娄底市2017年中考数学试卷及答案(Word解析版)
湖南省娄底市2017届中考数学仿真试卷(解析版)(一)

2017年湖南省娄底市中考数学仿真试卷(一)一、选择题1.﹣3的相反数是()A.B.C.3 D.﹣32.某种细胞的直径是0.00000095米,将0.00000095米用科学记数法表示为()A.9.5×10﹣7B.9.5×10﹣8C.0.95×10﹣7D.95×10﹣83.下列运算正确的是()A.a2•a3=a6 B.(a2)3=a5C.(﹣2a2b)3=﹣8a6b3D.(2a+1)2=4a2+2a+14.下列说法正确的是()A.对角线互相垂直的四边形是菱形B.矩形的对角线互相垂直C.一组对边平行的四边形是平行四边形D.四边相等的四边形是菱形5.如图,以下给出的几何体中,其主视图是矩形,俯视图是三角形的是()A.B. C.D.6.九年级两名男同学在体育课上各练习10次立定跳远,平均成绩均为2.20米,要判断哪一名同学的成绩比较稳定,通常需要比较这两名同学立定跳远成绩的()A.方差B.众数C.平均数D.中位数7.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是()A.B.﹣ C.4 D.﹣18.某学校在八年级开设了数学史、诗词赏析、陶艺三门校本课程,若小波和小睿两名同学每人随机选择其中一门课程,则小波和小睿选到同一课程的概率是()A.B.C.D.9.不等式组的解集在数轴上表示为()A.B.C.D.10.如图,将一块含有60°角的直角三角板的两个顶点放在两条平行的直线a,b 上,如果∠2=50°,那么∠1的度数为()A.10°B.20°C.30°D.40°11.如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为()A.140°B.70°C.60°D.40°12.如图,用相同的小正方形按照某种规律进行摆放,则第8个图形中小正方形的个数是()A.71 B.78 C.85 D.89二、填空题(本题共6个小题,每小题3分,共18分)13.在函数y=中,自变量x的取值范围是.14.如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=.15.若点P(a,4﹣a)是第一象限的点,则a的取值范围是.16.将正比例函数y=2x的图象向上平移3个单位,所得的直线不经过第象限.17.如图所示,在3×3的方格纸中,每个小方格都是边长为1的正方形,点O,A,B均为格点,则扇形OAB的面积大小是.18.如图,在△AOB中,∠AOB=90°,点A的坐标为(2,1),BO=2,反比例函数y=的图象经过点B,则k的值为.三、解答题(本题共2个小题,每小题6分,共12分)19.(6分)计算:20170﹣|﹣|+()﹣1+2sin45°.20.(6分)先化简:(2x﹣)÷,然后从0,1,﹣2中选择一个适当的数作为x的值代入求值.四、解答题(本题共2个小题,每小题8分,共16分)21.(8分)某中学为了了解九年级学生体能状况,从九年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级,并依据测试成绩绘制了如下两幅尚不完整的统计图;(1)这次抽样调查的样本容量是,并补全条形图;(2)D等级学生人数占被调查人数的百分比为,在扇形统计图中C等级所对应的圆心角为°;(3)该校九年级学生有1500人,请你估计其中A等级的学生人数.22.(8分)如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A点的仰角β=60°,求树高AB(结果保留根号)五、解答题(本大题共2个小题,每小题9分,满分18分)23.(9分)在纪念中国抗日战争胜利70周年之际,某公司决定组织员工观看抗日战争题材的影片,门票有甲乙两种,甲种票比乙种票每张贵6元;买甲种票10张,乙种票15张共用去660元.(1)求甲、乙两种门票每张各多少元?(2)如果公司准备购买35张门票且购票费用不超过1000元,那么最多可购买多少张甲种票?24.(9分)如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.六、综合探究题(本题共2个小题,每小题10分,满分20分)25.(10分)如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE ⊥AD,交AB于点E,AE为⊙O的直径(1)判断BC与⊙O的位置关系,并证明你的结论;(2)求证:△ABD∽△DBE;(3)若cosB=,AE=4,求CD.26.(10分)如图,在平面直角坐标系xOy中,抛物线y=x2+与y轴相交于点A,点B与点O关于点A对称(1)填空:点B的坐标是;(2)过点B的直线y=kx+b(其中k<0)与x轴相交于点C,过点C作直线l平行于y轴,P是直线l上一点,且PB=PC,求线段PB的长(用含k的式子表示),并判断点P是否在抛物线上,说明理由;(3)在(2)的条件下,若点C关于直线BP的对称点C′恰好落在该抛物线的对称轴上,求此时点P的坐标.2017年湖南省娄底市中考数学仿真试卷(一)参考答案与试题解析一、选择题1.﹣3的相反数是()A.B.C.3 D.﹣3【考点】14:相反数.【分析】根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.【解答】解:(﹣3)+3=0.故选C.【点评】本题主要考查了相反数的定义,根据相反数的定义做出判断,属于基础题,比较简单.2.某种细胞的直径是0.00000095米,将0.00000095米用科学记数法表示为()A.9.5×10﹣7B.9.5×10﹣8C.0.95×10﹣7D.95×10﹣8【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000095=9.5×10﹣7,故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.下列运算正确的是()A.a2•a3=a6 B.(a2)3=a5C.(﹣2a2b)3=﹣8a6b3D.(2a+1)2=4a2+2a+1【考点】47:幂的乘方与积的乘方;46:同底数幂的乘法;4C:完全平方公式.【分析】分别利用幂的乘方运算法则以及合并同类项法则以及完全平方公式、同底数幂的乘法运算法则、积的乘方运算法则分别化简求出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、(a2)3=a6,故此选项错误;C、(﹣2a2b)3=﹣8a6b3,正确;D、(2a+1)2=4a2+4a+1,故此选项错误;故选:C.【点评】此题主要考查了幂的乘方运算以及合并同类项以及完全平方公式、同底数幂的乘法运算、积的乘方运算等知识,正确掌握相关运算法则是解题关键.4.下列说法正确的是()A.对角线互相垂直的四边形是菱形B.矩形的对角线互相垂直C.一组对边平行的四边形是平行四边形D.四边相等的四边形是菱形【考点】LB:矩形的性质;L6:平行四边形的判定;L9:菱形的判定.【分析】直接利用菱形的判定定理、矩形的性质与平行四边形的判定定理求解即可求得答案.【解答】解:A、对角线互相垂直且平分的四边形是菱形;故本选项错误;B、矩形的对角线相等,菱形的对角线互相垂直;故本选项错误;C、两组对边分别平行的四边形是平行四边形;故本选项错误;D、四边相等的四边形是菱形;故本选项正确.故选D.【点评】此题考查了矩形的性质、菱形的判定以及平行四边形的判定.注意掌握各特殊平行四边形对角线的性质是解此题的关键.5.如图,以下给出的几何体中,其主视图是矩形,俯视图是三角形的是()A.B. C.D.【考点】U3:由三视图判断几何体.【分析】直接利用主视图以及俯视图的观察角度不同分别得出几何体的视图进而得出答案.【解答】解:A、三棱锥的主视图是三角形,俯视图也是三角形,故此选项错误;B、圆柱的主视图是矩形,俯视图是圆,故此选项错误;C、圆锥的主视图是三角形,俯视图是圆,故此选项错误;D、三棱柱的主视图是矩形,俯视图是三角形,故此选项正确;故选:D.【点评】此题主要考查了由三视图判断几何体,正确把握观察角度是解题关键.6.九年级两名男同学在体育课上各练习10次立定跳远,平均成绩均为2.20米,要判断哪一名同学的成绩比较稳定,通常需要比较这两名同学立定跳远成绩的()A.方差B.众数C.平均数D.中位数【考点】WA:统计量的选择.【分析】根据方差的意义:是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.故要判断哪一名学生的成绩比较稳定,通常需要比较这2名学生立定跳远成绩的方差.【解答】解:由于方差能反映数据的稳定性,需要比较这2名学生立定跳远成绩的方差.故选:A.【点评】本题考查方差的意义.它是反映一组数据波动大小,方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.7.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是()A.B.﹣ C.4 D.﹣1【考点】AB:根与系数的关系.【分析】根据根与系数的关系和已知x1+x2和x1•x2的值,可求a、b的值,再代入求值即可.【解答】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=﹣,∴b a=(﹣)2=.故选:A.【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.8.某学校在八年级开设了数学史、诗词赏析、陶艺三门校本课程,若小波和小睿两名同学每人随机选择其中一门课程,则小波和小睿选到同一课程的概率是()A.B.C.D.【考点】X6:列表法与树状图法.【分析】先画树状图(数学史、诗词赏析、陶艺三门校本课程分别用A、B、C 表示)展示所有9种可能的结果数,再找出小波和小睿选到同一课程的结果数,然后根据概率公式求解.【解答】解:画树状图为:(数学史、诗词赏析、陶艺三门校本课程分别用A、B、C表示)共有9种可能的结果数,其中小波和小睿选到同一课程的结果数为3,所以小波和小睿选到同一课程的概率==.故选B.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.9.不等式组的解集在数轴上表示为()A.B.C.D.【考点】C4:在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找,确定不等式组的解集再表示在数轴上即可.【解答】解:∵解不等式x﹣6≤0,得:x≤6,解不等式x>2,得:x>2,∴不等式组的解集为:2<x≤6,将不等式解集表示在数轴上如图:,故选C.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键10.如图,将一块含有60°角的直角三角板的两个顶点放在两条平行的直线a,b 上,如果∠2=50°,那么∠1的度数为()A.10°B.20°C.30°D.40°【考点】JA:平行线的性质.【分析】根据平行线的性质即可得到结论.【解答】解:如图,过E作EF∥直线a,则EF∥直线b,∴∠3=∠1,∠4=∠2,∴∠1=60°﹣∠2=10°,故选A.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.11.如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为()A.140°B.70°C.60°D.40°【考点】M5:圆周角定理.【分析】先根据四边形内角和定理求出∠DOE的度数,再由圆周角定理即可得出结论.【解答】解:∵CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,∴∠DOE=180°﹣40°=140°,∴∠P=∠DOE=70°.故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.12.如图,用相同的小正方形按照某种规律进行摆放,则第8个图形中小正方形的个数是()A.71 B.78 C.85 D.89【考点】38:规律型:图形的变化类.