西北工业大学自动控制原理课件38

合集下载

自动控制原理

自动控制原理

Mason 公式(4)
例 4 求传递函数 C(s)/R(s)
控制系统结构图
例 4 求C(s)/R(s)
Mason 公式(5)
例 5 求传递函数 C(s)/R(s)
控制系统结构图
例 5 求C(s)/R(s)
Mason 公式(6)
例 6 求传递函数 C(s)/R(s), C(s)/N(s)
控制系统结构图
控制系统的数学模型
自动控制原理
(第 7 讲)
第二章 控制系统的数学模型
§2.1 §2.2 §2.3 §2.4 §2.5 §2.6
引言 控制系统的时域数学模型 控制系统的复域数学模型 控制系统的结构图及其等效变换 控制系统的信号流图 控制系统的传递函数
§2.5 控制系统的信号流图
§2.5.1 信号流图与结构图的对应关系
控制系统的数学模型
自动控制原理
本次课程作业(4)
2 —17, 18, 19, 20
自动控制原理
西北工业大学自动化学院
自动控制原理教学组
自动控制原理
本次课程作业(4)
2 —17, 18, 19, 20
课程回顾
2.3 复域数学模型 —— 传递函数 (1)传递函数的定义、性质和适用范围 (2)常用控制元件的传递函数 (3)典型环节
2.4 控制系统的结构图及其等效变换 (1)系统结构图的导出 (2)结构图等效化简
例6 求 C(s)/R(s), C(s)/N(s)
§2.6 控制系统的传递函数
1. 开环传递函数
2. 输入 r (t) 作用下的闭环传递函数
控制系统的传递函数
3. 干扰 n(t) 作用下的闭环传递函数
4. 系统的总输出 C(s) 及总误差 E(s)

自动控制原理6 27页PPT文档

自动控制原理6 27页PPT文档

§5.6 利用开环频率特性分析系统的性能
例 1 已知系统结构图,求wc,并确定, ts。 解. 绘制L(w)曲线
wc 204831 18090arct3a1n
20 9 0 5.2 7 3.8 2 按时域方法:
查 P171 图5-52
32.8
0 0
相角裕度
相角交界频率ω g
G( jωc) 1
18 0 G (jwc)
G(jωg)180
幅值裕度
h
/
h db

h 1 G ( jw g )

h
d
b

20 lg
h

20 lg
G(
jw g )
系统在
h
相角 幅值
方面的稳定储备量
一般要求
3 0 0~7 0 0
arctan 2 44122
%
%e/ 12
ts

3.5 w n
tswc 3.5
44122
7
44 122 7
2
tan
G(s) wn2 s(s2 wn)
§5.6 利用开环频率特性分析系统的性能
18 0(wc)90 a
arc1tA aA nB B 90 AB1
整理得 wg 44.7 9w 5g 231 .5 20 解出 wg7.4(ra/ds)
h
1
G( jw g )
wg wg 222 wg 252 wg 21.252 3.135 300wg 22.52
自动控制原理
§5.5 稳定裕度
§5.5.1 稳定裕度的定义 §5.5.2 稳定裕度的计算
§5.5
稳定裕度

西北工业大学自动控制原理课件-36资料教程

西北工业大学自动控制原理课件-36资料教程

dx f(x, x)
dx
x
f (x, x) 0
x0
相轨迹以90°穿越 x 轴
§7.2
相平面法(3)
§7.2.3 相轨迹的绘制 —— 解析法
例2 设系统方程为 xn 2x0,
试绘制系统的相轨迹。

xdx dt
dx dx
dx dt
x
dx dx
n2x
x dx n 2xdx
1x2 n2 x2C
例3 系统方程 x x x 0 ,用等倾斜线法绘制系统相轨迹图。

xxdx (xx) dx
(xx) x
等倾斜线方程
x x
1
(1 )x x
3.752.191.581.180.820.42 0.19 1.75
1 1 0.36 0.84 1.73 5.67 5.761.730.840.360.00
系统变量及其导数随时间变化 在相平面上描绘出来的轨迹。
例1 单位反馈系统
G(s) 5 s(s 1)
n 2.236 0.2236
r(t)1(t)
相轨迹图:相平面 + 相轨迹簇
§7.2
相平面法(2)
§7.2.2 相轨迹的性质
(1)相轨迹的斜率
设非线性系统方程为:
x f(x ,x ) 0
xd xd xd xxd xf(x,x) dxdxdt f(x,x)
x0.5xx0
特征 方程
x0.5xx0
s
s2 0.5s 1 0
s2 0.5s 1 0
s
= =
0.25
0 .7 8
-
1
.
2
8
j0 .9 7
不稳定焦点 鞍点

