2014年湖南省娄底市中考数学试卷附详细答案(原版+解析版)

合集下载

湖南省娄底市2014年中考数学试卷及答案(word解析版)

湖南省娄底市2014年中考数学试卷及答案(word解析版)

湖南省娄底市2014年中考数学试卷一、精心选一选,旗开得胜(本大题共10道小题,每小题3分,满分30分,每道小题给出的四个选项中,只有一项是符合题目要求的,请把你认为符合题目要求的选项填涂在答题卡相应题号下的方框里)3.(3分)(2014•娄底)函数y=中自变量x的取值范围为()4.(3分)(2014•娄底)方程组的解是()B,∴原方程组的解B.(3分)(2014•娄底)若两圆的半径分别为2cm和6cm,圆心距为了8cm,则两圆的位置67.(3分)(2014•娄底)实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学9.(3分)(2014•娄底)如图,把一块等腰直角三角板的直角顶点放在直尺的一边上,如果∠1=40°,那么∠2=()B二、细心填一填,一锤定音(本大题共10道小题,每小题3分,满分30分)11.(3分)(2014•娄底)五月初五是我国的传统节日﹣端午节.今年端午节,小王在“百度”搜索引擎中输入“端午节”,搜索到与之相关的结果约为75100000个,75100000用科学记数法表示为7.51×107.12.(3分)(2014•娄底)按照如图所示的操作步骤,若输入的值为3,则输出的值为55.13.(3分)(2014•娄底)已知关于x的方程2x+a﹣5=0的解是x=2,则a的值为1.14.(3分)(2014•娄底)不等式组的解集为2<x≤5.,由①得,15.(3分)(2014•娄底)如图,要使平行四边形ABCD是矩形,则应添加的条件是∠ABC=90°或AC=BD(不唯一)(添加一个条件即可).16.(3分)(2014•娄底)如图,M为反比例函数y=的图象上的一点,MA垂直y轴,垂足为A,△MAO的面积为2,则k的值为4.的几何意义得到=|k|=2y=17.(3分)(2014•娄底)如图,小明用长为3m的竹竿CD做测量工具,测量学校旗杆AB 的高度,移动竹竿,使竹竿与旗杆的距离DB=12m,则旗杆AB的高为9m.=,=,18.(3分)(2014•娄底)五张分别写有﹣1,2,0,﹣4,5的卡片(除数字不同以外,其余都相同),现从中任意取出一张卡片,则该卡片上的数字是负数的概率是.∴该卡片上的数字是负数的概率是:故答案为:.19.(3分)(2014•娄底)如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n为正整数)个图案由3n+1个▲组成.20.(3分)(2014•娄底)如图,▱ABCD的对角线AC、BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO的周长是9.AD=BC BD OE=DE+OE+DO=(AD=BC DO=CDDE+OE+DO==BC BD DC三、用心做一做,慧眼识金(本大题共3道小题,每小题8分,满分24分)21.(8分)(2014•娄底)先化简÷(1﹣),再从不等式2x﹣3<7的正整数解中选一个使原式有意义的数代入求值.÷=•=22.(8分)(2014•娄底)如图,有小岛A和小岛B,轮船以45km/h的速度由C向东航行,在C处测得A的方位角为北偏东60°,测得B的方位角为南偏东45°,轮船航行2小时后到达小岛B处,在B处测得小岛A在小岛B的正北方向.求小岛A与小岛B之间的距离(结果保留整数,参考数据:≈1.41,≈2.45)BP=CP=45,=,+4523.(8分)(2014•娄底)“中国梦”是中华民族每一个人的梦,也是每一个中小学生的梦,各中小学开展经典诵读活动,无疑是“中国梦”教育这一宏大乐章里的响亮音符,学校在经典诵读活动中,对全校学生用A、B、C、D四个等级进行评价,现从中抽取若干个学生进行调查,绘制出了两幅不完整的统计图,请你根据图中信息解答下列问题:(1)共抽取了多少个学生进行调查?(2)将图甲中的折线统计图补充完整.(3)求出图乙中B等级所占圆心角的度数.×四、综合用一用,马到成功(本大题共1道小题,满分8分)24.(8分)(2014•娄底)娄底到长沙的距离约为180km,小刘开着小轿车,小张开着大货车,都从娄底去长沙,小刘比张晚出发1小时,最后两车同时到达长沙,已知小轿车的速度是大货车速度的1.5倍.(1)求小轿车和大货车的速度各是多少?(列方程解答)(2)当小刘出发时,求小张离长沙还有多远?﹣=1五、耐心想一想,再接再厉(本大题共1道小题,满分8分)25.(8分)(2014•娄底)如图,在⊙O中,AB,CD是直径,BE是切线,B为切点,连接AD,BC,BD.(1)求证:△ABD≌△CDB;(2)若∠DBE=37°,求∠ADC的度数.六、探究试一试,超越自我(本大题共2道小题,每小题10分,满分20分)26.(10分)(2014•娄底)如图,抛物线y=x2+mx+(m﹣1)与x轴交于点A(x1,0),B (x2,0),x1<x2,与y轴交于点C(0,c),且满足x12+x22+x1x2=7.(1)求抛物线的解析式;(2)在抛物线上能不能找到一点P,使∠POC=∠PCO?若能,请求出点P的坐标;若不能,请说明理由.,﹣的纵坐标应是﹣,解得,,﹣(),,27.(10分)(2014•娄底)如图甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s.连接PQ,设运动时间为t(s)(0<t<4),解答下列问题:(1)设△APQ的面积为S,当t为何值时,S取得最大值?S的最大值是多少?(2)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求t的值;′(3)当t为何值时,△APQ是等腰三角形?,得出==,得出t AQ PH=t﹣,=t+4QE=得出﹣﹣t+3t+4PQ=,=t,即=5=,=,﹣×PH=×﹣﹣),秒时,最大值为cm=,==t+4═﹣t+4QC=(﹣t+4=t+2t=,<的值是t+3t+4PQ===,;=t,即=5;s s s。

2014-2015年湖南省娄底市八年级(下)期中数学试卷(解析版)

2014-2015年湖南省娄底市八年级(下)期中数学试卷(解析版)