【分析】观察图形可知,第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;第3个图形共有小正方形的个数为4×4+3;…;则第n个图形共有小正方形的个数为(n+1)2+n,进而得出答案.【解答】解:第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;第3个图形共有小正方形的个数为4×4+3;…;则第n个图形共有小正方形的个数为(n+1)2+n,所以第8个图形共有小正方形的个数为:9×9+8=89.故选D.【点评】本题考查了规律型:图形的变化类,解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.二、填空题(本题共6个小题,每小题3分,共18分)13.在函数y=中,自变量x的取值范围是x≥.【考点】E4:函数自变量的取值范围;72:二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于等于0可知:2x﹣1≥0,解得x的范围.【解答】解:根据题意得:2x﹣1≥0,解得,x≥.【点评】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.14.如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=.【考点】R2:旋转的性质.【分析】由旋转的性质得:AB=AD=1,∠BAD=∠CAE=90°,再根据勾股定理即可求出BD.【解答】解:∵将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,∴AB=AD=1,∠BAD=∠CAE=90°,∴BD===.故答案为.【点评】本题考查了旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.也考查了勾股定理,掌握旋转的性质是解决问题的关键.15.若点P(a,4﹣a)是第一象限的点,则a的取值范围是0<a<4.【考点】CB:解一元一次不等式组;D1:点的坐标.【分析】根据第一象限内点的坐标特点列出关于a的不等式组,求出a的取值范围即可.【解答】解:∵点P(a,4﹣a)是第一象限的点,∴,解得0<a<4.故答案为:0<a<4.【点评】本题考查的是解一元一次不等式组,熟知第一象限内点的坐标特点是解答此题的关键.16.将正比例函数y=2x的图象向上平移3个单位,所得的直线不经过第四象限.【考点】F9:一次函数图象与几何变换;F7:一次函数图象与系数的关系.【分析】根据平移的性质找出平移后的一次函数的解析式,再根据该函数的系数结合一次函数图象与系数的关系找出该一次函数图象经过的象限即可得出结论.【解答】解:将正比例函数y=2x的图象向上平移3个单位后得到的一次函数的解析式为:y=2x+3,∵k=2>0,b=3>0,∴该一次函数图象经过第一、二、三象限,即该一次函数图象不经过第四象限.故答案为:四.【点评】本题考查了一次函数图象与几何变换以及一次函数图象与系数的关系,解题的关键是找出平移后的函数图象经过的象限.本题属于基础题,难度不大,解决该题型题目时,能够熟练的运用一次函数图象与系数的关系找出函数图象所过的象限是关键.17.如图所示,在3×3的方格纸中,每个小方格都是边长为1的正方形,点O,A,B均为格点,则扇形OAB的面积大小是.【考点】MO:扇形面积的计算.【分析】根据题意知,该扇形的圆心角是90°.根据勾股定理可以求得OA=OB=,由扇形面积公式可得出结论.【解答】解:∵每个小方格都是边长为1的正方形,∴OA=OB==,===.∴S扇形OAB故答案为:.【点评】本题考查的是扇形面积的计算,熟记扇形的面积公式是解答此题的关键.18.如图,在△AOB中,∠AOB=90°,点A的坐标为(2,1),BO=2,反比例函数y=的图象经过点B,则k的值为﹣8.【考点】G6:反比例函数图象上点的坐标特征;S9:相似三角形的判定与性质.【分析】根据∠AOB=90°,先过点A作AC⊥x轴,过点B作BD⊥x轴,构造相似三角形,再利用相似三角形的对应边成比例,列出比例式进行计算,求得点B 的坐标,进而得出k的值.【解答】解:过点A作AC⊥x轴,过点B作BD⊥x轴,垂足分别为C、D,则∠OCA=∠BDO=90°,∴∠DBO+∠BOD=90°,∵∠AOB=90°,∴∠AOC+∠BOD=90°,∴∠DBO=∠AOC,∴△DBO∽△COA,∴,∵点A的坐标为(2,1),∴AC=1,OC=2,∴AO==,∴,即BD=4,DO=2,∴B(﹣2,4),∵反比例函数y=的图象经过点B,∴k的值为﹣2×4=﹣8.故答案为:﹣8【点评】本题主要考查了反比例函数图象上点的坐标特征以及相似三角形,注意:反比例函数图象上的点(x,y)的横、纵坐标的积是定值k,即xy=k,这是解决问题的关键.三、解答题(本题共2个小题,每小题6分,共12分)19.计算:20170﹣|﹣|+()﹣1+2sin45°.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】分别根据零指数幂、绝对值的性质、负整数指数幂及三角函数值计算可得.【解答】解:原式=1﹣+3+2×=1﹣+3+=4.【点评】本题主要考查实数的混合运算,掌握零指数幂、绝对值的性质、负整数指数幂及三角函数值是解题的关键.20.先化简:(2x﹣)÷,然后从0,1,﹣2中选择一个适当的数作为x的值代入求值.【考点】6D:分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.【解答】解:原式=(﹣)÷=•=,当x=﹣2时,原式==.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.四、解答题(本题共2个小题,每小题8分,共16分)21.某中学为了了解九年级学生体能状况,从九年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级,并依据测试成绩绘制了如下两幅尚不完整的统计图;(1)这次抽样调查的样本容量是50,并补全条形图;(2)D等级学生人数占被调查人数的百分比为8%,在扇形统计图中C等级所对应的圆心角为72°;(3)该校九年级学生有1500人,请你估计其中A等级的学生人数.【考点】VC:条形统计图;V3:总体、个体、样本、样本容量;V5:用样本估计总体;VB:扇形统计图.【分析】(1)由A等级的人数和其所占的百分比即可求出抽样调查的样本容量;求出B等级的人数即可全条形图;(2)用B等级的人数除以总人数即可得到其占被调查人数的百分比;求出C等级所占的百分比,即可求出C等级所对应的圆心角;(3)由扇形统计图可知A等级所占的百分比,进而可求出九年级学生其中A等级的学生人数.【解答】解:(1)由条形统计图和扇形统计图可知总人数=16÷32%=50人,所以B等级的人数=50﹣16﹣10﹣4=20人,故答案为:50;补全条形图如图所示:(2)D等级学生人数占被调查人数的百分比=×100%=8%;在扇形统计图中C等级所对应的圆心角=20%×360°=72°,故答案为:8%,72;(3)该校九年级学生有1500人,估计其中A等级的学生人数=1500×32%=480人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A点的仰角β=60°,求树高AB(结果保留根号)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】作CF⊥AB于点F,设AF=x米,在直角△ACF中利用三角函数用x表示出CF的长,在直角△ABE中表示出BE的长,然后根据CF﹣BE=DE即可列方程求得x的值,进而求得AB的长.【解答】解:作CF⊥AB于点F,设AF=x米,在Rt△ACF中,tan∠ACF=,则CF====x,在直角△ABE中,AB=x+BF=4+x(米),在直角△ABF中,tan∠AEB=,则BE===(x+4)米.∵CF﹣BE=DE,即x﹣(x+4)=3.解得:x=,则AB=+4=(米).答:树高AB是米.【点评】本题考查了解直角三角形的应用,解答本题关键是构造直角三角形,利用三角函数的知识表示出相关线段的长度.五、解答题(本大题共2个小题,每小题9分,满分18分)23.在纪念中国抗日战争胜利70周年之际,某公司决定组织员工观看抗日战争题材的影片,门票有甲乙两种,甲种票比乙种票每张贵6元;买甲种票10张,乙种票15张共用去660元.(1)求甲、乙两种门票每张各多少元?(2)如果公司准备购买35张门票且购票费用不超过1000元,那么最多可购买多少张甲种票?【考点】C9:一元一次不等式的应用;8A:一元一次方程的应用.【分析】(1)设乙种门票每张x元,则甲种门票每张(x+6)元,根据“买甲种票10张,乙种票15张共用去660元”列方程即可求解;(2)设可购买y张甲种票,则购买(35﹣y)张乙种票,根据购票费用不超过1000元列出不等式即可求解.【解答】解:(1)设乙种门票每张x元,则甲种门票每张(x+6)元,根据题意得10(x+6)+15x=660,解得x=24.答:甲、乙两种门票每张各30元、24元;(2)设可购买y张甲种票,则购买(35﹣y)张乙种票,根据题意得30y+24(35﹣y)≤1000,解得y≤26.答:最多可购买26张甲种票.【点评】本题考查了一元一次方程与一元一次不等式的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的关系,列出方程或不等式,再求解.24.如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.【考点】L8:菱形的性质;KB:全等三角形的判定;Q2:平移的性质.【分析】当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.先证明CD=DA=DB,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判断△DA′E的形状.由EF∥AB推出∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根据A′D=DE=EF即可证明.【解答】解:当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C′∥AC,∴∠DA′E=∠A,∠DEA′=∠DCA,∴∠DA′E=∠DEA′,∴DA′=DE,∴△A′DE是等腰三角形.∵四边形DEFD′是菱形,∴EF=DE=DA′,EF∥DD′,∴∠C′EF=∠DA′E,∠EFC′=∠C′D′A′,∵CD∥C′D′,∴∠A′DE=∠A′D′C′=∠EFC′,在△A′DE和△EFC′中,,∴△A′DE≌△EFC′.【点评】本题考查平移、菱形的性质、全等三角形的判定和性质、直角三角形斜边中线定理等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.六、综合探究题(本题共2个小题,每小题10分,满分20分)25.(10分)(2016•来宾)如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE⊥AD,交AB于点E,AE为⊙O的直径(1)判断BC与⊙O的位置关系,并证明你的结论;(2)求证:△ABD∽△DBE;(3)若cosB=,AE=4,求CD.【考点】MR:圆的综合题.【分析】(1)结论:BC与⊙O相切,连接OD只要证明OD∥AC即可.(2)欲证明△ABD∽△DBE,只要证明∠BDE=∠DAB即可.(3)在Rt△ODB中,由cosB==,设BD=2k,OB=3k,利用勾股定理列出方程求出k,再利用DO∥AC,得=列出方程即可解决问题.【解答】(1)结论:BC与⊙O相切.证明:如图连接OD.∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠CAB,∴∠CAD=∠DAB,∴∠CAD=∠ADO,∴AC∥OD,∵AC⊥BC,∴OD⊥BC.∴BC是⊙O的切线.(2)∵BC是⊙O切线,∴∠ODB=90°,∴∠BDE+∠ODE=90°,∵AE是直径,∴∠ADE=90°,∴∠DAE+∠AED=90°,∵OD=OE,∴∠ODE=∠OED,∴∠BDE=∠DAB,∵∠B=∠B,∴△ABD∽△DBE.