动量守恒定律易错题

合集下载

高三物理一轮复习易错题7动量守恒定律

高三物理一轮复习易错题7动量守恒定律

精品基础教育教学资料,仅供参考,需要可下载使用!易错点07 动量守恒定律易错题【01】对动量守恒定义理解有误动量守恒定律1.内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。

[注1]2.表达式:m1v1+m2v2=m1v1′+m2v2′。

3.适用条件(1)理想守恒:不受外力或所受外力的合力为0。

(2)近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力。

[注2](3)某一方向守恒:如果系统在某一方向上所受外力的合力为0,则系统在该方向上动量守恒。

易错题【02】对爆炸、反冲运动分析有误碰撞、反冲、爆炸1.碰撞(1)特点:作用时间极短,内力(相互碰撞力)远大于外力,总动量守恒。

(2)分类①弹性碰撞:碰撞后系统的总动能没有损失。

[注3]②非弹性碰撞:碰撞后系统的总动能有损失。

③完全非弹性碰撞:碰撞后合为一体,机械能损失最大。

2.爆炸与碰撞类似,物体间的相互作用时间很短,作用力很大,且远大于系统所受的外力,所以系统动量守恒。

[题型技法] 碰撞问题解题策略(1)抓住碰撞的特点和不同种类碰撞满足的条件,列出相应方程求解。

(2)可熟记一些公式,例如“一动一静”模型中,两物体发生弹性正碰后的速度满足:v 1′=m 1-m 2m 1+m 2v 1 v 2′=2m 1m 1+m 2v 1 (3)熟记弹性正碰的一些结论,例如,当两球质量相等时,两球碰撞后交换速度。

当m 1≫m 2,且v 2=0时,碰后质量大的速率不变,质量小的速率为2v 1。

当m 1≪m 2,且v 2=0时,碰后质量小的球原速率反弹。

易错题【03】对爆炸过程各个量分析有误爆炸现象的三个规律动量守恒 由于爆炸是在极短的时间内完成的,爆炸物体间的相互作用力远远大于受到的外力,所以在爆炸过程中,系统的总动量守恒动能增加 在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸后系统的总动能增加位置不变爆炸的时间极短,因而作用过程中,物体产生的位移很小,一般可忽略不计,可以认为爆炸后仍然从爆炸前的位置以新的动量开始运动01 对动量守恒定律理解不到位1、关于系统动量守恒的条件,下列说法正确的是( )A .只要系统内存在摩擦力,系统动量就不可能守恒B.只要系统中有一个物体具有加速度,系统动量就不守恒C.只要系统所受的合外力为零,系统动量就守恒D.系统中所有物体的加速度为零时,系统的总动量不一定守恒【警示】本题容易出错的主要原因是对动量守恒定义理解有误。

高中物理动量守恒定律易错剖析及解析

高中物理动量守恒定律易错剖析及解析

高中物理动量守恒定律易错剖析及解析一、高考物理精讲专题动量守恒定律1.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求:(1)A球与B球碰撞中损耗的机械能;(2)在以后的运动过程中弹簧的最大弹性势能;(3)在以后的运动过程中B球的最小速度.【答案】(1);(2);(3)零.【解析】试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:碰后A、B的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A 、B 已由向左的共同速度减小到零后反向加速到向右的,故B的最小速度为零 .考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A 、B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答2.如图所示,两块相同平板P 1、P 2置于光滑水平面上,质量均为m 。

P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L 。

物理动量守恒定律易错剖析含解析

物理动量守恒定律易错剖析含解析

450.
【答案】最多碰撞 3 次 【解析】 解:设小球 m 的摆线长度为 l
小球 m 在下落过程中与 M 相碰之前满足机械能守恒:

m 和 M 碰撞过程是弹性碰撞,故满足: mv0=MVM+mv1 ②

联立 ②③得:

说明小球被反弹,且 v1 与 v0 成正比,而后小球又以反弹速度和小球 M 再次发生弹性碰 撞,满足: mv1=MVM1+mv2 ⑤
1 4
mv0
(1 4
m
3 4
m
m)v
解得
v
1 8
v0
7.一列火车总质量为 M,在平直轨道上以速度 v 匀速行驶,突然最后一节质量为 m 的车
厢脱钩,假设火车所受的阻力与质量成正比,牵引力不变,当最后一节车厢刚好静止时, 前面火车的速度大小为多少? 【答案】Mv/(M-m) 【解析】 【详解】 因整车匀速运动,故整体合外力为零;脱钩后合外力仍为零,系统的动量守恒.
能为 E,根据动能定理有-μm2gx=0- 1 m2v2 2
解得:v=4.0 m/s(1 分)
根据动量守恒定律 m1v0=m1v1+m2v(1 分)
解得:v1=2.0 m/s(1 分)
能量守恒
1 2
m1 v02

1 2
m1 v12

1 2
m2v2+E(1
分)
解得:E=0.80 J(1 分)
考点:考查了机械能守恒,动量守恒定律
(1) 物块 A 沿斜槽滑下与物块 B 碰撞前瞬间的速度大小;
(2) 滑动摩擦力对物块 B 做的功;
(3) 物块 A 与物块 B 碰撞过程中损失的机械能。
【答案】(1)v0=4.0m/s(2)W=-1.6J(3)E=0.80J

高中物理动量守恒定律易错剖析含解析

高中物理动量守恒定律易错剖析含解析

高中物理动量守恒定律易错剖析含解析一、高考物理精讲专题动量守恒定律1.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。

已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。

求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J2.如图所示,质量分别为m 1和m 2的两个小球在光滑水平面上分别以速度v 1、v 2同向运动,并发生对心碰撞,碰后m 2被右侧墙壁原速弹回,又与m 1碰撞,再一次碰撞后两球都静止.求第一次碰后m 1球速度的大小.【答案】【解析】设两个小球第一次碰后m 1和m 2速度的大小分别为和,由动量守恒定律得:(4分) 两个小球再一次碰撞,(4分)得:(4分)本题考查碰撞过程中动量守恒的应用,设小球碰撞后的速度,找到初末状态根据动量守恒的公式列式可得3.如图所示,光滑水平直导轨上有三个质量均为m 的物块A 、B 、C ,物块B 、C 静止,物块B 的左侧固定一轻弹簧(弹簧左侧的挡板质量不计);让物块A 以速度v 0朝B 运动,压缩弹簧;当A 、B 速度相等时,B 与C 恰好相碰并粘接在一起,然后继续运动.假设B 和C 碰撞过程时间极短.那么从A 开始压缩弹簧直至与弹簧分离的过程中,求.(1)A 、B 第一次速度相同时的速度大小; (2)A 、B 第二次速度相同时的速度大小;(3)弹簧被压缩到最短时的弹性势能大小【答案】(1)v0(2)v0(3)【解析】试题分析:(1)对A、B接触的过程中,当第一次速度相同时,由动量守恒定律得,mv0=2mv1,解得v1=v0(2)设AB第二次速度相同时的速度大小v2,对ABC系统,根据动量守恒定律:mv0=3mv2解得v2=v0(3)B与C接触的瞬间,B、C组成的系统动量守恒,有:解得v3=v0系统损失的机械能为当A、B、C速度相同时,弹簧的弹性势能最大.此时v2=v0根据能量守恒定律得,弹簧的最大弹性势能.考点:动量守恒定律及能量守恒定律【名师点睛】本题综合考查了动量守恒定律和能量守恒定律,综合性较强,关键合理地选择研究的系统,运用动量守恒进行求解。

动量守恒定律---“易错”讲坛

动量守恒定律---“易错”讲坛

动量守恒定律---“易错”讲坛:讲1:对象系统性问题例):木块A 和B 用一只弹簧连接起来放在光滑水平面上,A 紧靠墙壁,在B 上施加向左的水平力F 使弹簧压缩,如图2所示。

当撤去外力F 后,问:(1)A 尚未离开墙壁前,A 、B 系统动量是否守恒? (2)A 离开墙壁后,A 、B 系统动量是否守恒? (3)A 离开墙壁前后,A 、B 及地球系统动量是否守恒?解答:外界对系统在水平方向是否存在有作用力。