2014-2015学年湖南省娄底市八年级(下)期中数学试卷一.精心选一选,旗开得胜(每小题3分,共30分)1.(3分)直角三角形的两直角边均扩大到原来的两倍,则斜边扩大到原来的()A.8倍B.4倍C.2倍D.6倍2.(3分)使两个直角三角形全等的条件是()A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等D.两条边对应相等3.(3分)下面的性质中,平行四边形不一定具有的是()A.内角和为360°B.邻角互补C.对角相等D.对角互补4.(3分)如图,如果平行四边形ABCD的对角线AC和BD相交于点O,那么图中的全等三角形共有()A.1对B.2对C.3对D.4对5.(3分)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是()A.18B.28C.36D.466.(3分)若点M(x,y)满足x+y=0,则点M位于()A.第一、三象限两坐标轴夹角的平分线上B.x轴上C.第二、四象限两坐标轴夹角的平分线上D.y轴上7.(3分)已知x、y为正数,且|x2﹣4|+(y2﹣3)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为()A.5B.25C.7D.158.(3分)在平面中,下列说法正确的是()A.四个角相等的四边形是矩形B.对角线垂直的四边形是菱形C.对角线相等的四边形是矩形D.四边相等的四边形是正方形9.(3分)下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个10.(3分)如图所示,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若BD=6,则四边形CODE的周长是()A.10B.12C.18D.24二.细心填一填,一锤定音(每小题3分,共30分)11.(3分)在Rt△ABC中,∠C=90°,∠A=65°,则∠B=.12.(3分)一个等腰直角三角形中,它的斜边与斜边上的高的和是18cm,那么斜边上的高为cm.13.(3分)如图,已知▱ABCD中,AB=4,BC=6,BC边上的高AE=2,则DC边上的高AF的长是.14.(3分)▱ABCD的周长为60cm,其对角线交于O点,若△AOB的周长比△BOC的周长多10cm,则AB=cm.15.(3分)已知在▱ABCD中,AB=5cm,AD=8cm,∠ABC的平分线交AD于点E,交CD的延长线于点F,则DF=cm.16.(3分)一个多边形的每一个外角等于30°,则此多边形是边形,它的内角和等于.17.(3分)如图,正方形ODBC中,OC=1,OA=OB,则数轴上点A表示的数是.18.(3分)点P(a,a﹣3)在第四象限,则a的取值范围是.19.(3分)如图,正方形ABCD的顶点B、C都在直角坐标系的x轴上,若点A 的坐标是(﹣1,4),则点C的坐标是.20.(3分)如图所示,矩形纸片ABCD中,AB=5cm,点E在BC上,且AE=EC.若将纸片沿AE折叠,点B恰好与AC上的点B′重合,则AC=cm.三.用心做一做,慧眼识金(每小题8分,共24分)21.(8分)如图,△ABC中,∠BAC=90°,AD是△ABC的高,∠C=30°,BC=4,求BD的长.22.(8分)如图所示,如果▱ABCD的一内角∠BAD的平分线交BC于点E,且AE=BE,求▱ABCD各内角的度数.23.(8分)如图,将长为2.5米长的梯子AB斜靠在墙上,BE长0.7米.(1)求梯子上端到墙的底端E的距离(即AE的长);(2)如果梯子的顶端A沿墙下滑0.4米(即AC=0.4米),则梯脚B将外移(即BD长)多少米?四.综合用一用,马到成功(共8分)24.(8分)如图,某住宅小区在施工过程中留下了一块空地(图中的四边形ABCD),经测量,在四边形ABCD中,AB=3m,BC=4m,CD=12m,DA=13m,∠B=90°.(1)△ACD是直角三角形吗?为什么?(2)小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问铺满这块空地共需花费多少元?五.耐心想一想,再接再厉(共8分)25.(8分)已知,如图在平面直角坐标系中,S△ABC=30,∠ABC=45°,BC=12,求△ABC三个顶点的坐标.六.探究试一试,超越自我(每小题10分,共20分)26.(10分)如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.27.(10分)已知:如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD 是对角线,AG∥DB交CB的延长线于G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.2014-2015学年湖南省娄底市八年级(下)期中数学试卷参考答案与试题解析一.精心选一选,旗开得胜(每小题3分,共30分)1.(3分)直角三角形的两直角边均扩大到原来的两倍,则斜边扩大到原来的()A.8倍B.4倍C.2倍D.6倍【解答】解:设直角三角形两直角边分别为a,b,斜边为c,根据勾股定理得:a2+b2=c2,若两直角边扩大2倍,变为2a与2b,根据勾股定理得:斜边为=2=2c,则斜边扩大到原来的2倍.故选:C.2.(3分)使两个直角三角形全等的条件是()A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等D.两条边对应相等【解答】解:A、一个锐角对应相等,利用已知的直角相等,可得出另一组锐角相等,但不能证明两三角形全等,故A选项错误;B、两个锐角相等,那么也就是三个对应角相等,但不能证明两三角形全等,故B选项错误;C、一条边对应相等,再加一组直角相等,不能得出两三角形全等,故C选项错误;D、两条边对应相等,若是两条直角边相等,可利用SAS证全等;若一直角边对应相等,一斜边对应相等,也可证全等,故D选项正确.故选:D.3.(3分)下面的性质中,平行四边形不一定具有的是()A.内角和为360°B.邻角互补C.对角相等D.对角互补【解答】解:∵平行四边形具有的性质:内角和为360°,邻角互补,对角相等,∴平行四边形不一定具有的是:对角互补.故选:D.4.(3分)如图,如果平行四边形ABCD的对角线AC和BD相交于点O,那么图中的全等三角形共有()A.1对B.2对C.3对D.4对【解答】解:∵ABCD是平行四边形∴AD=BC,AB=CD,AO=CO,BO=DO∵∠AOB=∠COD,∠AOD=∠COB∴△ABO≌△CDO,△ADO≌△CBO(ASA)∵BD=BD,AC=AC∴△ABD≌△CDB,△ACD≌△CAB(SAS)∴共有四对.故选:D.5.(3分)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是()A.18B.28C.36D.46【解答】解:∵四边形ABCD是平行四边形,∴AB=CD=5,∵△OCD的周长为23,∴OD+OC=23﹣5=18,∵BD=2DO,AC=2OC,∴平行四边形ABCD的两条对角线的和=BD+AC=2(DO+OC)=36,故选:C.6.(3分)若点M(x,y)满足x+y=0,则点M位于()A.第一、三象限两坐标轴夹角的平分线上B.x轴上C.第二、四象限两坐标轴夹角的平分线上D.y轴上【解答】解:点M(x,y)满足x+y=0,则点M位于第二、四象限的角平分线上,故选:C.7.(3分)已知x、y为正数,且|x2﹣4|+(y2﹣3)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为()A.5B.25C.7D.15【解答】解:依题意得:x2﹣4=0,y2﹣3=0,∴x=2,y=,斜边长==,所以正方形的面积=()2=7.故选:C.8.(3分)在平面中,下列说法正确的是()A.四个角相等的四边形是矩形B.对角线垂直的四边形是菱形C.对角线相等的四边形是矩形D.四边相等的四边形是正方形【解答】解:A.四个角相等的四边形是矩形,正确;B.对角线垂直的平行四边形是菱形,故错误;C.对角线相等的平行四边形是矩形,故错误;D.四边相等的四边形应是菱形,故错误;故选:A.9.(3分)下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个【解答】解:第一个、第四个图形既是轴对称图形又是中心对称图形,共2个.故选:C.10.(3分)如图所示,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若BD=6,则四边形CODE的周长是()A.10B.12C.18D.24【解答】解:∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴OC=AC,OD=BD,AC=BD=6,∴OC=OD=3,∴四边形CODE是菱形,∴DE=OC=OD=CE=3,∴四边形CODE的周长=4×3=12.二.细心填一填,一锤定音(每小题3分,共30分)11.(3分)在Rt△ABC中,∠C=90°,∠A=65°,则∠B=25°.【解答】解:∵∠C=90°,∠A=65°,∴∠B=90°﹣65°=25°.故答案为:25°.12.(3分)一个等腰直角三角形中,它的斜边与斜边上的高的和是18cm,那么斜边上的高为6cm.【解答】解:因为等腰直角三角形中,斜边上的高即是斜边上的中线,所以高等于斜边的一半,已知斜边与斜边上的高的和是18cm,则高是6cm,斜边是12cm.故答案为:6.13.(3分)如图,已知▱ABCD中,AB=4,BC=6,BC边上的高AE=2,则DC边上的高AF的长是3.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=4,∴S▱ABCD=BC•AE=CD•AF=6×2=12,∴AF=3.∴DC边上的高AF的长是3.故答案为3.14.(3分)▱ABCD的周长为60cm,其对角线交于O点,若△AOB的周长比△BOC的周长多10cm,则AB=20cm.【解答】解:∵▱ABCD的周长为60cm,AB+BC=30cm,∵△AOB的周长比△BOC的周长多10cm,∴AB﹣BC=10cm,∴AB=20cm,BC=10cm.故答案为:20.15.(3分)已知在▱ABCD中,AB=5cm,AD=8cm,∠ABC的平分线交AD于点E,交CD的延长线于点F,则DF=3cm.【解答】解:∵四边形ABCD是平行四边形,∵AD∥BC,AB∥CD,∴∠AEB=∠CBE,∠FED=∠CBE,∠ABF=∠F,∵∠ABE=∠CBE,∴∠ABE=∠AEB,∠FED=∠F,∴AB=AE=5cm,DF=DE,∵AD=8cm,∴DE=AD﹣AE=3(cm),∴DF=3cm.故答案为:3.16.(3分)一个多边形的每一个外角等于30°,则此多边形是十二边形,它的内角和等于1800°.【解答】解:∵多边形的每一个外角等于30°,360°÷30°=12,∴这个多边形是十二边形;其内角和=(12﹣2)•180°=1800°.故答案为:十二,1800°.17.(3分)如图,正方形ODBC中,OC=1,OA=OB,则数轴上点A表示的数是﹣.【解答】解:∵OB==,∴OA=OB=,∵点A在数轴上原点的左边,∴点A表示的数是﹣,故答案为:﹣.18.(3分)点P(a,a﹣3)在第四象限,则a的取值范围是0<a<3.【解答】解:∵点P(a,a﹣3)在第四象限,∴,解得0<a<3.故答案为:0<a<3.19.(3分)如图,正方形ABCD的顶点B、C都在直角坐标系的x轴上,若点A 的坐标是(﹣1,4),则点C的坐标是(3,0).【解答】解:∵点A的坐标是(﹣1,4),∴BC=AB=4,OB=1,∴OC=BC﹣OB=4﹣1=3,∴点C的坐标为(3,0).故答案为:(3,0).20.(3分)如图所示,矩形纸片ABCD中,AB=5cm,点E在BC上,且AE=EC.若将纸片沿AE折叠,点B恰好与AC上的点B′重合,则AC=10cm.【解答】解:∵四边形ABCD是矩形,∴∠B=90°,根据题意得:∠BAE=∠EAB′,∠AB′E=∠B=90°,∴EB′⊥AC,∵AE=EC,∴AB′=CB′=AB=5cm,∴AC=10cm.故答案为:10.三.用心做一做,慧眼识金(每小题8分,共24分)21.(8分)如图,△ABC中,∠BAC=90°,AD是△ABC的高,∠C=30°,BC=4,求BD的长.【解答】解:如图,∵在△ABC中,∠BAC=90°,∠C=30°,AD是高,∴∠ADB=90°,∠BAD=∠C=30°,∴在直角△ABC中,AB=BC=2,∴在直角△ABC中,BD=AB=1.∴BD的长为1.22.(8分)如图所示,如果▱ABCD的一内角∠BAD的平分线交BC于点E,且AE=BE,求▱ABCD各内角的度数.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠B+∠C=180°,∠AEB=∠DAE,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∵AE=BE,∴△ABE是等边三角形,∴∠B=60°,∴∠BCD=120°.∴▱ABCD各内角的度数分别是:∠B=∠D=60°,∠BAD=∠C=120°.23.(8分)如图,将长为2.5米长的梯子AB斜靠在墙上,BE长0.7米.(1)求梯子上端到墙的底端E的距离(即AE的长);(2)如果梯子的顶端A沿墙下滑0.4米(即AC=0.4米),则梯脚B将外移(即BD长)多少米?【解答】解:(1)由题意得:AB=2.5米,BE=0.7米,∵AE2=AB2﹣BE2,∴AE==2.4米;(2)由题意得:EC=2.4﹣0.4=2(米),∵DE2=CD2﹣CE2,∴DE==1.5(米),∴BD=0.8米.四.综合用一用,马到成功(共8分)24.(8分)如图,某住宅小区在施工过程中留下了一块空地(图中的四边形ABCD),经测量,在四边形ABCD中,AB=3m,BC=4m,CD=12m,DA=13m,∠B=90°.(1)△ACD是直角三角形吗?为什么?(2)小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问铺满这块空地共需花费多少元?【解答】解:(1)在Rt△ABC中,∵AB=3m,BC=4m,∠B=90°,AB2+CB2=AC2∴AC=5cm,在△ACD中,AC=5cmCD=12m,DA=13m,∴AC2+CD2=AD2,∴△ACD是直角三角形,∠ACD=90°;(2)∵S△ABC =×3×4=6,S△ACD=×5×12=30,∴S四边形ABCD=6+30=36,费用=36×100=3600(元).五.耐心想一想,再接再厉(共8分)25.(8分)已知,如图在平面直角坐标系中,S△ABC=30,∠ABC=45°,BC=12,求△ABC三个顶点的坐标.【解答】证明:∵∠ABC=45°,∴OA=OB,∵BC•OA=30,BC=12,∴OA=OB=60÷12=5,∴OC=BC﹣BO=12﹣5=7,∴A(0,5),B(﹣5,0),C(7,0).六.探究试一试,超越自我(每小题10分,共20分)26.(10分)如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.【解答】(1)证明:∵Rt△OAB中,D为OB的中点,∴AD=OB,OD=BD=OB∴DO=DA,∴∠DAO=∠DOA=30°,∠EOA=90°,∴∠AEO=60°,又∵△OBC为等边三角形,∴∠BCO=∠AEO=60°,∴BC∥AE,∵∠BAO=∠COA=90°,∴CO∥AB,∴四边形ABCE是平行四边形;(2)解:设OG=x,由折叠可得:AG=GC=8﹣x,在Rt△ABO中,∵∠OAB=90°,∠AOB=30°,BO=8,∴AO=BO•cos30°=8×=4,在Rt△OAG中,OG2+OA2=AG2,x2+(4)2=(8﹣x)2,解得:x=1,∴OG=1.27.(10分)已知:如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD 是对角线,AG∥DB交CB的延长线于G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴∠4=∠C,AD=CB,AB=CD.∵点E、F分别是AB、CD的中点,∴AE=AB,CF=CD.∴AE=CF.在△AED和△CBF中,,∴△ADE≌△CBF(SAS).(2)解:当四边形BEDF是菱形时,四边形AGBD是矩形.证明:∵四边形ABCD是平行四边形,∴AD∥BC.∵AG∥BD,∴四边形AGBD是平行四边形.∵四边形BEDF是菱形,∴DE=BE.∵AE=BE,∴AE=BE=DE.∴∠1=∠2,∠3=∠4.∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°.∴∠2+∠3=90°.即∠ADB=90°.∴▱四边形AGBD是矩形.。

【数学】2014-2015年湖南省娄底市七年级上学期期中数学试卷与解析PDF

【数学】2014-2015年湖南省娄底市七年级上学期期中数学试卷与解析PDF


【解答】解:根据绝对值的意义得:在数轴上与表示﹣3 的点的距离为 5 个单位 长度的点所表示的数有两个, 分别为﹣3+5=2 或﹣3﹣5=﹣8. 故答案为:2 或﹣8
3. (3 分)地球上的海洋面积约为 36100000 千米 2,用科学记数法表示为 ×107 千米 2.
3.61
【解答】解:将 36100000 用科学记数法表示为:3.61×107. 故答案为:3.61×107.
) D. >
C. >a>﹣ >﹣a
18. (3 分)若 a>0,ab<0,则|b﹣a﹣1|﹣|a﹣b+3|的值为( A.2 B.﹣2 C.﹣2a+2b+4 D.2a﹣2b﹣4

19. (3 分)若 a、b 互为相反数,c、d 互为倒数,|m|=2,则代数式 m2﹣3cd+ 的值为( A.﹣1 B.1 ) C.﹣7 D.1 或﹣7
2014-2015 学年湖南省娄底市七年级(上)期中数学试卷
一、填空题(3 分×10=30 分) 1. (3 分)0 的相反数是 ,﹣2 的倒数是 .
2. (3 分)在数轴上,与表示﹣3 的点的距离为 5 个单位长度的点表示的数有 个,它是 . 千
3. (3 分) 地球上的海洋面积约为 36100000 千米 2, 用科学记数法表示为 米 2. 4. (3 分)若|a+2|+(b﹣1)2=0,则(a+b)2015= 5. (3 分)绝对值不大于 4 的整数有 个. . . .
10. (3 分)用围棋子按下面的规律摆图形,则摆第 n 个图形需要围棋子的枚数


二、选择题(3 分×10=30 分) 11. (3 分)若有理数 x 的相反数是 8,则 x 为( A.﹣8 B.8 C.﹣ D. ) )