(3)在Rt△ODB中,∵cosB==,设BD=2k,OB=3k,∵OD2+BD2=OB2,∴4+8k2=9k2,∴k=2,∴BO=6,BD=4,∵DO∥AC,∴=,∴=,∴CD=.【点评】本题考查圆的综合题、切线的判定、相似三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是灵活运用这些知识解决问题,学会添加常用辅助线,学会用方程的思想思考问题,属于中考常考题型.26.(10分)(2016•大连)如图,在平面直角坐标系xOy中,抛物线y=x2+与y轴相交于点A,点B与点O关于点A对称(1)填空:点B的坐标是(0,);(2)过点B的直线y=kx+b(其中k<0)与x轴相交于点C,过点C作直线l平行于y轴,P是直线l上一点,且PB=PC,求线段PB的长(用含k的式子表示),并判断点P是否在抛物线上,说明理由;(3)在(2)的条件下,若点C关于直线BP的对称点C′恰好落在该抛物线的对称轴上,求此时点P的坐标.【考点】HF:二次函数综合题.【分析】(1)由抛物线解析式可求得A点坐标,再利用对称可求得B点坐标;(2)可先用k表示出C点坐标,过B作BD⊥l于点D,条件可知P点在x轴上方,设P点纵坐标为y,可表示出PD、PB的长,在Rt△PBD中,利用勾股定理可求得y,则可求出PB的长,此时可得出P点坐标,代入抛物线解析式可判断P 点在抛物线上;(3)利用平行线和轴对称的性质可得到∠OBC=∠CBP=∠C′BP=60°,则可求得OC 的长,代入抛物线解析式可求得P点坐标.【解答】解:(1)∵抛物线y=x2+与y轴相交于点A,∴A(0,),∵点B与点O关于点A对称,∴BA=OA=,∴OB=,即B点坐标为(0,),故答案为:(0,);(2)∵B点坐标为(0,),∴直线解析式为y=kx +,令y=0可得kx +=0,解得x=﹣,∴OC=﹣, ∵PB=PC ,∴点P 只能在x 轴上方,如图1,过B 作BD ⊥l 于点D ,设PB=PC=m ,则BD=OC=﹣,CD=OB=,∴PD=PC ﹣CD=m ﹣,在Rt △PBD 中,由勾股定理可得PB 2=PD 2+BD 2,即m 2=(m ﹣)2+(﹣)2,解得m=+,∴PC=+,∴P 点坐标为(﹣, +),当x=﹣时,代入抛物线解析式可得y=+, ∴点P 在抛物线上;(3)如图2,连接C C′,∵l ∥y 轴,∴∠OBC=∠PCB ,又PB=PC,∴∠PCB=∠PBC,∴∠PBC=∠OBC,又C、C′关于BP对称,且C′在抛物线的对称轴上,即在y轴上,∴∠PBC=∠PBC′,∴∠OBC=∠CBP=∠C′BP=60°,在Rt△OBC中,OB=,则BC=1∴OC=,即P点的横坐标为,代入抛物线解析式可得y=()2+=1,∴P点坐标为(,1).【点评】本题为二次函数的综合应用,涉及知识点有轴对称的性质、平行线的性质、勾股定理、等腰三角形的性质、二次函数的性质等.在(2)中构造直角三角形,利用勾股定理得到关于PC的长的方程是解题的关键,在(3)中求得∠OBC=∠CBP=∠C′BP=60°是解题的关键.本题考查知识点较多,综合性较强,难度适中.。
2017云南省中考数学试卷含答案解析(word版)

2017年XX 省中考数学试卷(解析版)〔全卷三个大题,共23个小题;满分120分〕一、填空题〔本大题共6个小题,每小题3分,共18分〕 1.2的相反数是______________. [考点]相反数 [答案]-2;2.已知关于x 的方程2501,x x a x a ++==已知关于的方程的解是则的值为__________ [考点]方程的解 [答案]-73.如图,在△ABC 中,D 、E 分别为AB ,AC 上的点,若DE ∥BC ,AD 13AB =, 则AD+DE+AE=AB+BC+AC______________.[考点]相似三角形,等比性质 [解析]等比性质a c e a c e k k b d f b d f ++====++若,则 等比性质的原理是,a bk,c dk,e fk a c ek b d f======设则 a c e bk dk fkk b d f b d f++++==++++,故本题答案为134.9______________.x x -使有意义的的取值范围为 [考点]二次根式 [答案]9x ≤5.如图,边长为4的正方形ABCD 外切于圆O ,切点分别为E 、F 、G 、H ,则图中阴影部分的面积为____________________.[考点]多边形内切圆,切线长定理。
阴影部分面积[解析]方法很多,又是选择题,要求没有那么严谨,只要看出分割,就可以完成 [答案]42π+6.5(,)y A a b x=已知点在双曲线上,若a 、b 都是正整数,则图像经过 B(a,0)C(0,b)、两点的一次函数的解析式〔也称关系式〕为_______________.[考点]反比例函数,一次函数,待定系数法 [解析]因为5(,)y A a b x=点在双曲线上,所以ab=5 又因为a 、b 都是正整数,所以1551a ab b ==⎧⎧⎨⎨==⎩⎩或 所以分两种情况:①B 〔1,0〕,C 〔0,5〕,由此可得一次函数解析式为55y x =-+ ②B 〔5,0〕,C 〔0,1〕,由此可得一次函数解析式为155y x =-+二、选则题〔本大题共8个小题,每小题只要一个正确选项,每小题4分,共32分〕 7.作为世界文化遗产的长城,其总长大约为6700000m ,将6700000用科学计数法表示为〔〕 A .56.710⨯ B. 66.710⨯ C. 70.6710⨯ D. 86710⨯ [考点]科学计算法 [答案]选B8.下面长方体的主视图〔主视图也称正视图〕是〔〕[考点]三视图 [答案]选C9.下列计算正确的是〔〕A .236a a a ⨯= B.()3326a a -=- C.623a a a ÷= D.326()a a -=[考点]整式乘除、幂的性质 [答案]选D10. 若一个多边形的内角和为900°,则这个多边形是〔〕 A.五边形 B.六边形 C.七边形 D.八边形 [考点]多边形内角和 [答案]选C11. sin60°的值为〔〕 A .3 B.32 C.22 D.12[考点]特殊角三角函数[答案]选B12. 下列说法正确的是〔〕A .要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法B .4为同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C .甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62,则乙的表现较甲更稳定 D.某次抽奖活动中,中奖的概率为150表示每抽奖50次就有一次中奖 [考点]统计概率小综合[解析]B 选项中位数应为102.5;C 选项根据方差甲更稳定;D 这种事情是常识大家都懂, 故选A13.正如我们小学学过的圆锥体积公式213V r h π=〔π表示圆周率,r 表示圆锥的底面半径,h 表示圆锥的高〕一样,许多几何量的计算都要用到π.祖冲之是世界上第一个把π计算到小数点后第7位的中国古代科学家,创造了当时世界上的最高水平,差不多过了1000年,才有人把π计算得更精确。
(完整word版)2017年湖南省长沙市中考数学试卷(含答案解析版)

2017年湖南省长沙市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列实数中,为有理数的是( )A.B.πC.D.12.(3分)下列计算正确的是( )A.= B.a+2a=2a2C.x(1+y)=x+xy D.(mn2)3=mn63.(3分)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为()A.0.826×106B.8。
26×107 C.82.6×106D.8.26×1084.(3分)在下列图形中,既是轴对称图形,又是中心对称图形的是()A.直角三角形B.正五边形C.正方形D.平行四边形5.(3分)一个三角形的三个内角的度数之比为1:2:3,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形6.(3分)下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.可能性是1%的事件在一次试验中一定不会发生C.数据3,5,4,1,﹣2的中位数是4D.“367人中有2人同月同日出生”为必然事件7.(3分)某几何体的三视图如图所示,因此几何体是()A.长方形B.圆柱C.球D.正三棱柱8.(3分)抛物线y=2(x﹣3)2+4顶点坐标是()A.(3,4)B.(﹣3,4)C.(3,﹣4) D.(2,4)9.(3分)如图,已知直线a∥b,直线c分别与a,b相交,∠1=110°,则∠2的度数为()A.60° B.70°C.80° D.110°10.(3分)如图,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为( )A.5cm B.10cm C.14cm D.20cm11.(3分)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里B.12里C.6里D.3里12.(3分)如图,将正方形ABCD折叠,使顶点A与CD边上的一点H重合(H不与端点C,D重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC交于点G.设正方形ABCD的周长为m,△CHG的周长为n,则的值为( )A.B.C.D.随H点位置的变化而变化二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)分解因式:2a2+4a+2= .14.(3分)方程组的解是.15.(3分)如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为.16.(3分)如图,△ABO三个顶点的坐标分别为A(2,4),B(6,0),O(0,0),以原点O为位似中心,把这个三角形缩小为原来的,可以得到△A′B′O,已知点B′的坐标是(3,0),则点A′的坐标是.17.(3分)甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好是1.6米,方差分别是S甲2=1.2,S乙2=0。
2017年3月中考数学模拟试卷(娄底市含答案和解释)

2017年3月中考数学模拟试卷(娄底市含答案和解释)2017年湖南省娄底市中考数学模拟试卷(3月份)一、选择题(本大题共12个小题,每小题3分,共36分) 1.如图,双曲线y= 的一个分支为() A.① B.② C.③ D.④ 2.关于x的一元二次方程(a�1)x2+x+|a|�1=0的一个根是0,则实数a的值为()A.�1 B.0 C.1 D.�1或1 3.如图,DE∥BC,在下列比例式中,不能成立的是() A. = B. = C. = D. = 4.已知在Rt△ABC 中,∠C=90°,sinA= ,则tanB的值为() A. B. C. D. 5.函数y=�x2+1的图象大致为() A. B. C. D. 6.抛物线y=2(x�3)2的顶点在() A.第一象限 B.第二象限 C.x轴上 D.y 轴上 7.如图,AB为⊙O直径,CD为弦,AB⊥CD,如果∠BOC=70°,那么∠A的度数为() A.70° B.35° C.30° D.20° 8.把抛物线y=�2x2+4x+1的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是() A.y=�2(x�1)2+6 B.y=�2(x�1)2�6 C.y=�2(x+1)2+6 D.y=�2(x+1)2�6 9.从1,2,�3三个数中,随机抽取两个数相乘,积是正数的概率是()A.0 B. C. D.1 10.如图所示的几何体的左视图是()A. B. C. D. 11.关于x的方程x2�ax+2a=0的两根的平方和是5,则a的值是() A.�1或5 B.1 C.5 D.�1 12.如图,已知△ABC和△ADE均为等边三角形,D在BC上,DE与AC相交于点F,AB=9,BD=3,则CF等于() A.1 B.2 C.3 D.4 二、填空题(本大题共6个小题,每小题3分,共18分) 13.如图,点P在反比例函数y= 的图象上,且PD⊥x轴于点D.