√−(−14)3+√8273(3)(3x+2)2=16 (4)12(2x −1)3=−4 【答案】(1)−8+√7(2)−478(3)x=−2或x=23(4)x=−12【分析】(1)根据乘方计算、求算术平方根、立方根、绝对值化简即可;(2)根据求算术平方根、立方根进行计算即可;(3)根据求平方根进行解方程即可;(4)根据求立方根进行解方程即可.【详解】(1)解:原式=−4−(−2+8)÷6−(3−√7)=−4−1−3+√7=−8+√7;(2)解:原式=−5−53+√164+23=−5−1+18=−478;(3)解:由(3x+2)2=16,得:3x+2=−4或3x+2=4解得:x=−2或x=23;∴方程的解为x=−2或x=23;(4)解:由12(2x−1)3=−4,得:(2x−1)3=−82x−1=−2x=−12.【点睛】本题考查实数的混合运算及根据平方根和立方根解方程,解题的关键是熟练掌握乘方计算、求算术平方根、立方根、绝对值化简、根据平方根和立方根解方程,本题的易错点是根据平方根解方程时需考虑求一个正数的平方根应有两个互为相反数的解.38.(2023春·浙江绍兴·八年级校考期中)计算:(1)|−8|+32+(−12)−32 (2)2×(−5)−(−3)÷34 (3)√81+√−273+√(−23)2−14 (4)22+(−2)2+√19+(−1)2019 【答案】(1)−4(2)−6(3)523(4)713【分析】(1)先算绝对值和去括号,再算加减;(2)先算乘除,再算加法;(3)先算立方根,算术平方根和乘方,再算加减;(4)先算乘方和算术平方根,再算加减.【详解】(1)|−8|+32+(−12)−32=8+32−12−32=−4(2)2×(−5)−(−3)÷34=−10+4=−6(3)√81+√−273+√(−23)2−14 =9+(−3)+23−1 =523(4)22+(−2)2+√19+(−1)2019=4+4+13−1=71 3【点睛】本题主要考查了实数的混合运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.39.(2023春·山东东营·八年级统考期末)(1)计算∶√144−(2022−π)0+√(−3)2∶√259+√−125273+|√2−2|(2)解方程∶(x+2)2=25∶(x−1)3=27【答案】(1)∶14;∶2−√2;(2)∶x=3或−7;∶x=4【分析】(1)∶利用算术平方根的意义,零指数幂的意义即可求解;∶利用算术平方根,立方根的意义和绝对值的意义化简运算即可;(2)∶利用平方根的意义解答即可;∶利用立方根的意义解答即可.【详解】解:(1)∶√144−(2022−π)0+√(−3)2=12−1+3=14;∶√259+√−125273+|√2−2|=53+(−53)+2−√2=2−√2;(2)∶(x+2)2=25∴x+2=±5,∴x=3或−7;∶(x−1)3=27∴x−1=3∴x=4【点睛】本题主要考查了实数的运算,算术平方根的意义,立方根的意义,熟练掌握实数运算法则与性质是解题的关键40.(2023春·江苏·八年级期中)计算(1)√16−√−83+√−1273 (2)√3(√3√3) (3)|3−√2|−|√2−π|−√(−3)2(4)9(x +1)2−16=0(解方程) 【答案】(1)523(2)2(3)6−π (4)x =13或x =−73【分析】(1)根据实数的混合计算法则求解即可;(2)根据实数的混合计算法则求解即可;(3)根据实数的混合计算法则求解即可;(4)根据求平方根的方法解方程即可.【详解】(1)解:原式=4−(−2)+(−13)=4+2−13 =523; (2)解:原式=√3×√3−√3√3=3−1=2;(3)解:原式=3−√2−(π−√2)−(−3)=3−√2−π+√2+3=6−π;(4)解:∶9(x +1)2−16=0,∶9(x +1)2=16,∶(x +1)2=169,∶x +1=43或x +1=−43, ∶x =13或x =−73.【点睛】本题主要考查了实数的混合计算,求平方根的方法解方程,熟知相关计算法则是解题的关键.。