娄底市2014-2015学年七年级下期末考试数学试题及答案

娄底市2014-2015学年七年级下期末考试数学试题及答案

娄底市2014-2015学年下学期期末文化素质检测试卷七年级数学时量:120分钟 满分:120分一、选择题(每小题3分,共10小题,满分30分。

请把表示正确答案的字母填入下表中对应的题号下。

) 题号 1 2 3 4 5 6 7 8 9 10 答案1、下列图案中,不是轴对称图形的是A B C D2、方程组⎩⎨⎧=+=-5332y x y x 的解是A 、⎩⎨⎧=-=21y xB 、⎩⎨⎧-==11y xC 、⎩⎨⎧==12y xD 、⎩⎨⎧==21y x3、下列从左到右的变形中是因式分解的是A 、2222)(y xy x y x ++=+ B 、)3)(2(652--=+-x x x x C 、3)1(32-+=-+m m m m D 、)35(352y x x x xy x -=+-4、已知一组数据:18,12,5,10,5,16,这组数据的中位数和众数分别是A 、11,5B 、7.5,5C 、7.5,18D 、11,18 5、下列多项式中,不能用公式法分解因式的是A 、36)(12)(2++++y x y x B 、222y xy x -+-C 、2294y x +- D 、22y x + 6、小明用17元买了1支笔和某种笔记本3个,已知笔记本的单价比笔的单价的2倍还多1元,设笔每支x 元,笔记本每本y 元,则所列方程组为 A 、⎩⎨⎧+==+12173y x y x B 、⎩⎨⎧+==+12173x y y x C 、 ⎩⎨⎧+==+12173y x x y D 、⎩⎨⎧+==+12173x y x y7、下列运算正确的是题次 一 二 三 四 五 六 总分 得分A 、532x x x =+B 、1243a a a =⋅C 、448)2(x x =D 、2623)(y x y x =- 8、下列说法中正确的是A 、过一点有且只有一条直线与已知直线平行B 、同位角相等C 、垂直于同一条直线的两条直线互相平行D 、对顶角相等 9、如图(1)所示,则下列说法中不正确的是 A 、由a ∥b 能得到∠2=∠5 B 、由c ∥d 能得到∠3=∠1C 、由c ∥d 能得到∠3=∠4D 、由a ∥b 能得到∠1=∠510、如图(2)所示,用1个边长为c 的小正方形和直角边长分别为b a ,的4个直角三角形,恰好能拼成一个新的大正方形,其中c b a ,,满足等式222b ac +=,由此可验证的乘法公式是A 、222)(2b a b ab a +=++B 、222)(2b a b ab a -=+-C 、22))((b a b a b a -=-+D 、222)(b a b a +=+二、填空题(每小题3分,共8小题,满分24分)11、已知⎩⎨⎧=-=21y x 是某个二元一次方程的一组解,则这个方程可以是 。

娄底中考数学试题解析版

娄底中考数学试题解析版

湖南省娄底市2014年中考数学试卷一、精心选一选,旗开得胜(本大题共10道小题,每小题3分,满分30分,每道小题给出的四个选项中,只有一项是符合题目要求的,请把你认为符合题目要求的选项填涂在答题卡相应题号下的方框里)1.(3分)(2014?娄底)2014的相反数是()A.﹣2014B.﹣C.2014D.考点:相反数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:2014的相反数是﹣2014,故选:A.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)(2014?娄底)下列运算正确的是()A.x2?x3=x6B.(x3)3=x9C.x2+x2=x4D.x6÷x3=x2考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的除法法则:底数不变,指数相减可得答案.解答:解:A、x2?x3=x5,故原题计算错误;B、(x3)3=x9,故原题计算正确;C、x2+x2=2x2,故原题计算错误;D、x6÷x3=x3,故原题计算错误;故选:B.点评:此题主要考查了同底数幂的乘、除法,幂的乘方,以及合并同类项的法则,关键是掌握各种计算法则,不要混淆.3.(3分)(2014?娄底)函数 y=中自变量x的取值范围为()A.x≥0B.x≥﹣2C.x≥2D.x≤﹣2考点:函数自变量的取值范围.专题:压轴题;函数思想.分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数即可求解.解答:解:根据题意,得x﹣2≥0,解得x≥2.故选C.点考查了函数自变量的范围,函数自变量的范围一般从三个方面考虑:评:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.4.(3分)(2014?娄底)方程组的解是()A.B.C.D.解二元一次方程组.考点:用加减法解方程组即可.分析:解解:,答:(1)+(2)得,3x=6,x=2,把x=2代入(1)得,y=﹣1,∴原方程组的解.故选D.此题考查二元一次方程组的解法.点评:5.(3分)(2014?娄底)下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、此图形是轴对称图形,不是中心对称图形,故此选项错误;B、此图形是轴对称图形,不是中心对称图形,故此选项错误;C、此图形不是轴对称图形,是中心对称图形,故此选项错误;D、此图形是轴对称图形,也是中心对称图形,故此选项正确;故选:D.点评:此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.(3分)(2014?娄底)若两圆的半径分别为2cm和6cm,圆心距为了8cm,则两圆的位置关系为()A.外切B.相交C.内切D.外离考圆与圆的位置关系.7.(3分)(2014?娄底)实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习.值周班长小兵每周对各小组合作学习情况进行综合评分.下表是其中一周的评分结果:“分值”这组数据的中位数和众数分别是()8.(3分)(2014?娄底)下列命题中,错误的是()评:命题,错误的命题称为假命题;经过推理论证的真命题称为定理.9.(3分)(2014?娄底)如图,把一块等腰直角三角板的直角顶点放在直尺的一边上,如果∠1=40°,那么∠2=()A.40°B.45°C.50°D.60°考点:平行线的性质.分析:由把一块直角三角板的直角顶点放在直尺的一边上,∠1=40°,可求得∠3的度数,又由AB∥CD,根据“两直线平行,同位角相等“即可求得∠2的度数.解答:解:∵∠∠1+∠3=90°,∠1=40°,∴∠3=50°,∵AB∥CD,∴∠2=∠3=50°.故选:C.点评:此题考查了平行线的性质.解题的关键是注意掌握两直线平行,同位角相等定理的应用.10.(3分)(2014?娄底)一次函数y=kx﹣k(k<0)的图象大致是()A.B.C.D.考点:一次函数的图象.分析:首先根据k的取值范围,进而确定﹣k>0,然后再确定图象所在象限即可.解答:解:∵k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过第一、二、四象限,故选:A.点评:此题主要考查了一次函数图象,直线y=kx+b,可以看做由直线y=kx 平移|b|个单位而得到.当b>0时,向上平移;b<0时,向下平移.二、细心填一填,一锤定音(本大题共10道小题,每小题3分,满分30分)11.(3分)(2014?娄底)五月初五是我国的传统节日﹣端午节.今年端午节,小王在“百度”搜索引擎中输入“端午节”,搜索到与之相关的结果约为个,用科学记数法表示为×107.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将用科学记数法表示为×107.故答案为:×107.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2014?娄底)按照如图所示的操作步骤,若输入的值为3,则输出的值为55 .考点:代数式求值专题:图表型.分根据运算程序列式计算即可得解.析:解答:解:由图可知,输入的值为3时,(32+2)×5=(9+2)×5=55.故答案为:55.点评:本题考查了代数式求值,读懂题目运算程序是解题的关键.13.(3分)(2014?娄底)已知关于x的方程2x+a﹣5=0的解是x=2,则a 的值为 1 .考点:一元一次方程的解分析:把x=2代入方程即可得到一个关于a的方程,解方程即可求解解答:解:把x=2代入方程,得:4+a﹣5=0,解得:a=1.故答案是:1.点评:本题考查了方程的解的定义,理解定义是关键.14.(3分)(2014?娄底)不等式组的解集为2<x≤5.考点:解一元一次不等式组分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x>2,由②得x≤5,故此不等式组的解集为:2<x≤5.故答案为:2<x≤5.点评:本题解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.15.(3分)(2014?娄底)如图,要使平行四边形ABCD是矩形,则应添加的条件是∠ABC=90°或AC=BD(不唯一)(添加一个条件即可).考点:矩形的判定;平行四边形的性质专题:开放型.分析:根据矩形的判定定理:①对角线相等的平行四边形是矩形,②有一个角是直角的平行四边形是矩形,直接添加条件即可.解答:解:根据矩形的判定定理:对角线相等的平行四边形是矩形,有一个角是直角的平行四边形是矩形故添加条件:∠ABC=90°或AC=BD.故答案为:∠ABC=90°或AC=BD .点评:本题主要应用的知识点为:矩形的判定.①对角线相等且相互平分的四边形为矩形.②一个角是90度的平行四边形是矩形.16.(3分)(2014?娄底)如图,M为反比例函数y=的图象上的一点,MA 垂直y轴,垂足为A,△MAO的面积为2,则k的值为 4 .考点:反比例函数系数k的几何意义.专题:计算题.分析:根据反比例函数比例系数k的几何意义得到|k|=2,然后去绝对值得到满足条件的k的值.解答:解:∵MA垂直y轴,∴S△AOM=|k|,∴|k|=2,即|k|=4,而k>0,∴k=4.故答案为4.点本题考查了反比例函数比例系数k的几何意义:在反比例函数y=的评:图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.17.(3分)(2014?娄底)如图,小明用长为3m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿与旗杆的距离DB=12m,则旗杆AB的高为9 m.考点:相似三角形的应用.分析:根据△OCD和△OAB相似,利用相似三角形对应边成比例列式求解即可.解答:解:由题意得,CD∥AB,∴△OCD∽△OAB,∴=,即=,解得AB=9.故答案为:9.点评:本题考查了相似三角形的应用,是基础题,熟记相似三角形对应边成比例是解题的关键.18.(3分)(2014?娄底)五张分别写有﹣1,2,0,﹣4,5的卡片(除数字不同以外,其余都相同),现从中任意取出一张卡片,则该卡片上的数字是负数的概率是.考点:概率公式.分析:由五张分别写有﹣1,2,0,﹣4,5的卡片(除数字不同以外,其余都相同),直接利用概率公式求解即可求得答案.