若△POD的面积为3,则k的值是. 14.在Rt△ABC,若CD是Rt△ABC斜边AB上的高,AD=3,CD=4,则BC= . 15.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高CD为米. 16.若抛物线y=x2�2x�3与x轴分别交于A,B两点,则A,B的坐标为. 17.若代数式x2�8x+12的值是21,则x的值是. 18.在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作第1个正方形A1B1C1C;延长C1B1交x轴于点A2,作第2个正方形A2B2C2C1,…,按这样的规律进行下去,第2016个正方形的面积是.三、解答题(本大题共2小题,每小题6分,共12分) 19.关于x的一元二次方程x2�3x�k=0有两个不相等的实数根.(1)求k的取值范围;(2)请选择一个整数k值,使方程的两根同号,并求出方程的根. 20.计算:sin60°�4cos230°+sin45°•tan60°+()�2.四、解答题(本大题共2小题,每小题8分,共16分) 21.如图,某小区楼房附近有一个斜坡,小张发现楼房在水平地面与斜坡处形成的投影中,在斜坡上的影子长CD=6m,坡角到楼房的距离CB=8m.在D点处观察点A的仰角为60°,已知坡角为30°,你能求出楼房AB的高度吗?22.为了解某中学学生对“厉行勤俭节约,反对铺张浪费”主题活动的参与情况.小强在全校范围内随机抽取了若干名学生并就某日午饭浪费饭菜情况进行了调查.将调查内容分为四组:A.饭和菜全部吃完;B.有剩饭但菜吃完;C.饭吃完但菜有剩;D.饭和菜都有剩.根据调查结果,绘制了如图所示两幅尚不完整的统计图.回答下列问题:(1)这次被抽查的学生共有人,扇形统计图中,“B组”所对应的圆心角的度数为;(2)补全条形统计图;(3)已知该中学共有学生2500人,请估计这日午饭有剩饭的学生人数;若按平均每人剩10克米饭计算,这日午饭将浪费多少千克米饭?五、解答题(本大题共2小题,每小题9分,共18分) 23.如图,OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点,BP的延长线交⊙O于Q,过Q的⊙O的切线交OA的延长线于R.求证:RP=RQ. 24.某商场要经营一种新上市的文具,进价为20元/件,试营销阶段发现:当销售单价25元/件时,每天的销售量是250件,销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A、B两种营销方案:方案A:该文具的销售单价高于进价且不超过30元;方案B:每件文具的利润不低于为25元且不高于29元.请比较哪种方案的最大利润更高,并说明理由.六、解答题(本大题共2小题,每小题10分,共20分)25.已知抛物线y=ax2+bx+c的顶点为A,经过点B(0,3)和点(2,3),与x轴交于C,D两点,(点C在点D的左侧),且OD=OB.(1)求这条抛物线的表达式;(2)连接AB,BD,DA,试判断△ABD的形状;(3)点P是BD上方抛物线上的动点,当P运动到什么位置时,△BPD的面积最大?求出此时点P的坐标及△BPD的面积. 26.如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.(1)求证:直线PA为⊙O的切线;(2)试探究线段EF、OD、OP之间的等量关系,并加以证明;(3)若BC=6,tan∠F= ,求cos∠ACB的值和线段PE的长.2017年湖南省娄底市中考数学模拟试卷(3月份)参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分)1.如图,双曲线y= 的一个分支为() A.① B.② C.③ D.④ 【考点】反比例函数的图象.【分析】此题可直接根据反比例函数的图象性质作答.【解答】解:∵在y= 中,k=8>0,∴它的两个分支分别位于第一、三象限,排除①②;又当x=2时,y=4,排除③;所以应该是④.故选D. 2.关于x的一元二次方程(a�1)x2+x+|a|�1=0的一个根是0,则实数a的值为() A.�1 B.0 C.1 D.�1或1 【考点】一元二次方程的解;一元二次方程的定义.【分析】先把x=0代入方程求出a的值,然后根据二次项系数不能为0,把a=1舍去.【解答】解:把x=0代入方程得: |a|�1=0,∴a=±1,∵a�1≠0,∴a=�1.故选:A. 3.如图,DE∥BC,在下列比例式中,不能成立的是() A. = B. = C. = D. = 【考点】平行线分线段成比例;相似三角形的判定与性质.【分析】本题主要掌握相似三角形的定义,根据已知条件判定相似的三角形.【解答】解:根据题意,可得△ADE∽△ABC,根据相似三角形对应边成比例,可知B不正确,因为AE与EC不是对应边,所以B不成立.故选B. 4.已知在Rt△ABC中,∠C=90°,sinA= ,则tanB的值为() A. B. C. D.【考点】锐角三角函数的定义;互余两角三角函数的关系.【分析】本题可以利用锐角三角函数的定义求解,也可以利用互为余角的三角函数关系式求解.【解答】解:解法1:利用三角函数的定义及勾股定理求解.∵在Rt△ABC中,∠C=90°,∴sinA= ,tanB= 和a2+b2=c2.∵sinA= ,设a=3x,则c=5x,结合a2+b2=c2得b=4x.∴tanB= .故选A.解法2:利用同角、互为余角的三角函数关系式求解.∵A、B互为余角,∴cosB=sin(90°�B)=sinA= .又∵sin2B+cos2B=1,∴sinB= = ,∴tanB= = = .故选A. 5.函数y=�x2+1的图象大致为() A. B. C. D.【考点】二次函数的图象.【分析】根据二次函数的开口方向,对称轴,和y轴的交点可得相关图象.【解答】解:∵二次项系数a<0,∴开口方向向下,∵一次项系数b=0,∴对称轴为y轴,∵常数项c=1,∴图象与y轴交于(0,1),故选B. 6.抛物线y=2(x�3)2的顶点在()A.第一象限 B.第二象限 C.x轴上 D.y轴上【考点】二次函数的性质.【分析】二次函数的一般形式中的顶点式是:y=a(x�h)2+k(a≠0,且a,h,k是常数),它的对称轴是x=h,顶点坐标是(h,k).【解答】解:∵函数y=2(x�3)2的顶点为(3,0),∴顶点在x轴上.故选C. 7.如图,AB为⊙O直径,CD为弦,AB⊥CD,如果∠BOC=70°,那么∠A的度数为() A.70° B.35° C.30° D.20° 【考点】圆周角定理;垂径定理.【分析】由于直径AB⊥CD,由垂径定理知B是的中点,进而可根据等弧所对的圆心角和圆周角的数量关系求得∠A的度数.www-2-1-cnjy-com 【解答】解:∵直径AB⊥CD,∴B是的中点;∴∠A= ∠BOC=35°;故选B. 8.把抛物线y=�2x2+4x+1的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是() A.y=�2(x�1)2+6 B.y=�2(x�1)2�6 C.y=�2(x+1)2+6 D.y=�2(x+1)2�6 【考点】二次函数图象与几何变换.【分析】抛物线平移不改变a的值.【解答】解:原抛物线的顶点坐标为(1,3),向左平移2个单位,再向上平移3个单位得到新抛物线的顶点坐标为(�1,6).可设新抛物线的解析式为:y=�2(x�h)2+k,代入得:y=�2(x+1)2+6.故选C. 9.从1,2,�3三个数中,随机抽取两个数相乘,积是正数的概率是() A.0 B. C. D.1 【考点】列表法与树状图法.【分析】列举出所有情况,看积是正数的情况数占总情况数的多少即可.【解答】解:共有6种情况,积是正数的有2种情况,故概率为,故选:B. 10.如图所示的几何体的左视图是()A. B. C. D.【考点】简单组合体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是两个有公共角的三角形,故选:B. 11.关于x的方程x2�ax+2a=0的两根的平方和是5,则a的值是() A.�1或5 B.1 C.5 D.�1 【考点】根与系数的关系;根的判别式.【分析】设方程的两根为x1,x2,根据根与系数的关系得到x1+x2=a,x1•x2=2a,由于x12+x22=5,变形得到(x1+x2)2�2x1•x2=5,则a2�4a�5=0,然后解方程,满足△≥0的a的值为所求.【解答】解:设方程的两根为x1,x2,则x1+x2=a,x1•x2=2a,∵x12+x22=5,∴(x1+x2)2�2x1•x2=5,∴a2�4a�5=0,∴a1=5,a2=�1,∵△=a2�8a≥0,∴a=�1.故选:D. 12.如图,已知△ABC和△ADE均为等边三角形,D在BC 上,DE与AC相交于点F,AB=9,BD=3,则CF等于() A.1 B.2 C.3 D.4 【考点】相似三角形的判定与性质;等边三角形的性质.【分析】利用两对相似三角形,线段成比例:AB:BD=AE:EF,CD:CF=AE:EF,可得CF=2.【解答】解:如图,∵△ABC和△ADE均为等边三角形,∴∠B=∠BAC=60°,∠E=∠EAD=60°,∴∠B=∠E,∠BAD=∠EAF,∴△ABD∽△AEF,∴AB:BD=AE:EF.同理:△CDF∽△EAF,∴CD:CF=AE:EF,∴AB:BD=CD:CF,即9:3=(9�3):CF,∴CF=2.故选:B.二、填空题(本大题共6个小题,每小题3分,共18分) 13.如图,点P在反比例函数y= 的图象上,且PD⊥x轴于点D.若△POD的面积为3,则k的值是�6 .【考点】反比例函数系数k的几何意义.【分析】根据反比例函数比例系数k的几何意义即可直接求解.【解答】解:S△POD= |k|=3,又∵k<0,∴k=�6.故答案是:�6. 14.在Rt△ABC,若CD是Rt△ABC斜边AB上的高,AD=3,CD=4,则BC= .【考点】射影定理.【分析】根据射影定理求出BD的长,再根据射影定理计算即可.【解答】解:如图所示:∵CD是Rt△ABC斜边CD上的高,∴CD2=AD•DB,则16=3BD 故BD= ,可得AB=AD+BD= ,∵BC2=BD•BA= × ,∴BC= ,故答案为:. 15.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高CD为8 米.【考点】垂径定理的应用.【分析】先构建直角三角形,再利用勾股定理和垂径定理计算.【解答】解:因为跨度AB=24m,拱所在圆半径为13m,延长CD到O,使得OC=OA,则O为圆心,则AD= AB=12(米),则OA=13米,在Rt△AOD中,DO= =5,进而得拱高CD=CO�DO=13�5=8米.故答案为:8. 16.若抛物线y=x2�2x�3与x轴分别交于A,B两点,则A,B的坐标为(�1,0),(3,0).【考点】抛物线与x轴的交点.【分析】根据抛物线与x轴的交点问题,通过解方程x2�2x�3=0可得到A、B的坐标.【解答】解:当y=0时,x2�2x�3=0,解得x1=�1,x2=3,所以抛物线y=x2�2x�3与x轴的两点坐标为(�1,0),(3,0),即A,B的坐标为(�1,0),(3,0).故答案为(�1,0),(3,0). 17.若代数式x2�8x+12的值是21,则x的值是9或�1 .【考点】解一元二次方程�因式分解法.【分析】由题意得方程x2�8x+12=21,整理得x2�8x�9=0,然后利用因式分解法解方程即可得到x的值.【解答】解:根据题意得x2�8x+12=21,整理得x2�8x�9=0,(x�9)(x+1)=0, x�9=0或x+1=0,所以x1=9,x2=�1.故答案为9或�1. 18.在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作第1个正方形A1B1C1C;延长C1B1交x轴于点A2,作第2个正方形A2B2C2C1,…,按这样的规律进行下去,第2016个正方形的面积是5×()4030 .【考点】正方形的性质;坐标与图形性质.【分析】先利用勾股定理求出AB=BC=AD,再用三角形相似得出A1B= ,A2B2=()2 ,找出规律A2015B2015=()2015 ,即可.