(l )墙壁对系统的冲量不为零,不守恒;(2)守恒;(3)守恒。

评价:注意系统性。

动量守恒定律描述的对象是由两个以上物体构成的系统,选取某一系统动量可能守恒,而选取另一系统动量可能不守恒;当选取两个不同的系统动量虽均守恒时,但可能选取其中一个解题较简捷。

讲2:动量矢量性问题。

例:如图所示,质量均为M 的A 、B 两木块从同一高度自由下落,当A 木块落至某一位置时被以速度v 0水平飞来的质量为m 的子弹击中(设子弹未穿出),则A 、B 两木块在空中运动的时间A t 、B t的关系是A .B At t = B .B A t t > C .B At t < D .无法比较解答: A 与子弹构成系统:(l )水平方向不受外力,动量守恒。

(2)竖直方向:子弹击中瞬间A 在竖直方向的速度为1v ,击中后共同速度为2v ,击中经历的时间为△t ,则依方程②有12)()(Mv v m M t g M m -+=∆+。

由于重力(m+M )g 为有限量,且△t 极小,重力的冲量趋近于零,故有12)(Mv v m M =+,即竖直方向动量近似守恒。

依12v v <知选项B 正确。

据此有:动量近似守恒的条件:系统所受外力的矢量和不为零,但为有限量,且相互作用的时间极短(△t →0),则外力的总冲量近似为零,系统的动量近似守恒。

评价: 某一方向动量近似守恒。

-注意矢量性的灵活应用。

例】例: 如图所示将一光滑的半圆槽置于光滑水平面上,槽的左侧有一固定在水平面上的物块。

【物理】物理动量守恒定律易错剖析及解析

【物理】物理动量守恒定律易错剖析及解析

【物理】物理动量守恒定律易错剖析及解析一、高考物理精讲专题动量守恒定律1.如图所示,质量为M=1kg 上表面为一段圆弧的大滑块放在水平面上,圆弧面的最底端刚好与水平面相切于水平面上的B 点,B 点左侧水平面粗糙、右侧水平面光滑,质量为m=0.5kg 的小物块放在水平而上的A 点,现给小物块一个向右的水平初速度v 0=4m/s ,小物块刚好能滑到圆弧面上最高点C 点,已知圆弧所对的圆心角为53°,A 、B 两点间的距离为L=1m ,小物块与水平面间的动摩擦因数为μ=0.2,重力加速度为g=10m/s 2.求: (1)圆弧所对圆的半径R ;(2)若AB 间水平面光滑,将大滑块固定,小物块仍以v 0=4m/s 的初速度向右运动,则小物块从C 点抛出后,经多长时间落地?【答案】(1)1m (2)428225t s = 【解析】 【分析】根据动能定理得小物块在B 点时的速度大小;物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒和系统机械能守恒求出圆弧所对圆的半径;,根据机械能守恒求出物块冲上圆弧面的速度,物块从C 抛出后,根据运动的合成与分解求落地时间; 【详解】解:(1)设小物块在B 点时的速度大小为1v ,根据动能定理得:22011122mgL mv mv μ=- 设小物块在B 点时的速度大小为2v ,物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒则有:12()mv m M v =+ 根据系统机械能守恒有:2201211()(cos53)22mv m M v mg R R =++- 联立解得:1R m =(2)若整个水平面光滑,物块以0v 的速度冲上圆弧面,根据机械能守恒有:2200311(cos53)22mv mv mg R R =+- 解得:322/v m s =物块从C 抛出后,在竖直方向的分速度为:38sin 532/5y v v m s =︒= 这时离体面的高度为:cos530.4h R R m =-︒=212y h v t gt -=-解得:4282t s +=2.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。

高中物理动量守恒定律易错剖析及解析

高中物理动量守恒定律易错剖析及解析

考点:本题考查了动能定理、动量守恒定律、能量守恒定律.
3.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块 b,小车质量 M=3kg,AO 部分粗糙且长 L=2m,动摩擦因数 μ=0.3,OB 部分光滑.另一小物块 a.放在车 的最左端,和车一起以 v0=4m/s 的速度向右匀速运动,车撞到固定挡板后瞬间速度变为 零,但不与挡板粘连.已知车 OB 部分的长度大于弹簧的自然长度,弹簧始终处于弹性限 度内.a、b 两物块视为质点质量均为 m=1kg,碰撞时间极短且不粘连,碰后一起向右运 动.(取 g=10m/s2)求:

解得:
⑦ 整理得:
⑧ 故可以得到发生 n 次碰撞后的速度:

而偏离方向为 450 的临界速度满足:

联立①⑨⑩代入数据解得,当 n=2 时,v2>v 临界 当 n=3 时,v3<v 临界 即发生 3 次碰撞后小球返回到最高点时与竖直方向的夹角将小于 45°. 考点:动量守恒定律;机械能守恒定律. 专题:压轴题. 分析:先根据机械能守恒定律求出小球返回最低点的速度,然后根据动量守恒定律和机械 能守恒定律求出碰撞后小球的速度,对速度表达式分析,求出碰撞 n 次后的速度表达式, 再根据机械能守恒定律求出碰撞 n 次后反弹的最大角度,结合题意讨论即可. 点评:本题关键求出第一次反弹后的速度和反弹后细线与悬挂点的连线与竖直方向的最大 角度,然后对结果表达式进行讨论,得到第 n 次反弹后的速度和最大角度,再结合题意求 解.
1 2
2mv02
1 (m 2
2m
m)v22
u(2mg)2(L
x)
解得 x v02 L 32g
对 P1、P2、P 系统从 P1、P2 碰撞结束到弹簧压缩量最大,用能量守恒定律

物理动量守恒定律易错剖析

物理动量守恒定律易错剖析

物理动量守恒定律易错剖析一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg 和1kg 的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P .现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s ,此时乙尚未与P 相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板P 对乙的冲量的最大值.【答案】v 乙=6m/s. I =8N【解析】【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知 联立以上方程可得,方向向右。

(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.如图所示,一辆质量M=3 kg 的小车A 静止在光滑的水平面上,小车上有一质量m=l kg 的光滑小球B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p =6J ,小球与小车右壁距离为L=0.4m ,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:①小球脱离弹簧时的速度大小;②在整个过程中,小车移动的距离。

【答案】(1)3m/s (2)0.1m【解析】试题分析:(1)除锁定后弹簧的弹性势能转化为系统动能,根据动量守恒和能量守恒列出等式得mv 1-Mv 2=022121122P E mv Mv =+ 代入数据解得:v 1=3m/s v 2=1m/s(2)根据动量守恒和各自位移关系得12x x m M t t =,x 1+x 2=L 代入数据联立解得:24L x ==0.1m 考点:动量守恒定律;能量守恒定律.3.如图,质量分别为、的两个小球A 、B 静止在地面上方,B 球距地面的高度h=0.8m ,A 球在B 球的正上方. 先将B 球释放,经过一段时间后再将A 球释放. 当A 球下落t=0.3s 时,刚好与B 球在地面上方的P 点处相碰,碰撞时间极短,碰后瞬间A 球的速度恰为零.已知,重力加速度大小为,忽略空气阻力及碰撞中的动能损失.(i )B 球第一次到达地面时的速度;(ii )P 点距离地面的高度.【答案】4/B v m s =0.75p h m =【解析】试题分析:(i )B 球总地面上方静止释放后只有重力做功,根据动能定理有212B B B m gh m v = 可得B 球第一次到达地面时的速度24/B v gh m s =(ii )A 球下落过程,根据自由落体运动可得A 球的速度3/A v gt m s ==设B 球的速度为'B v , 则有碰撞过程动量守恒'''A A B B B B m v m v m v +=碰撞过程没有动能损失则有222111'''222A AB B B B m v m v m v += 解得'1/B v m s =,''2/B v m s =小球B 与地面碰撞后根据没有动能损失所以B 离开地面上抛时速度04/B v v m s ==所以P 点的高度220'0.752B p v v h m g-== 考点:动量守恒定律 能量守恒4.如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3 m/s 的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h="0.3" m (h 小于斜面体的高度).已知小孩与滑板的总质量为m 1="30" kg ,冰块的质量为m 2="10" kg ,小孩与滑板始终无相对运动.取重力加速度的大小g="10" m/s 2.(i )求斜面体的质量;(ii )通过计算判断,冰块与斜面体分离后能否追上小孩?【答案】(i )20 kg (ii )不能【解析】试题分析:①设斜面质量为M ,冰块和斜面的系统,水平方向动量守恒:222()m v m M v =+ 系统机械能守恒:22222211()22m gh m M v m v ++= 解得:20kg M =②人推冰块的过程:1122m v m v =,得11/v m s =(向右) 冰块与斜面的系统:22223m v m v Mv '=+ 22222223111+222m v m v Mv =' 解得:21/v m s =-'(向右) 因21=v v ',且冰块处于小孩的后方,则冰块不能追上小孩. 考点:动量守恒定律、机械能守恒定律.5.(1)(6分)一质子束入射到静止靶核AI 2713上,产生如下核反应:p+AI 2713→x+n 式中p 代表质子,n 代表中子,x 代表核反应产生的新核。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动量、动量守恒定律易错题。