《自动控制原理》PPT课件_OK

《自动控制原理》PPT课件_OK
例如对一个微分方程,若已知初值和输入值,对 微分方程求解,就可以得出输出量的时域表达式。 据此可对系统进行分析。所以建立控制系统的数学 模型是对系统进行分析的第一步也是最重要的一步。
控制系统如按照数学模型分类的话,可以分为线 性和非线性系统,定常系统和时变系统。
2021/7/21
2
自动控制原理
[线性系统]:如果系统满足叠加原理,则称其为线性系 统。叠加原理说明,两个不同的作用函数同时作用于 系统的响应,等于两个作用函数单独作用的响应之和。
[解]速度控制系统微分方程为:
a2 a1 a0 b1ug b0ug 对上式各项进行拉氏变换,得:
(s)(a2s2 a1s a0) Ug (s)(b1s b0)
即:
(s)
(b1s (a2s2
b0 ) a1s
a0 )
U
g
(s)
当输入已知时,求上式的拉氏反变换,即可求得输出
的时域解。
2021/7/21
2021/7/21
20
自动控制原理
[关于传递函数的几点说明]
❖ 传递函数的概念适用于线性定常系统,与线性常系 数微分方程一一对应。与系统的动态特性一一对应。
❖ 传递函数不能反映系统或元件的学科属性和物理性 质。物理性质和学科类别截然不同的系统可能具有 完全相同的传递函数。而研究某传递函数所得结论 可适用于具有这种传递函数的各种系统。
将上式求拉氏变化,得(令初始值为零)
(ansn an1sn1 a1s a0)Y(s) (bmsm bm1sm1 b1s b0)X (s)
G(s)
Y (s) X (s)
bm s m an s n
bm1sm1 b1s b0 an1sn1 a1s a0