【解答】解:∵点A的坐标为(1,0),点D的坐标为(0,2),∴OA=1,OD=2,BC=AB=AD= ∵正方形ABCD,正方形A1B1C1C,∴∠OAD+∠A1AB=90°,∠ADO+∠OAD=90°,∴∠A1AB=∠ADO,∵∠AOD=∠A1BA=90°,∴△AOD∽△A1BA,∴ ,∴ ,∴A1B= ,∴A1B1=A1C=A1B+BC= ,同理可得,A2B2= =()2 ,同理可得,A3B3=()3 ,同理可得,A2015B2015=()2015 ,∴S第2016个正方形的面积=S正方形C2015C2015B2015A2015=[()2015 ]2=5×()4030,故答案为5×()4030 三、解答题(本大题共2小题,每小题6分,共12分) 19.关于x的一元二次方程x2�3x�k=0有两个不相等的实数根.(1)求k的取值范围;(2)请选择一个整数k值,使方程的两根同号,并求出方程的根.【考点】根与系数的关系;根的判别式.【分析】(1)由方程的系数结合根的判别式即可得出△=9+4k>0,解之即可得出结论;(2)由根与系数的关系结合方程两根同号即可得出k=�2或�1,取k=�2,利用分解因式法解一元二次方程即可得出结论.【解答】解:(1)∵方程x2�3x�k=0有两个不相等的实数根,∴△=(�3)2+4k=9+4k>0,解得:k>�.(2)∵方程的两根同号,∴�k>0,∴k=�2或�1.当k=�2时,原方程为x2�3x+2=(x�1)(x�2)=0,解得:x1=1,x2=2. 20.计算:sin60°�4cos230°+sin45°•tan60°+()�2.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】原式利用特殊角的三角函数值,以及负整数指数幂法则计算即可得到结果.【解答】解:原式= × �4× + × +4= +1.四、解答题(本大题共2小题,每小题8分,共16分) 21.如图,某小区楼房附近有一个斜坡,小张发现楼房在水平地面与斜坡处形成的投影中,在斜坡上的影子长CD=6m,坡角到楼房的距离CB=8m.在D点处观察点A的仰角为60°,已知坡角为30°,你能求出楼房AB的高度吗?【考点】解直角三角形的应用�仰角俯角问题;解直角三角形的应用�坡度坡角问题.【分析】作DH⊥AB于H,根据正弦、余弦的定义求出DE、CE,根据正切的概念求出AH,计算即可.【解答】解:作DH⊥AB于H,在Rt△CDE中,DE= CD=3,CE= CD=3 ,∴BE=3 +8,在Rt△ADH中,AH=DH•tan∠ADH=9+8 ,∴AB=AH+BH=12+8 ,答:楼房AB的高度为(12+8 )米. 22.为了解某中学学生对“厉行勤俭节约,反对铺张浪费”主题活动的参与情况.小强在全校范围内随机抽取了若干名学生并就某日午饭浪费饭菜情况进行了调查.将调查内容分为四组:A.饭和菜全部吃完;B.有剩饭但菜吃完;C.饭吃完但菜有剩;D.饭和菜都有剩.根据调查结果,绘制了如图所示两幅尚不完整的统计图.2•1•c•n•j•y 回答下列问题:(1)这次被抽查的学生共有120 人,扇形统计图中,“B组”所对应的圆心角的度数为72°;(2)补全条形统计图;(3)已知该中学共有学生2500人,请估计这日午饭有剩饭的学生人数;若按平均每人剩10克米饭计算,这日午饭将浪费多少千克米饭?【考点】加权平均数;用样本估计总体;扇形统计图;条形统计图.【分析】(1)用A组人数除以它所占的百分比即可得到调查的总人数;求出B组所占的百分比,再乘以360°即可得出“B组”所对应的圆心角的度数;(2)用调查的总人数乘以C组所占的百分比得出C组的人数,进而补全条形统计图;(3)先求出这餐晚饭有剩饭的学生人数为:2500×(1�60%�10%)=750(人),再用人数乘每人平均剩10克米饭,把结果化为千克.【解答】解:(1)这次被抽查的学生数=72÷60%=120(人),“B组”所对应的圆心角的度数为:360°× =72°.故答案为120,72°;(2)C组的人数为:120×10%=12;条形统计图如下:(3)这餐晚饭有剩饭的学生人数为:2500×(1�60%�10%)=750(人),750×10=7500(克)=7.5(千克).答:这餐晚饭将浪费7.5千克米饭.五、解答题(本大题共2小题,每小题9分,共18分) 23.如图,OA和OB是⊙O的半径,并且OA⊥OB,P是OA 上任一点,BP的延长线交⊙O于Q,过Q的⊙O的切线交OA的延长线于R.求证:RP=RQ.【考点】切线的性质.【分析】首先连接OQ,由切线的性质,可得∴∠OQB+∠BQR=90°,又由OA⊥OB,可得∠OPB+∠B=90°,继而可证得∠PQR=∠BPO=∠RPQ,则可证得RP=RQ.【解答】证明:连接OQ,∵RQ是⊙O的切线,∴OQ⊥QR,∴∠OQB+∠BQR=90°.∵OA⊥OB,∴∠OPB+∠B=90°.又∵OB=OQ,∴∠OQB=∠B.∴∠PQR=∠BPO=∠RPQ.∴RP=RQ. 24.某商场要经营一种新上市的文具,进价为20元/件,试营销阶段发现:当销售单价25元/件时,每天的销售量是250件,销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A、B两种营销方案:方案A:该文具的销售单价高于进价且不超过30元;方案B:每件文具的利润不低于为25元且不高于29元.请比较哪种方案的最大利润更高,并说明理由.【考点】二次函数的应用;一元二次方程的应用.【分析】(1)根据利润=(销售单价�进价)×销售量,列出函数关系式即可;(2)根据(1)式列出的函数关系式,运用配方法求最大值;(3)分别求出方案A、B中x的取值范围,然后分别求出A、B方案的最大利润,然后进行比较.【解答】解:(1)由题意得,销售量=250�10(x�25)=�10x+500,则w=(x�20)(�10x+500)=�10x2+700x�10000;(2)w=�10x2+700x�10000=�10(x�35)2+2250.∵�10<0,∴函数图象开口向下,w有最大值,当x=35时,w最大=2250,故当单价为35元时,该文具每天的利润最大;(3)A方案利润高.理由如下: A方案中:20<x≤30,故当x=30时,w有最大值,此时wA=2000; B方案中:故x的取值范围为:45≤x≤49,∵函数w=�10(x�35)2+2250,对称轴为直线x=35,∴当x=35时,w有最大值,此时wB=1250,∵wA>wB,∴A方案利润更高.六、解答题(本大题共2小题,每小题10分,共20分) 25.已知抛物线y=ax2+bx+c的顶点为A,经过点B(0,3)和点(2,3),与x轴交于C,D两点,(点C在点D的左侧),且OD=OB.(1)求这条抛物线的表达式;(2)连接AB,BD,DA,试判断△ABD的形状;(3)点P是BD上方抛物线上的动点,当P运动到什么位置时,△BPD的面积最大?求出此时点P的坐标及△BPD的面积.2-1-c-n-j-y 【考点】二次函数综合题.【分析】(1)由点B 的坐标可知OB=3,OD=3,故此可得到点D的坐标,然后利用待定系数法求解即可;(2)先由抛物线的解析式求得点A的坐标,然后利用两点间的距离公式可求得AB、AD、BD的长,最后利用勾股定理的逆定理进行判断即可(3)如图所示:连结OP.设点P的坐标为(x,�x2+2x+3).依据△DBP的面积=△OBP的面积+△ODP的面积�△BOD 的面积,列出△DBP的面积与x的函数关系式,然后依据二次函数的性质求解即可.【解答】解:(1)∵B(0,3)和点(2,3)的纵坐标相同,∴抛物线的对称轴为x=1,OB=3.∵OD=OB,∴OD=3.∵抛物线与x轴交于C,D两点,(点C在点D的左侧),∴D(3,0).将点B(0,3)、(2,3)、(3,0)代入抛物线的解析式得:,解得:a=�1,b=2,c=3.∴抛物线的解析式为y=�x2+2x+3.(2)∵y=�x2+2x+3=�(x�1)2+4,∴点A的坐标为(1,4).依据两点间的距离公式可知:AB2=(1�0)2+(4�3)2=2,AD2=(3�1)2+(4�0)2=20,BD2=(3�0)2+(0�3)2=18,【∴AB2+BD2=AD2.∴△ABD为直角三角形.(3)如图所示:连结OP.设点P的坐标为(x,�x2+2x+3).△DBP的面积=△OBP的面积+△ODP的面积�△BOD的面积= ×3×x+ ×3×(�x2+2x+3)�×3×3 =� x2+ x =�(x�)2+ .∴当x= 时,△DBP的面积最大,最大值为.将x= 代入抛物线的解析式得y= ,∴点P的坐标为(,). 26.如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.(1)求证:直线PA为⊙O的切线;(2)试探究线段EF、OD、OP之间的等量关系,并加以证明;(3)若BC=6,tan∠F= ,求cos∠ACB的值和线段PE的长.【考点】切线的判定与性质;全等三角形的判定与性质;勾股定理;相似三角形的判定与性质;解直角三角形.【分析】(1)连接OB,根据垂径定理的知识,得出OA=OB,∠POA=∠PO B,继而证明△PAO≌△PBO,然后利用全等三角形的性质结合切线的判定定理即可得出结论.(2)先证明△OAD∽△OPA,利用相似三角形的性质得出OA与OD、OP的关系,然后将EF=20A代入关系式即可.(3)根据题意可确定OD是△ABC的中位线,设AD=x,然后利用三角函数的知识表示出FD、OA,在Rt△AOD中,利用勾股定理解出x的值,继而能求出cos∠ACB,再由(2)可得OA2=OD•OP,代入数据即可得出PE 的长.【解答】解:(1)连接OB,∵PB是⊙O的切线,∴∠PBO=90°,∵O A=OB,BA⊥PO于D,∴AD=BD,∠POA=∠POB,又∵PO=PO,∴△PAO≌△PBO(SAS),∴∠PAO=∠PBO=90°,∴OA⊥PA,∴直线PA为⊙O的切线.(2)EF2=4OD•OP.证明:∵∠PAO=∠PDA=90° ∴∠OAD+∠AOD=90°,∠OPA+∠AOP=90°,∴∠OAD=∠OPA,∴△OAD∽△OPA,∴ = ,即OA2=OD•OP,又∵EF=2OA,∴EF2=4OD•OP.(3)∵OA=OC,AD=BD,BC=6,∴OD= BC=3(三角形中位线定理),设实用精品文献资料分享AD=x,∵tan∠F= ,∴FD=2x,OA=OF=2x�3,在Rt△AOD中,由勾股定理,得(2x�3)2=x2+32,解之得,x1=4,x2=0(不合题意,舍去),∴AD=4,OA=2x�3=5,∵AC是⊙O直径,∴∠ABC=90°,又∵AC=2OA=10,BC=6,∴cos∠ACB= = .∵OA2=OD•OP,∴3(PE+5)=25,∴PE= .2017年4月11日。
2017年娄底市中考数学模拟试卷

2017年娄底市中考数学模拟试卷A.3 B.-3 D.±2)A. x2+x3=x5 B.(x3)3=x6 C.x•x2=x2 D. x(2x)2=4x3.下列图形中,是轴对称图形的是()A.B.C.D.4.下列不等式变形正确的是()A.由a>b得ac>bc B.由a>b得﹣2a>﹣2bC.由a>b得﹣a<﹣b D.由a>b得a﹣2<b﹣25.下列各点中,在函数y=﹣图象上的是()A.(﹣2,4) B.(2,4) C.(﹣2,﹣4) D.(8,1)6.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是()A.32°B.58°C.68°D.60 °7.下列调查中,适宜采用全面调查(普查)方式的是()A.调查市场上老酸奶的质量情况B.调查某品牌圆珠笔芯的使用寿命C.调查乘坐飞机的旅客是否携带了危禁物品D.调查我市市民对伦敦奥运会吉祥物的知晓率8.2017年“国际攀岩比赛”在重庆举行.小丽从家出发开车前去观看,途中发现忘了带门票,于是打电话让妈妈马上从家里送来,同时小丽也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场.设小丽从家出发后所用时间为t,小丽与比赛现场的距离为S.下面能反映S与t的函数关系的大致图象是()A.B.C.D.D.正方形是轴对称图形,但不是中心对称图形取一点E,使DE=CD,连接AE.对于下列结论:①AD=DC;②△CBA∽△CDE;③=;④AE为⊙O的切线,一定正确的结论全部包含其中的选项是()A.①②B.①②③C.①④D.①②④11,, △ABC的三边AB,BC,CA的长分别为6cm,4cm,4cm,P为三边角平分线的交点,则△ABP,△BCP,△ACP的面积比等于()A.1:1:1 B.2:2:3 C.2:3:2 D.3:2:212.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为()A.50B.64C.68D.72二、填空题(每小题3分,共18分)13据报道,某市主城区私家车拥有量近38000辆.将数380000用科学记数法表示为.14 已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,则ABC与△DEF的面积之比为.15.一个扇形的圆心角为120°,半径为3,则这个扇形的面积为(结果保留π)16 若关于x的一元二次方程x2﹣3x+m=0有两个相等的实数根,则m= .17.重庆农村医疗保险已经全面实施.某县七个村中享受了住院医疗费用报销的人数分别为:20,24,27,28,31,34,38,则这组数据的中位数是.18.)如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是.(写出所有正确结论的序号)①b>0 ②a﹣b+c<0 ③阴影部分的面积为4 ④若c=﹣1,则b2=4a.三、解答题(本大题8道小题,满分66分。