北师大版八年级上册数学实数计算题

北师大版八年级上册数学实数计算题

北师大版八年级上册数学实数计算题一、实数的运算基础1. 化简求值:√(4) + sqrt[3]{ 8}。

解析:对于√(4),因为2^2 = 4,所以√(4)=2。

对于sqrt[3]{ 8},因为( 2)^3=-8,所以sqrt[3]{ 8}=-2。

则√(4)+sqrt[3]{ 8}=2+( 2)=0。

2. 计算:√(9)-√(16)+sqrt[3]{27}。

解析:因为3^2 = 9,所以√(9) = 3。

又因为4^2 = 16,所以√(16)=4。

且3^3 = 27,所以sqrt[3]{27}=3。

那么√(9)-√(16)+sqrt[3]{27}=3 4+3 = 2。

3. 计算(√(3))^2-√(25)+| 2|。

解析:首先(√(3))^2 = 3(根据二次根式的性质(√(a))^2=a(a≥slant0))。

因为5^2 = 25,所以√(25)=5。

| 2|=2。

则(√(3))^2-√(25)+| 2|=3 5 + 2 = 0。

二、含根式的混合运算1. 计算:√(12)+√(27)-√(48)。

解析:先将各项化为最简二次根式。

对于√(12),√(12)=√(4×3)=2√(3)。

对于√(27),√(27)=√(9×3)=3√(3)。

对于√(48),√(48)=√(16×3)=4√(3)。

则√(12)+√(27)-√(48)=2√(3)+3√(3)-4√(3)=√(3)。

2. 计算:√(8)×√(frac{1){2}}+√(3)(√(3)-√(6))。

解析:对于√(8)×√(frac{1){2}},根据√(a)×√(b)=√(ab),√(8)×√(frac{1){2}}=√(8×frac{1){2}}=√(4) = 2。

对于√(3)(√(3)-√(6)),根据乘法分配律a(b c)=ab ac,√(3)(√(3)-√(6))=√(3)×√(3)-√(3)×√(6)=3 3√(2)。