[例题分析]在本单元知识应用的过程中,初学者常犯的错误主要表现在:只注意力或动量的数值大小,而忽视力和动量的方向性,造成应用动量定理和动量守恒定律一列方程就出错;对于动量守恒定律中各速度均为相对于地面的速度认识不清。

对题目中所给出的速度值不加分析,盲目地套入公式,这也是一些学生常犯的错误。

例1 、从同样高度落下的玻璃杯,掉在水泥地上容易打碎,而掉在草地上不容易打碎,其原因是:[ ]A.掉在水泥地上的玻璃杯动量大,而掉在草地上的玻璃杯动量小B.掉在水泥地上的玻璃杯动量改变大,掉在草地上的玻璃杯动量改变小C.掉在水泥地上的玻璃杯动量改变快,掉在草地上的玻璃杯动量改变慢D.掉在水泥地上的玻璃杯与地面接触时,相互作用时间短,而掉在草地上的玻璃杯与地面接触时间长。

例2 、把质量为10kg的物体放在光滑的水平面上,如图5-1所示,在与水平方向成53°的N的力F作用下从静止开始运动,在2s内力F对物体的冲量为多少?物体获得的动量是多少?例3、在距地面高为h,同时以相等初速V0分别平抛,竖直上抛,竖直下抛一质量相等的物体m,当它们从抛出到落地时,比较它们的动量的增量△P,有[ ]A.平抛过程较大B.竖直上抛过程较大C.竖直下抛过程较大D.三者一样大例4、向空中发射一物体.不计空气阻力,当物体的速度恰好沿水平方向时,物体炸裂为a,b两块.若质量较大的a块的速度方向仍沿原来的方向则[ ]A.b的速度方向一定与原速度方向相反B.从炸裂到落地这段时间里,a飞行的水平距离一定比b的大C.a,b一定同时到达地面D.炸裂的过程中,a、b中受到的爆炸力的冲量大小一定相等例5、一炮弹在水平飞行时,其动能为=800J,某时它炸裂成质量相等的两块,其中一块的动能为=625J,求另一块的动能。

例6、如图5-3所示,一个质量为M的小车置于光滑水平面。

一端用轻杆AB固定在墙上,一个质量为m的木块C置于车上时的初速度为v0。

因摩擦经t秒木块停下,(设小车足够长),求木块C和小车各自受到的冲量。

例7、总质量为M的装砂的小车,正以速度v0在光滑水平面上前进、突然车底漏了,不断有砂子漏出来落到地面,问在漏砂的过程中,小车的速度是否变化?例8 、一绳跨过定滑轮,两端分别栓有质量为M1,M2的物块(M2>M1如图5-4),M2开始是静止于地面上,当M1自由下落H距离后,绳子才被拉紧,求绳子刚被拉紧时两物块的速度。

例9、在一只静止的小船上练习射击,船、人连同枪(不包括子弹)及靶的总质量为M,枪内装有n颗子弹,每颗质量为m,枪口到靶的距离为l,子弹射出枪口时相对于地面的速度为v,在发射后一颗子弹时,前一颗子弹已陷入靶中,则在发射完n颗子弹后,小船后退的距离为多少?例10、如图5-6所示,物体A置于小车B上,A与B之间光滑无摩擦。