历年湖南省娄底市中考数学试题(含答案)

2016年湖南省娄底市中考数学试卷一、选择题(本大题共10小题,满分30分,每小题给出的四个选项中,只有一项是符合题目要求的,请把你认为符合题目要求的选项填涂在答题卡上相应题号下的方框里)1.2016的相反数是()A.2016 B.﹣2016 C.D.﹣2.已知点M、N、P、Q在数轴上的位置如图,则其中对应的数的绝对值最大的点是()A.M B.N C.P D.Q3.下列运算正确的是()A.a2•a3=a6B.5a﹣2a=3a2C.(a3)4=a12D.(x+y)2=x2+y24.下列命题中,错误的是()A.两组对边分别平行的四边形是平行四边形B.有一个角是直角的平行四边形是矩形C.有一组邻边相等的平行四边形是菱形D.内错角相等5.下列几何体中,主视图和俯视图都为矩形的是()A.B.C.D.6.如图,已知AB是⊙O的直径,∠D=40°,则∠CAB的度数为()A.20° B.40° C.50° D.70°7.11名同学参加数学竞赛初赛,他们的等分互不相同,按从高分录到低分的原则,取前6名同学参加复赛,现在小明同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的()A.平均数B.中位数C.众数D.方差8.函数y=的自变量x的取值范围是()A.x≥0且x≠2 B.x≥0 C.x≠2 D.x>29.“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式CH4,乙烷的化学式是C2H6,丙烷的化学式是C3H8,…,设碳原子的数目为n(n为正整数),则它们的化学式都可以用下列哪个式子来表示()D.C n H n+3A.C n H2n+2B.C n H2n C.C n H2n﹣210.如图,已知在Rt△ABC中,∠ABC=90°,点D沿BC自B向C运动(点D与点B、C不重合),作BE⊥AD于E,CF⊥AD于F,则BE+CF的值()A.不变B.增大C.减小D.先变大再变小二、填空题(本大题共8小题,每小题3分,共24分)11.已知反比例函数y=的图象经过点A(1,﹣2),则k=.12.已知某水库容量约为112000立方米,将112000用科学记数法表示为.13.如图,四边形ABCD为⊙O的内接四边形,已知∠C=∠D,则AB与CD 的位置关系是.14.如图,已知∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是.(只需写一个条件,不添加辅助线和字母)15.将直线y=2x+1向下平移3个单位长度后所得直线的解析式是.16.从“线段,等边三角形,圆,矩形,正六边形”这五个圆形中任取一个,取到既是轴对称图形又是中心对称图形的概率是.17.如图,将△ABC沿直线DE折叠,使点C与点A重合,已知AB=7,BC=6,则△BCD的周长为.18.当a、b满足条件a>b>0时,+=1表示焦点在x轴上的椭圆.若+=1表示焦点在x轴上的椭圆,则m的取值范围是.三、解答题(本大题共2小题,每小题6分,满分12分)19.计算:(π﹣)0+|﹣1|+()﹣1﹣2sin45°.20.先化简,再求值:(1﹣)•,其中x是从1,2,3中选取的一个合适的数.四、解答题(本大题共2小题,每小题8分,满分16分)21.在2016CCTV英语风采大赛中,娄底市参赛选手表现突出,成绩均不低于60分.为了更好地了解娄底赛区的成绩分布情况,随机抽取利了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行了整理,得到如图的两幅不完整的统计图表:根据所给信息,解答下列问题:(1)在表中的频数分布表中,m=,n=.成绩频数频率60≤x<70 60 0.3070≤x<80 m 0.4080≤x<90 40 n90≤x≤100 20 0.10(2)请补全图中的频数分布直方图.(3)按规定,成绩在80分以上(包括80分)的选手进入决赛.若娄底市共有4000人参数,请估计约有多少人进入决赛?22.芜湖长江大桥是中国跨度最大的公路和铁路两用桥梁,大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索CD与水平桥面的夹角是60°,两拉索(结顶端的距离BC为2米,两拉索底端距离AD为20米,请求出立柱BH的长.果精确到0.1米,≈1.732)五、解答题(本大题共2小题,每小题9分,满分18分)23.甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校、乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?24.如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1B1C1的位置,AB与A1C1相交于点D,AC与A1C1、BC1分别交于点E、F.(1)求证:△BCF≌△BA1D.(2)当∠C=α度时,判定四边形A1BCE的形状并说明理由.六、解答题(本大题共2小题,每小题10分,满分20分)25.如图所示,在Rt△ABC与Rt△OCD中,∠ACB=∠DCO=90°,O为AB的中点.(1)求证:∠B=∠ACD.(2)已知点E在AB上,且BC2=AB•BE.(i)若tan∠ACD=,BC=10,求CE的长;(ii)试判定CD与以A为圆心、AE为半径的⊙A的位置关系,并请说明理由.26.如图,抛物线y=ax2+bx+c(a、b、c为常数,a≠0)经过点A(﹣1,0),B(5,﹣6),C(6,0).(1)求抛物线的解析式;(2)如图,在直线AB下方的抛物线上是否存在点P使四边形PACB的面积最大?若存在,请求出点P的坐标;若不存在,请说明理由;(3)若点Q为抛物线的对称轴上的一个动点,试指出△QAB为等腰三角形的点Q一共有几个?并请求出其中某一个点Q的坐标.2016年湖南省娄底市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,满分30分,每小题给出的四个选项中,只有一项是符合题目要求的,请把你认为符合题目要求的选项填涂在答题卡上相应题号下的方框里)1.2016的相反数是()A.2016 B.﹣2016 C.D.﹣【考点】相反数.【分析】根据相反数的定义:只有符号不同的两个数互为相反数解答即可.【解答】解:2016的相反数是﹣2016,故选:B.2.已知点M、N、P、Q在数轴上的位置如图,则其中对应的数的绝对值最大的点是()A.M B.N C.P D.Q【考点】绝对值;数轴.【分析】根据各点到原点的距离进行判断即可.【解答】解:∵点Q到原点的距离最远,∴点Q的绝对值最大.故选:D.3.下列运算正确的是()A.a2•a3=a6B.5a﹣2a=3a2C.(a3)4=a12D.(x+y)2=x2+y2【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法;完全平方公式.【分析】分别利用同底数幂的乘法运算法则以及合并同类项法则、幂的乘方运算法则、完全平方公式分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、5a﹣2a=3a,故此选项错误;C、(a3)4=a12,正确;D、(x+y)2=x2+y2+2xy,故此选项错误;故选:C.4.下列命题中,错误的是()A.两组对边分别平行的四边形是平行四边形B.有一个角是直角的平行四边形是矩形C.有一组邻边相等的平行四边形是菱形D.内错角相等【考点】命题与定理.【分析】根据平行四边形、矩形、菱形的判定方法即可判断A、B、C正确.【解答】解:A、两组对边分别平行的四边形是平行四边形,正确.B、有一个角是直角的平行四边形是矩形,正确.C、有一组邻边相等的平行四边形是菱形,正确.D、内错角相等,错误,缺少条件两直线平行,内错角相等.故选D.5.下列几何体中,主视图和俯视图都为矩形的是()A.B.C.D.【考点】简单几何体的三视图.【分析】分别分析四个选项中圆锥、圆柱、球体、三棱柱的主视图、俯视图,从而得出都为矩形的几何体.【解答】解:A、圆锥的主视图是三角形,俯视图是带圆心的圆,故本选项错误;B、圆柱的主视图是矩形、俯视图是矩形,故本选项正确;C、球的主视图、俯视图都是圆,故本选项错误;D、三棱柱的主视图为矩形和俯视图为三角形,故本选项错误.故选:B.6.如图,已知AB是⊙O的直径,∠D=40°,则∠CAB的度数为()A.20° B.40° C.50° D.70°【考点】圆周角定理.【分析】先根据圆周角定理求出∠B及∠ACB的度数,再由直角三角形的性质即可得出结论.【解答】解:∵∠D=40°,∴∠B=∠D=40°.∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°﹣40°=50°.故选C.7.11名同学参加数学竞赛初赛,他们的等分互不相同,按从高分录到低分的原则,取前6名同学参加复赛,现在小明同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的()A.平均数B.中位数C.众数D.方差【考点】统计量的选择.【分析】11人成绩的中位数是第6名的成绩.参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【解答】解:由于总共有11个人,且他们的分数互不相同,第6的成绩是中位数,要判断是否进入前6名,故应知道中位数.故选:B.8.函数y=的自变量x的取值范围是()A.x≥0且x≠2 B.x≥0 C.x≠2 D.x>2【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x≥0且x﹣2≠0,解得x≥0且x≠2.故选A.9.“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式CH4,乙烷的化学式是C2H6,丙烷的化学式是C3H8,…,设碳原子的数目为n(n为正整数),则它们的化学式都可以用下列哪个式子来表示()D.C n H n+3A.C n H2n+2B.C n H2n C.C n H2n﹣2【考点】规律型:数字的变化类.【分析】设碳原子的数目为n(n为正整数)时,氢原子的数目为a n,列出部分a n的值,根据数值的变化找出变化规律“a n=2n+2”,依次规律即可解决问题.【解答】解:设碳原子的数目为n(n为正整数)时,氢原子的数目为a n,观察,发现规律:a1=4=2×1+2,a2=6=2×2+2,a3=8=2×3+2,…,∴a n=2n+2.∴碳原子的数目为n(n为正整数)时,它的化学式为C n H2n+2.故选A.10.如图,已知在Rt△ABC中,∠ABC=90°,点D沿BC自B向C运动(点D与点B、C不重合),作BE⊥AD于E,CF⊥AD于F,则BE+CF的值()A.不变B.增大C.减小D.先变大再变小【考点】相似三角形的判定与性质;锐角三角函数的增减性.【分析】设CD=a,DB=b,∠DCF=∠DEB=α,易知BE+CF=BC•cosα,根据0<α<90°,由此即可作出判断.