第二章实数单元测试卷 2024-2025学年北师大版八年级数学上册

第二章实数单元测试卷 2024-2025学年北师大版八年级数学上册

第二章实数单元测试卷一、选择题(每题 3分,共30分)1.下列式子中,是二次根式的是 ( ) A.√−3 B √9 C √3 D √a2.9的平方根是 ( ) A.3 B.±3 C.±√3 D.81 3 下列各数是无理数的是 ( ) A.-2 024 B.√20242 C.|-2024| D.√202434. 某同学利用科学计算器进行计算,其按键顺序如下:SHIFT 显示结果为( )A.32B.8C.4D.25.下列运算正确的是 ( ) A.3+√3=3√3 B.√2+√3=√5 C.√273÷√3=√3 D.√12−√102=√6−√56.估计 5−√13的值在 ( ) A.0和1之间 B.1和2之间 C.2和3之间 D.3和 4 之间7. 我国古代的《洛书》记载了世界上最早的幻方——“九宫格”.在如图所示的“九宫格”中,若要使横、竖、斜对角的3个实数相乘都得到同样的结果,则M 代表的实数为( )A.6√2B.2√3 C √6 D. √68.一个等腰三角形,已知其底边长为 √5 分米,底边上的高 √15分米,那么它的面积为 ( ) A.45√52平方分米 B.45√3平方分米 C.45√32平方分米 D.45√5平方分米9.若x 是整数,且 √x −3⋅√5−x 有意义,则 √x −3⋅√5−x 的值是 ( ) A.0或1 B.±1 C.1或2 D.±210.如果一个三角形的三边长分别为 12,k,72,则化简 √k 2−12k +36−|2k −5|的结果是( )A.-k--1B. k+1C.3k-11D.11-3k+)二、填空题(每题3分,共15分)11.计算√−198−13=¯.12 √64₄的倒数是,|π−11|=¯,√5−3的相反数是.13. 手工制作手工课上老师拿走了一块大的正方形布料做教学材料,小红和小芸按照如图所示的方式各剪下一块面积为42cm²和28cm²的小正方形布料做沙包,那么剩下的两块长方形布料的面积和为.14.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的三斜求积公式, 即如果一个三角形的三边长分别为a,b,c,那么该三角形的面积. S=√14[a2b2−(a2+b2−c22)2],现已知△ABC的三边长分别为2, √6,3,则△ABC的面积为.15.若等式(√x3−2)x−1=1成立,则x的取值可以是.三、解答题(16, 17题每题8分, 19, 21题每题12分, 22题15分, 其余每题10分, 共75分)16.计算: (1)(√3+2)(√3−1)+|√3−2|;(2)√48÷√3−2√15×√30+(2√2+√3)2.17.解方程: 2√3x−√48=√3x+√12.18.先化简,再求值:(√2x+√y)(√2x−√y)−(√2x−√y)2,其中x=34,y=12.19.(1)若|2x−4|+(y+3)2+√x+y+z=0,求. x−2y+z的平方根;(2)如图,实数a,b,c是数轴上A,B,C三点所对应的数,化简√c33+|c−b|−√(a−b)2+|a+c|.20.已知7+√5和7−√5的小数部分分别为a,b,试求代数式. ab−a+4b−3的值.21. 高空抛物极其危险,是我们必须杜绝的行为.据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足式子t=√ℎ(不考虑风速的影响).5(1)从50 m高空抛物,落地所需时间l₁是多少秒? 从100m高空抛物,落地所需时间l₂是多少秒?(2)t₂是t₁的多少倍?22. 一只蜗牛A从原点出发向数轴负方向运动,同时,另一只蜗牛B 也从原点出发向数轴正方向运动,3√2秒后,两蜗牛相距15个单位长度.已知蜗牛A,B的速度比是1:4.(速度单位:单位长度/秒)(1)求两只蜗牛的运动速度,并在如图所示的数轴上标出蜗牛A,B从原点出发运动3√2秒时的大致位置.(2)若蜗牛A,B从(1)中的位置同时向数轴负方向运动,几秒时,原点恰好处在两只蜗牛的正中间?(3)若蜗牛A,B从(1)中的位置同时向数轴负方向运动时,另一只蜗牛C也同时从蜗牛B 的位置出发向蜗牛A 运动,当遇到蜗牛A后,立即返回向蜗牛B运动,遇到蜗牛B后又立即返回向蜗牛A运动,如此往返,直到蜗牛B追上蜗牛A 时,蜗牛C立即停止运动.若蜗牛C一直以2√5单位长度/秒的速度匀速运动,那么蜗牛C从开始运动到停止运动,运动的路程是多少个单位长度?一、1. C 2. B 3. D 4. C 5. C 6. B 7. B 8. C 9. A10. D 【点拨】因为一个三角形的三边长分别 12₂, k 72所以 72−12<k <12+72,所以3<k<4,所以k-6<0,2k-5>0.所以 √k 2−12k +36−|2k −5|=√(k −6)2−|2k −5|=6-k-(2k-5)=11-3k.二、11. 3212 14₄;11-π;3 √5 13.2 √6 cm14.√954【点拨】因为△ABC 的三边长分别为2 √6₆,3所以 S ADC =√14{22×(√6)2−[22+(√6)2−322]2} =√954. 15.1或3 或27 【点拨】①当底数为1时,无论指数为何数,等式都成立.令 √x3−2=1,解得x=27.②当底数 为 一1,指数 为偶数时,等式成立. 由 √x3−2=−1,得x=3.当x=3时,x--1=2,则x=3符合题意. ③当指数为0,底数不为0时,等式成立. 令x-1=0,得x=1.将x=1代入 √x3−2,得 √13− 2=√33−2≠0,所以当x=1时,等式成立.综上可知,x 的值为1或3或27.三、16.【解】(1)原式 =(√3)2−√3+2√3−2+2− √3=3. (2)原式 =4−2√6+8+3+4√6=2√6+15. 17.【解】移项,得 2√3x −√3x =√48+√12,所以 √3x =4√3+2√3, 所以 √3x =6√3,解得x=6.18.【解】原式 =(√2x)2−(√y)2−(√2x −√y)2=2x −y −2x +2√2xy −y =2√2xy −2y.当 x =34,y =12时,原式 =2√2×34×12−2× 12=√3−1, 19.【解】(1)因为 |2x −4|+(y +3)2+√x +y +z =0,所以2x-4=0,y+3=0,x+y+z=0, 所以x=2,y=-3,z=1, 所以x-2y+z=2+6+1=9,所以x-2y+z的平方根为±3.(2)由数轴可知,b<a<0<c,|c|>|a|,所以c--b>0,a-b>0,a+c>0,所以√c33+|c−b|−√(a−b)2+|a+c| =c+c-b-(a-b)+a+c=c+c-b-a+b+a+c=3c.20.【解】因√5₅的整数部分为2所以7+√5=9+a,7−√5=4+b即a=−2+√5,b=3−√5.所以ab−a+4b−3=(−2+√5)×(3−√5)−(−2+√5)+4×(3−√5)−3=−11+5√5+2−√5+12−4√5−3=0.21. 【解】(1)当h=50m时, t1=√505=√10(s).当h=100m时, ι2=√1005=√20=2√5(s).(2)因为l2t1=√5√10=√2,所以l₂是l₁√2₂倍22.【解】(1)设蜗牛A的速度为x单位长度/秒,蜗牛B的速度为4x单位长度/秒.依题意,得3√2(x+4x)=15.解得x=√22.所以4x=2√2.所以蜗牛A的运动速度√2₂单位长度/秒,蜗牛的运动速度为√2₂单位长度/秒运动√2₂秒时,蜗牛A的位置在一3处,蜗牛B的置在12处.在图上标注略.(2)设t秒时原点恰好处在两只蜗牛的正中间.依题意,得12−2√2t=3+√22t.解得t=9√25.答:9√25秒时,原点恰好处在两只蜗牛的正中间.(3)设y秒时蜗牛B 追上蜗牛A,依题意,得2√2y−√22y=15,解得y=5√2.所以蜗牛C从开始运动到停止运动,运动的路程为2√5×5√2=10√10(个).单位长度.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档