它们以共同的速度v前进。

突然碰到障碍物C,将A从车上碰了出去,A被碰回的速度大小也是v。

问:小车B的速度将怎样变化?例11、如图5-7所示将一光滑的半圆槽置于光滑水平面上,槽的左侧有一固定在水平面上的物块。

今让一小球自左侧槽口A的正上方从静止开始落下,与圆弧槽相切自A点进入槽内,则以下结论中正确的是:[ ]A.小球在半圆槽内运动的全过程中,只有重力对它做功B.小球在半圆槽内运动的全过程中,小球与半圆槽在水平方向动量守恒C.小球自半圆槽的最低点B向C点运动的过程中,小球与半圆槽在水平方向动量守恒D.小球离开C点以后,将做竖直上抛运动。

例12、在质量为M的小车中挂着一个单摆,摆球的质量为m0,小车(和单摆)以恒定的速度u沿光滑的水平面运动,与位于正对面的质量为m的静止木块发生碰撞,碰撞时间极短,在此碰撞过程中,下列哪些说法是可能发生的?[ ]A.小车、木块、摆球的速度都发生变化,分别变为v1、v2、v3,满足:(M+m0)u=Mv1+mv2+m o v3B.摆球的速度不变,小车和木块的速度变为v1和v2,满足:Mu=Mv1+mv2C.摆球的速度不变,小车和木块的速度都变为v,满足:Mu=(M+m)vD.小车和摆球的速度都变为v1,木块的速度为v2,满足:(M+m0)u=(M+m0)v1+mv2。

例14、质量为M的小车,如图5-11所示,上面站着一个质量为m的人,以v0的速度在光滑的水平面上前进。

现在人用相对于小车为u的速度水平向后跳出后,车速增加了多少?例15、质量为M的小车,以速度v0在光滑水平地面前进,上面站着一个质量为m的人,问:当人以相对车的速度u向后水平跳出后,车速度为多大?例16、图5-12,质量为m的人立于平板车上,人与车的总质量为M,人与车以速度v1在光滑水平面上向东运动。

当此人相对于车以速度v2竖直跳起时,车的速度变为:( )例17、如图5-13所示,在光滑水平轨道上有一小车质量为M2,它下面用长为L的绳系一质量为M1的砂袋,今有一水平射来的质量为m的子弹,它射入砂袋后并不穿出,而与砂袋一起摆过一角度θ。

不计悬线质量,试求子弹射入砂袋时的速度V0多大?例18、如图5-14所示,有两个物体A,B,紧靠着放在光滑水平桌面上,A的质量为2kg,B的质量为3kg。

有一颗质量为100g的子弹以800m/s的水平速度射入A,经过0.01s 又射入物体B,最后停在B中,A对子弹的阻力为3×103N,求A,B最终的速度。

例19、如图5-15所示,甲、乙两小孩各乘一辆冰车在水平冰面上游戏。

甲和他的冰车总质量共为30kg,乙和他的冰车总质量也是30kg。

游戏时,甲推着一个质量为15kg的箱子和他一起以2m/s的速度滑行,乙以同样大小的速度迎面滑来。

为了避免相撞,甲突然将箱子滑冰面推给乙,箱子滑到乙处,乙迅速抓住。

若不计冰面摩擦,求甲至少以多大速度(相对地)将箱子推出,才能避免与乙相撞?动量、动量守恒定律答案。

[例题分析]在本单元知识应用的过程中,初学者常犯的错误主要表现在:只注意力或动量的数值大小,而忽视力和动量的方向性,造成应用动量定理和动量守恒定律一列方程就出错;对于动量守恒定律中各速度均为相对于地面的速度认识不清。

对题目中所给出的速度值不加分析,盲目地套入公式,这也是一些学生常犯的错误。

例1 、【正确解答】设玻璃杯下落高度为h。

它们从h高度落地瞬间的量变化快,所以掉在水泥地上杯子受到的合力大,冲力也大,所以杯子所以掉在水泥地受到的合力大,地面给予杯子的冲击力也大,所以杯子易碎。

正确答案应选C,D。

【小结】判断这一类问题,应从作用力大小判断入手,再由动量大,而不能一开始就认定水泥地作用力大,正是这一点需要自己去分析、判断。

例2【正确解答】首先对物体进行受力分析:与水平方向成53°的拉力F,竖直向下的重力G、竖直向上的支持力N。

由冲量定义可知,力F的冲量为:I F = F·t = 10×2=10(N·s)因为在竖直方向上,力F的分量Fsin53°,重力G,支持力N的合力为零,合力的冲量也为零。