自动控制原理ppt

自动控制原理ppt

自动控制原理ppt自动控制原理是现代工程技术中的重要组成部分,它涉及到自动化技术、控制理论、电子技术等多个学科的知识。

在工程领域中,自动控制原理的应用非常广泛,涉及到工业生产、交通运输、航空航天、医疗设备等诸多领域。

因此,了解自动控制原理的基本概念和相关知识对于工程技术人员来说至关重要。

首先,我们来了解一下自动控制原理的基本概念。

自动控制系统是指能够根据给定的规律或者事先确定的要求,自动地对被控对象进行控制的系统。

它由输入、控制器、被控对象和输出四个基本部分组成。

输入是系统接收的控制信号,控制器是根据输入信号产生控制作用的部分,被控对象是控制器所控制的对象,输出是被控对象的响应信号。

自动控制原理研究的是自动控制系统的设计、分析和实现方法。

在自动控制原理中,控制系统的性能指标是评价控制系统性能好坏的重要标准。

常见的性能指标包括稳定性、灵敏度、动态性能和稳态性能等。

稳定性是指系统在外部扰动作用下,能够保持稳定的能力。

灵敏度是指系统对参数变化或者干扰的敏感程度。

动态性能是指系统对输入信号的响应速度和跟踪能力。

稳态性能是指系统在稳定工作状态下的性能表现。

这些性能指标对于设计和分析控制系统非常重要,能够直接影响到控制系统的实际应用效果。

在实际工程中,控制系统的设计和实现离不开控制器的选择和设计。

常见的控制器包括比例控制器、积分控制器、微分控制器以及它们的组合形式。

比例控制器能够根据误差的大小来产生控制作用,积分控制器能够根据误差的累积值来产生控制作用,微分控制器能够根据误差的变化率来产生控制作用。

不同类型的控制器在实际应用中有着不同的特点和适用范围,工程技术人员需要根据实际情况进行选择和设计。

除此之外,现代自动控制系统中智能控制技术的应用也越来越广泛。

智能控制技术是利用人工智能、模糊控制、神经网络等技术来实现对被控对象的智能化控制。

相比传统的控制方法,智能控制技术能够更好地适应复杂、不确定的控制环境,提高控制系统的性能和稳定性。

《自动控制原理》课件

《自动控制原理》课件

集成化:智能控制技术将更加集 成化,能够实现多种控制技术的 融合和应用。
添加标题
添加标题
添加标题
添加标题
网络化:智能控制技术将更加网 络化,能够实现远程控制和信息 共享。
绿色化:智能控制技术将更加绿 色化,能够实现节能减排和环保 要求。
控制系统的网络化与信息化融合
网络化控制:通过互联网实现远程控制和监控
现代控制理论设计方法
状态空间法:通过建立状态空间模型,进行系统分析和设计 频率响应法:通过分析系统的频率响应特性,进行系统分析和设计 极点配置法:通过配置系统的极点,进行系统分析和设计 线性矩阵不等式法:通过求解线性矩阵不等式,进行系统分析和设计
最优控制理论设计方法
基本概念:最优控制、状态方程、控制方程等 设计步骤:建立模型、求解最优控制问题、设计控制器等 控制策略:线性二次型最优控制、非线性最优控制等 应用领域:航空航天、机器人、汽车电子等
动态性能指标
稳定性:系统在受到扰动后能否恢复到平衡状态 快速性:系统在受到扰动后恢复到平衡状态的速度 准确性:系统在受到扰动后恢复到平衡状态的精度 稳定性:系统在受到扰动后能否保持稳定状态
抗干扰性能指标
稳定性:系统在受到干扰后能够 恢复到原来的状态
准确性:系统在受到干扰后能够 保持原有的精度和准确性
信息化控制:利用大数据、云计算等技术实现智能化控制
融合趋势:网络化与信息化的融合将成为未来控制系统的发展方向 应用领域:工业自动化、智能家居、智能交通等领域都将受益于网络化与 信息化的融合
控制系统的模块化与集成化发展
模块化:将复杂的控制系统分解为多个模块,每个模块负责特定的功能,便于设计和维护 集成化:将多个模块集成为一个整体,提高系统的性能和可靠性 发展趋势:模块化和集成化是未来控制系统发展的重要方向 应用领域:广泛应用于工业自动化、智能家居、智能交通等领域

自动控制原理西北工业大学课件

自动控制原理西北工业大学课件

Routh s3 s2 s1
s0
2
1+0.6K
3
K
3(1+0.6K)-2K 0 3
K
3-0.2K>0 K<15 K>0
10 < K <15
§3.6.4
动态误差系数法(1)
动态误差系数法
用静态误差系数法只能求出稳态误差

ess
lim
t
e(t )
;而稳态误差随时间变化的
规律无法表达。
用动态误差系数法可以研究动态误差 es (t )
(((32GKK2K))()K(Ktttss)ttG)GKKKD2(2((ttt(,sss,s22ss)))02()::s.1007.K1140时s1s时0K0ss121710tK(10212K201s40t0t0K,0t110st0101)0K00010Kt00tt)tst0s0s000K30vn00.Kv50.t14t5s10Ks9100021t50101Kn0K30,0n0t00.t51K02nt
1
0
G2(s) s
线性系统的时域分析与校正
第三章小结
时域分析法小结(1)
自动控制原理1~3章测验题
一. 单项选择题 ( 在每小题的四个备选答案中,选出一
个正确的答案,将其题号写入题干的○内,每小题
1分,共 分 ) 1.适合于应用传递函数描述的系统是

A.非线性定常系统; B.线性时变系统; C.线性定常系统; D.非线性时变系统。
i0
E(s) Φ e (s).R(s)
C0 R(s) C1sR(s) C2s2 R(s) Ci si R(s)
es (t ) C0 r(t ) C1r(t ) C2r(t ) Cir (i) (t ) Cir (i) (t ) i0

西北工业大学—自动控制原理

西北工业大学—自动控制原理

2.
闭环(信号有反向作用) 特点:复杂、抗干扰能力强、精度高、有稳定性问题。
3.
复合(前向联系、反向作用) 特点:性能要求高时用之。 例如:炉温系统可以采用开环或闭环的。
闭环控制工作原理:
给定量:使c跟踪r 外部作用: 干扰量:使c偏离r
控制目的:排除干扰因素、影响、使被控量随给定量变化。 负反馈原理——构成闭环控制系统的核心
2、
线性系统特性──满足齐次性、可加性
线性系统便于分析研究。 在实际工程问题中,应尽量将问题化到线性系统范围内研究。 非线性元部件微分方程的线性化。 例:某元件输入输出关系如下,导出在工作点 0 处的线性化增量方程
y E 0 cos
解:在 0 处线性化展开,只取线性项:
0 0 -st st e f t f t de 0 0 st 0-f 0 s f t e dt


sF s f 0 右
0
n n-1 n-2 n 进一步:L f t s F s s f 0 s f 0
y y 0 E 0 sin 0 0
令 y y - y 0
0
得 y E 0 sin 0 3、 用拉氏变换解微分方程 (初条件为 0)
2 s
l 2l 2l 2u a
把系统的输出信号引回输入端,与输入信号相比较,利用所得 的偏差信号进行控制,达到减小偏差、消除偏差的目的。 负反馈控制系统的特点——按偏差控制的具有负反馈的闭环系统 1) 、有反馈,信号流动构成闭回路。 2) 、按偏差进行控制。
§1.4 控制系统的组成 组成(以 X-Y 记录仪为例)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档