解答:解:∵五张分别写有﹣1,2,0,﹣4,5的卡片(除数字不同以外,其余都相同),∴该卡片上的数字是负数的概率是:.故答案为:.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.19.(3分)(2014?娄底)如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n为正整数)个图案由3n+1 个▲组成.考点:规律型:图形的变化类.分析:仔细观察图形,结合三角形每条边上的三角形的个数与图形的序列数之间的关系发现图形的变化规律,利用发现的规律求解即可.解答:解:观察发现:第一个图形有3×2﹣3+1=4个三角形;第二个图形有3×3﹣3+1=7个三角形;第一个图形有3×4﹣3+1=10个三角形;…第n个图形有3(n+1)﹣3+1=3n+1个三角形;故答案为:3n+1.点评:考查了规律型:图形的变化类,本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.20.(3分)(2014?娄底)如图,?ABCD的对角线AC、BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO的周长是9 .考点:平行四边形的性质;三角形中位线定理.分析:根据平行四边形的性质得出DE=AD=BC,DO=BD,AO=CO,求出OE=CD,求出△DEO的周长是DE+OE+DO=(BC+DC+BD),代入求出即可.解答: 解:∵E 为AD 中点,四边形ABCD 是平行四边形,∴DE=AD=BC ,DO=BD ,AO=CO ,∴OE=CD ,∵△BCD 的周长为18,∴BD+DC+B=18,∴△DEO 的周长是DE+OE+DO=(BC+DC+BD )=×18=9,故答案为:9.点评: 本题考查了平行四边形的性质,三角形的中位线的应用,解此题的关键是求出DE=BC ,DO=BD ,OE=DC .三、用心做一做,慧眼识金(本大题共3道小题,每小题8分,满分24分)21.(8分)(2014?娄底)先化简÷(1﹣),再从不等式2x ﹣3<7的正整数解中选一个使原式有意义的数代入求值.考点:分式的化简求值;一元一次不等式的整数解.专题:计算题.分析: 原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,求出不等式的解集,找出解集中的正整数解得到x的值,代入计算即可求出值.解答:解:原式=÷=?=,不等式2x﹣3<7,解得:x<5,其正整数解为1,2,3,4,当x=1时,原式=.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.(8分)(2014?娄底)如图,有小岛A和小岛B,轮船以45km/h的速度由C向东航行,在C处测得A的方位角为北偏东60°,测得B的方位角为南偏东45°,轮船航行2小时后到达小岛B处,在B处测得小岛A在小岛B的正北方向.求小岛A与小岛B之间的距离(结果保留整数,参考数据:≈,≈)考点:解直角三角形的应用-方向角问题分先过点C作CP⊥AB于P,根据已知条件求出∠PCB=∠PBC=45°,∠析:CAP=60°,再根据轮船的速度和航行的时间求出BC的值,在Rt△PCB 中,根据勾股定理求出BP=CP的值,再根据特殊角的三角函数值求出AP的值,最后根据AB=AP+PB,即可求出答案.解答:解:过点C作CP⊥AB于P,∵∠BCF=45°,∠ACE=60°,AB∥EF,∴∠PCB=∠PBC=45°,∠CAP=60°,∵轮船的速度是45km/h,轮船航行2小时,∴BC=90,∵BC2=BP2+CP2,∴BP=CP=45,∵∠CAP=60°,∴tan60°==,∴AP=15,∴AB=AP+PB=15+45=15×+45×≈100(km).答:小岛A与小岛B之间的距离是100km.点评:本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形,利用锐角三角函数的定义求解是解答此题的关键.23.(8分)(2014?娄底)“中国梦”是中华民族每一个人的梦,也是每一个中小学生的梦,各中小学开展经典诵读活动,无疑是“中国梦”教育这一宏大乐章里的响亮音符,学校在经典诵读活动中,对全校学生用A、B、C、D四个等级进行评价,现从中抽取若干个学生进行调查,绘制出了两幅不完整的统计图,请你根据图中信息解答下列问题:(1)共抽取了多少个学生进行调查(2)将图甲中的折线统计图补充完整.(3)求出图乙中B等级所占圆心角的度数.考点:折线统计图;扇形统计图专题:数形结合.分析:(1)用C等级的人数除以C等级所占的百分比即可得到抽取的总人数;(2)先用总数50分别减去A、C、D等级的人数得到B等级的人数,然后画出折线统计图;(3)用360°乘以B等级所占的百分比即可得到B等级所占圆心角的度数.解答:解:(1)10÷20%=50,所以抽取了50个学生进行调查;(2)B等级的人数=50﹣15﹣10﹣5=20(人),画折线统计图;(3)图乙中B等级所占圆心角的度数=360°×=144°.点评:本题考查了折线统计图:折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化;折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.也考查了扇形统计图.四、综合用一用,马到成功(本大题共1道小题,满分8分)24.(8分)(2014?娄底)娄底到长沙的距离约为180km,小刘开着小轿车,小张开着大货车,都从娄底去长沙,小刘比张晚出发1小时,最后两车同时到达长沙,已知小轿车的速度是大货车速度的倍.(1)求小轿车和大货车的速度各是多少(列方程解答)(2)当小刘出发时,求小张离长沙还有多远考点:分式方程的应用.分析:(1)由题意,设大货车速度为xkm/h,则小轿车的速度为h,根据“小刘比张晚出发1小时,最后两车同时到达长沙,”列出方程解决问题;(2)利用(1)中小张开着大货车的速度,即可求得答案.解答:解:(1)设大货车速度为xkm/h,则小轿车的速度为h,由题意得﹣=1解得x=60,则=90,答:大货车速度为60km/h,则小轿车的速度为90km/h.(2)180﹣60×1=120km答:当小刘出发时,小张离长沙还有120km.点评:此题考查分式方程的运用,注意题目蕴含的数量关系,设出未知数,列方程解决问题.五、耐心想一想,再接再厉(本大题共1道小题,满分8分)25.(8分)(2014?娄底)如图,在⊙O中,AB,CD是直径,BE是切线,B 为切点,连接AD,BC,BD.(1)求证:△ABD≌△CDB;(2)若∠DBE=37°,求∠ADC的度数.考点:切线的性质;全等三角形的判定与性质分析:(1)根据AB,CD是直径,可得出∠ADB=∠CBD=90°,再根据HL定理得出△ABD≌△CDB;(2)由BE是切线,得AB⊥BE,根据∠DBE=37°,得∠BAD,由OA=OD,得出∠ADC的度数.解答:(1)证明:∵AB,CD是直径,∴∠ADB=∠CBD=90°,在△ABD和△CDB中,,∴△ABD和△CDB(HL);(2)解:∵BE是切线,∴AB⊥BE,∴∠ABE=90°,∵∠DBE=37°,∴∠ABD=53°,∵OA=OD,∴∠BAD=∠ODA=90°﹣53°=37°,∴∠ADC的度数为37°.点评:本题考查了切线的性质以及全等三角形的判定和性质,是基础题,难度不大.六、探究试一试,超越自我(本大题共2道小题,每小题10分,满分20分)26.(10分)(2014?娄底)如图,抛物线y=x2+mx+(m﹣1)与x轴交于点A(x1,0),B(x2,0),x1<x2,与y轴交于点C(0,c),且满足x12+x22+x1x2=7.(1)求抛物线的解析式;(2)在抛物线上能不能找到一点P,使∠POC=∠PCO若能,请求出点P的坐标;若不能,请说明理由.考点:二次函数综合题.分析:(1)利用根与系数的关系,等式x12+x22+x1x2=7.由一元二次方程根与系数的关系,得x1+x2=﹣m,x1x2=m﹣1.代入等式,即可求得m的值,从而求得解析式.(2)根据线段的垂直平分线上的点到两端点的距离相等,求得P点的纵坐标,代入抛物线的解析式即可求得.解答:解(1)依题意:x1+x2=﹣m,x1x2=m﹣1,∵x1+x2+x1x2=7,∴(x1+x2)2﹣x1x2=7,∴(﹣m)2﹣(m﹣1)=7,即m2﹣m﹣6=0,解得m1=﹣2,m2=3,∵c=m﹣1<0,∴m=3不合题意∴m=﹣2抛物线的解析式是y=x2﹣2x﹣3;(2)能如图,设p是抛物线上的一点,连接PO,PC,过点P作y轴的垂线,垂足为D.若∠POC=∠PCO则PD应是线段OC的垂直平分线∵C的坐标为(0,﹣3)∴D的坐标为(0,﹣)∴P的纵坐标应是﹣令x2﹣2x﹣3=,解得,x1=,x2=因此所求点P的坐标是(,﹣),(,﹣)点评:本题考查了根与系数的关系是:x1+x2=﹣,x1x2=,以及线段的垂直平分线的性质,函数图象交点坐标的求法等知识.27.(10分)(2014?娄底)如图甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A 出发沿AC方向向点C匀速运动,它们的速度均为1cm/s.连接PQ,设运动时间为t(s)(0<t<4),解答下列问题:(1)设△APQ的面积为S,当t为何值时,S取得最大值S的最大值是多少(2)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求t的值;′(3)当t为何值时,△APQ是等腰三角形考点:相似形综合题分析:(1)过点P作PH⊥AC于H,由△APH∽△ABC,得出=,从而求出AB,再根据=,得出PH=3﹣t,则△AQP的面积为:AQ?PH=t (3﹣t),最后进行整理即可得出答案;(2)连接PP′交QC于E,当四边形PQP′C为菱形时,得出△APE∽△ABC,=,求出AE=﹣t+4,再根据QE=AE﹣AQ,QE=QC得出﹣t+4=﹣t+2,再求t即可;(3)由(1)知,PD=﹣t+3,与(2)同理得:QD=﹣t+4,从而求出PQ=,在△APQ中,分三种情况讨论:①当AQ=AP,即t=5﹣t,②当PQ=AQ,即=t,③当PQ=AP,即=5﹣t,再分别计算即可.解答:解:(1)如图甲,过点P作PH⊥AC于H,∵∠C=90°,∴AC⊥BC,∴PH∥BC,∴△APH∽△ABC,∴=,∵AC=4cm,BC=3cm,∴AB=5cm,∴=,∴PH=3﹣t,∴△AQP的面积为:S=×AQ×PH=×t×(3﹣t)=﹣(t﹣)2+,∴当t为秒时,S最大值为cm2.(2)如图乙,连接PP′,PP′交QC于E,当四边形PQP′C为菱形时,PE垂直平分QC,即PE⊥AC,QE=EC,∴△APE∽△ABC,∴=,∴AE===﹣t+4QE=AE﹣AQ═﹣t+4﹣t=﹣t+4,QE=QC=(4﹣t)=﹣t+2,∴﹣t+4=﹣t+2,解得:t=,∵0<<4,∴当四边形PQP′C为菱形时,t的值是s;(3)由(1)知,PD=﹣t+3,与(2)同理得:QD=AD﹣AQ=﹣t+4∴PQ===,在△APQ中,①当AQ=AP,即t=5﹣t时,解得:t1=;②当PQ=AQ,即=t时,解得:t2=,t3=5;③当PQ=AP,即=5﹣t时,解得:t4=0,t5=;∵0<t<4,∴t3=5,t4=0不合题意,舍去,∴当t为s或s或s时,△APQ是等腰三角形.点评:此题主要考查了相似形综合,用到的知识点是相似三角形的判定与性质、勾股定理、三角形的面积公式以及二次函数的最值问题,关键是根据题意做出辅助线,利用数形结合思想进行解答.。