所以,物体所受的合外力的冲量就等干力F在水平方向上的分量,由动量定理得:Fcos53°·t = P2-0所以P2= Fcos53°·t =10×0.8×2(kg·m/s)P2=16kg·m/s【小结】对于物理规律、公式的记忆,要在理解的基础上记忆,要注意弄清公式中各物理量的含量及规律反映的物理本质,而不能机械地从形式上进行记忆。

另外,对于计算冲量和功的公式、动能定理和动量定理的公式,由于它们从形式上很相似,因此要特别注意弄清它们的区别。

【正确解答】1.由动量变化图5-2中可知,△P2最大,即竖直上抛过程动量增量最大,所以应选B。

【小结】对于动量变化问题,一般要注意两点:(1)动量是矢量,用初、末状态的动量之差求动量变化,一定要注意用矢量的运算法则,即平行四边形法则。

(2)由于矢量的减法较为复杂,如本题解答中的第一种解法,因此对于初、末状态动量不在一条直线上的情况,通常采用动量定理,利用合外力的冲量计算动量变化。

如本题解答中的第二种解法,但要注意,利用动量定理求动量变化时,要求合外力一定为恒力。

例4、【正确解答】物体炸裂过程发生在物体沿水平方向运动时,由于物体沿水平方向不受外力,所以沿水平方向动量守恒,根据动量守恒定律有:(m A+m B)v = m A v A+m B v B当v A与原来速度v同向时,v B可能与v A反向,也可能与v A同向,第二种情况是由于v A 的大小没有确定,题目只讲的质量较大,但若v A很小,则m A v A还可能小于原动量(m A+m B)v。

这时,v B的方向会与v A方向一致,即与原来方向相同所以A不对。

a,b两块在水平飞行的同时,竖直方向做自由落体运动即做平抛运选项C 是正确的由于水平飞行距离x = v·t,a、b两块炸裂后的速度v A、v B不一定相等,而落地时间t 又相等,所以水平飞行距离无法比较大小,所以B不对。

根据牛顿第三定律,a,b所受爆炸力F A=-F B,力的作用时间相等,所以冲量I=F·t 的大小一定相等。

所以D是正确的。

此题的正确答案是:C,D。

【小结】对于物理问题的解答,首先要搞清问题的物理情景,抓住过程的特点(物体沿水平方向飞行时炸成两块,且a仍沿原来方向运动),进而结合过程特点(沿水平方向物体不受外力),运动相应的物理规律(沿水平方向动量守恒)进行分析、判断。

解答物理问题应该有根有据,切忌“想当然”地作出判断。

例5。

【正确解答】以炮弹爆炸前的方向为正方向,并考虑到动能为625J的一块的速度可能为正.可能为负,由动量守恒定律:P=P1+P2解得:=225J或4225J。

正确答案是另一块的动能为225J或4225J。

【小结】从上面答案的结果看,炮弹炸裂后的总动能为(625+225)J=850J或(625+4225)J=4850J。

比炸裂前的总动能大,这是因为在爆炸过程中,化学能转化为机械能的缘故。

例6、【正确解答】以木块C为研究对象,水平方向受到向右的摩擦力f,以V0为正方向,由动量定理有:-ft = 0-mv0∴I木= f·t = mv0所以,木块C所受冲量为mv0,方向向右。

对小车受力分析,竖直方向N′=Mg+N=(M +m)g,水平方向T= f′,所以小车所受合力为零,由动量定理可知,小车的冲量为零。

从动量变化的角度看,小车始终静止没动,所以动量的变化量为零,所以小车的冲量为零。

正确答案是木块C的冲量为mv0,方向向右。

小车的冲量为零。

【小结】在学习动量定理时,除了要注意动量是矢量,求动量的变化△P要用矢量运算法则运算外,还要注意F·t中F的含义,F是合外力而不是某一个力。

相关文档
最新文档