【解答】解:∵BE⊥AD于E,CF⊥AD于F,∴CF∥BE,∴∠DCF=∠DBF,设CD=a,DB=b,∠DCF=∠DEB=α,∴CF=DC•cosα,BE=DB•cosα,∴BE+CF=(DB+DC)cosα=BC•cosα,∵∠ABC=90°,∴O<α<90°,当点D从B→D运动时,α是逐渐增大的,∴cosα的值是逐渐减小的,∴BE+CF=BC•cosα的值是逐渐减小的.故选C.二、填空题(本大题共8小题,每小题3分,共24分)11.已知反比例函数y=的图象经过点A(1,﹣2),则k=﹣2.【考点】反比例函数图象上点的坐标特征.【分析】直接把点A(1,﹣2)代入y=求出k的值即可.【解答】解:∵反比例函数y=的图象经过点A(1,﹣2),∴﹣2=,解得k=﹣2.故答案为:﹣2.12.已知某水库容量约为112000立方米,将112000用科学记数法表示为1.12×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:112000=1.12×105,故答案为:1.12×105.13.如图,四边形ABCD为⊙O的内接四边形,已知∠C=∠D,则AB与CD 的位置关系是AB∥CD.【考点】圆内接四边形的性质.【分析】由圆内接四边形的对角互补的性质以及等角的补角相等求解即可.【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠A+∠C=180°又∵∠C=∠D,∴∠A+∠D=180°.∴AB∥CD.故答案为:AB∥CD.14.如图,已知∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是AB∥DE.(只需写一个条件,不添加辅助线和字母)【考点】相似三角形的判定.【分析】根据有两组角对应相等的两个三角形相似进行添加条件.【解答】解:∵∠A=∠D,∴当∠B=∠DEF时,△ABC∽△DEF,∵AB∥DE时,∠B=∠DEF,∴添加AB∥DE时,使△ABC∽△DEF.故答案为AB∥DE.15.将直线y=2x+1向下平移3个单位长度后所得直线的解析式是y=2x﹣2.【考点】一次函数图象与几何变换.【分析】根据函数的平移规则“上加下减”,即可得出直线平移后的解析式.【解答】解:根据平移的规则可知:直线y=2x+1向下平移3个单位长度后所得直线的解析式为:y=2x+1﹣3=2x ﹣2.故答案为:y=2x﹣2.16.从“线段,等边三角形,圆,矩形,正六边形”这五个圆形中任取一个,取到既是轴对称图形又是中心对称图形的概率是.【考点】概率公式;轴对称图形;中心对称图形.【分析】先找出既是轴对称图形又是中心对称图形的个数,再根据概率公式进行计算即可.【解答】解:∵在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个,∴取到的图形既是中心对称图形又是轴对称图形的概率为,故答案为:.17.如图,将△ABC沿直线DE折叠,使点C与点A重合,已知AB=7,BC=6,则△BCD的周长为13.【考点】翻折变换(折叠问题).【分析】利用翻折变换的性质得出AD=CD,进而利用AD+CD=AB得出即可.【解答】解:∵将△ABC沿直线DE折叠后,使得点A与点C重合,∴AD=CD,∵AB=7,BC=6,∴△BCD的周长=BC+BD+CD=BC+BD+AD=BC+AB=7+6=13.故答案为:1318.当a、b满足条件a>b>0时,+=1表示焦点在x轴上的椭圆.若+=1表示焦点在x轴上的椭圆,则m的取值范围是3<m<8.【考点】解一元一次不等式.【分析】根据题意就不等式组,解出解集即可.【解答】解:∵+=1表示焦点在x轴上的椭圆,a>b>0,∵+=1表示焦点在x轴上的椭圆,∴,解得3<m<8,∴m的取值范围是3<m<8,故答案为:3<m<8.三、解答题(本大题共2小题,每小题6分,满分12分)19.计算:(π﹣)0+|﹣1|+()﹣1﹣2sin45°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】直接利用特殊角的三角函数值以及绝对值、零指数幂的性质分析得出答案.【解答】解:(π﹣)0+|﹣1|+()﹣1﹣2sin45°=1+﹣1+2﹣=2.20.先化简,再求值:(1﹣)•,其中x是从1,2,3中选取的一个合适的数.【考点】分式的化简求值.【分析】先括号内通分,然后计算除法,最后取值时注意使得分式有意义,最后代入化简即可.【解答】解:原式=•=.当x=2时,原式==﹣2.四、解答题(本大题共2小题,每小题8分,满分16分)21.在2016CCTV英语风采大赛中,娄底市参赛选手表现突出,成绩均不低于60分.为了更好地了解娄底赛区的成绩分布情况,随机抽取利了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行了整理,得到如图的两幅不完整的统计图表:根据所给信息,解答下列问题:(1)在表中的频数分布表中,m=80,n=0.2.成绩频数频率60≤x<70 60 0.3070≤x<80 m 0.4080≤x<90 40 n90≤x≤100 20 0.10(2)请补全图中的频数分布直方图.(3)按规定,成绩在80分以上(包括80分)的选手进入决赛.若娄底市共有4000人参数,请估计约有多少人进入决赛?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【分析】(1)用抽查的总人数乘以成绩在70≤x<80段的人数所占的百分比求出m;用成绩在80≤x<90段的频数除以总人数即可求出n;(2)根据(1)求出的m的值,直接补全频数分布直方图即可;(3)用娄底市共有的人数乘以80分以上(包括80分)所占的百分比,即可得出答案.【解答】解:(1)根据题意得:m=200×0.40=80(人),n=40÷200=0.20;故答案为:80,0.20;(2)根据(1)可得:70≤x<80的人数有80人,补图如下:(3)根据题意得:4000×(0.20+0.10)=1200(人).答:估计约有1200人进入决赛.22.芜湖长江大桥是中国跨度最大的公路和铁路两用桥梁,大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索CD与水平桥面的夹角是60°,两拉索(结顶端的距离BC为2米,两拉索底端距离AD为20米,请求出立柱BH的长.果精确到0.1米,≈1.732)【考点】解直角三角形的应用.【分析】设DH=x米,由三角函数得出=x,得出BH=BC+CH=2+x,求出AH=BH=2+3x,由AH=AD+DH得出方程,解方程求出x,即可得出结果.【解答】解:设DH=x米,∵∠CDH=60°,∠H=90°,∴CH=DH•sin60°=x,∴BH=BC+CH=2+x,∵∠A=30°,∴AH=BH=2+3x,∵AH=AD+DH,∴2+3x=20+x,解得:x=10﹣,∴BH=2+(10﹣)=10﹣1≈16.3(米).答:立柱BH的长约为16.3米.五、解答题(本大题共2小题,每小题9分,满分18分)23.甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校、乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?【考点】一元一次方程的应用.【分析】(1)设乙骑自行车的速度为x米/分钟,则甲步行速度是x米/分钟,公交车的速度是2x米/分钟,根据题意列方程即可得到结论;(2)300×2=600米即可得到结果.【解答】解:(1)设乙骑自行车的速度为x米/分钟,则甲步行速度是x米/分钟,公交车的速度是2x米/分钟,根据题意得+=﹣2,解得:x=300米/分钟,经检验x=300是方程的根,答:乙骑自行车的速度为300米/分钟;(2)∵300×2=600米,答:当甲到达学校时,乙同学离学校还有600米.24.如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1B1C1的位置,AB与A1C1相交于点D,AC与A1C1、BC1分别交于点E、F.(1)求证:△BCF≌△BA1D.(2)当∠C=α度时,判定四边形A1BCE的形状并说明理由.【考点】旋转的性质;全等三角形的判定与性质;等腰三角形的性质.【分析】(1)根据等腰三角形的性质得到AB=BC,∠A=∠C,由旋转的性质得到A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,根据全等三角形的判定定理得到△BCF≌△BA1D;(2)由旋转的性质得到∠A1=∠A,根据平角的定义得到∠DEC=180°﹣α,根据四边形的内角和得到∠ABC=360°﹣∠A1﹣∠C﹣∠A1EC=180°﹣α,证得四边形A1BCE是平行四边形,由于A1B=BC,即可得到四边形A1BCE是菱形.【解答】(1)证明:∵△ABC是等腰三角形,∴AB=BC,∠A=∠C,∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1B1C1的位置,∴A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,在△BCF与△BA1D中,,∴△BCF≌△BA1D;(2)解:四边形A1BCE是菱形,∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1B1C1的位置,∴∠A1=∠A,∵∠ADE=∠A1DB,∴∠AED=∠A1BD=α,∴∠DEC=180°﹣α,∵∠C=α,∴∠A1=α,∴∠ABC=360°﹣∠A1﹣∠C﹣∠A1EC=180°﹣α,∴∠A1=∠C,∠A1BC=∠AEC,∴四边形A1BCE是平行四边形,∴A1B=BC,∴四边形A1BCE是菱形.六、解答题(本大题共2小题,每小题10分,满分20分)25.如图所示,在Rt△ABC与Rt△OCD中,∠ACB=∠DCO=90°,O为AB的中点.(1)求证:∠B=∠ACD.(2)已知点E在AB上,且BC2=AB•BE.(i)若tan∠ACD=,BC=10,求CE的长;(ii)试判定CD与以A为圆心、AE为半径的⊙A的位置关系,并请说明理由.【考点】圆的综合题.【分析】(1)因为∠ACB=∠DCO=90°,所以∠ACD=∠OCB,又因为点O是Rt△ACB中斜边AB的中点,所以OC=OB,所以∠OCB=∠B,利用等量代换可知∠ACD=∠B;(2)(i)因为BC2=AB•BE,所以△ABC∽△CBE,所以∠ACB=∠CEB=90°,因为tan∠ACD=tan∠B,利用勾股定理即可求出CE的值;(ii)过点A作AF⊥CD于点F,易证∠DCA=∠ACE,所以CA是∠DCE的平分线,所以AF=AE,所以直线CD与⊙A相切.【解答】解:(1)∵∠ACB=∠DCO=90°,∴∠ACB﹣∠ACO=∠DCO﹣∠ACO,即∠ACD=∠OCB,又∵点O是AB的中点,∴OC=OB,∴∠OCB=∠B,∴∠ACD=∠B,(2)(i)∵BC2=AB•BE,∴=,∵∠B=∠B,∴△ABC∽△CBE,∴∠ACB=∠CEB=90°,∵∠ACD=∠B,∴tan∠ACD=tan∠B=,设BE=4x,CE=3x,由勾股定理可知:BE2+CE2=BC2,∴(4x)2+(3x)2=100,∴解得x=2,∴CE=6;(ii)过点A作AF⊥CD于点F,∵∠CEB=90°,∴∠B+∠ECB=90°,∵∠ACE+∠ECB=90°,∴∠B=∠ACE,∵∠ACD=∠B,∴∠ACD=∠ACE,∴CA平分∠DCE,∵AF⊥CE,AE⊥CE,∴AF=AE,∴直线CD与⊙A相切.26.如图,抛物线y=ax2+bx+c(a、b、c为常数,a≠0)经过点A(﹣1,0),B(5,﹣6),C(6,0).(1)求抛物线的解析式;(2)如图,在直线AB下方的抛物线上是否存在点P使四边形PACB的面积最大?若存在,请求出点P的坐标;若不存在,请说明理由;(3)若点Q为抛物线的对称轴上的一个动点,试指出△QAB为等腰三角形的点Q一共有几个?并请求出其中某一个点Q的坐标.【考点】二次函数综合题.【分析】(1)抛物线经过点A(﹣1,0),B(5,﹣6),C(6,0),可利用两点式法设抛物线的解析式为y=a(x+1)(x﹣6),代入B(5,﹣6)即可求得函数的解析式;(2)作辅助线,将四边形PACB分成三个图形,两个三角形和一个梯形,设P(m,m2﹣5m﹣6),四边形PACB的面积为S,用字母m表示出四边形PACB 的面积S,发现是一个二次函数,利用顶点坐标求极值,从而求出点P的坐标.(3)分三种情况画图:①以A为圆心,AB为半径画弧,交对称轴于Q1和Q4,有两个符合条件的Q1和Q4;②以B为圆心,以BA为半径画弧,也有两个符合条件的Q2和Q5;③作AB的垂直平分线交对称轴于一点Q3,有一个符合条件的Q3;最后利用等腰三角形的腰相等,利用勾股定理列方程求出Q3坐标.【解答】解:(1)设y=a(x+1)(x﹣6)(a≠0),把B(5,﹣6)代入:a(5+1)(5﹣6)=﹣6,a=1,∴y=(x+1)(x﹣6)=x2﹣5x﹣6;(2)存在,如图1,分别过P、B向x轴作垂线PM和BN,垂足分别为M、N,设P(m,m2﹣5m﹣6),四边形PACB的面积为S,则PM=﹣m2+5m+6,AM=m+1,MN=5﹣m,CN=6﹣5=1,BN=5,∴S=S△AM P+S+S△B NC梯形PM N B=(﹣m2+5m+6)(m+1)+(6﹣m2+5m+6)(5﹣m)+×1×6=﹣3m2+12m+36=﹣3(m﹣2)2+48,当m=2时,S有最大值为48,这时m2﹣5m﹣6=22﹣5×2﹣6=﹣12,∴P(2,﹣12),(3)这样的Q点一共有5个,连接Q3A、Q3B,y=x2﹣5x﹣6=(x﹣)2﹣;因为Q3在对称轴上,所以设Q3(,y),∵△Q3AB是等腰三角形,且Q3A=Q3B,由勾股定理得:(+1)2+y2=(﹣5)2+(y+6)2,y=﹣,∴Q3(,﹣).。