湖南省娄底市2014-2015学年八年级上学期期末考试数学试题湘教版

湖南省娄底市2014-2015学年八年级上学期期末考试数学试题湘教版

湖南省娄底市2014-2015学年八年级上学期期末考试数学试题湘教版一、精心选一选,旗开得胜1.有理式中分式有几个?答案:B、2个改写:下列有理式中,有两个分式。

2.下列计算正确的是?答案:C、2-2=-4改写:以下计算正确的是?3.不能组成三角形的线段组合是?答案:B、2,3,4改写:以下组合中不能构成三角形的是?4.下列命题中是真命题的是?答案:D、锐角与钝角之和等于平角。

改写:以下命题中是真的是?5.数轴上的点表示的数一定是?答案:C、实数改写:在数轴上表示的点所代表的数一定是实数。

6.若-x有意义,则x-x一定是?答案:A、正数改写:如果-x有意义,那么x-x一定是正数。

7.一个不等式的解集为-1<x≤2,那么在数轴上表示正确的是?答案:D、整数或有限小数改写:如果一个不等式的解集为-1<x≤2,那么在数轴上表示正确的是整数或有限小数。

8.某种商品的进价为1000元,出售时的标价为1500元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至少可打?答案:C、8折改写:一种商品的进价是1000元,标价是1500元。

由于积压,商店打算打折出售,但要保持利润率不低于5%,那么至少可以打8折。

9.已知:如图,△ABC≌△DEF,AC∥DF,BC∥EF。

则不正确的等式是?答案:C、BC=EF改写:已知如图,△ABC≌△DEF,AC∥DF,BC∥EF。

以下等式不正确的是?10.下列运算正确的是?答案:A、52-42=52-42=5-4=1改写:以下运算正确的是?二、细心填一填,一锤定音11.若方程2/(a(x-1))=3的解是x=5,则a=?答案:-2改写:如果方程2/(a(x-1))=3的解是x=5,那么a的值为-2.12.已知(X-Y+3)²+2-Y=,则x+y=?答案:2改写:已知(X-Y+3)²+2-Y=,那么x+y的值为2.13.比较大小:-5.9,-6答案:-5.9>-6改写:-5.9和-6的大小关系是-5.9大于-6.14.不等式组-1<x+2<3的解集是?答案:-3<x<1改写:如果不等式组-1<x+2<3的解集是,那么x的取值范围是-3<x<1.15.用四舍五入法,对0.xxxxxxx取近似值,若要求保留三个有效数字,并用科学记数法表示,则结果为?答案:7.10×10^-3改写:对于0.xxxxxxx,使用四舍五入法,保留三个有效数字,用科学记数法表示的结果为7.10×10^-3.数学练题16.已知等腰三角形的两边长分别为7和3,则该等腰三角形的周长为10.17.已知如图,在△ABF和△DEC中,∠A=∠D,AB=DE,若再添加条件BF=EC,则可根据SAS证得△ABF≌△DEC。

(2014年中考真题)湖南省娄底市中考数学试卷(有答案)

(2014年中考真题)湖南省娄底市中考数学试卷(有答案)

湖南省娄底市2014年中考数学试卷一、精心选一选,旗开得胜(本大题共10道小题,每小题3分,满分30分,每道小题给出的四个选项中,只有一项是符合题目要求的,请把你认为符合题目要求的选项填涂在答题卡相应题号下的方框里)1.(3分)(2014•娄底)2014的相反数是()A.﹣2014 B.﹣C.2014 D.考点:相反数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:2014的相反数是﹣2014,故选:A.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)(2014•娄底)下列运算正确的是()A.x2•x3=x6B.(x3)3=x9C.x2+x2=x4D.x6÷x3=x2考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的除法法则:底数不变,指数相减可得答案.解答:解:A、x2•x3=x5,故原题计算错误;B、(x3)3=x9,故原题计算正确;C、x2+x2=2x2,故原题计算错误;D、x6÷x3=x3,故原题计算错误;故选:B.点评:此题主要考查了同底数幂的乘、除法,幂的乘方,以及合并同类项的法则,关键是掌握各种计算法则,不要混淆.3.(3分)(2014•娄底)函数y=中自变量x的取值范围为()A.x≥0 B.x≥﹣2 C.x≥2 D.x≤﹣2考点:函数自变量的取值范围.专题:压轴题;函数思想.分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数即可求解.解答:解:根据题意,得x﹣2≥0,解得x≥2.故选C.点评:考查了函数自变量的范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.4.(3分)(2014•娄底)方程组的解是()A.B.C.D.考点:解二元一次方程组.分析:用加减法解方程组即可.解答:解:,(1)+(2)得,3x=6,x=2,把x=2代入(1)得,y=﹣1,∴原方程组的解.故选D.点评:此题考查二元一次方程组的解法.5.(3分)(2014•娄底)下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、此图形是轴对称图形,不是中心对称图形,故此选项错误;B、此图形是轴对称图形,不是中心对称图形,故此选项错误;C、此图形不是轴对称图形,是中心对称图形,故此选项错误;D、此图形是轴对称图形,也是中心对称图形,故此选项正确;故选:D.点评:此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.(3分)(2014•娄底)若两圆的半径分别为2cm和6cm,圆心距为了8cm,则两圆的位置关系为()A.外切B.相交C.内切D.外离考点:圆与圆的位置关系.分析:根据数量关系来判断两圆的位置关系.设两圆的半径分别为R和r,且R≥r,圆心距为d:外离,则d>R+r;外切,则d=R+r;相交,则R﹣r<d<R+r;内切,则d=R﹣r;内含,则d<R﹣r.解答:解:根据题意,得:R+r=8cm,即R+r=d,∴两圆外切.故选A.点评:本题主要考查圆与圆的位置关系与数量关系间的联系,属于基础题.7.(3分)(2014•娄底)实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习.值周班长小兵每周对各小组合作学习情况进行综合评分.下表是其中一周的评分结果:组别一二三四五六七分值90 96 89 90 91 85 90“分值”这组数据的中位数和众数分别是()A.89,90 B.90,90 C.88,95 D.90,95考点:众数;中位数分析:根据中位数和众数的定义找出从小到大排列后最中间的数和出现次数最多的数即可.解答:解:把这组数据从小到大排列:85,89,90,90,90,91,96,最中间的数是90,则中位数是90;90出现了3次,出现的次数最多,则众数是90;故选B.点评:此题考查了中位数和众数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.8.(3分)(2014•娄底)下列命题中,错误的是()A.平行四边形的对角线互相平分B.菱形的对角线互相垂直平分C.矩形的对角线相等且互相垂直平分D.角平分线上的点到角两边的距离相等考点:命题与定理.分析:根据平行四边形的性质对A进行判断;根据菱形的性质对B进行判断;根据矩形的性质对C进行判断;根据角平分线的性质对D进行判断.解答:解:A、平行四边形的对角线互相平分,所以A选项的说法正确;B、菱形的对角线互相垂直平分,所以B选项的说法正确;C、矩形的对角线相等且互相平分,所以C选项的说法错误;D、角平分线上的点到角两边的距离相等,所以D选项的说法正确.故选C.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.9.(3分)(2014•娄底)如图,把一块等腰直角三角板的直角顶点放在直尺的一边上,如果∠1=40°,那么∠2=()A.40°B.45°C.50°D.60°考点:平行线的性质.分析:由把一块直角三角板的直角顶点放在直尺的一边上,∠1=40°,可求得∠3的度数,又由AB∥CD,根据“两直线平行,同位角相等“即可求得∠2的度数.解答:解:∵∠∠1+∠3=90°,∠1=40°,∴∠3=50°,∵AB∥CD,∴∠2=∠3=50°.故选:C.点评:此题考查了平行线的性质.解题的关键是注意掌握两直线平行,同位角相等定理的应用.10.(3分)(2014•娄底)一次函数y=kx﹣k(k<0)的图象大致是()A.B.C.D.考点:一次函数的图象.分析:首先根据k的取值范围,进而确定﹣k>0,然后再确定图象所在象限即可.解答:解:∵k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过第一、二、四象限,故选:A.点评:此题主要考查了一次函数图象,直线y=kx+b,可以看做由直线y=kx平移|b|个单位而得到.当b>0时,向上平移;b<0时,向下平移.二、细心填一填,一锤定音(本大题共10道小题,每小题3分,满分30分)11.(3分)(2014•娄底)五月初五是我国的传统节日﹣端午节.今年端午节,小王在“百度”搜索引擎中输入“端午节”,搜索到与之相关的结果约为75100000个,75100000用科学记数法表示为7.51×107.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将75100000用科学记数法表示为7.51×107.故答案为:7.51×107.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2014•娄底)按照如图所示的操作步骤,若输入的值为3,则输出的值为55.考点:代数式求值专题:图表型.分析:根据运算程序列式计算即可得解.解答:解:由图可知,输入的值为3时,(32+2)×5=(9+2)×5=55.故答案为:55.点评:本题考查了代数式求值,读懂题目运算程序是解题的关键.13.(3分)(2014•娄底)已知关于x的方程2x+a﹣5=0的解是x=2,则a的值为1.考点:一元一次方程的解分析:把x=2代入方程即可得到一个关于a的方程,解方程即可求解解答:解:把x=2代入方程,得:4+a﹣5=0,解得:a=1.故答案是:1.点评:本题考查了方程的解的定义,理解定义是关键.14.(3分)(2014•娄底)不等式组的解集为2<x≤5.考点:解一元一次不等式组分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x>2,由②得x≤5,故此不等式组的解集为:2<x≤5.故答案为:2<x≤5.点评:本题解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.15.(3分)(2014•娄底)如图,要使平行四边形ABCD是矩形,则应添加的条件是∠ABC=90°或AC=BD (不唯一)(添加一个条件即可).考点:矩形的判定;平行四边形的性质专题:开放型.分析:根据矩形的判定定理:①对角线相等的平行四边形是矩形,②有一个角是直角的平行四边形是矩形,直接添加条件即可.解答:解:根据矩形的判定定理:对角线相等的平行四边形是矩形,有一个角是直角的平行四边形是矩形故添加条件:∠ABC=90°或AC=BD.故答案为:∠ABC=90°或AC=BD.点评:本题主要应用的知识点为:矩形的判定.①对角线相等且相互平分的四边形为矩形.②一个角是90度的平行四边形是矩形.16.(3分)(2014•娄底)如图,M为反比例函数y=的图象上的一点,MA垂直y轴,垂足为A,△MAO 的面积为2,则k的值为4.考点:反比例函数系数k的几何意义.专题:计算题.分析:根据反比例函数比例系数k的几何意义得到|k|=2,然后去绝对值得到满足条件的k 的值.解答:解:∵MA垂直y轴,∴S△AOM=|k|,∴|k|=2,即|k|=4,而k>0,∴k=4.故答案为4.点评:本题考查了反比例函数比例系数k的几何意义:在反比例函数y=的图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.17.(3分)(2014•娄底)如图,小明用长为3m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿与旗杆的距离DB=12m,则旗杆AB的高为9m.考点:相似三角形的应用.分析:根据△OCD和△OAB相似,利用相似三角形对应边成比例列式求解即可.解答:解:由题意得,CD∥AB,∴△OCD∽△OAB,∴=,即=,解得AB=9.故答案为:9.点评:本题考查了相似三角形的应用,是基础题,熟记相似三角形对应边成比例是解题的关键.18.(3分)(2014•娄底)五张分别写有﹣1,2,0,﹣4,5的卡片(除数字不同以外,其余都相同),现从中任意取出一张卡片,则该卡片上的数字是负数的概率是.考点:概率公式.分析:由五张分别写有﹣1,2,0,﹣4,5的卡片(除数字不同以外,其余都相同),直接利用概率公式求解即可求得答案.解答:解:∵五张分别写有﹣1,2,0,﹣4,5的卡片(除数字不同以外,其余都相同),∴该卡片上的数字是负数的概率是:.故答案为:.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.19.(3分)(2014•娄底)如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n为正整数)个图案由3n+1个▲组成.考点:规律型:图形的变化类.分析:仔细观察图形,结合三角形每条边上的三角形的个数与图形的序列数之间的关系发现图形的变化规律,利用发现的规律求解即可.解答:解:观察发现:第一个图形有3×2﹣3+1=4个三角形;第二个图形有3×3﹣3+1=7个三角形;第一个图形有3×4﹣3+1=10个三角形;…第n个图形有3(n+1)﹣3+1=3n+1个三角形;故答案为:3n+1.点评:考查了规律型:图形的变化类,本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.20.(3分)(2014•娄底)如图,▱ABCD的对角线AC、BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO的周长是9.考点:平行四边形的性质;三角形中位线定理.分析:根据平行四边形的性质得出DE=AD=BC,DO=BD,AO=CO,求出OE=CD,求出△DEO的周长是DE+OE+DO=(BC+DC+BD),代入求出即可.解答:解:∵E为AD中点,四边形ABCD是平行四边形,∴DE=AD=BC,DO=BD,AO=CO,∴OE=CD,∵△BCD的周长为18,∴BD+DC+B=18,∴△DEO的周长是DE+OE+DO=(BC+DC+BD)=×18=9,故答案为:9.点评:本题考查了平行四边形的性质,三角形的中位线的应用,解此题的关键是求出DE=BC,DO=BD,OE=DC.三、用心做一做,慧眼识金(本大题共3道小题,每小题8分,满分24分)21.(8分)(2014•娄底)先化简÷(1﹣),再从不等式2x﹣3<7的正整数解中选一个使原式有意义的数代入求值.考点:分式的化简求值;一元一次不等式的整数解.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,求出不等式的解集,找出解集中的正整数解得到x的值,代入计算即可求出值.解答:解:原式=÷=•=,不等式2x﹣3<7,解得:x<5,其正整数解为1,2,3,4,当x=1时,原式=.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.(8分)(2014•娄底)如图,有小岛A和小岛B,轮船以45km/h的速度由C向东航行,在C处测得A 的方位角为北偏东60°,测得B的方位角为南偏东45°,轮船航行2小时后到达小岛B处,在B处测得小岛A在小岛B的正北方向.求小岛A与小岛B之间的距离(结果保留整数,参考数据:≈1.41,≈2.45)考点:解直角三角形的应用-方向角问题分析:先过点C作CP⊥AB于P,根据已知条件求出∠PCB=∠PBC=45°,∠CAP=60°,再根据轮船的速度和航行的时间求出BC的值,在Rt△PCB中,根据勾股定理求出BP=CP的值,再根据特殊角的三角函数值求出AP的值,最后根据AB=AP+PB,即可求出答案.解答:解:过点C作CP⊥AB于P,∵∠BCF=45°,∠ACE=60°,AB∥EF,∴∠PCB=∠PBC=45°,∠CAP=60°,∵轮船的速度是45km/h,轮船航行2小时,∴BC=90,∵BC2=BP2+CP2,∴BP=CP=45,∵∠CAP=60°,∴tan60°==,∴AP=15,∴AB=AP+PB=15+45=15×2.45+45×1.41≈100(km).答:小岛A与小岛B之间的距离是100km.点评:本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形,利用锐角三角函数的定义求解是解答此题的关键.23.(8分)(2014•娄底)“中国梦”是中华民族每一个人的梦,也是每一个中小学生的梦,各中小学开展经典诵读活动,无疑是“中国梦”教育这一宏大乐章里的响亮音符,学校在经典诵读活动中,对全校学生用A、B、C、D四个等级进行评价,现从中抽取若干个学生进行调查,绘制出了两幅不完整的统计图,请你根据图中信息解答下列问题:(1)共抽取了多少个学生进行调查?(2)将图甲中的折线统计图补充完整.(3)求出图乙中B等级所占圆心角的度数.考点:折线统计图;扇形统计图专题:数形结合.分析:(1)用C等级的人数除以C等级所占的百分比即可得到抽取的总人数;(2)先用总数50分别减去A、C、D等级的人数得到B等级的人数,然后画出折线统计图;(3)用360°乘以B等级所占的百分比即可得到B等级所占圆心角的度数.解答:解:(1)10÷20%=50,所以抽取了50个学生进行调查;(2)B等级的人数=50﹣15﹣10﹣5=20(人),画折线统计图;(3)图乙中B等级所占圆心角的度数=360°×=144°.点评:本题考查了折线统计图:折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化;折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.也考查了扇形统计图.四、综合用一用,马到成功(本大题共1道小题,满分8分)24.(8分)(2014•娄底)娄底到长沙的距离约为180km,小刘开着小轿车,小张开着大货车,都从娄底去长沙,小刘比张晚出发1小时,最后两车同时到达长沙,已知小轿车的速度是大货车速度的1.5倍.(1)求小轿车和大货车的速度各是多少?(列方程解答)(2)当小刘出发时,求小张离长沙还有多远?考点:分式方程的应用.分析:(1)由题意,设大货车速度为xkm/h,则小轿车的速度为1.5xkm/h,根据“小刘比张晚出发1小时,最后两车同时到达长沙,”列出方程解决问题;(2)利用(1)中小张开着大货车的速度,即可求得答案.解答:解:(1)设大货车速度为xkm/h,则小轿车的速度为1.5xkm/h,由题意得﹣=1解得x=60,则1.5x=90,答:大货车速度为60km/h,则小轿车的速度为90km/h.(2)180﹣60×1=120km答:当小刘出发时,小张离长沙还有120km.点评:此题考查分式方程的运用,注意题目蕴含的数量关系,设出未知数,列方程解决问题.五、耐心想一想,再接再厉(本大题共1道小题,满分8分)25.(8分)(2014•娄底)如图,在⊙O中,AB,CD是直径,BE是切线,B为切点,连接AD,BC,BD.(1)求证:△ABD≌△CDB;(2)若∠DBE=37°,求∠ADC的度数.考点:切线的性质;全等三角形的判定与性质分析:(1)根据AB,CD是直径,可得出∠ADB=∠CBD=90°,再根据HL定理得出△ABD≌△CDB;(2)由BE是切线,得AB⊥BE,根据∠DBE=37°,得∠BAD,由OA=OD,得出∠ADC的度数.解答:(1)证明:∵AB,CD是直径,∴∠ADB=∠CBD=90°,在△ABD和△CDB中,,∴△ABD和△CDB(HL);(2)解:∵BE是切线,∴AB⊥BE,∴∠ABE=90°,∵∠DBE=37°,∴∠ABD=53°,∵OA=OD,∴∠BAD=∠ODA=90°﹣53°=37°,∴∠ADC的度数为37°.点评:本题考查了切线的性质以及全等三角形的判定和性质,是基础题,难度不大.六、探究试一试,超越自我(本大题共2道小题,每小题10分,满分20分)26.(10分)(2014•娄底)如图,抛物线y=x2+mx+(m﹣1)与x轴交于点A(x1,0),B(x2,0),x1<x2,与y轴交于点C(0,c),且满足x12+x22+x1x2=7.(1)求抛物线的解析式;(2)在抛物线上能不能找到一点P,使∠POC=∠PCO?若能,请求出点P的坐标;若不能,请说明理由.考点:二次函数综合题.分析:(1)利用根与系数的关系,等式x12+x22+x1x2=7.由一元二次方程根与系数的关系,得x1+x2=﹣m,x1x2=m﹣1.代入等式,即可求得m的值,从而求得解析式.(2)根据线段的垂直平分线上的点到两端点的距离相等,求得P点的纵坐标,代入抛物线的解析式即可求得.解答:解(1)依题意:x1+x2=﹣m,x1x2=m﹣1,∵x1+x2+x1x2=7,∴(x1+x2)2﹣x1x2=7,∴(﹣m)2﹣(m﹣1)=7,即m2﹣m﹣6=0,解得m1=﹣2,m2=3,∵c=m﹣1<0,∴m=3不合题意∴m=﹣2抛物线的解析式是y=x2﹣2x﹣3;(2)能如图,设p是抛物线上的一点,连接PO,PC,过点P作y轴的垂线,垂足为D.若∠POC=∠PCO则PD应是线段OC的垂直平分线∵C的坐标为(0,﹣3)∴D的坐标为(0,﹣)∴P的纵坐标应是﹣令x2﹣2x﹣3=,解得,x1=,x2=因此所求点P的坐标是(,﹣),(,﹣)点评:本题考查了根与系数的关系是:x1+x2=﹣,x1x2=,以及线段的垂直平分线的性质,函数图象交点坐标的求法等知识.27.(10分)(2014•娄底)如图甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s.连接PQ,设运动时间为t(s)(0<t<4),解答下列问题:(1)设△APQ的面积为S,当t为何值时,S取得最大值?S的最大值是多少?(2)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求t 的值;′(3)当t为何值时,△APQ是等腰三角形?考点:相似形综合题分析:(1)过点P作PH⊥AC于H,由△APH∽△ABC,得出=,从而求出AB,再根据=,得出PH=3﹣t,则△AQP的面积为:AQ•PH=t(3﹣t),最后进行整理即可得出答案;(2)连接PP′交QC于E,当四边形PQP′C为菱形时,得出△APE∽△ABC,=,求出AE=﹣t+4,再根据QE=AE﹣AQ,QE=QC得出﹣t+4=﹣t+2,再求t即可;(3)由(1)知,PD=﹣t+3,与(2)同理得:QD=﹣t+4,从而求出PQ=,在△APQ中,分三种情况讨论:①当AQ=AP,即t=5﹣t,②当PQ=AQ,即=t,③当PQ=AP,即=5﹣t,再分别计算即可.解答:解:(1)如图甲,过点P作PH⊥AC于H,∵∠C=90°,∴AC⊥BC,∴PH∥BC,∴△APH∽△ABC,∴=,∵AC=4cm,BC=3cm,∴AB=5cm,∴=,∴PH=3﹣t,∴△AQP的面积为:S=×AQ×PH=×t×(3﹣t)=﹣(t﹣)2+,∴当t为秒时,S最大值为cm2.(2)如图乙,连接PP′,PP′交QC于E,当四边形PQP′C为菱形时,PE垂直平分QC,即PE⊥AC,QE=EC,∴△APE∽△ABC,∴=,∴AE===﹣t+4QE=AE﹣AQ═﹣t+4﹣t=﹣t+4,QE=QC=(4﹣t)=﹣t+2,∴﹣t+4=﹣t+2,解得:t=,∵0<<4,∴当四边形PQP′C为菱形时,t的值是s;(3)由(1)知,PD=﹣t+3,与(2)同理得:QD=AD﹣AQ=﹣t+4∴PQ===,在△APQ中,①当AQ=AP,即t=5﹣t时,解得:t1=;②当PQ=AQ,即=t时,解得:t2=,t3=5;③当PQ=AP,即=5﹣t时,解得:t4=0,t5=;∵0<t<4,∴t3=5,t4=0不合题意,舍去,∴当t为s或s或s时,△APQ是等腰三角形.点评:此题主要考查了相似形综合,用到的知识点是相似三角形的判定与性质、勾股定理、三角形的面积公式以及二次函数的最值问题,关键是根据题意做出辅助线,利用数形结合思想进行解答.。