2017年湖南娄底中考数学模拟试题

2017年湖南娄底中考数学模拟真题一、选择题:(共10小题,每题4分,共40分)1. 表示( )A. 的倒数B. 的相反数C. 的绝对值D. 的算术平方根2. 我国最大的领海是南海,总面积有3 500 000平方公里,数据3 500 000用科学记数法表示应为( )A. B. C. D.3.若∠A 与∠B 互为补角,则∠A+∠B=( )A.180°B.120°C.90° D .60°4.钟鼎文是我国古代的一种文字,是铸刻在殷周青铜器上的铭文,下列钟鼎文中,不是轴对称图形的是( )A. B. C. D.5.不等式组的解集是( )A.x≤2B.x>1C.16.下列各式运算结果为的是( )A. B. C. D.7.正六边形ABCDEF内接于⊙O,⊙O的半径为2,则︵AC的长为( ).A. B. C. D.8.一组数据6,6,6,6,6,6,6的方差为m,若增加一个数0,则新数据的方差比原数据的方差是( )A.变大B.减小C. 不变D.无法确定9. 已知点A(2,b),B(-2,-b),C(b,2)在同一函数图像上,这个函数图像可以是( )A. B. C. D.10.平面直角坐标系中,已知□ABCD的四个顶点坐标分别是,,,,则所满足的关系式是 ( ).A. B. C. D.二.填空题:(共6小题,每题4分,满分24分)11.如果分式有意义,那么x的取值范围是__________.12.计算: = .13.一天上午林老师来到某中学参加该校的校园开放日活动,他打算随机听一节九年级的课程,下表是他拿到的当天上午九年级的课表,如果每一个班级的每一节课被听的可能性是一样的,那么听数学课的可能性是__________.14.如图,已知四边形ABCD为平行四边形,对角线AC,BD相交于点O,要使四边形ABCD为菱形,需要增加的一个条件是: .(•只填一个你认为正确的条件即可,不添加任何线段与字母)15.数学活动课上,老师让同学们围绕一道尺规作图题展开讨论,尽可能想出不同的作法:老师说:“小强的作法正确.”请回答:小强这样作图的依据是: .16.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1)。
2017年湖南省娄底市中考数学一模试卷带解析答案

A 组: 90≤x≤100
B 组: 80≤x<90
C 组: 70≤x<80
D 组: 60≤x<70
E
组:x<60 (1)参加调查测试的学生共有 (2)本次调查测试成绩的中位数落在 人;请将两幅统计图补充完整. 组内.
(3)本次调查测试成绩在 80 分以上(含 80 分)为优秀,该中学共有 3000 人, 请估计全校测试成绩为优秀的学生有多少人? 22. (8 分)放风筝是大家喜爱的一种运动,星期天的上午小明在市政府广场上 放风筝.如图,他在 A 处不小心让风筝挂在了一棵树梢上,风筝固定在了 D 处,此时风筝 AD 与水平线的夹角为 30°,为了便于观察,小明迅速向前边 移动,收线到达了离 A 处 10 米的 B 处,此时风筝线 BD 与水平线的夹角为 45°.已知点 A,B,C 在同一条水平直线上,请你求出小明此时所收回的风 筝线的长度是多少米?(风筝线 AD,BD 均为线段, 最后结果精确到 1 米) . ≈1.414, ≈1.732,
第 1 页(共 21 页)
7. (3 分)下列调查中,最适宜采用普查方式的是( A.对我国初中学生视力状况的调查 B.对量子科学通信卫星上某种零部件的调查 C.对一批节能灯管使用寿命的调查 D.对“最强大脑”节目收视率的调查
)
8. (3 分)将数字“6”旋转 180°,得到数字“9” ;将数字“9”旋转 180°, 得到数字“6” .现将数字“69”旋转 180°,得到的数字是( A.96 B.69 C.66 D.99 ) )
五、解答题(本大题共 2 道小题,每小题 9 分,满分 18 分) 23. (9 分)目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算 行走的步数与相应的能量消耗.对比手机数据发现小明步行 12 000 步与小红 步行 9 000 步消耗的能量相同. 若每消耗 1 千卡能量小明行走的步数比小红多 10 步,求小红每消耗 1 千卡能量需要行走多少步? 24. (9 分)如图,分别以 Rt△ABC 的直角边 AC 及斜边 AB 向外作等边△ACD 及等边△ABE,已知∠ABC=60°,EF⊥AB,垂足为 F,连接 DF. (1)求证:△ABC≌△EAF; (2)试判断四边形 EFDA 的形状,并证明你的结论.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南省娄底市2017年中考数学试卷
一、精心选一选,旗开得胜(本大题共10道小题,每小题3分,满分30分,每道小题给出的四个选项中,只有一项是符合题目要求的,请把你认为符合题目要求的选项填涂在答题卡相应题号下的方框里)
3.(3分)(2017•娄底)函数y=中自变量x的取值范围为()
4.(3分)(2017•娄底)方程组的解是()
B
,
∴原方程组的解
B
.(3分)(2017•娄底)若两圆的半径分别为2cm和6cm,圆心距为了8cm,则两圆的位置
6
7.(3分)(2017•娄底)实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学
9.(3分)(2017•娄底)如图,把一块等腰直角三角板的直角顶点放在直尺的一边上,如果∠1=40°,那么∠2=()
B
二、细心填一填,一锤定音(本大题共10道小题,每小题3分,满分30分)
11.(3分)(2017•娄底)五月初五是我国的传统节日﹣端午节.今年端午节,小王在“百度”搜索引擎中输入“端午节”,搜索到与之相关的结果约为75100000个,75100000用科学记数法表示为7.51×107.
12.(3分)(2017•娄底)按照如图所示的操作步骤,若输入的值为3,则输出的值为
55.
13.(3分)(2017•娄底)已知关于x的方程2x+a﹣5=0的解是x=2,则a的值为1.
14.(3分)(2017•娄底)不等式组的解集为2<x≤5.
,由①得,
15.(3分)(2017•娄底)如图,要使平行四边形ABCD是矩形,则应添加的条件是∠ABC=90°或AC=BD(不唯一)(添加一个条件即可).
16.(3分)(2017•娄底)如图,M为反比例函数y=的图象上的一点,MA垂直y轴,垂
足为A,△MAO的面积为2,则k的值为4.
的几何意义得到
=
|k|=2
y=
17.(3分)(2017•娄底)如图,小明用长为3m的竹竿CD做测量工具,测量学校旗杆AB 的高度,移动竹竿,使竹竿与旗杆的距离DB=12m,则旗杆AB的高为9m.
=,
=,
18.(3分)(2017•娄底)五张分别写有﹣1,2,0,﹣4,5的卡片(除数字不同以外,其余
都相同),现从中任意取出一张卡片,则该卡片上的数字是负数的概率是.
∴该卡片上的数字是负数的概率是:
故答案为:.
19.(3分)(2017•娄底)如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n
为正整数)个图案由3n+1个▲组
成.
20.(3分)(2017•娄底)如图,▱ABCD的对角线AC、BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO的周长是9.
AD=BC BD OE=
DE+OE+DO=(
AD=BC DO=
CD
DE+OE+DO==
BC BD DC
三、用心做一做,慧眼识金(本大题共3道小题,每小题8分,满分24分)
21.(8分)(2017•娄底)先化简÷(1﹣),再从不等式2x﹣3<7的正整数解中选一个使原式有意义的数代入求值.
÷=•=
22.(8分)(2017•娄底)如图,有小岛A和小岛B,轮船以45km/h的速度由C向东航行,在C处测得A的方位角为北偏东60°,测得B的方位角为南偏东45°,轮船航行2小时后到达小岛B处,在B处测得小岛A在小岛B的正北方向.求小岛A与小岛B之间的距离(结果保留整数,参考数据:≈1.41,≈2.45)
BP=CP=45,
=
,
+45
23.(8分)(2017•娄底)“中国梦”是中华民族每一个人的梦,也是每一个中小学生的梦,各中小学开展经典诵读活动,无疑是“中国梦”教育这一宏大乐章里的响亮音符,学校在经典诵读活动中,对全校学生用A、B、C、D四个等级进行评价,现从中抽取若干个学生进行调查,绘制出了两幅不完整的统计图,请你根据图中信息解答下列问题:
(1)共抽取了多少个学生进行调查?
(2)将图甲中的折线统计图补充完整.
(3)求出图乙中B等级所占圆心角的度数.
×
四、综合用一用,马到成功(本大题共1道小题,满分8分)
24.(8分)(2017•娄底)娄底到长沙的距离约为180km,小刘开着小轿车,小张开着大货车,都从娄底去长沙,小刘比张晚出发1小时,最后两车同时到达长沙,已知小轿车的速度是大货车速度的1.5倍.
(1)求小轿车和大货车的速度各是多少?(列方程解答)
(2)当小刘出发时,求小张离长沙还有多远?
﹣=1
五、耐心想一想,再接再厉(本大题共1道小题,满分8分)
25.(8分)(2017•娄底)如图,在⊙O中,AB,CD是直径,BE是切线,B为切点,连接AD,BC,BD.
(1)求证:△ABD≌△CDB;
(2)若∠DBE=37°,求∠ADC的度数.
六、探究试一试,超越自我(本大题共2道小题,每小题10分,满分20分)
26.(10分)(2017•娄底)如图,抛物线y=x2+mx+(m﹣1)与x轴交于点A(x1,0),B (x2,0),x1<x2,与y轴交于点C(0,c),且满足x12+x22+x1x2=7.
(1)求抛物线的解析式;
(2)在抛物线上能不能找到一点P,使∠POC=∠PCO?若能,请求出点P的坐标;若不能,请说明理由.
,﹣的纵坐标应是﹣
,解得,
,﹣()
,,
27.(10分)(2017•娄底)如图甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s.连接PQ,设运动时间为t(s)(0<t<4),解答下列问题:(1)设△APQ的面积为S,当t为何值时,S取得最大值?S的最大值是多少?
(2)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求t的值;′
(3)当t为何值时,△APQ是等腰三角形?
,得出=
=,得出t AQ PH=t﹣
,=
t+4QE=得出﹣﹣
t+3t+4
PQ=,
=t,即=5
=,
=,
﹣
×PH=×﹣﹣),
秒时,最大值为cm
=,
==t+4
═﹣t+4
QC=(﹣
t+4=t+2
t=,
<
的值是
t+3t+4
PQ===,
;
=t
,即=5;s s s。