2014年湖南省娄底市中考数学试卷及解析

2014年湖南省娄底市中考数学试卷及解析

湖南省娄底市2014年中考数学试卷一、精心选一选,旗开得胜(本大题共10道小题,每小题3分,满分30分,每道小题给出的四个选项中,只有一项是符合题目要求的,请把你认为符合题目要求的选项填涂在答题卡相应题号下的方框里)A.﹣2014 B.C.2014 D.﹣考点: 相反数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:2014的相反数是﹣2014,故选:A.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.A.x2•x3=x6B.(x3)3=x9C.x2+x2=x4D.x6÷x3=x2考点: 同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的除法法则:底数不变,指数相减可得答案.解答:解:A、x2•x3=x5,故原题计算错误;B、(x3)3=x9,故原题计算正确;C、x2+x2=2x2,故原题计算错误;D、x6÷x3=x3,故原题计算错误;故选:B.点评:此题主要考查了同底数幂的乘、除法,幂的乘方,以及合并同类项的法则,关键是掌握各种计算法则,不要混淆.3.(3分)(2014•娄底)函数y=中自变量x的取值范围为()A.x≥0 B.x≥﹣2 C.x≥2 D.x≤﹣2考点: 函数自变量的取值范围.专题: 压轴题;函数思想.分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数即可求解.解答:解:根据题意,得x﹣2≥0,解得x≥2.故选C.点评:考查了函数自变量的范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.4.(3分)(2014•娄底)方程组的解是()A.B.C.D.考点: 解二元一次方程组.分析:用加减法解方程组即可.解答:解:,(1)+(2)得,3x=6,x=2,把x=2代入(1)得,y=﹣1,∴原方程组的解.故选D.点评:此题考查二元一次方程组的解法.A.B.C.D.考点: 中心对称图形;轴对称图形分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、此图形是轴对称图形,不是中心对称图形,故此选项错误;B、此图形是轴对称图形,不是中心对称图形,故此选项错误;C、此图形不是轴对称图形,是中心对称图形,故此选项错误;D、此图形是轴对称图形,也是中心对称图形,故此选项正确;故选:D.点评:此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.(3分)(2014•娄底)若两圆的半径分别为2cm和6cm,圆心距为了8cm,则两圆的位置关系为7.(3分)(2014•娄底)实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习.值:点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.9.(3分)(2014•娄底)如图,把一块等腰直角三角板的直角顶点放在直尺的一边上,如果∠1=40°,那么∠2=()A.40°B.45°C.50°D.60°考点: 平行线的性质.分析:由把一块直角三角板的直角顶点放在直尺的一边上,∠1=40°,可求得∠3的度数,又由AB∥CD,根据“两直线平行,同位角相等“即可求得∠2的度数.解答:解:∵∠∠1+∠3=90°,∠1=40°,∴∠3=50°,∵AB∥CD,∴∠2=∠3=50°.故选:C.点评:此题考查了平行线的性质.解题的关键是注意掌握两直线平行,同位角相等定理的应用.A.B.C.D.考点: 一次函数的图象.分析:首先根据k的取值范围,进而确定﹣k>0,然后再确定图象所在象限即可.解答:解:∵k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过第一、二、四象限,故选:A.点评:此题主要考查了一次函数图象,直线y=kx+b,可以看做由直线y=kx平移|b|个单位而得到.当b>0时,向上平移;b<0时,向下平移.二、细心填一填,一锤定音(本大题共10道小题,每小题3分,满分30分)11.(3分)(2014•娄底)五月初五是我国的传统节日﹣端午节.今年端午节,小王在“百度”搜索引擎中输入“端午节”,搜索到与之相关的结果约为75100000个,75100000用科学记数法表示为7.51×107.考点: 科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将75100000用科学记数法表示为7.51×107.故答案为:7.51×107.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2014•娄底)按照如图所示的操作步骤,若输入的值为3,则输出的值为55.考点: 代数式求值专题: 图表型.分析:根据运算程序列式计算即可得解.解答:解:由图可知,输入的值为3时,(32+2)×5=(9+2)×5=55.故答案为:55.点评:本题考查了代数式求值,读懂题目运算程序是解题的关键.13.(3分)(2014•娄底)已知关于x的方程2x+a﹣5=0的解是x=2,则a的值为1.考点: 一元一次方程的解分析:把x=2代入方程即可得到一个关于a的方程,解方程即可求解解答:解:把x=2代入方程,得:4+a﹣5=0,解得:a=1.故答案是:1.点评:本题考查了方程的解的定义,理解定义是关键.14.(3分)(2014•娄底)不等式组的解集为2<x≤5.考点: 解一元一次不等式组分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x>2,由②得x≤5,故此不等式组的解集为:2<x≤5.故答案为:2<x≤5.点评:本题解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.15.(3分)(2014•娄底)如图,要使平行四边形ABCD是矩形,则应添加的条件是∠ABC=90°或AC=BD(不唯一)(添加一个条件即可).考点: 矩形的判定;平行四边形的性质专题: 开放型.分析:根据矩形的判定定理:①对角线相等的平行四边形是矩形,②有一个角是直角的平行四边形是矩形,直接添加条件即可.解答:解:根据矩形的判定定理:对角线相等的平行四边形是矩形,有一个角是直角的平行四边形是矩形故添加条件:∠ABC=90°或AC=BD.故答案为:∠ABC=90°或AC=BD.点评:本题主要应用的知识点为:矩形的判定.①对角线相等且相互平分的四边形为矩形.②一个角是90度的平行四边形是矩形.16.(3分)(2014•娄底)如图,M为反比例函数y=的图象上的一点,MA垂直y轴,垂足为A,△MAO的面积为2,则k的值为4.考点: 反比例函数系数k的几何意义.专题: 计算题.分析:根据反比例函数比例系数k的几何意义得到|k|=2,然后去绝对值得到满足条件的k的值.解答:解:∵MA垂直y轴,∴S△AOM=|k|,∴|k|=2,即|k|=4,而k>0,∴k=4.故答案为4.点评:本题考查了反比例函数比例系数k的几何意义:在反比例函数y=的图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.17.(3分)(2014•娄底)如图,小明用长为3m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿与旗杆的距离DB=12m,则旗杆AB的高为9m.考点: 相似三角形的应用.分析:根据△OCD和△OAB相似,利用相似三角形对应边成比例列式求解即可.解答:解:由题意得,CD∥AB,∴△OCD∽△OAB,∴=,即=,解得AB=9.故答案为:9.点评:本题考查了相似三角形的应用,是基础题,熟记相似三角形对应边成比例是解题的关键.18.(3分)(2014•娄底)五张分别写有﹣1,2,0,﹣4,5的卡片(除数字不同以外,其余都相同),现从中任意取出一张卡片,则该卡片上的数字是负数的概率是.考点: 概率公式.分析:由五张分别写有﹣1,2,0,﹣4,5的卡片(除数字不同以外,其余都相同),直接利用概率公式求解即可求得答案.解答:解:∵五张分别写有﹣1,2,0,﹣4,5的卡片(除数字不同以外,其余都相同), ∴该卡片上的数字是负数的概率是:.故答案为:.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.19.(3分)(2014•娄底)如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n为正整数)个图案由3n+1个▲组成.考点: 规律型:图形的变化类.分析:仔细观察图形,结合三角形每条边上的三角形的个数与图形的序列数之间的关系发现图形的变化规律,利用发现的规律求解即可.解答:解:观察发现:第一个图形有3×2﹣3+1=4个三角形;第二个图形有3×3﹣3+1=7个三角形;第一个图形有3×4﹣3+1=10个三角形;…第n个图形有3(n+1)﹣3+1=3n+1个三角形;故答案为:3n+1.点评:考查了规律型:图形的变化类,本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.20.(3分)(2014•娄底)如图,▱ABCD的对角线AC、BD交于点O,点E是AD的中点,△BCD 的周长为18,则△DEO的周长是9.考点: 平行四边形的性质;三角形中位线定理.分析:根据平行四边形的性质得出DE=AD=BC,DO=BD,AO=CO,求出OE=CD,求出△DEO的周长是DE+OE+DO=(BC+DC+BD),代入求出即可.解答:解:∵E为AD中点,四边形ABCD是平行四边形,∴DE=AD=BC,DO=BD,AO=CO,∴OE=CD,∵△BCD的周长为18,∴BD+DC+B=18,∴△DEO的周长是DE+OE+DO=(BC+DC+BD)=×18=9,故答案为:9.点评:本题考查了平行四边形的性质,三角形的中位线的应用,解此题的关键是求出DE=BC,DO=BD,OE=DC.三、用心做一做,慧眼识金(本大题共3道小题,每小题8分,满分24分)21.(8分)(2014•娄底)先化简÷(1﹣),再从不等式2x﹣3<7的正整数解中选一个使原式有意义的数代入求值.考点: 分式的化简求值;一元一次不等式的整数解.专题: 计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,求出不等式的解集,找出解集中的正整数解得到x的值,代入计算即可求出值.解答:解:原式=÷=•=, 不等式2x﹣3<7,解得:x<5,其正整数解为1,2,3,4,当x=1时,原式=.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.(8分)(2014•娄底)如图,有小岛A和小岛B,轮船以45km/h的速度由C向东航行,在C处测得A的方位角为北偏东60°,测得B的方位角为南偏东45°,轮船航行2小时后到达小岛B 处,在B处测得小岛A在小岛B的正北方向.求小岛A与小岛B之间的距离(结果保留整数,参考数据:≈1.41,≈2.45)考点: 解直角三角形的应用-方向角问题分析:先过点C作CP⊥AB于P,根据已知条件求出∠PCB=∠PBC=45°,∠CAP=60°,再根据轮船的速度和航行的时间求出BC的值,在Rt△PCB中,根据勾股定理求出BP=CP的值,再根据特殊角的三角函数值求出AP的值,最后根据AB=AP+PB,即可求出答案.解答:解:过点C作CP⊥AB于P,∵∠BCF=45°,∠ACE=60°,AB∥EF,∴∠PCB=∠PBC=45°,∠CAP=60°,∵轮船的速度是45km/h,轮船航行2小时,∴BC=90,∵BC2=BP2+CP2,∴BP=CP=45,∵∠CAP=60°,∴tan60°==,∴AP=15,∴AB=AP+PB=15+45=15×2.45+45×1.41≈100(km).答:小岛A与小岛B之间的距离是100km.点评:本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形,利用锐角三角函数的定义求解是解答此题的关键.23.(8分)(2014•娄底)“中国梦”是中华民族每一个人的梦,也是每一个中小学生的梦,各中小学开展经典诵读活动,无疑是“中国梦”教育这一宏大乐章里的响亮音符,学校在经典诵读活动中,对全校学生用A、B、C、D四个等级进行评价,现从中抽取若干个学生进行调查,绘制出了两幅不完整的统计图,请你根据图中信息解答下列问题:(1)共抽取了多少个学生进行调查?(2)将图甲中的折线统计图补充完整.(3)求出图乙中B等级所占圆心角的度数.考点: 折线统计图;扇形统计图专题: 数形结合.分析:(1)用C等级的人数除以C等级所占的百分比即可得到抽取的总人数;(2)先用总数50分别减去A、C、D等级的人数得到B等级的人数,然后画出折线统计图;(3)用360°乘以B等级所占的百分比即可得到B等级所占圆心角的度数.解答:解:(1)10÷20%=50,所以抽取了50个学生进行调查;(2)B等级的人数=50﹣15﹣10﹣5=20(人),画折线统计图;(3)图乙中B等级所占圆心角的度数=360°×=144°.点评:本题考查了折线统计图:折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化;折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.也考查了扇形统计图.四、综合用一用,马到成功(本大题共1道小题,满分8分)24.(8分)(2014•娄底)娄底到长沙的距离约为180km,小刘开着小轿车,小张开着大货车,都从娄底去长沙,小刘比张晚出发1小时,最后两车同时到达长沙,已知小轿车的速度是大货车速度的1.5倍.(1)求小轿车和大货车的速度各是多少?(列方程解答)(2)当小刘出发时,求小张离长沙还有多远?考点: 分式方程的应用.分析:(1)由题意,设大货车速度为xkm/h,则小轿车的速度为1.5xkm/h,根据“小刘比张晚出发1小时,最后两车同时到达长沙,”列出方程解决问题;(2)利用(1)中小张开着大货车的速度,即可求得答案.解答:解:(1)设大货车速度为xkm/h,则小轿车的速度为1.5xkm/h,由题意得﹣=1解得x=60,则1.5x=90,答:大货车速度为60km/h,则小轿车的速度为90km/h.(2)180﹣60×1=120km答:当小刘出发时,小张离长沙还有120km.点评:此题考查分式方程的运用,注意题目蕴含的数量关系,设出未知数,列方程解决问题.五、耐心想一想,再接再厉(本大题共1道小题,满分8分)25.(8分)(2014•娄底)如图,在⊙O中,AB,CD是直径,BE是切线,B为切点,连接AD,BC,BD.(1)求证:△ABD≌△CDB;(2)若∠DBE=37°,求∠ADC的度数.考点: 切线的性质;全等三角形的判定与性质分析:(1)根据AB,CD是直径,可得出∠ADB=∠CBD=90°,再根据HL定理得出△ABD≌△CDB;(2)由BE是切线,得AB⊥BE,根据∠DBE=37°,得∠BAD,由OA=OD,得出∠ADC的度数.解答:(1)证明:∵AB,CD是直径,∴∠ADB=∠CBD=90°,在△ABD和△CDB中,,∴△ABD和△CDB(HL);(2)解:∵BE是切线,∴AB⊥BE,∴∠ABE=90°,∵∠DBE=37°,∴∠ABD=53°,∵OA=OD,∴∠BAD=∠ODA=90°﹣53°=37°,∴∠ADC的度数为37°.点评:本题考查了切线的性质以及全等三角形的判定和性质,是基础题,难度不大.六、探究试一试,超越自我(本大题共2道小题,每小题10分,满分20分)26.(10分)(2014•娄底)如图,抛物线y=x2+mx+(m﹣1)与x轴交于点A(x1,0),B(x2,0),x1<x2,与y轴交于点C(0,c),且满足x12+x22+x1x2=7.(1)求抛物线的解析式;(2)在抛物线上能不能找到一点P,使∠POC=∠PCO?若能,请求出点P的坐标;若不能,请说明理由.考点: 二次函数综合题.分析:(1)利用根与系数的关系,等式x12+x22+x1x2=7.由一元二次方程根与系数的关系,得x1+x2=﹣m,x1x2=m﹣1.代入等式,即可求得m的值,从而求得解析式.(2)根据线段的垂直平分线上的点到两端点的距离相等,求得P点的纵坐标,代入抛物线的解析式即可求得.解答:解(1)依题意:x1+x2=﹣m,x1x2=m﹣1,∵x1+x2+x1x2=7,∴(x1+x2)2﹣x1x2=7,∴(﹣m)2﹣(m﹣1)=7,即m2﹣m﹣6=0,解得m1=﹣2,m2=3,∵c=m﹣1<0,∴m=3不合题意∴m=﹣2抛物线的解析式是y=x2﹣2x﹣3;(2)能如图,设p是抛物线上的一点,连接PO,PC,过点P作y轴的垂线,垂足为D.若∠POC=∠PCO则PD应是线段OC的垂直平分线∵C的坐标为(0,﹣3)∴D的坐标为(0,﹣)∴P的纵坐标应是﹣令x2﹣2x﹣3=,解得,x1=,x2=因此所求点P的坐标是(,﹣),(,﹣)点评:本题考查了根与系数的关系是:x1+x2=﹣,x1x2=,以及线段的垂直平分线的性质,函数图象交点坐标的求法等知识.27.(10分)(2014•娄底)如图甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果点P由点B 出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s.连接PQ,设运动时间为t(s)(0<t<4),解答下列问题:(1)设△APQ的面积为S,当t为何值时,S取得最大值?S的最大值是多少?(2)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求t的值;′(3)当t为何值时,△APQ是等腰三角形?考点: 相似形综合题分析:(1)过点P作PH⊥AC于H,由△APH∽△ABC,得出=,从而求出AB,再根据=,得出PH=3﹣t,则△AQP的面积为:AQ•PH=t(3﹣t),最后进行整理即可得出答案;(2)连接PP′交QC于E,当四边形PQP′C为菱形时,得出△APE∽△ABC,=,求出AE=﹣t+4,再根据QE=AE﹣AQ,QE=QC得出﹣t+4=﹣t+2,再求t即可;(3)由(1)知,PD=﹣t+3,与(2)同理得:QD=﹣t+4,从而求出PQ=,在△APQ中,分三种情况讨论:①当AQ=AP,即t=5﹣t,②当PQ=AQ,即=t,③当PQ=AP,即=5﹣t,再分别计算即可.解答:解:(1)如图甲,过点P作PH⊥AC于H,∵∠C=90°,∴AC⊥BC,∴PH∥BC,∴△APH∽△ABC,∴=,∵AC=4cm,BC=3cm,∴AB=5cm,∴=,∴PH=3﹣t,∴△AQP的面积为:S=×AQ×PH=×t×(3﹣t)=﹣(t﹣)2+,∴当t为秒时,S最大值为cm2.(2)如图乙,连接PP′,PP′交QC于E,当四边形PQP′C为菱形时,PE垂直平分QC,即PE⊥AC,QE=EC,∴△APE∽△ABC,∴=,∴AE===﹣t+4QE=AE﹣AQ═﹣t+4﹣t=﹣t+4,QE=QC=(4﹣t)=﹣t+2,∴﹣t+4=﹣t+2,解得:t=,∵0<<4,∴当四边形PQP′C为菱形时,t的值是s;(3)由(1)知,PD=﹣t+3,与(2)同理得:QD=AD﹣AQ=﹣t+4∴PQ===, 在△APQ中,①当AQ=AP,即t=5﹣t时,解得:t1=;②当PQ=AQ,即=t时,解得:t2=,t3=5;③当PQ=AP,即=5﹣t时,解得:t4=0,t5=;∵0<t<4,∴t3=5,t4=0不合题意,舍去,∴当t为s或s或s时,△APQ是等腰三角形.点评:此题主要考查了相似形综合,用到的知识点是相似三角形的判定与性质、勾股定理、三角形的面积公式以及二次函数的最值问题,关键是根据题意做出辅助线,利用数形结合思想进行解答.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年湖南省娄底市中考数学试卷一、精心选一选,旗开得胜(本大题共10道小题,每小题3分,满分30分,每道小题给出的四个选项中,只有一项是符合题目要求的,请把你认为符合题目要求的选项填涂在答题卡相应题号下的方框里)1.(3分)(2014•娄底)2014的相反数是( )2.(3分)(2014•娄底)下列运算正确的是( )3.(3分)(2014•娄底)函数 y=中自变量x 的取值范围为( )4.(3分)(2014•娄底)方程组的解是( )5.(3分)(2014•娄底)下列图形既是轴对称图形又是中心对称图形的是( )6.(3分)(2014•娄底)若两圆的半径分别为2cm 和6cm ,圆心距为了8cm ,则两圆的位置关系为( ) 7.(3分)(2014•娄底)实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习.值周班长小兵每周对各小组合作学习情况进行综合评分.下表是其中一周的评分结果:“分值”这组数据的中位数和众数分别是( )8.(3分)(2014•娄底)下列命题中,错误的是( )9.(3分)(2014•娄底)如图,把一块等腰直角三角板的直角顶点放在直尺的一边上,如果∠1=40°,那么∠2=( )10.(3分)(2014•娄底)一次函数y=kx ﹣k(k <0)的图象大致是( )二、细心填一填,一锤定音(本大题共10道小题,每小题3分,满分30分)11.(3分)(2014•娄底)五月初五是我国的传统节日﹣端午节.今年端午节,小王在“百度”搜索引擎中输入“端午节”,搜索到与之相关的结果约为75100000个,75100000用科学记数法表示为 .12.(3分)(2014•娄底)按照如图所示的操作步骤,若输入的值为3,则输出的值为 .13.(3分)(2014•娄底)已知关于x 的方程2x+a ﹣5=0的解是x=2,则a 的值为 . 14.(3分)(2014•娄底)不等式组的解集为 .15.(3分)(2014•娄底)如图,要使平行四边形ABCD 是矩形,则应添加的条件是 (添加一个条件即可).16.(3分)(2014•娄底)如图,M为反比例函数y=的图象上的一点,MA垂直y轴,垂足为A,△MAO的面积为2,则k的值为.17.(3分)(2014•娄底)如图,小明用长为3m的竹竿CD做测量工具,测量学校旗杆AB 的高度,移动竹竿,使竹竿与旗杆的距离DB=12m,则旗杆AB的高为m.18.(3分)(2014•娄底)五张分别写有﹣1,2,0,﹣4,5的卡片(除数字不同以外,其余都相同),现从中任意取出一张卡片,则该卡片上的数字是负数的概率是.19.(3分)(2014•娄底)如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n为正整数)个图案由个▲组成.20.(3分)(2014•娄底)如图,▱ABCD的对角线AC、BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO的周长是.三、用心做一做,慧眼识金(本大题共3道小题,每小题8分,满分24分)21.(8分)(2014•娄底)先化简÷(1﹣),再从不等式2x﹣3<7的正整数解中选一个使原式有意义的数代入求值.22.(8分)(2014•娄底)如图,有小岛A和小岛B,轮船以45km/h的速度由C向东航行,在C处测得A的方位角为北偏东60°,测得B的方位角为南偏东45°,轮船航行2小时后到达小岛B处,在B处测得小岛A在小岛B的正北方向.求小岛A与小岛B之间的距离(结果保留整数,参考数据:≈1.41,≈2.45)23.(8分)(2014•娄底)“中国梦”是中华民族每一个人的梦,也是每一个中小学生的梦,各中小学开展经典诵读活动,无疑是“中国梦”教育这一宏大乐章里的响亮音符,学校在经典诵读活动中,对全校学生用A、B、C、D四个等级进行评价,现从中抽取若干个学生进行调查,绘制出了两幅不完整的统计图,请你根据图中信息解答下列问题:(1)共抽取了多少个学生进行调查?(2)将图甲中的折线统计图补充完整.(3)求出图乙中B等级所占圆心角的度数.四、综合用一用,马到成功(本大题共1道小题,满分8分)24.(8分)(2014•娄底)娄底到长沙的距离约为180km,小刘开着小轿车,小张开着大货车,都从娄底去长沙,小刘比张晚出发1小时,最后两车同时到达长沙,已知小轿车的速度是大货车速度的1.5倍.(1)求小轿车和大货车的速度各是多少?(列方程解答)(2)当小刘出发时,求小张离长沙还有多远?五、耐心想一想,再接再厉(本大题共1道小题,满分8分)25.(8分)(2014•娄底)如图,在⊙O中,AB,CD是直径,BE是切线,B为切点,连接AD,BC,BD.(1)求证:△ABD≌△CDB;(2)若∠DBE=37°,求∠ADC的度数.六、探究试一试,超越自我(本大题共2道小题,每小题10分,满分20分)26.(10分)(2014•娄底)如图,抛物线y=x2+mx+(m﹣1)与x轴交于点A(x1,0),B (x2,0),x1<x2,与y轴交于点C(0,c),且满足x12+x22+x1x2=7.(1)求抛物线的解析式;(2)在抛物线上能不能找到一点P,使∠POC=∠PCO?若能,请求出点P的坐标;若不能,请说明理由.27.(10分)(2014•娄底)如图甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s.连接PQ,设运动时间为t(s)(0<t<4),解答下列问题:(1)设△APQ的面积为S,当t为何值时,S取得最大值?S的最大值是多少?(2)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求t的值;′(3)当t为何值时,△APQ是等腰三角形?2014年湖南省娄底市中考数学试卷参考答案与试题解析一、精心选一选,旗开得胜(本大题共10道小题,每小题3分,满分30分,每道小题给出的四个选项中,只有一项是符合题目要求的,请把你认为符合题目要求的选项填涂在答题卡相应题号下的方框里)3.(3分)(2014•娄底)函数y=中自变量x的取值范围为()4.(3分)(2014•娄底)方程组的解是(),∴原方程组的解6.(3分)(2014•娄底)若两圆的半径分别为2cm和6cm,圆心距为了8cm,则两圆的位置7.(3分)(2014•娄底)实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学9.(3分)(2014•娄底)如图,把一块等腰直角三角板的直角顶点放在直尺的一边上,如果∠1=40°,那么∠2=()二、细心填一填,一锤定音(本大题共10道小题,每小题3分,满分30分)11.(3分)(2014•娄底)五月初五是我国的传统节日﹣端午节.今年端午节,小王在“百度”搜索引擎中输入“端午节”,搜索到与之相关的结果约为75100000个,75100000用科学记数法表示为7.51×107.12.(3分)(2014•娄底)按照如图所示的操作步骤,若输入的值为3,则输出的值为55.13.(3分)(2014•娄底)已知关于x的方程2x+a﹣5=0的解是x=2,则a的值为1.14.(3分)(2014•娄底)不等式组的解集为2<x≤5.,由①得,15.(3分)(2014•娄底)如图,要使平行四边形ABCD是矩形,则应添加的条件是∠ABC=90°或AC=BD(不唯一)(添加一个条件即可).16.(3分)(2014•娄底)如图,M为反比例函数y=的图象上的一点,MA垂直y轴,垂足为A,△MAO的面积为2,则k的值为4.的几何意义得到=|k|=2y=17.(3分)(2014•娄底)如图,小明用长为3m的竹竿CD做测量工具,测量学校旗杆AB 的高度,移动竹竿,使竹竿与旗杆的距离DB=12m,则旗杆AB的高为9m.=,=,18.(3分)(2014•娄底)五张分别写有﹣1,2,0,﹣4,5的卡片(除数字不同以外,其余都相同),现从中任意取出一张卡片,则该卡片上的数字是负数的概率是.∴该卡片上的数字是负数的概率是:故答案为:.19.(3分)(2014•娄底)如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n为正整数)个图案由3n+1个▲组成.20.(3分)(2014•娄底)如图,▱ABCD的对角线AC、BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO的周长是9.AD=BC BD OE=DE+OE+DO=(AD=BC DO=CDDE+OE+DO==BC BD DC三、用心做一做,慧眼识金(本大题共3道小题,每小题8分,满分24分)21.(8分)(2014•娄底)先化简÷(1﹣),再从不等式2x﹣3<7的正整数解中选一个使原式有意义的数代入求值.÷=•=22.(8分)(2014•娄底)如图,有小岛A和小岛B,轮船以45km/h的速度由C向东航行,在C处测得A的方位角为北偏东60°,测得B的方位角为南偏东45°,轮船航行2小时后到达小岛B处,在B处测得小岛A在小岛B的正北方向.求小岛A与小岛B之间的距离(结果保留整数,参考数据:≈1.41,≈2.45)BP=CP=45,=,+4523.(8分)(2014•娄底)“中国梦”是中华民族每一个人的梦,也是每一个中小学生的梦,各中小学开展经典诵读活动,无疑是“中国梦”教育这一宏大乐章里的响亮音符,学校在经典诵读活动中,对全校学生用A、B、C、D四个等级进行评价,现从中抽取若干个学生进行调查,绘制出了两幅不完整的统计图,请你根据图中信息解答下列问题:(1)共抽取了多少个学生进行调查?(2)将图甲中的折线统计图补充完整.(3)求出图乙中B等级所占圆心角的度数.×四、综合用一用,马到成功(本大题共1道小题,满分8分)24.(8分)(2014•娄底)娄底到长沙的距离约为180km,小刘开着小轿车,小张开着大货车,都从娄底去长沙,小刘比张晚出发1小时,最后两车同时到达长沙,已知小轿车的速度是大货车速度的1.5倍.(1)求小轿车和大货车的速度各是多少?(列方程解答)(2)当小刘出发时,求小张离长沙还有多远?﹣=1五、耐心想一想,再接再厉(本大题共1道小题,满分8分)25.(8分)(2014•娄底)如图,在⊙O中,AB,CD是直径,BE是切线,B为切点,连接AD,BC,BD.(1)求证:△ABD≌△CDB;(2)若∠DBE=37°,求∠ADC的度数.六、探究试一试,超越自我(本大题共2道小题,每小题10分,满分20分)26.(10分)(2014•娄底)如图,抛物线y=x2+mx+(m﹣1)与x轴交于点A(x1,0),B (x2,0),x1<x2,与y轴交于点C(0,c),且满足x12+x22+x1x2=7.(1)求抛物线的解析式;(2)在抛物线上能不能找到一点P,使∠POC=∠PCO?若能,请求出点P的坐标;若不能,请说明理由.,﹣的纵坐标应是﹣,解得,=)(),,27.(10分)(2014•娄底)如图甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s.连接PQ,设运动时间为t(s)(0<t<4),解答下列问题:(1)设△APQ的面积为S,当t为何值时,S取得最大值?S的最大值是多少?(2)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求t的值;′(3)当t为何值时,△APQ是等腰三角形?,得出==,得出t AQ PH=t﹣,= t+4QE=得出﹣﹣t+3t+4PQ=,=t,即=5=,=,﹣×PH=×﹣﹣),秒时,最大值为cm=,==t+4═﹣t+4QC=(﹣t+4=t+2t=,<的值是t+3t+4PQ===;=t,即=5;s s s。

相关文档
最新文档